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36  Abstract

37

38  Population genetic diversity of P. falciparum antigenic loci is high despite large bottlenecks in
39 population size during the parasite life cycle. The extent of this diversity in human blood-stage
40 infections, following expansion from a small number of liver-stage schizonts, has been well

41  described. However, little is known about parasite genetic diversity in the vector, where a similar
42  bottleneck and expansion occurs following parasite mating and where parasite genotypes from
43 several different human infections may accumulate. We assessed parasite genetic diversity

44 within human and mosquito P. falciparum infections collected from the same households during
45  a 14-month longitudinal cohort study using amplicon deep sequencing of two antigenic gene
46  fragments (ama7 and csp). To a prior set of infected humans (n=1175/2813; 86.2% sequencing
47  success) and mosquito abdomens (n=199/1448; 95.5% sequencing success), we added

48  sequences from infected mosquito heads (n=134/1448; 98.5% sequencing success). Across all
49  sample types we observed 456 ama7 and 289 csp unique haplotypes. While both hosts

50  contained many rare haplotypes, population genetic metrics indicated that the overall and

51 sample-level parasite populations were more diverse in mosquitoes than in humans, and

52  infections were more likely to harbor a dominant haplotype in humans than in mosquitoes

53  (based on relative read abundance). Finally, within a given mosquito there was little overlap in
54  genetic composition of abdomen and head infections, suggesting that infections may be cleared
55  from the abdomen during a mosquito’s lifespan. Taken together, our observations provide

56  evidence for the role of the mosquito vector in maintaining sequence diversity of malaria

57  parasite populations.

58

59  Significance statement

60

61  Concurrent infections with multiple strains of Plasmodium falciparum, the leading causative

62  agent of death due to malaria, are common in highly endemic regions. During transitions within
63  and between the parasite’s mosquito and human hosts, population bottlenecks occur, and

64  distinct parasite strains may have differential fitness in the various environments encountered.
65  These bottlenecks and fitness differences may lead to differences in strain prevalence and

66 diversity between hosts. We investigated differences in genetic diversity between P. falciparum
67  parasites in human and mosquito hosts and found that, compared to human parasite

68  populations and infections, mosquito populations and infections were more diverse. This

69  suggests that the mosquito vector may play a role in in maintaining sequence diversity in

70  malaria parasite populations.

71

72 Introduction

73

74 Plasmodium falciparum has a complex life cycle that requires it to navigate multiple cellular and
75  host transitions to sustain transmission. These include transitions both between human and

76  mosquito hosts and between compartments within those hosts. In addition, distinct genotypes
77  may be co-transmitted between hosts in a single bite or may accumulate within a host owing to
78  serial super-infections. Such infections consisting of many different strains are particularly

79  commonplace in highly endemic settings such as some regions of sub-Saharan Africa (1),

80  promoting both outcrossing in mosquito hosts and competition in human hosts. These factors,
81  coupled with population bottlenecks and selective pressures encountered by P. falciparum

82  throughout its life cycle, shape overall patterns of parasite genetic diversity (2).

83

84  Comparative population genetics of P. falciparum between the hosts and cellular environments
85  through which the parasite transitions in natural cycles of transmission remains relatively
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86  unexplored. Several studies have compared markers of drug-resistance loci between hosts, and
87  an early report from Zambia observed very different allele frequencies in humans and
88  mosquitoes (3, 4), suggesting differences in parasite population structure between hosts.
89  However, subsequent reports from other settings using different genetic markers have not
90 consistently observed this phenomenon (5, 6). As these studies used marker genes with few
91  polymorphisms, analyses of individuals with complex co-infections was limited. While
92  microsatellite markers overcome some of these limitations (7, 8), prior studies have not to our
93  knowledge contrasted the genetic composition or diversity of highly polymorphic targets in
94  naturally-occurring infections of humans and mosquitoes that are participating in co-incident
95  transmission networks. By exploring these phenomena more closely, we can better understand
96  what factors contribute to the diversity of malaria parasite populations.
97
98  We investigated variability in P. falciparum genetic diversity across human and mosquito hosts
99 in a highly endemic area of Western Kenya. During a 14-month longitudinal cohort study, we
100  detected P. falciparum parasites in human participants and in the heads and abdomens of
101  resting Anopheline mosquitoes collected from their households (1). From each P. falciparum
102  infection, we used amplicon deep sequencing of polymorphic segments of the parasite genes
103  encoding apical membrane antigen 1 (ama1) and circumsporozoite protein (csp) to catalog
104  complex P. falciparum infections in human blood, mosquito abdomens, and mosquito heads.
105  We previously reported that parasite multiplicity of infection (MOI) as expressed by either
106  marker was higher in mosquito abdomens harboring recently-ingested parasites than humans
107  harboring blood-stage parasites (1). Here, we examine more carefully the differences between
108  host compartments in haplotype diversity and relative abundance both within a given host and
109  at the population level. Based on our previous observation, as well as the robust immune
110  defenses against P. falciparum in humans (9), we hypothesized that the mosquito P. falciparum
111  haplotype population would be more diverse than that of humans.
112
113  Results
114
115 Data overview and analytic population.
116 ~ Samples were collected over the course of 14 months (June 2017 — July 2018) from 38
117  households in three Kenyan villages. Mosquitoes were aspirated weekly from each household
118  and blood samples from household members were collected monthly. To the previously
119  reported data on humans and mosquito abdomens (1), we added data from mosquito heads.
120 Over a third of human samples (41.8%; 1175/2813) contained P. falciparum, compared to
121 13.7% (199/1448) of mosquito abdomens and 9.2% (134/1462) of mosquito heads (Figure S1).
122 Of these, sequencing of at least one marker was successful in 86.2% (1013/1175) of human,
123 95.5% (190/199) of mosquito abdomen, and 98.5% (132/134) of mosquito head infections.
124  Haplotype information from these 1013 infections in 224 people and 322 infections in 244
125  mosquitoes constituted the analytic population.
126
127  Mosquito head infections are not a subset of their abdomen infections.
128  Parasite development within the mosquito host begins in the abdomen following which
129  sporozoites must traverse the midgut wall to reach the salivary glands in the head; however, it is
130  not known how quick and comprehensive is this egress. We hypothesized that if both midgut
131  and salivary gland infections persist throughout the mosquito’s lifespan (i.e. incomplete egress
132 from the midgut), haplotypes in a mosquito’s head would be a subset of those in the abdomen.
133 Among mosquitoes in which at least one compartment was infected, P. falciparum was detected
134 in both the abdomen and the head in 89/238 (37.4%), in only the abdomen in 108/238 (45.4%),
135 and in only the head in 41/238 (17.2%) (Figure 1A). The latter finding suggests that infections
136  may be completely cleared from the abdomen within the span of a mosquito’s lifetime.
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137

138 We next compared the haplotype compositions of infections in the 89 mosquitoes in which P.
139  falciparum was detected in both the head and the abdomen. We calculated the percentage of
140  ama1 or csp haplotypes found only in the head or the abdomen, or observed in both

141  compartments (i.e. the Jaccard distance; intersect/union) within each mosquito. While some

142 haplotypes were observed in both compartments of a given mosquito (mean for ama17: 12.0%,
143 csp: 23.7%), the majority of haplotypes were either private to the abdomen (mean for ama1:

144 50.7%, csp: 41.5%) or head (mean for ama1: 37.3%, csp: 34.8%) (Figures 1B, S2A-B). Despite
145  this limited overlap, sharing between abdomens and heads from the same mosquito was higher
146  than sharing between random pairs of abdomens and heads (Figure S2C; Kolmogorov-Smirnov
147  p < 1e-10 for both markers).

148

149  To determine whether the differences in haplotype composition between abdomen and head
150 infections within a single mosquito corresponded to differences at the host population level, we
151  compared between mosquito compartments haplotype population-level prevalences, defined as
152 the number of samples in which a haplotype was observed. Both ama? and csp haplotype

153  prevalences were similar between mosquito abdomen and head populations (Figure 1C),

154  suggesting that the transition from oocyst to sporozoite does not alter the diversity of circulating
155  parasites. Owing to this population-level similarity in prevalences and our observation that

156  abdomen and head parasite populations from the same mosquito appear to frequently represent
157  different infections, we subsequently performed all comparisons between the two P. falciparum
158  hosts: humans and mosquitoes, where mosquito samples included both abdomen and head

159  samples.

160

161  The P. falciparum population in mosquitoes is more diverse than the population in

162  humans.

163  To investigate signatures of differential bottlenecks or selection during parasite transition

164  between mosquito and human hosts, we compared population-level differences in parasite

165  haplotype prevalence among mosquitoes and humans, where differences in prevalence may
166 indicate differential bottlenecks or selection. Across all infections, we observed high haplotype
167  richness, with 456 ama1 and 298 csp distinct haplotypes. The vast majority of these were low-
168  frequency haplotypes, many of which were observed in only one host (Figures S3-4). Among
169 54 distinct haplotypes (both ama? and csp) with a prevalence above 5% across all samples, we
170  observed 28 haplotypes with differential prevalence across hosts: 19 more common in mosquito
171  infections and 9 in human infections (Figure 2A), consistent with our observation of higher

172 average mosquito MOls (1) (Figure S5).

173

174  We next used haplotype prevalence to quantify population-level diversity across orders of

175  diversity (q) ranging from equal weight to each haplotype (g = 0, equivalent to haplotype

176  richness or the number of distinct haplotypes observed) to downweighting rare haplotypes (q =
177 2, effective number of highly abundant haplotypes) (10). The mosquito parasite population was
178  more diverse than the parasite population in human hosts (Figure 2B; S6A). This trend is

179  consistent even when accounting for multiple samples per host, different sampling schemes

180  between hosts, differences in MOI, haplotypes with rare variants, and limitations of using

181  empirical diversity (Figure S6B). Moreover, as evidenced by the steeper decline in diversity with
182  increasing q in mosquitoes relative to humans (Figures 2B), the mosquito parasite population
183  contained more uneven haplotype prevalences than the human parasite population (Figure 2C),
184 indicating that mosquitoes contained a larger relative number of infrequent haplotypes. Even so,
185  higher diversity in the mosquito host is still apparent when downweighing the contribution of

186  these minor haplotypes. Taken together, these results indicate that there may be a greater
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187  relative loss in diversity across the transition from mosquitoes to humans than humans to

188  mosquitoes.

189

190 Dominant haplotypes within infections are more common in humans than mosquitoes.
191  In addition to lower population-level diversity in humans compared to mosquitoes, we also

192  observed lower within-sample diversity (Figure S5) and proportionately more monoclonal

193 infections in humans (Figure 3A; both Fisher’s exact p < 1e-12). To further investigate whether
194  human infections are more often dominated by one or a few haplotypes relative to mosquito
195 infections, we calculated for each infection the haplotype evenness, which examines the

196  haplotype abundance within an infection based on sequencing reads. A lower value indicates
197  that the infection consists of mostly reads from a single haplotype or, in other words, is

198  dominated by a majority haplotype. Median evenness values for mosquito infections were

199  higher (ama1:0.88; csp: 0.84) than those in human infections (ama1: 0.51; csp: 0.67) (all p <
200  1e-4) (Figure 3B). This observation was robust to taking the maximum evenness among the
201  two markers and to differences in haplotype filtering (all p < 1e-10; Figure S7). This differential
202  composition of polyclonal P. falciparum infections between hosts supports a differential in

203  selective landscapes that may further enable the preservation of diverse P. falciparum

204  populations in Anopheline mosquitoes.

205

206 Discussion

207

208  We compared P. falciparum genetic diversity across several host compartments that the

209  parasite must successfully navigate to sustain transmission. Parasite genetic diversity was

210  increased relative to humans during the mosquito stages, although this incremental diversity in
211  mosquitoes appears to be transmitted only infrequently to humans. In addition, individual

212  infections were composed differently in mosquitoes and humans, with human infections more
213 commonly harboring dominant members. Collectively, our observations suggest that mosquito-
214  stage infections participate the maintenance of diversity in P. falciparum parasite populations
215  not only through recombination, but also by acting as a reservoir of sequence diversity.

216

217  We observed, using multiple metrics, more parasite genetic diversity in mosquitoes compared to
218  humans. This high diversity contrasts with the known marked reduction in parasite biomass
219  during the transition from the human to the mosquito abdomen (11), which might be expected to
220  constrain parasite diversity. One potential explanation for this is the possibility of cryptic

221  genotypes in humans undetected by marker sequencing; this has been reported in experimental
222 studies (7), though the large range of MOls we observed in humans suggests that these

223  infections were not systematically undersampled. Alternatively, the reduced diversity in humans
224 could result from large reductions in population size and negative selective pressures as the
225  parasite passes from mosquitoes, through the human liver, and into the blood stage.

226  Mosquitoes are the location of parasite sexual recombination and therefore certainly provide a
227  site for genomic diversification, but this seems unsuited to explain the diversity of these short
228  segments in ama? and csp that do not harbor known recombination hotspots (12). A probable
229  contributor to this high mosquito diversity is multiple or interrupted feeds on infected hosts,

230  which would allow strains to accumulate in the mosquito abdomen. This feeding behavior has
231  been reported for Anopheles gambiae and may be enhanced by human P. falciparum infection
232 (13, 14). Additionally, P. falciparum adaptation to evade the immune system of local Anopheles
233 strains (15), as well as imposition of selective pressures on the Anopheles vector to the

234 parasites’ benefit (16), may reduce differences in fithess between distinct parasite strains within
235  the mosquito and lead to an accumulation of genetic diversity at the population level. However,
236  some of these novel strains may be unfit to survive the human host. Indeed, prior work on

237  arbovirus infection found an accumulation of mutations in mosquitoes that led to fithess costs
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238  during vertebrate infection (17). Despite these plausible explanations for constrained diversity in
239  humans and higher diversity in mosquitoes, the mechanism by which mosquitoes maintain such
240  high parasite diversity when their parasite population is necessarily sampled from the less

241  diverse human population remains to be fully elucidated.

242

243 Within individual infections, we observed higher dominance of haplotypes in human compared
244 to mosquito infections, while on a larger scale, the P. falciparum haplotype population was more
245  evenly distributed among humans than among mosquitoes. These differences may result from
246  the differential selection landscapes between hosts, in particular for the proteins encoded by our
247  gene targets, AMA1 and CSP, which harbor epitopes that are known targets of functional

248  human immunity (18). In humans, the concurrent maintenance in the population of multiple

249  viable alleles due to balancing selection, paired with the removal of deleterious alleles due to
250  negative selection, could produce a relatively high evenness of haplotypes in the human

251  parasite population even as individual infections are shaped by directional selection resulting
252  from individual host immune responses. In contrast, the relative lack of differential fitness in the
253  mosquito host described above may lead to even parasite strain abundances within a mosquito.
254

255  Comparison of paired abdomens and heads from the same mosquito revealed striking

256  differences between P. falciparum presence and haplotype composition. As expected given the
257  delay between midgut and salivary gland infections, many mosquitoes had haplotypes private to
258  the abdomen that were not present in the head. More surprising was the observation of

259  mosquitoes with haplotypes private to the head that were absent from the abdomen, suggesting
260 that infections do not reliably persist in a mosquito’s abdomen throughout its lifespan. While

261  these differences may again be due to cryptic haplotypes, the identification of mosquitoes with
262  infections in the head but not the abdomen using sensitive PCR detection methods (19, 20)

263  indicates that cryptic haplotypes likely cannot explain all of the observed differences. Despite
264  these discrepancies between abdomens and heads from a given mosquito, at the population
265  level haplotype composition and diversity were similar between mosquito abdomens and heads,
266  suggesting that the selective pressures for or against certain haplotypes (or lack thereof) may
267  be similar in these two compartments.

268

269  Our findings highlight the role of the mosquito host in influencing the sequence diversification of
270  P. falciparum parasites. A unique feature of genetic diversity in P. falciparum compared to other
271  organisms is the preponderance of low-frequency alleles (21). A prior modeling study suggested
272 that this phenomenon may be the result of the complex, “unconventional” life cycle of P.

273  falciparum, specifically the bottlenecks and host transitions that intensify both random genetic
274  drift as well as natural selection (2). Consistent with this, we observed many haplotypes private
275  to one host, which was more prominent in mosquitoes. As noted above, meiotic recombination
276  is unlikely to be the main contributor to the diversity we cataloged, and the mechanisms by

277  which these low-frequency and private alleles arise remains obscure. However, our

278  observations furnish compelling evidence for a role of the mosquito vector in accumulating

279  genetic diversity in genic regions likely not under positive selection in mosquitoes. While this
280  diversity appears to be selected against in humans, it nevertheless acts as a continual supply of
281 novel alleles and allelic combinations that may be exploited by the parasite during human

282  infection.

283

284  This study has limitations. First, the inability to sample parasites from mosquitoes without

285  sacrificing them precludes a comprehensive study of paired mosquito abdomen and head

286 infections over time. Even so, we were still able to identify similarities and differences between
287  the haplotype populations in these two compartments. Additionally, the mosquito and human
288  sampling schemes were different, potentially biasing sampling comprehensiveness between
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289  hosts. To mitigate the risk that this potential imbalance influenced our results, we performed
290  comparative population analyses using empirical methods with a fixed coverage threshold (10)
291  and sensitivity analyses. Finally, many of the human and mosquito infections had very low

292  parasite densities, which not only increases the possibility of failing to detect infections, but also
293  increases the possibility of false haplotype discovery (22). To reduce the inclusion of false

294 haplotypes to the greatest extent possible, we performed strict haplotype censoring to remove
295  potential false positives (1) and performed sensitivity analyses on key findings to determine
296  whether haplotype filtering criteria influenced the results.

297

298  In conclusion, our comparison of P. falciparum haplotypes observed in natural, coincident

299 infections of humans, mosquito abdomens, and mosquito heads revealed greater genetic

300 diversity in mosquito than human populations and infections. This provides evidence for the role
301  of the mosquito vector in maintaining the sequence diversity of malaria parasite population.
302

303 Materials and methods

304

305 Ethics statement

306

307  All adults, and parents or legal guardians for individuals under 18 years old, provided written
308 informed consent. Children over 8 years old also provided verbal assent. The study was

309 approved by the ethical review boards of Moi University (2017/36) and Duke University

310  (Pro00082000).

311

312  Study design and sampling

313

314  The study design and sample processing have been described previously (1). Briefly, a

315 longitudinal cohort of participants (1 year of age or older) residing in 38 households in three
316 villages in Western Kenya were followed from June 2017 to July 2018. For each participant,
317  dried blood spots (DBS) were collected monthly and any time participants had malaria

318  symptoms. One morning each week, indoor resting mosquitoes were collected from participant
319  households using vacuum aspiration, and following morphologic identification, the abdomen
320  was separated from the head and thorax of female Anopheles mosquitoes. Genomic DNA was
321 isolated from DBS, mosquito abdomens, and mosquito heads; P. falciparum was detected in
322  these extracts using a real-time PCR assay. Segments of approximately 300 nucleotides of the
323  P. falciparum ama1 and csp genes were amplified, sequenced on an Illlumina MiSeq platform,
324  and haplotype inference was performed using DADA2 v1.8 (23) with custom read- and

325  haplotype-filtering. The output was a set of quality-filtered ama? and csp reads and

326  corresponding parasite haplotypes for each P. falciparum infection.

327

328  We performed parallel analyses of amplicon deep-sequenced segments of the P. falciparum
329 ama1 and csp marker genes. Since ama7 and csp are unlinked markers found on different
330 chromosomes, to some extent these parallel analyses can be considered pseudo-replicates,
331  where similar results for both markers increases confidence in our findings.

332

333  Within-mosquito comparison

334

335  For each mosquito with a P. falciparum infection in both the abdomen and the head, the Jaccard
336  distance (24) was calculated for the haplotypes in the abdomen-head pair:

337

Hq N Hy

J(Hq, Hp) = H,UH,

(1)
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338  Where Hais the set of haplotypes in the abdomen and H; is the set of haplotypes in the head.
339

340 Haplotype prevalence

341

342 For each haplotype, population-level prevalence was determined for 5 distinct populations: the
343  entire sample set, all human samples, all mosquito samples, mosquito abdomens, and mosquito
344  heads. Prevalence was calculated as the proportion of samples harboring that haplotype. 95%
345  confidence intervals were computed from 100 bootstrapped datasets. Haplotypes were

346  considered low-frequency if they occurred in fewer than 5% of all samples. Haplotypes that

347  were not low-frequency (i.e. above a threshold of 5% prevalence) were considered higher in a
348  given compartment if the range of bootstrapped prevalences did not overlap the expected

349  prevalence (i.e. the overall prevalence across all samples).

350

351 Randomized minimum spanning trees

352

353  To visualize the relatedness of haplotypes, we calculated pairwise distances using the dist.dna()
354  function in the R package ape v5.6-2 (25) with the K80 evolutionary model, computed

355 randomized minimum spanning trees (26) using the rmst() function in pegas v1.1 (27), and

356  visualized the trees in ggtree v3.0.4 (28).

357

358 Diversity and evenness

359

360  For analyses between humans and mosquitoes, all mosquito abdomen and head samples were
361 considered mosquito samples, providing a maximum of 2 samples from each mosquito.

362

363  Population-level

364  For the set of mosquito samples and the set of human samples, we calculated the population-
365 level diversity of haplotypes, rarefaction curves, and population evenness using the R packages
366 INEXT.4steps v1.0.1 (10) and iINEXT.3D v1.0.1 (29).

367

368  Diversity was calculated using the following equation (10, 30):

369
n 1/(1-q)
b= (2 b ) @)

i=1

370  Where q is the order of diversity, n is the number of distinct haplotypes, and p; is the prevalence
371  of haplotype i in the sample set. D was computed across a range of values q between 0 and 2,
372  where higher numbers correspond to upweighting haplotypes that are more abundant in the
373  overall population. True diversity was not accurately calculable for low orders of diversity (g < 1)
374  due to an abundance of unsampled rare haplotypes. Therefore, to enable comparison of

375  diversity between the human and mosquito haplotype populations, we calculated the empirical
376  diversity at a standardized coverage of the host population’s haplotypes (90.1% for ama7 and
377  94.5% for csp).

378

379  Sensitivity analyses were performed using (1) true (asymptotic) diversity (for g =2 1), (2) a

380  subsampled dataset including the same number of host samples per week (to account for

381  differences in mosquito and human sampling schemes), (3) a subsampled dataset including
382  only one sample per host (to account for multiply sampled hosts), (4) by defining p; as the

383  frequency of haplotypes in the total set of haplotypes (to account for differences in MOI between
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384 infections), and (5) a dataset including only haplotypes with variation at amino acid positions
385 that are variable in both hosts (to limit potential false positives by using this stricter set of
386  haplotype filtering criteria).

387
388  We calculated haplotype evenness using the following equation (31):
389
ip -1
ap _ 3

E= —— (3)
390
391  Where H is the haplotype richness, or the number of distinct haplotypes in the population. For g
392 =0 evenness is defined as 1, and for H = 1, evenness is defined as 0.
393

394  Within-sample

395  For each sample, we computed haplotype diversity and evenness using equations 1 and 2. In
396 this case, piin equation 1 is the relative read abundance of each haplotype, 9D is the within-
397  host diversity, and H is the MOI of the infection.

398

399  To compare evenness between human and mosquito hosts, we computed a zero-one inflated
400 Beta regression model using the R package gamiss v5.4-1 (32) with host as the main exposure,
401  evenness as the outcome, log2-transformed haplotype reads as a covariate, and individual as a
402  random effect. To determine whether incorporating information from both markers influenced
403  differences in evenness between hosts, for each sample we selected the highest evenness

404  value (between amat and csp) and compared these values between humans and mosquitoes.
405  Finally, to explore if evenness values were biased by the initial enforcement of haplotype

406  quality-filtering criteria that were partially based on within-sample haplotype proportion, we

407  performed a sensitivity analysis using unfiltered haplotypes. These haplotypes were inferred by
408 DADAZ2 v1.8 (23) from input reads which passed upstream read quality-filtering. Using these
409 unfiltered haplotypes, we used the same methods as above to compute and compare evenness.
410

411  Data analysis and visualization

412

413  Comparison across groups was performed using Wilcoxon rank-sum tests, Fisher’s exact tests,
414  or Kolmogorov-Smirnov tests. All data analysis and visualization was performed in R v4.1.1 (33)
415 and RStudio v2021.9.0.351 (34) using the following packages: tidyverse v1.3.1 (35), ape v5.6-2
416  (25), cowplot v1.1.1 (36), scales v1.1.1 (37), and ggtext v0.1.1 (38). All data and code to

417  reproduce the analyses and figures can be found on GitHub (https://github.com/duke-malaria-
418  collaboratory/parasite-host-comparison).
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549  Figure 1: Mosquito abdomens and heads do not contain similar infections. (A) P.

550 falciparum infection of mosquito abdomens and heads of mosquitoes for which both

551  compartments were tested using PCR. (B) For 89 mosquitoes with infections of both the

552  abdomen and the head, the proportion of the set of haplotypes in the mosquito found in the
553  abdomen only, head only, or both. The mean counts for each of the three groups were used to
554  obtain the proportions. (C) Prevalence of each ama1 and csp haplotype in the mosquito

555 abdomen population compared to the mosquito head population. Each dot represents a unique
556  ama1 or csp haplotype, and bars indicate the 95% bootstrapped confidence intervals.
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559  Figure 2: The mosquito P. falciparum population is more diverse than the human P.

560 falciparum population. (A) Prevalence of each ama? and csp haplotype in the human

561  population compared to the mosquito population. Each dot represents a unique ama1? or csp
562  haplotype, and bars indicate the 95% bootstrapped confidence intervals. The lower threshold
563  was defined as haplotypes observed in fewer than 5% of combined human and mosquito

564  samples. Haplotype prevalences were considered higher in one compartment if the 95%

565  bootstrapped confidence intervals didn’t overlap the expected prevalence (i.e. the overall

566  prevalence across all samples). (B) Diversity of P. falciparum populations by host and genetic
567  marker across orders of diversity. Ribbons are bootstrapped 95% confidence intervals. Higher
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Figure S6: Mosquito haplotype populations are more diverse than human haplotype
populations. (A) Rarefaction curves for various orders of diversity (q). True (asymptotic)
diversity can be calculated after the rarefaction curve flattens out; otherwise, the computed true
diversity is a lower bound. Comparisons can be made for true diversity at orders of diversity
above g = 1 in our dataset because the human diversity curve flattens out and is lower than the
mosquito diversity curve (which is a minimum bound on diversity). (B) Sensitivity analyses
comparing diversity between humans and mosquitoes for subsampled data.
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621
622  Figure S7: Haplotype evenness sensitivity analyses. (A) Taking the maximum evenness

623  value between ama? and csp. (B) For pre-censored haplotype read counts. Both sensitivity
624  analyses show the same trend as Figure 3B in the main text.
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