

1 ***Plasmodium falciparum* genetic diversity in coincident human and mosquito**
2 **hosts**

3 **Authors**

4 Zena Lapp, PhD¹

5 Andrew A Obala, PhD²

6 Lucy Abel³

7 David A Rasmussen, PhD^{4,5}

8 Kelsey M Sumner, MSPH PhD^{6,7}

9 Elizabeth Freedman⁷

10 Steve M Taylor, MD MPH^{*1,7}

11 Wendy Prudhomme-O'Meara, PhD^{*1,7}

12 ¹Duke Global Health Institute, Duke University, Durham, NC, USA

13 ²School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya

14 ³Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya

15 ⁴Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, USA

16 ⁵Bioinformatics Research Center, North Carolina State University, Raleigh, USA

17 ⁶Department of Epidemiology, Gillings School of Global Public Health, University of North

18 Carolina, Chapel Hill, USA

19 ⁷Division of Infectious Diseases, School of Medicine, Duke University, Durham, NC, USA

20 *These authors contributed equally to this work.

21 **Corresponding author:**

22 Steve M Taylor

23 steve.taylor@duke.edu

24 **Classification**

25 Major: Biological Sciences

26 Minor: Microbiology

27 **Keywords**

28 Malaria, *Plasmodium falciparum*, transmission, comparative genomics, genetic diversity

36 **Abstract**

37
38 Population genetic diversity of *P. falciparum* antigenic loci is high despite large bottlenecks in
39 population size during the parasite life cycle. The extent of this diversity in human blood-stage
40 infections, following expansion from a small number of liver-stage schizonts, has been well
41 described. However, little is known about parasite genetic diversity in the vector, where a similar
42 bottleneck and expansion occurs following parasite mating and where parasite genotypes from
43 several different human infections may accumulate. We assessed parasite genetic diversity
44 within human and mosquito *P. falciparum* infections collected from the same households during
45 a 14-month longitudinal cohort study using amplicon deep sequencing of two antigenic gene
46 fragments (*ama1* and *csp*). To a prior set of infected humans (n=1175/2813; 86.2% sequencing
47 success) and mosquito abdomens (n=199/1448; 95.5% sequencing success), we added
48 sequences from infected mosquito heads (n=134/1448; 98.5% sequencing success). Across all
49 sample types we observed 456 *ama1* and 289 *csp* unique haplotypes. While both hosts
50 contained many rare haplotypes, population genetic metrics indicated that the overall and
51 sample-level parasite populations were more diverse in mosquitoes than in humans, and
52 infections were more likely to harbor a dominant haplotype in humans than in mosquitoes
53 (based on relative read abundance). Finally, within a given mosquito there was little overlap in
54 genetic composition of abdomen and head infections, suggesting that infections may be cleared
55 from the abdomen during a mosquito's lifespan. Taken together, our observations provide
56 evidence for the role of the mosquito vector in maintaining sequence diversity of malaria
57 parasite populations.

58
59 **Significance statement**

60
61 Concurrent infections with multiple strains of *Plasmodium falciparum*, the leading causative
62 agent of death due to malaria, are common in highly endemic regions. During transitions within
63 and between the parasite's mosquito and human hosts, population bottlenecks occur, and
64 distinct parasite strains may have differential fitness in the various environments encountered.
65 These bottlenecks and fitness differences may lead to differences in strain prevalence and
66 diversity between hosts. We investigated differences in genetic diversity between *P. falciparum*
67 parasites in human and mosquito hosts and found that, compared to human parasite
68 populations and infections, mosquito populations and infections were more diverse. This
69 suggests that the mosquito vector may play a role in maintaining sequence diversity in
70 malaria parasite populations.

71
72 **Introduction**

73
74 *Plasmodium falciparum* has a complex life cycle that requires it to navigate multiple cellular and
75 host transitions to sustain transmission. These include transitions both between human and
76 mosquito hosts and between compartments within those hosts. In addition, distinct genotypes
77 may be co-transmitted between hosts in a single bite or may accumulate within a host owing to
78 serial super-infections. Such infections consisting of many different strains are particularly
79 commonplace in highly endemic settings such as some regions of sub-Saharan Africa (1),
80 promoting both outcrossing in mosquito hosts and competition in human hosts. These factors,
81 coupled with population bottlenecks and selective pressures encountered by *P. falciparum*
82 throughout its life cycle, shape overall patterns of parasite genetic diversity (2).

83
84 Comparative population genetics of *P. falciparum* between the hosts and cellular environments
85 through which the parasite transitions in natural cycles of transmission remains relatively

86 unexplored. Several studies have compared markers of drug-resistance loci between hosts, and
87 an early report from Zambia observed very different allele frequencies in humans and
88 mosquitoes (3, 4), suggesting differences in parasite population structure between hosts.
89 However, subsequent reports from other settings using different genetic markers have not
90 consistently observed this phenomenon (5, 6). As these studies used marker genes with few
91 polymorphisms, analyses of individuals with complex co-infections was limited. While
92 microsatellite markers overcome some of these limitations (7, 8), prior studies have not to our
93 knowledge contrasted the genetic composition or diversity of highly polymorphic targets in
94 naturally-occurring infections of humans and mosquitoes that are participating in co-incident
95 transmission networks. By exploring these phenomena more closely, we can better understand
96 what factors contribute to the diversity of malaria parasite populations.
97

98 We investigated variability in *P. falciparum* genetic diversity across human and mosquito hosts
99 in a highly endemic area of Western Kenya. During a 14-month longitudinal cohort study, we
100 detected *P. falciparum* parasites in human participants and in the heads and abdomens of
101 resting Anopheline mosquitoes collected from their households (1). From each *P. falciparum*
102 infection, we used amplicon deep sequencing of polymorphic segments of the parasite genes
103 encoding apical membrane antigen 1 (*ama1*) and circumsporozoite protein (*csp*) to catalog
104 complex *P. falciparum* infections in human blood, mosquito abdomens, and mosquito heads.
105 We previously reported that parasite multiplicity of infection (MOI) as expressed by either
106 marker was higher in mosquito abdomens harboring recently-ingested parasites than humans
107 harboring blood-stage parasites (1). Here, we examine more carefully the differences between
108 host compartments in haplotype diversity and relative abundance both within a given host and
109 at the population level. Based on our previous observation, as well as the robust immune
110 defenses against *P. falciparum* in humans (9), we hypothesized that the mosquito *P. falciparum*
111 haplotype population would be more diverse than that of humans.
112

113 **Results**

115 **Data overview and analytic population.**

116 Samples were collected over the course of 14 months (June 2017 – July 2018) from 38
117 households in three Kenyan villages. Mosquitoes were aspirated weekly from each household
118 and blood samples from household members were collected monthly. To the previously
119 reported data on humans and mosquito abdomens (1), we added data from mosquito heads.
120 Over a third of human samples (41.8%; 1175/2813) contained *P. falciparum*, compared to
121 13.7% (199/1448) of mosquito abdomens and 9.2% (134/1462) of mosquito heads (**Figure S1**).
122 Of these, sequencing of at least one marker was successful in 86.2% (1013/1175) of human,
123 95.5% (190/199) of mosquito abdomen, and 98.5% (132/134) of mosquito head infections.
124 Haplotype information from these 1013 infections in 224 people and 322 infections in 244
125 mosquitoes constituted the analytic population.
126

127 **Mosquito head infections are not a subset of their abdomen infections.**

128 Parasite development within the mosquito host begins in the abdomen following which
129 sporozoites must traverse the midgut wall to reach the salivary glands in the head; however, it is
130 not known how quick and comprehensive is this egress. We hypothesized that if both midgut
131 and salivary gland infections persist throughout the mosquito's lifespan (i.e. incomplete egress
132 from the midgut), haplotypes in a mosquito's head would be a subset of those in the abdomen.
133 Among mosquitoes in which at least one compartment was infected, *P. falciparum* was detected
134 in both the abdomen and the head in 89/238 (37.4%), in only the abdomen in 108/238 (45.4%),
135 and in only the head in 41/238 (17.2%) (**Figure 1A**). The latter finding suggests that infections
136 may be completely cleared from the abdomen within the span of a mosquito's lifetime.

137
138 We next compared the haplotype compositions of infections in the 89 mosquitoes in which *P.*
139 *falciparum* was detected in both the head and the abdomen. We calculated the percentage of
140 *ama1* or *csp* haplotypes found only in the head or the abdomen, or observed in both
141 compartments (i.e. the Jaccard distance; intersect/union) within each mosquito. While some
142 haplotypes were observed in both compartments of a given mosquito (mean for *ama1*: 12.0%,
143 *csp*: 23.7%), the majority of haplotypes were either private to the abdomen (mean for *ama1*:
144 50.7%, *csp*: 41.5%) or head (mean for *ama1*: 37.3%, *csp*: 34.8%) (**Figures 1B, S2A-B**). Despite
145 this limited overlap, sharing between abdomens and heads from the same mosquito was higher
146 than sharing between random pairs of abdomens and heads (**Figure S2C**; Kolmogorov-Smirnov
147 $p \leq 1e-10$ for both markers).

148
149 To determine whether the differences in haplotype composition between abdomen and head
150 infections within a single mosquito corresponded to differences at the host population level, we
151 compared between mosquito compartments haplotype population-level prevalences, defined as
152 the number of samples in which a haplotype was observed. Both *ama1* and *csp* haplotype
153 prevalences were similar between mosquito abdomen and head populations (**Figure 1C**),
154 suggesting that the transition from oocyst to sporozoite does not alter the diversity of circulating
155 parasites. Owing to this population-level similarity in prevalences and our observation that
156 abdomen and head parasite populations from the same mosquito appear to frequently represent
157 different infections, we subsequently performed all comparisons between the two *P. falciparum*
158 hosts: humans and mosquitoes, where mosquito samples included both abdomen and head
159 samples.

160
161 **The *P. falciparum* population in mosquitoes is more diverse than the population in**
162 **humans.**

163 To investigate signatures of differential bottlenecks or selection during parasite transition
164 between mosquito and human hosts, we compared population-level differences in parasite
165 haplotype prevalence among mosquitoes and humans, where differences in prevalence may
166 indicate differential bottlenecks or selection. Across all infections, we observed high haplotype
167 richness, with 456 *ama1* and 298 *csp* distinct haplotypes. The vast majority of these were low-
168 frequency haplotypes, many of which were observed in only one host (**Figures S3-4**). Among
169 54 distinct haplotypes (both *ama1* and *csp*) with a prevalence above 5% across all samples, we
170 observed 28 haplotypes with differential prevalence across hosts: 19 more common in mosquito
171 infections and 9 in human infections (**Figure 2A**), consistent with our observation of higher
172 average mosquito MOIs (1) (**Figure S5**).

173
174 We next used haplotype prevalence to quantify population-level diversity across orders of
175 diversity (q) ranging from equal weight to each haplotype ($q = 0$, equivalent to haplotype
176 richness or the number of distinct haplotypes observed) to downweighting rare haplotypes ($q =$
177 2, effective number of highly abundant haplotypes) (10). The mosquito parasite population was
178 more diverse than the parasite population in human hosts (**Figure 2B; S6A**). This trend is
179 consistent even when accounting for multiple samples per host, different sampling schemes
180 between hosts, differences in MOI, haplotypes with rare variants, and limitations of using
181 empirical diversity (**Figure S6B**). Moreover, as evidenced by the steeper decline in diversity with
182 increasing q in mosquitoes relative to humans (**Figures 2B**), the mosquito parasite population
183 contained more uneven haplotype prevalences than the human parasite population (**Figure 2C**),
184 indicating that mosquitoes contained a larger relative number of infrequent haplotypes. Even so,
185 higher diversity in the mosquito host is still apparent when downweighting the contribution of
186 these minor haplotypes. Taken together, these results indicate that there may be a greater

187 relative loss in diversity across the transition from mosquitoes to humans than humans to
188 mosquitoes.

189

190 **Dominant haplotypes within infections are more common in humans than mosquitoes.**

191 In addition to lower population-level diversity in humans compared to mosquitoes, we also
192 observed lower within-sample diversity (**Figure S5**) and proportionately more monoclonal
193 infections in humans (**Figure 3A**; both Fisher's exact $p < 1e-12$). To further investigate whether
194 human infections are more often dominated by one or a few haplotypes relative to mosquito
195 infections, we calculated for each infection the haplotype evenness, which examines the
196 haplotype abundance within an infection based on sequencing reads. A lower value indicates
197 that the infection consists of mostly reads from a single haplotype or, in other words, is
198 dominated by a majority haplotype. Median evenness values for mosquito infections were
199 higher (*ama1*: 0.88; *csp*: 0.84) than those in human infections (*ama1*: 0.51; *csp*: 0.67) (all $p <$
200 1e-4) (**Figure 3B**). This observation was robust to taking the maximum evenness among the
201 two markers and to differences in haplotype filtering (all $p < 1e-10$; **Figure S7**). This differential
202 composition of polyclonal *P. falciparum* infections between hosts supports a differential in
203 selective landscapes that may further enable the preservation of diverse *P. falciparum*
204 populations in Anopheline mosquitoes.

205

206 **Discussion**

207

208 We compared *P. falciparum* genetic diversity across several host compartments that the
209 parasite must successfully navigate to sustain transmission. Parasite genetic diversity was
210 increased relative to humans during the mosquito stages, although this incremental diversity in
211 mosquitoes appears to be transmitted only infrequently to humans. In addition, individual
212 infections were composed differently in mosquitoes and humans, with human infections more
213 commonly harboring dominant members. Collectively, our observations suggest that mosquito-
214 stage infections participate the maintenance of diversity in *P. falciparum* parasite populations
215 not only through recombination, but also by acting as a reservoir of sequence diversity.

216

217 We observed, using multiple metrics, more parasite genetic diversity in mosquitoes compared to
218 humans. This high diversity contrasts with the known marked reduction in parasite biomass
219 during the transition from the human to the mosquito abdomen (11), which might be expected to
220 constrain parasite diversity. One potential explanation for this is the possibility of cryptic
221 genotypes in humans undetected by marker sequencing; this has been reported in experimental
222 studies (7), though the large range of MOIs we observed in humans suggests that these
223 infections were not systematically undersampled. Alternatively, the reduced diversity in humans
224 could result from large reductions in population size and negative selective pressures as the
225 parasite passes from mosquitoes, through the human liver, and into the blood stage.

226 Mosquitoes are the location of parasite sexual recombination and therefore certainly provide a
227 site for genomic diversification, but this seems unsuited to explain the diversity of these short
228 segments in *ama1* and *csp* that do not harbor known recombination hotspots (12). A probable
229 contributor to this high mosquito diversity is multiple or interrupted feeds on infected hosts,
230 which would allow strains to accumulate in the mosquito abdomen. This feeding behavior has
231 been reported for *Anopheles gambiae* and may be enhanced by human *P. falciparum* infection
232 (13, 14). Additionally, *P. falciparum* adaptation to evade the immune system of local *Anopheles*
233 strains (15), as well as imposition of selective pressures on the *Anopheles* vector to the
234 parasites' benefit (16), may reduce differences in fitness between distinct parasite strains within
235 the mosquito and lead to an accumulation of genetic diversity at the population level. However,
236 some of these novel strains may be unfit to survive the human host. Indeed, prior work on
237 arbovirus infection found an accumulation of mutations in mosquitoes that led to fitness costs

238 during vertebrate infection (17). Despite these plausible explanations for constrained diversity in
239 humans and higher diversity in mosquitoes, the mechanism by which mosquitoes maintain such
240 high parasite diversity when their parasite population is necessarily sampled from the less
241 diverse human population remains to be fully elucidated.

242
243 Within individual infections, we observed higher dominance of haplotypes in human compared
244 to mosquito infections, while on a larger scale, the *P. falciparum* haplotype population was more
245 evenly distributed among humans than among mosquitoes. These differences may result from
246 the differential selection landscapes between hosts, in particular for the proteins encoded by our
247 gene targets, AMA1 and CSP, which harbor epitopes that are known targets of functional
248 human immunity (18). In humans, the concurrent maintenance in the population of multiple
249 viable alleles due to balancing selection, paired with the removal of deleterious alleles due to
250 negative selection, could produce a relatively high evenness of haplotypes in the human
251 parasite population even as individual infections are shaped by directional selection resulting
252 from individual host immune responses. In contrast, the relative lack of differential fitness in the
253 mosquito host described above may lead to even parasite strain abundances within a mosquito.

254
255 Comparison of paired abdomens and heads from the same mosquito revealed striking
256 differences between *P. falciparum* presence and haplotype composition. As expected given the
257 delay between midgut and salivary gland infections, many mosquitoes had haplotypes private to
258 the abdomen that were not present in the head. More surprising was the observation of
259 mosquitoes with haplotypes private to the head that were absent from the abdomen, suggesting
260 that infections do not reliably persist in a mosquito's abdomen throughout its lifespan. While
261 these differences may again be due to cryptic haplotypes, the identification of mosquitoes with
262 infections in the head but not the abdomen using sensitive PCR detection methods (19, 20)
263 indicates that cryptic haplotypes likely cannot explain all of the observed differences. Despite
264 these discrepancies between abdomens and heads from a given mosquito, at the population
265 level haplotype composition and diversity were similar between mosquito abdomens and heads,
266 suggesting that the selective pressures for or against certain haplotypes (or lack thereof) may
267 be similar in these two compartments.

268
269 Our findings highlight the role of the mosquito host in influencing the sequence diversification of
270 *P. falciparum* parasites. A unique feature of genetic diversity in *P. falciparum* compared to other
271 organisms is the preponderance of low-frequency alleles (21). A prior modeling study suggested
272 that this phenomenon may be the result of the complex, "unconventional" life cycle of *P.*
273 *falciparum*, specifically the bottlenecks and host transitions that intensify both random genetic
274 drift as well as natural selection (2). Consistent with this, we observed many haplotypes private
275 to one host, which was more prominent in mosquitoes. As noted above, meiotic recombination
276 is unlikely to be the main contributor to the diversity we cataloged, and the mechanisms by
277 which these low-frequency and private alleles arise remains obscure. However, our
278 observations furnish compelling evidence for a role of the mosquito vector in accumulating
279 genetic diversity in genic regions likely not under positive selection in mosquitoes. While this
280 diversity appears to be selected against in humans, it nevertheless acts as a continual supply of
281 novel alleles and allelic combinations that may be exploited by the parasite during human
282 infection.

283
284 This study has limitations. First, the inability to sample parasites from mosquitoes without
285 sacrificing them precludes a comprehensive study of paired mosquito abdomen and head
286 infections over time. Even so, we were still able to identify similarities and differences between
287 the haplotype populations in these two compartments. Additionally, the mosquito and human
288 sampling schemes were different, potentially biasing sampling comprehensiveness between

289 hosts. To mitigate the risk that this potential imbalance influenced our results, we performed
290 comparative population analyses using empirical methods with a fixed coverage threshold (10)
291 and sensitivity analyses. Finally, many of the human and mosquito infections had very low
292 parasite densities, which not only increases the possibility of failing to detect infections, but also
293 increases the possibility of false haplotype discovery (22). To reduce the inclusion of false
294 haplotypes to the greatest extent possible, we performed strict haplotype censoring to remove
295 potential false positives (1) and performed sensitivity analyses on key findings to determine
296 whether haplotype filtering criteria influenced the results.
297

298 In conclusion, our comparison of *P. falciparum* haplotypes observed in natural, coincident
299 infections of humans, mosquito abdomens, and mosquito heads revealed greater genetic
300 diversity in mosquito than human populations and infections. This provides evidence for the role
301 of the mosquito vector in maintaining the sequence diversity of malaria parasite population.
302

303 Materials and methods

304 Ethics statement

305 All adults, and parents or legal guardians for individuals under 18 years old, provided written
306 informed consent. Children over 8 years old also provided verbal assent. The study was
307 approved by the ethical review boards of Moi University (2017/36) and Duke University
308 (Pro00082000).
309

310 Study design and sampling

311 The study design and sample processing have been described previously (1). Briefly, a
312 longitudinal cohort of participants (1 year of age or older) residing in 38 households in three
313 villages in Western Kenya were followed from June 2017 to July 2018. For each participant,
314 dried blood spots (DBS) were collected monthly and any time participants had malaria
315 symptoms. One morning each week, indoor resting mosquitoes were collected from participant
316 households using vacuum aspiration, and following morphologic identification, the abdomen
317 was separated from the head and thorax of female *Anopheles* mosquitoes. Genomic DNA was
318 isolated from DBS, mosquito abdomens, and mosquito heads; *P. falciparum* was detected in
319 these extracts using a real-time PCR assay. Segments of approximately 300 nucleotides of the
320 *P. falciparum* *ama1* and *csp* genes were amplified, sequenced on an Illumina MiSeq platform,
321 and haplotype inference was performed using DADA2 v1.8 (23) with custom read- and
322 haplotype-filtering. The output was a set of quality-filtered *ama1* and *csp* reads and
323 corresponding parasite haplotypes for each *P. falciparum* infection.
324

325 We performed parallel analyses of amplicon deep-sequenced segments of the *P. falciparum*
326 *ama1* and *csp* marker genes. Since *ama1* and *csp* are unlinked markers found on different
327 chromosomes, to some extent these parallel analyses can be considered pseudo-replicates,
328 where similar results for both markers increases confidence in our findings.
329

330 Within-mosquito comparison

331 For each mosquito with a *P. falciparum* infection in both the abdomen and the head, the Jaccard
332 distance (24) was calculated for the haplotypes in the abdomen-head pair:
333

$$J(H_a, H_h) = \frac{|H_a \cap H_h|}{|H_a \cup H_h|} \quad (1)$$

338 Where H_a is the set of haplotypes in the abdomen and H_h is the set of haplotypes in the head.

339

340 **Haplotype prevalence**

341

342 For each haplotype, population-level prevalence was determined for 5 distinct populations: the
343 entire sample set, all human samples, all mosquito samples, mosquito abdomens, and mosquito
344 heads. Prevalence was calculated as the proportion of samples harboring that haplotype. 95%
345 confidence intervals were computed from 100 bootstrapped datasets. Haplotypes were
346 considered low-frequency if they occurred in fewer than 5% of all samples. Haplotypes that
347 were not low-frequency (i.e. above a threshold of 5% prevalence) were considered higher in a
348 given compartment if the range of bootstrapped prevalences did not overlap the expected
349 prevalence (i.e. the overall prevalence across all samples).

350

351 **Randomized minimum spanning trees**

352

353 To visualize the relatedness of haplotypes, we calculated pairwise distances using the dist.dna()
354 function in the R package ape v5.6-2 (25) with the K80 evolutionary model, computed
355 randomized minimum spanning trees (26) using the rmst() function in pegas v1.1 (27), and
356 visualized the trees in ggtree v3.0.4 (28).

357

358 **Diversity and evenness**

359

360 For analyses between humans and mosquitoes, all mosquito abdomen and head samples were
361 considered mosquito samples, providing a maximum of 2 samples from each mosquito.

362

363 *Population-level*

364 For the set of mosquito samples and the set of human samples, we calculated the population-
365 level diversity of haplotypes, rarefaction curves, and population evenness using the R packages
366 iNEXT.4steps v1.0.1 (10) and iNEXT.3D v1.0.1 (29).

367

368 Diversity was calculated using the following equation (10, 30):

369

$${}^q D = \left(\sum_{i=1}^n p_i^q \right)^{1/(1-q)} \quad (2)$$

370 Where q is the order of diversity, n is the number of distinct haplotypes, and p_i is the prevalence
371 of haplotype i in the sample set. D was computed across a range of values q between 0 and 2,
372 where higher numbers correspond to upweighting haplotypes that are more abundant in the
373 overall population. True diversity was not accurately calculable for low orders of diversity ($q < 1$)
374 due to an abundance of unsampled rare haplotypes. Therefore, to enable comparison of
375 diversity between the human and mosquito haplotype populations, we calculated the empirical
376 diversity at a standardized coverage of the host population's haplotypes (90.1% for *ama1* and
377 94.5% for *csp*).

378

379 Sensitivity analyses were performed using (1) true (asymptotic) diversity (for $q \geq 1$), (2) a
380 subsampled dataset including the same number of host samples per week (to account for
381 differences in mosquito and human sampling schemes), (3) a subsampled dataset including
382 only one sample per host (to account for multiply sampled hosts), (4) by defining p_i as the
383 frequency of haplotypes in the total set of haplotypes (to account for differences in MOI between

384 infections), and (5) a dataset including only haplotypes with variation at amino acid positions
385 that are variable in both hosts (to limit potential false positives by using this stricter set of
386 haplotype filtering criteria).

387
388 We calculated haplotype evenness using the following equation (31):
389

$${}^q E = \frac{{}^q D - 1}{H - 1} \quad (3)$$

390
391 Where H is the haplotype richness, or the number of distinct haplotypes in the population. For q
392 = 0 evenness is defined as 1, and for $H = 1$, evenness is defined as 0.
393

394 *Within-sample*

395 For each sample, we computed haplotype diversity and evenness using equations 1 and 2. In
396 this case, p_i in equation 1 is the relative read abundance of each haplotype, ${}^q D$ is the within-
397 host diversity, and H is the MOI of the infection.
398

399 To compare evenness between human and mosquito hosts, we computed a zero-one inflated
400 Beta regression model using the R package *gamlss* v5.4-1 (32) with host as the main exposure,
401 evenness as the outcome, log2-transformed haplotype reads as a covariate, and individual as a
402 random effect. To determine whether incorporating information from both markers influenced
403 differences in evenness between hosts, for each sample we selected the highest evenness
404 value (between *ama1* and *csp*) and compared these values between humans and mosquitoes.
405 Finally, to explore if evenness values were biased by the initial enforcement of haplotype
406 quality-filtering criteria that were partially based on within-sample haplotype proportion, we
407 performed a sensitivity analysis using unfiltered haplotypes. These haplotypes were inferred by
408 *DADA2* v1.8 (23) from input reads which passed upstream read quality-filtering. Using these
409 unfiltered haplotypes, we used the same methods as above to compute and compare evenness.
410

411 **Data analysis and visualization**

412
413 Comparison across groups was performed using Wilcoxon rank-sum tests, Fisher's exact tests,
414 or Kolmogorov-Smirnov tests. All data analysis and visualization was performed in R v4.1.1 (33)
415 and RStudio v2021.9.0.351 (34) using the following packages: *tidyverse* v1.3.1 (35), *ape* v5.6-2
416 (25), *cowplot* v1.1.1 (36), *scales* v1.1.1 (37), and *ggttext* v0.1.1 (38). All data and code to
417 reproduce the analyses and figures can be found on GitHub (<https://github.com/duke-malaria-collaboratory/parasite-host-comparison>).
418

419 **References**

- 420
421 1. K. M. Sumner, *et al.*, Genotyping cognate *Plasmodium falciparum* in humans and
422 mosquitoes to estimate onward transmission of asymptomatic infections. *Nat Commun*
423 **12**, 909 (2021).
424
425 2. H.-H. Chang, *et al.*, Malaria life cycle intensifies both natural selection and random
426 genetic drift. *Proceedings of the National Academy of Sciences* **110**, 20129–20134
427 (2013).
428
429 3. S. Mharakurwa, *et al.*, Malaria antifolate resistance with contrasting *Plasmodium*
430 *falciparum* dihydrofolate reductase (DHFR) polymorphisms in humans and *Anopheles*

- mosquitoes. *Proceedings of the National Academy of Sciences* **108**, 18796–18801 (2011).

 4. S. Mharakurwa, M. Sialumano, K. Liu, A. Scott, P. Thuma, Selection for chloroquine-sensitive *Plasmodium falciparum* by wild *Anopheles arabiensis* in Southern Zambia. *Malaria Journal* **12**, 453 (2013).
 5. M. D. Conrad, *et al.*, Comparative Prevalence of *Plasmodium falciparum* Resistance-Associated Genetic Polymorphisms in Parasites Infecting Humans and Mosquitoes in Uganda. *Am J Trop Med Hyg* **97**, 1576–1580 (2017).
 6. C. Mendes, *et al.*, Genetic diversity and signatures of selection of drug resistance in *Plasmodium* populations from both human and mosquito hosts in continental Equatorial Guinea. *Malaria Journal* **12**, 114 (2013).
 7. I. Morlais, *et al.*, *Plasmodium falciparum* Mating Patterns and Mosquito Infectivity of Natural Isolates of Gametocytes. *PLoS ONE* **10**, e0123777 (2015).
 8. A. Berry, *et al.*, The Rare, the Best: Spread of Antimalarial-Resistant *Plasmodium falciparum* Parasites by *Anopheles* Mosquito Vectors. *Microbiology Spectrum* (2021) <https://doi.org/10.1128/Spectrum.00852-21> (February 8, 2022).
 9. L. Malaguarnera, S. Musumeci, The immune response to *Plasmodium falciparum* malaria. *The Lancet Infectious Diseases* **2**, 472–478 (2002).
 10. A. Chao, *et al.*, Quantifying sample completeness and comparing diversities among assemblages. *Ecological Research* **35**, 292–314 (2020).
 11. W. Graumans, E. Jacobs, T. Bousema, P. Sinnis, When Is a *Plasmodium*-Infected Mosquito an Infectious Mosquito? *Trends in Parasitology* **36**, 705–716 (2020).
 12. J. Mu, *et al.*, Recombination Hotspots and Population Structure in *Plasmodium falciparum*. *PLOS Biology* **3**, e335 (2005).
 13. J. c. Koella, F. I. Sørensen, R. a. Anderson, The malaria parasite, *Plasmodium falciparum*, increases the frequency of multiple feeding of its mosquito vector, *Anopheles gambiae*. *Proceedings of the Royal Society of London. Series B: Biological Sciences* **265**, 763–768 (1998).
 14. T. W. Scott, W. Takken, Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. *Trends in Parasitology* **28**, 114–121 (2012).
 15. A. Molina-Cruz, *et al.*, *Plasmodium* evasion of mosquito immunity and global malaria transmission: The lock-and-key theory. *Proceedings of the National Academy of Sciences* **112**, 15178–15183 (2015).
 16. A. Cohuet, C. Harris, V. Robert, D. Fontenille, Evolutionary forces on *Anopheles*: what makes a malaria vector? *Trends in Parasitology* **26**, 130–136 (2010).

- 465 17. N. D. Grubaugh, *et al.*, Genetic Drift during Systemic Arbovirus Infection of Mosquito
466 Vectors Leads to Decreased Relative Fitness during Host Switching. *Cell Host & Microbe*
467 **19**, 481–492 (2016).
- 468 18. B. Greenhouse, *et al.*, Antibodies to *Plasmodium falciparum* Antigens Predict a Higher
469 Risk of Malaria But Protection From Symptoms Once Parasitemic. *The Journal of*
470 *Infectious Diseases* **204**, 19–26 (2011).
- 471 19. A. Demas, *et al.*, Applied Genomics: Data Mining Reveals Species-Specific Malaria
472 Diagnostic Targets More Sensitive than 18S rRNA. *J Clin Microbiol* **49**, 2411–2418
473 (2011).
- 474 20. S. M. Taylor, *et al.*, Direct Estimation of Sensitivity of *Plasmodium falciparum* Rapid
475 Diagnostic Test for Active Case Detection in a High-Transmission Community Setting.
476 *Am J Trop Med Hyg* **101**, 1416–1423 (2019).
- 477 21. H.-H. Chang, *et al.*, Genomic Sequencing of *Plasmodium falciparum* Malaria Parasites
478 from Senegal Reveals the Demographic History of the Population. *Molecular Biology and*
479 *Evolution* **29**, 3427–3439 (2012).
- 480 22. A. M. Early, *et al.*, Detection of low-density *Plasmodium falciparum* infections using
481 amplicon deep sequencing. *Malaria Journal* **18**, 219 (2019).
- 482 23. B. J. Callahan, *et al.*, DADA2: High-resolution sample inference from Illumina amplicon
483 data. *Nat Methods* **13**, 581–583 (2016).
- 484 24. P. Jaccard, The Distribution of the Flora in the Alpine Zone.1. *New Phytologist* **11**, 37–50
485 (1912).
- 486 25. E. Paradis, K. Schliep, ape 5.0: an environment for modern phylogenetics and
487 evolutionary analyses in R. *Bioinformatics* **35**, 526–528 (2019).
- 488 26. E. Paradis, Analysis of haplotype networks: The randomized minimum spanning tree
489 method. *Methods in Ecology and Evolution* **9**, 1308–1317 (2018).
- 490 27. E. Paradis, pegas: an R package for population genetics with an integrated–modular
491 approach. *Bioinformatics* **26**, 419–420 (2010).
- 492 28. G. Yu, D. K. Smith, H. Zhu, Y. Guan, T. T.-Y. Lam, ggtree: an r package for visualization
493 and annotation of phylogenetic trees with their covariates and other associated data.
494 *Methods in Ecology and Evolution* **8**, 28–36 (2017).
- 495 29. A. Chao, *et al.*, Measuring temporal change in alpha diversity: A framework integrating
496 taxonomic, phylogenetic and functional diversity and the iNEXT.3D standardization.
497 *Methods in Ecology and Evolution* **12**, 1926–1940 (2021).
- 498 30. M. O. Hill, Diversity and Evenness: A Unifying Notation and Its Consequences. *Ecology*
499 **54**, 427–432 (1973).
- 500 31. A. Chao, C. Ricotta, Quantifying evenness and linking it to diversity, beta diversity, and
501 similarity. *Ecology* **100**, e02852 (2019).

- 502 32. R. A. Rigby, D. M. Stasinopoulos, Generalized additive models for location, scale and
503 shape. 48.
- 504 33. R Core Team, *R: A Language and Environment for Statistical Computing* (R Foundation
505 for Statistical Computing, 2021).
- 506 34. , RStudio | Open source & professional software for data science teams (April 1, 2022).
- 507 35. H. Wickham, *et al.*, Welcome to the Tidyverse. *Journal of Open Source Software* **4**, 1686
508 (2019).
- 509 36. C. O. Wilke, *cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2”* (2019)
510 (April 15, 2020).
- 511 37. H. Wickham, D. Seidel, RStudio, *scales: Scale Functions for Visualization* (2020) (April 1,
512 2022).
- 513 38. C. O. Wilke, *ggtext: Improved Text Rendering Support for “ggplot2”* (2020) (April 1, 2022).

514 **Funding**

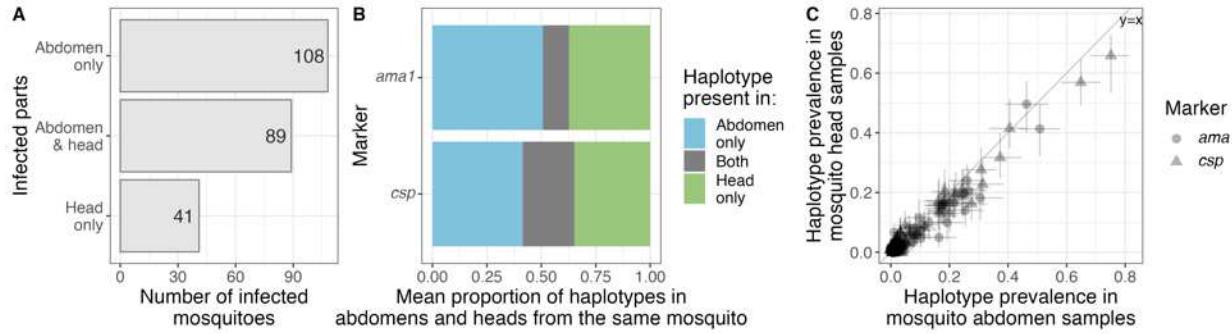
515
516 This work was supported by NIAID (R21AI126024 to WPO and R01AI146849 to WPO and
517 SMT) and the Triangle Center for Evolutionary Medicine (Graduate Student Award to KMS).
518

519 **Acknowledgements**

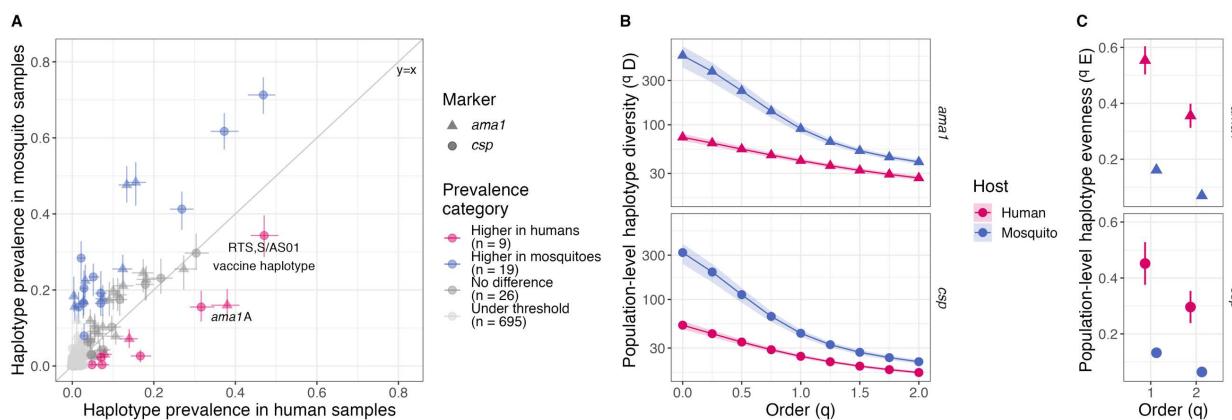
520
521 We thank the field technicians in Webuye for their engagement with the study participants:
522 I. Khaoya, L. Marango, E. Mukeli, E. Nalianya, J. Namae, L. Nukewa, E. Wamalwa,
523 and A. Wekesa; J. Kipkoech Kirui (AMPATH) for operational assistance; V. Liao, A. Nantume,
524 S. Kim, and J. Saelens (each of Duke University) for laboratory sample and data processing;
525 and C. Markwalter PhD (Duke University) for thoughtful discussion. Ultimately, we are indebted
526 to the households for their participation in this study.
527

528 Preliminary results were presented at the Annual Meeting of the American Society of Tropical
529 Medicine and Hygiene in November 2020.
530

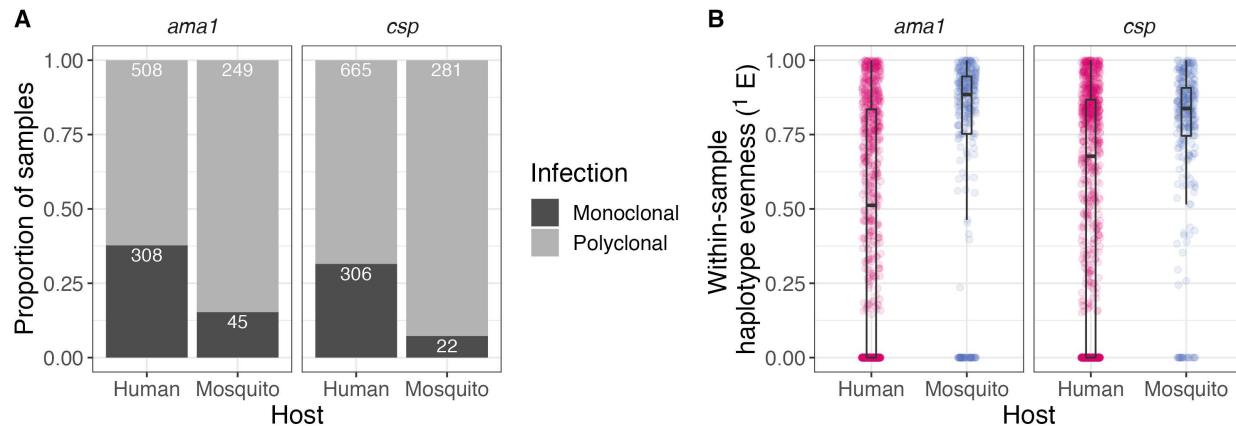
531 **Conflicts of interest**


532
533 None
534

535 **Author contributions**

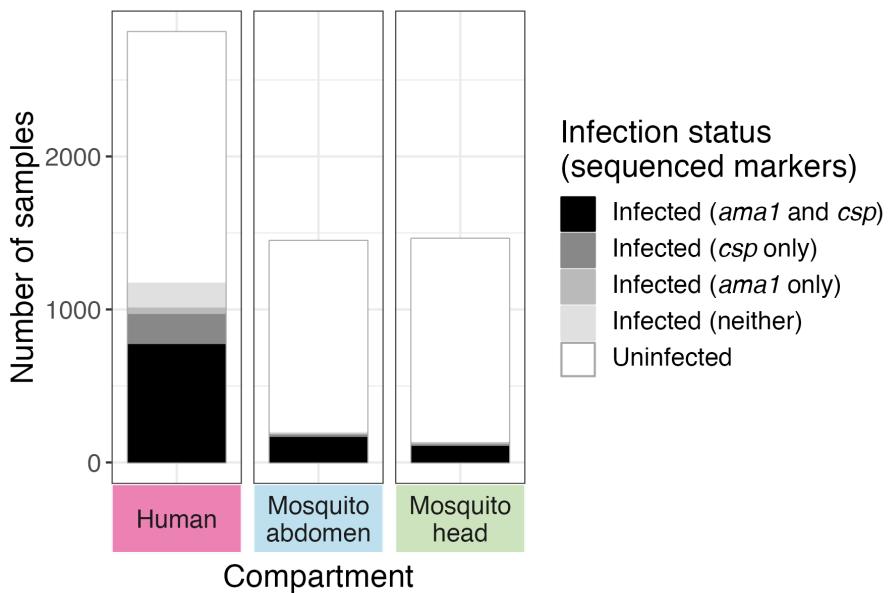

536
537 DAR, KMS, SMT, WPO, and ZL conceptualized the study. EF, SMT, WPO, KMS, and ZL
538 developed the methodology. ZL and KMS curated the data, performed formal analysis, and
539 performed the computer programming. ZL visualized the data. WPO, SMT, KMS, and DAR
540 acquired funding. ZL, LA, EF, and KMS performed the investigation. SMT, WPO, AO, and LA
541 administered and supervised the project. ZL, SMT, and WPO wrote the original manuscript
542 draft. All authors reviewed and edited the manuscript.
543

545 **Figures**


546
547

548
549 **Figure 1: Mosquito abdomens and heads do not contain similar infections.** (A) *P.*
550 *falciparum* infection of mosquito abdomens and heads of mosquitoes for which both
551 compartments were tested using PCR. (B) For 89 mosquitoes with infections of both the
552 abdomen and the head, the proportion of the set of haplotypes in the mosquito found in the
553 abdomen only, head only, or both. The mean counts for each of the three groups were used to
554 obtain the proportions. (C) Prevalence of each *ama1* and *csp* haplotype in the mosquito
555 abdomen population compared to the mosquito head population. Each dot represents a unique
556 *ama1* or *csp* haplotype, and bars indicate the 95% bootstrapped confidence intervals.
557

558
559 **Figure 2: The mosquito *P. falciparum* population is more diverse than the human *P.*
560 *falciparum* population.** (A) Prevalence of each *ama1* and *csp* haplotype in the human
561 population compared to the mosquito population. Each dot represents a unique *ama1* or *csp*
562 haplotype, and bars indicate the 95% bootstrapped confidence intervals. The lower threshold
563 was defined as haplotypes observed in fewer than 5% of combined human and mosquito
564 samples. Haplotype prevalences were considered higher in one compartment if the 95%
565 bootstrapped confidence intervals didn't overlap the expected prevalence (i.e. the overall
566 prevalence across all samples). (B) Diversity of *P. falciparum* populations by host and genetic
567 marker across orders of diversity. Ribbons are bootstrapped 95% confidence intervals. Higher
568 values indicate more diversity. The slope of the line across orders q is a measure of haplotype
569 evenness in the population. (C) Haplotype evenness of human and mosquito samples. Bars are
570 bootstrapped 95% confidence intervals. Higher values indicate more similar prevalence of
571 haplotypes in the population.
572

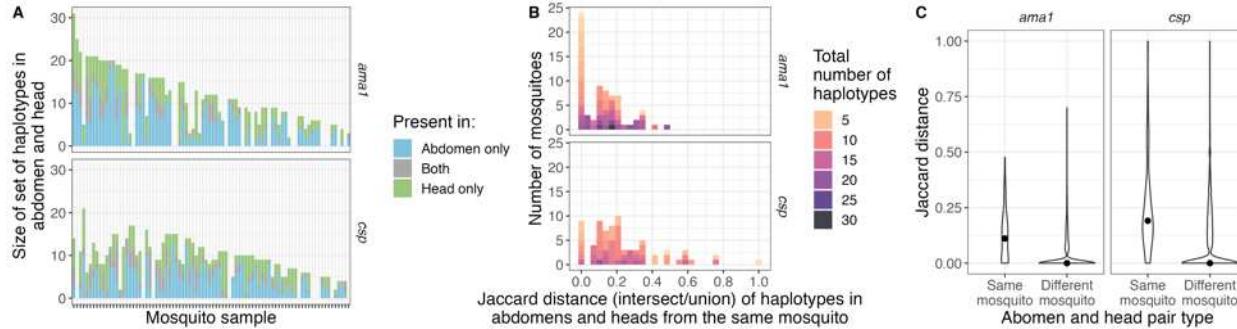


573
574
575
576
577
578
579
580
581

Figure 3: Compared to mosquito samples, human samples are more often dominated by a single haplotype. (A) Proportion of samples with monoclonal and polyclonal infections. Numbers are counts for each category. (B) Distributions of within-sample evenness ($q = 1$) by genetic marker and host. Lower values indicate more dominance by individual haplotypes within the strain mixture.

582 **Supplementary figures**

583



584

585 **Figure S1: Overview of sample infection status.** Samples with and without *P. falciparum*
586 infections, including what markers were sequenced for each infected sample.

587

588

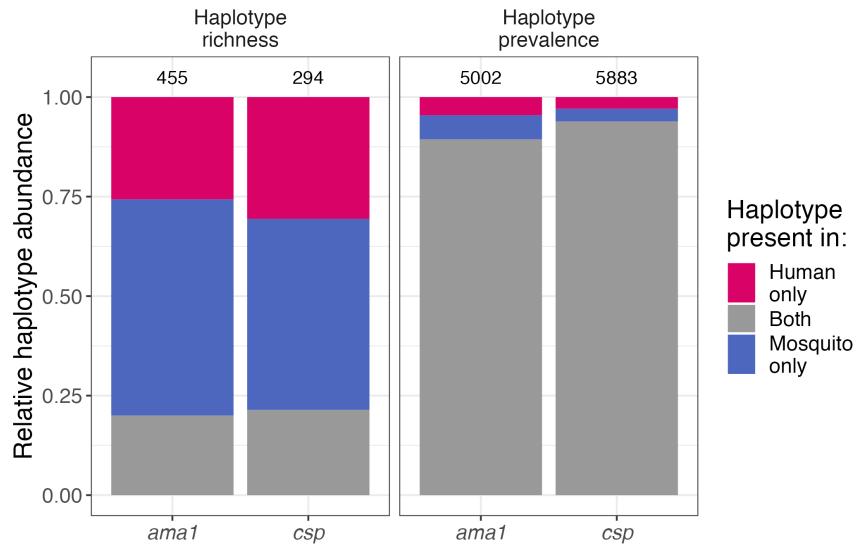
589

590

591

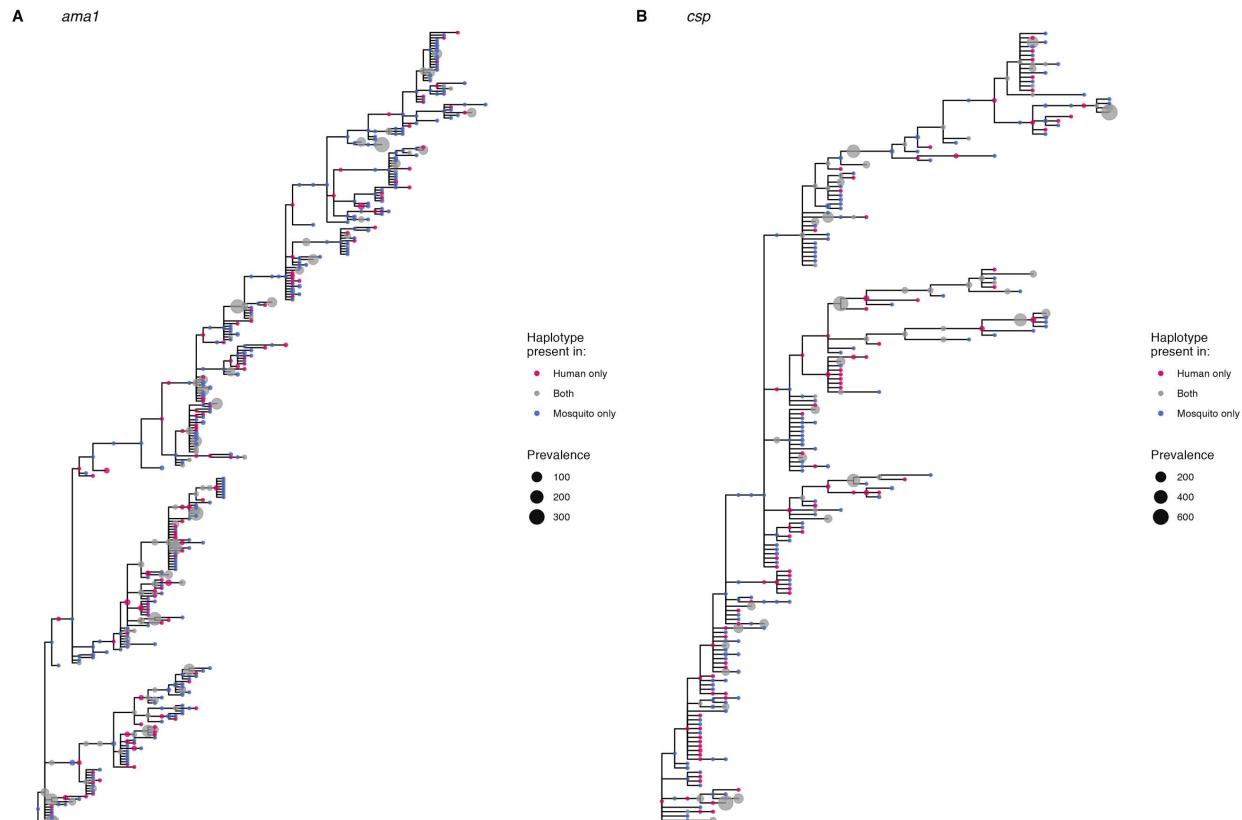
592

593


594

595

596


597

598 **Figure S2: Summary of haplotypes found in the mosquito abdomen, mosquito head, or**
599 **both compartments.** (A) Sample-level counts. (B) Jaccard distance of haplotypes in abdomens
600 and heads from the same mosquito, calculated as the intersect over the union of haplotypes in
601 each mosquito. Color indicates the total number of haplotypes present in the mosquito, or the
602 size of the union. (C) Jaccard distance of haplotypes observed in abdomens and heads
603 compared between the same mosquito to that of different mosquitoes. The point is the median
604 value.

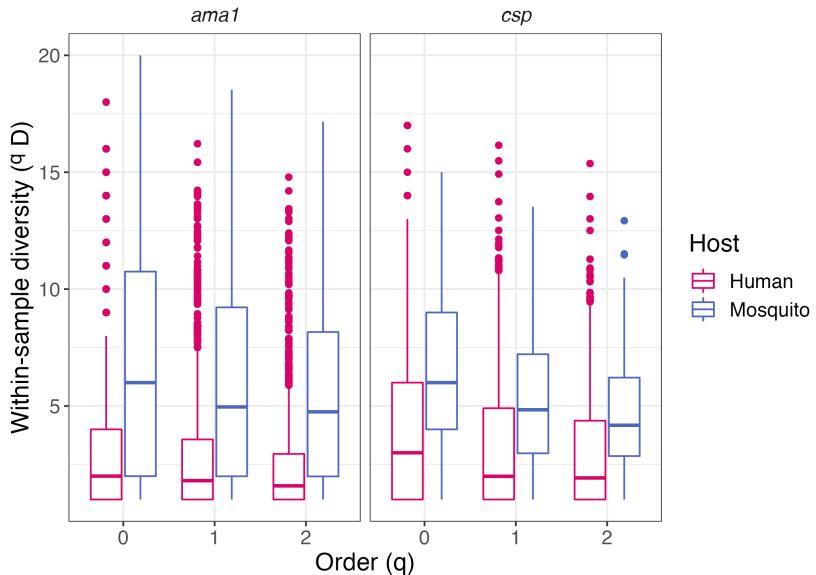

598
599
600
601
602
603

Figure S3: Haplotype richness and evenness across host compartments. Mean proportion of haplotypes present in each compartment, expressed as haplotype richness (left, including each unique haplotype once) and sample haplotype prevalence (right, counting the number of times each haplotype was observed).

604
605
606

Figure S4: Randomized minimum spanning trees for nucleotide haplotype sequences.

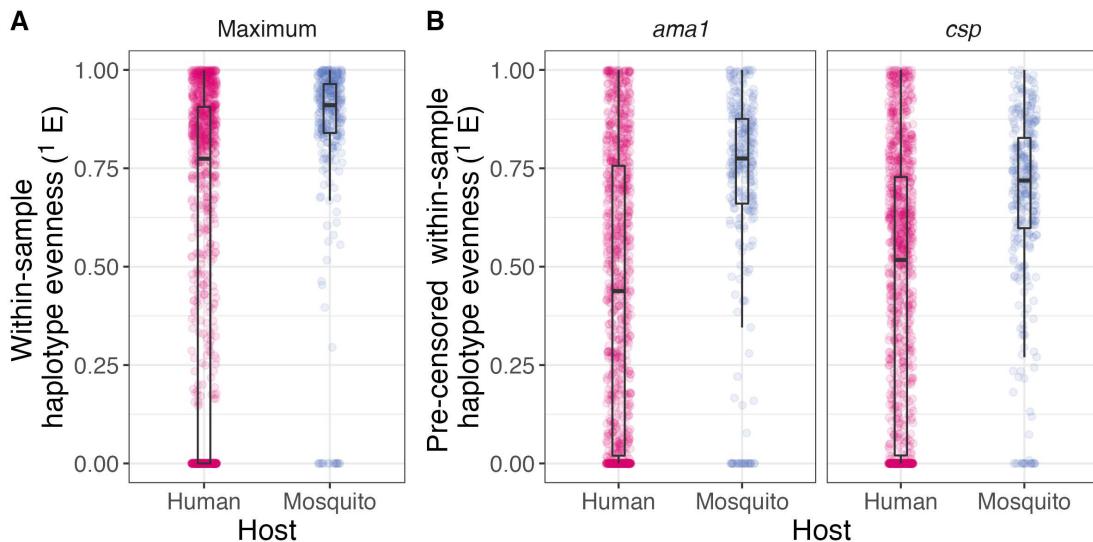

607
608
609
610

Figure S5: Within-sample diversity. When $q = 0$, the within-sample diversity is equivalent to the multiplicity of infection.

611
612
613
614
615
616
617
618
619
620

Figure S6: Mosquito haplotype populations are more diverse than human haplotype populations. (A) Rarefaction curves for various orders of diversity (q). True (asymptotic) diversity can be calculated after the rarefaction curve flattens out; otherwise, the computed true diversity is a lower bound. Comparisons can be made for true diversity at orders of diversity above $q = 1$ in our dataset because the human diversity curve flattens out and is lower than the mosquito diversity curve (which is a minimum bound on diversity). (B) Sensitivity analyses comparing diversity between humans and mosquitoes for subsampled data.

621
622
623
624

Figure S7: Haplotype evenness sensitivity analyses. (A) Taking the maximum evenness value between *ama1* and *csp*. (B) For pre-censored haplotype read counts. Both sensitivity analyses show the same trend as Figure 3B in the main text.