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Limiting distribution of X-chromosomal coalescence times

under first-cousin consanguineous mating
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Abstract

By providing additional opportunities for coalescence within families, the presence of consanguineous unions in
a population reduces coalescence times relative to non-consanguineous populations. First-cousin consanguinity
can take one of six forms differing in the configuration of sexes in the pedigree of the male and female cousins who
join in a consanguineous union: patrilateral parallel, patrilateral cross, matrilateral parallel, matrilateral cross,
bilateral parallel, and bilateral cross. Considering populations with each of the six types of first-cousin consan-
guinity individually and a population with a mixture of the four unilateral types, we examine coalescent models
of consanguinity. We previously computed, for first-cousin consanguinity models, the mean coalescence time
for X-chromosomal loci and the limiting distribution of coalescence times for autosomal loci. Here, we use the
separation-of-time-scales approach to obtain the limiting distribution of coalescence times for X-chromosomal
loci. This limiting distribution has an instantaneous coalescence probability that depends on the probability that
a union is consanguineous; lineages that do not coalesce instantaneously coalesce according to an exponential
distribution. We study the effects on the coalescence time distribution of the type of first-cousin consanguinity,
showing that patrilateral-parallel and patrilateral-cross consanguinity have no effect on X-chromosomal coales-
cence time distributions and that matrilateral-parallel consanguinity decreases coalescence times to a greater

extent than does matrilateral-cross consanguinity.

1 Introduction

The phenomenon of consanguinity, in which unions occur between closely related individuals, is a form of population
structure that can dramatically affect properties of genetic variation (Crow and Kimura, 1970; Jacquard, 1974).
By increasing the probability that deleterious recessive variants appear in homozygous form, it contributes to
the incidence of recessive disease (Bittles, 2001; Woods et al., 2006); recent studies suggest that it contributes to
incidence of complex disease as well (Bittles and Black, 2010; Yengo et al., 2017; Ceballos et al., 2018; Johnson
et al., 2018; Clark et al., 2019). Consanguinity is common in human populations, with some populations promoting
consanguineous marriages as a cultural preference (Bittles, 2012; Romeo and Bittles, 2014; Sahoo et al., 2021).
The offspring of a consanguineous union are expected to possess large portions of their genomes shared between
their two genomic copies, owing to the fact that an identical genomic segment can be inherited along both their
maternal and paternal lines. For the loci contained in such segments, the two copies coalesce at a common ancestor

relatively few generations in the past. At other locations, neither copy or only one copy traces to a recent shared
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ancestor, so that coalescence occurs only much farther back in the past. Indeed, empirical genetic studies have
identified multiple populations in which individuals carry long runs of homozygosity (ROH), attributable in large
part to consanguinity practices (McQuillan et al., 2008; Pemberton et al., 2012; Ceballos et al., 2018)

In typical coalescent-based models that investigate coalescence times for sets of lineages, diploid organisms are
approximated by pairs of haploids independently drawn from a population (Hein et al., 2004; Wakeley, 2009). This
modeling choice is unsuited to the study of consanguineous families, in which the two lineages in an individual can
be highly dependent. Hence, explicitly diploid coalescent models have been devised for the study of coalescence in
a setting of consanguinity. The earliest studies focused on selfing in plants (Pollak, 1987; Nordborg and Donnelly,
1997; Nordborg and Krone, 2002), an extreme form of “consanguinity” in which both parents of a diploid offspring
are the same individual. Campbell (2015) extended diploid coalescent models to consider a monogamous mating
model with sibling mating, computing mean coalescence times under the model. This approach was then extended
by Severson et al. (2019) to consider mean coalescence times in a diploid model with nth-cousin mating, for arbitrary
values of n and for superpositions of multiple levels of nth-cousin mating.

In an extension of the work of Severson et al. (2019), Severson et al. (2021) advanced beyond mean coalescence
times to derive a full limiting distribution of coalescence times under superposition models of autosomal consan-
guinity, considering the limit as the population size grows large. A limitation of the work of Severson et al. (2019)
and Severson et al. (2021), however, is that it does not distinguish between males and females in the mating model;
all individuals are exchangeable. Hence, it cannot accommodate the variety of scenarios in which differences be-
tween males and females are salient. We have recently extended the method of Severson et al. (2019) to distinguish
between males and females, evaluating mean coalescence times in a two-sex model, with a goal of evaluating the
effect that consanguinity has on X-chromosomal coalescence times specifically (Cotter et al., 2021).

Here, we use the advance from Severson et al. (2021) to compute the full distribution of coalescence times under
a diploid, two-sex consanguinity model (Cotter et al., 2021). Seeking to derive distributions of X-chromosomal
coalescence times, we consider each of the six types of first-cousin consanguinity and a model that includes all four
unilateral types in a single population. For each model, we evaluate the distribution of coalescence times for two

lineages sampled from the same individual and for two lineages sampled from members of different mating pairs.

2 Methods

We adapt the models of Severson et al. (2019, 2021) and Cotter et al. (2021). We consider a constant-sized
population of N diploid mating pairs. Individuals are sex-specific, the X chromosome is considered, and specified
forms of consanguinity are allowed. Using a Markov chain, we track lineage pairs back in time until they coalesce.

To analyze the large- N limit of the model, we make use of the separation-of-time-scales approach introduced by
Méhle (1998). This approach was used by Severson et al. (2021) to obtain the limiting distribution of coalescence
times under their autosomal diploid model of consanguinity. In the approach from Mohle (1998), the limiting

distribution of a Markov process with transition matrix IIy is obtained by writing

1
My =A+B. (1)

Here, A describes “fast” transitions that have nontrivial probability in a single generation, and B describes
“slow” transitions that have very small probabilities in a single generation. As N — oo, the fast transitions occur
instantaneously, and the fast process can be described by an equilibrium distribution

P = lim A" (2)

r—00
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Rescaling ¢ in units of IV generations, as N — oo, Iy converges to a continuous-time process

I(t) = lim (Iy)V" = PefS. (3)
N-o0
The rate matrix G satisfies G = PBP. Under Mohle’s theorem, the process converges to a continuous-time process
with an instantaneous jump at time 0 that corresponds to the “fast” transitions.
As Severson et al. (2021) did with autosomal models, we apply the separation-of-time-scales approach to our
models of consanguinity on the X chromosome (Cotter et al., 2021). We begin with the sib mating case and then
consider each of the four types of unilateral first-cousin mating, the two cases of bilateral first-cousin mating, and

a mixture of all four unilateral types in one model.

3 Results

3.1 Sibling mating

We consider N monogamous male—female mating pairs, a fraction ¢y of which are sib mating pairs. Pairs of X-
chromosomal lineages can be in one of six states (Figure 1): two lineages have already coalesced (state 0); two
lineages are in a female (state 1); two lineages are in opposite individuals of a mating pair (state 2); two lineages
are in two individuals in different mating pairs, where the two individuals are two males (state 3), a male and a
female (state 4), or two females (state 5). Note that for the X chromosome, there is no state for two lineages in a
male, as males contain only one X chromosome. We track the state of the process backward in time until it reaches
the most recent common ancestor for a pair of lineages (that is, until state 0 is reached). We denote by T, U,
Vinms Vg, and V¢ the random coalescence time for pairs of lineages in states 1, 2, 3, 4, and 5, respectively.

If two lineages are in state 0 (coalesced), they remain in state 0 with probability 1; this state is absorbing. If
two lineages are in a female (state 1), in the previous generation they must have been in separate individuals in a
mating pair (state 2) with probability 1. If two lineages are in separate individuals in a mating pair (state 2), the
pair is a sib mating pair with probability c¢y. Given that the pair is a sib mating pair, the lineages transition to
state 0 with probability 1, state 1 with probability 4, and state 2 with probability %. If the two lineages are not in
a sib mating pair, an event with probability 1 — cg, then they transition to states 4 and 5 with equal probability %

For each of the states 3-5, because we pick parental mating pairs with replacement from the previous generation,
the probability is % that the same mating pair is chosen. Thus, if two lineages are in state 3, and the pair are
siblings (an event with probability %), then the lineages transition to state O or state 1, each with probability %
If the two lineages in state 3 do not have the same parental pair (probability 1 — %)7 then they must transition to
state 5 with probability 1. For state 4, if the two lineages are in siblings (probability %), then they transition to
state 0 with probability %, state 1 with probability %, and state 2 with probability % If the lineages are not from
siblings (probability 1 — %), then they transition to state 4 or 5, each with probability % Finally, two lineages in
state 5, conditional on being in siblings (probability %), reach state 0 with probability %, state 1 with probability
%, and state 2 with probability % Conditional on not being in siblings (probability 1 — %), the lineages transition

to state 3 with probability 1, state 4 with probability 1, and state 5 with probability 1.
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103

Combining these transition probabilities, we can write the transition matrix as

0 1 2 3 4 )
0 1 0 0 0 0 0
1 0 0 1 0 0 0
Iy = 2 %J % %J 0 1_2C0 1_200 (4)
1 1 1
3l &% 0 0 0 1-4
Y/ [ s e B e A
IN IN 32N 2 2
s\ 3 1 1 l-xy l-xy 1-x
8N 8N 32N 1 2 1
1. We can decompose Iy (Eq. 4) into its fast and slow transitions, as in Eq. 1:
1 0 0 0 0 0 0 0 0 O 0 0
0o 0 1 0 0 0 0 O 0 0
C [¢ C 1—c 1—c
Al |G G g o0 e e B_|0 00 0 0 0 5)
0 0 0 0 0 1|’ 110 0 0o -1
1 1 1
o 0 0 o0 L 1 i3 0 -5 3
1 1 1 3 1 1 1 1 1
00 0 3 3 1 §$ 8 2 "1 "3 ~1

105

106

We first find the equilibrium distribution of the “fast” process,

calculation appears in Appendix A, producing

obtained by iterating transition matrix A. This

1 0 0 0 0 0

co 0 0 1L(4z4c 4 (4—dcg 4 ((4—4cq

4—3co 9 \ 4—3co 9 \ 4—3co 9 \ 4—3co

co 0 0 1 [ 4—4co 4 [ 4—4co 4 ( 4—4co

P= lim AT = | 4-3co 9 \ 4-3co 9 \ 4—3co 9 \ 4—3co (6)

r—00 0 0 1 4 4
9 9 9
1 4 4
00 3 5 o
1 4 4
0 0 0 3 5 5

We then compute G = PBP and solve for the limiting process II(¢) using Eq. 3, obtaining the matrix expo-

107

e nential, e!G, as in Appendix B. Converting ¢ back into units of N generations, this gives

I(t) = Pe'C =
1 0 0 0 0 0
o (2=F (=7 (=2 _e (=R
1 11 7360 3N\ 1— % co 0 0 1 11 7360 3N\ 1- %co g 11 7360 3N\ 1- %co 4 11 7360 3N\ 1— % co
—z¢o —3z¢o —3z¢o ) —z¢o
(=7 (=7 e (=7 _e (=R
1 117360 e 3N 1—%{:0 0 0 % 1173C0 e 3N 1—%(:0 % 117360 3N 1—%(:0 % 117360 e 3N 1—%1@0
-3¢0 -3¢0 -3¢0 -3¢0
! t - ! t 1-p ! t - ! t -
L) e ew(ER) e ()
e (2= e (=R e (2= e (2=
1—¢ ™\ 3a 00 %_e N 13 % e W\ 3 %.e 3N\ 13
,L<1*%0> ,L(lf%> ,L<1*€TO> ,L<1*%0>
1—¢ ™\ e 00 1. 3\ g 4. o \ige 4. i g

109 The first column of the matrix II(¢) represents the cumulative probability of coalescence in time less than or

no  equal to t generations. States 1 and 2 have the same cumulative distribution, representing the coalescence time
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for two lineages within a female (note that state 2, two lineages in the two individuals in a mating pair, is always
reached from state 1 after one step). States 3-5 have the same cumulative distribution, representing the coalescence

time for two lineages in two distinct individuals. The cumulative distributions are

1—¢ _t(lf%l>
0 3N\ 1_3,

T_3.°¢ 07,
1—100

Fr (t)=Fy(t)=1- (8)

_L< 1*3%)
vam (t) = Fme (t) = vaf (t) =1—¢ 3N 1-4co0 ) (9)

E[T}] = E[U] = 3N (11_1020) : (10)
E[Vim] = E[Vis] = E[Vyf] = 3N G‘;Zz) . (11)

where Eqgs. 10 and 11 are the same as Eqgs. 25 and 26 from Cotter et al. (2021), obtained by first-step analysis.
Eqgs. 8 and 9 are plotted in Figure 2. In the figure, we observe that the cumulative probability of coalescence

increases with the consanguinity probability ¢o. For ¢ = 0, E[Ty] = E[V,,,f] = 3N, as there are three copies of

the X chromosome in each mating pair in the population. For ¢g > 0, E[Tf] < E[V,,s] due to the probability of

consanguinity whenever the two lineages are already in the same mating pair.

3.2 First cousins

We next consider first-cousin consanguinity on the X chromosome. We separately calculate the limiting distributions
of coalescence times for each of the four types of first-cousin consanguinity: patrilateral parallel, a union of a
male with his father’s brother’s daughter; patrilateral cross, a union of a male with his father’s sister’s daughter;
matrilateral parallel, a union of a male with mother’s sister’s daughter; and matrilateral cross, a union of a male
with his mother’s brother’s daughter.

For each of these four types of first-cousin consanguinity, two lineages have seven possible states. State 0 is an
absorbing state representing coalescence. State 1 is two lineages in a female. States 3—5 represent, as in the sibling
case, two lineages that are in two individuals in different mating pairs, where the two individuals are two males
(state 3), a male and a female (state 4), or two females (state 5).

Next, for pairs of lineages from the two individuals in a mating pair, we follow the model of a superposition of
multiple mating levels from Severson et al. (2021), taking a special case of this approach. Under the superposition
model, each state 2;, 0 <14 < n, represents an ancestral state for two lineages from a mating pair. These ancestral
states can be viewed as “holding states” that keep track of ancestral lineages of a mating pair in order to allow all
possible ith-cousin levels of consanguinity up to nth cousins. As we restrict attention to first-cousin mating, we
need only states 2¢p and 2; from Severson et al. (2021).

State 2( represents two lineages in the two individuals in a mating pair. State 2; represents two lineages in two
individuals ancestral to the two individuals in a mating pair. Because, unlike Severson et al. (2021), we disallow
sib mating, two lineages in state 2¢ cannot coalesce (state 0), they cannot transition to the same individual (state
1), nor can they transition to two individuals in a mating pair (state 2y). Hence, lineages in 25 must transition to
2; (Figures 3 and 4).

In the absence of consanguinity, two lineages in state 2; can transition only to states 3, 4, and 5 (Figure 3).
With first-cousin consanguinity present (Figure 4), two lineages in state 2; can also coalesce (state 0) or transition

to two lineages in the same female (state 1) or to two lineages in opposite individuals in a mating pair (state 2p).
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The transition matrix depends on the type of first-cousin consanguinity permitted. However, the type of
consanguinity only affects transitions from state 2;. For all types of consanguinity, state 0 is an absorbing state.
State 1, two lineages in the same female, always transitions to state 2y because the two lineages must come from
opposite individuals of the same mating pair. Because of the constraints we have placed on the process, state 2
always transitions to state 2;. Finally, the transition probabilities from states 3, 4, and 5 follow the same pattern
as given in the transition matrix in Eq. 4 (with state 2 in place of state 2).

Below, we consider each of the four different types of first-cousin mating, two cases of bilateral first-cousin
mating, and a mixture of the four unilateral types. In each case, we define the transitions that the process makes

from state 21, and we obtain the limiting distributions of coalescence times.

3.2.1 Patrilateral parallel

In patrilateral parallel first-cousin consanguinity, a union occurs between a male and his father’s brother’s daughter.
There is no way for the X-chromosomal lineages in the first-cousin mating pair to have originated from the shared
grandparental pair, because X chromosomes are never transmitted from fathers to sons. Hence, irrespective of the
fraction c¢; in the population, lineages in state 2; can only transition to states 3, 4, and 5.

In state 21, one X chromosome in one of the parental pairs is always in a female (the parent of the male in state
20). The probability is then % that this X chromosome is in a male one generation ancestral to 2; and % that it is
in a female. The other X chromosome in state 21, located in a parent of the female in state 2y, can be in a male
or female, with equal probability. Hence, one generation ancestral to 27, this X chromosome is in a female with
probability % and in a male with probability i. We can multiply probabilities for the two separate X chromosomes
to obtain transition probabilities from state 2;. In particular, the two lineages will be in two separate males one
generation previously (state 3) with probability é. They will be in a male and a female (state 4) with probability
1. They will be in two separate females (state 5) with probability 2.

The transition matrix is:

0 1 20 2 3 4 5
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0
29 0 0 0 1 0 0 0
Oy=2]0 0o 0 0 } i 8 (12)
1 1 1
& o 0 0 0 0 1-%
11 1 5 g L~z Il
4N 4N 2N e 1_2L 1_2L
5 8% SLN ﬁ 0 4N 2N 4N
As with the sibling case, we can decompose the transitions into “fast” and “slow” transitions (Eq. 1):
1 0 00 0 0 O 0O 0 0 0 O 0 0
001 0 0 0 O 0o 0 0 0 O 0 0
00 0 1 0 0 O 0O 0 0 0 O 0 0
A=looo0o0 % £ 2], B=f0o0oo00 0 0 0 (13)
00000 O01 i1 00 0 0 -1
00000 b R
1 1 1 3 1 1 1 1 1
0000 3 3 g § 8 2 0 -3 -3 -3
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We next solve for the limiting distribution of the fast transition matrix A using the method of Appendix A,

P=lim A" =

T—00

o O O O o o =
o O O O o o o
o O O O o o o
o O O O O o o
O Ol ©Of—= O] O] ©Ol—= O
Ol Ol Ol Ol Ol Ol O
Ol Ol Ol Ol Ol Ol O

Recalling G = PBP, we solve for the limit II(¢) as in the sibling mating case, using Eq. 3, calculating the

matrix exponential, e!*, as in Appendix B. We then convert ¢ back into units of generations N. This step gives

1 0 0 0 0 0 0
l—e 38 0 0 0 %efﬁ %efﬁ %efﬁ
l—e 58 0 0 0 ée‘:ﬂLN %e_sLN ge_%N
N(t)=Pe'“=|1-e"3v 0 0 0 Je7sv Je sy fesw (15)
l—e 38 0 0 0 %e’ﬁ %e*ﬁ %e*ﬁ
l—e 38 0 0 0 %efﬁ %efﬁ %efﬁ
l—e 38 0 0 0 %e_%N ge_sLN ge_siN

Here, examining the first column of the matrix in Eq. 15—representing transitions to coalescence—we can see
that two lineages within an individual (state 1), within a mating pair (state 2¢), or in in two separate mating pairs
(states 3, 4, and 5) have equal coalescence times. In fact, as coalescence times are unaffected by patrilateral-parallel
first-cousin consanguinity, they accord with the coalescence time distribution for a population of size 3N haploid
individuals. Using the same random variables from the sibling case (where U now represents 2g), we can extract

the cumulative distribution functions of coalescence times from the first column of the matrix II(¢):

Fr,(t) = Fy(t) = 1
Fy,,. (t) = Fy,,(t) = Py,,(t) =1 — "3, (17)

For each of the five random random variables, the time to coalescence for two lineages is distributed as an
exponential random variable with rate 1/(3N). The mean of these distributions—the reciprocal of the coalescence

rate—is 3N, matching the limiting means obtained by first-step analysis in Eqs. 28-32 of Cotter et al. (2021).

3.2.2 Patrilateral cross

For the patrilateral-cross case, a union occurs between a male and his father’s sister’s daughter. As with the parallel
case, there is no way for the X-chromosomal lineages in the first-cousin mating pair to have originated from a shared
ancestor. We obtain the exact same transition probabilities from state 2; and the same transition matrix (Eq. 12).

The coalescence times for the patrilateral-cross case are the same as in the patrilateral-parallel case.

3.2.3 Matrilateral parallel

In the matrilateral parallel case, a union occurs between a male and his mother’s sister’s daughter. With probability
¢1/2, two lineages in state 2; trace back to the shared grandparental pair. The lineages in state 27 coalesce with
probability % (state 0), they are in the shared grandmother with probability % (state 1), and they are in opposite
individuals of the grandparental mating pair with probability 1 (state 2p).
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With probability ¢; /2, two lineages in state 2; do not trace back to the shared grandparental pair. Conditional
on not tracing to this pair, they are in a male and a female (state 4) or two females (state 5), each with probability
%. Finally, with probability 1 — ¢1, the two lineages are not ancestral to a consanguineous mating pair; they then

follow the same pattern as in the patrilateral-parallel case. Combining the cases gives the transition matrix,

0 1 20 24 3 4 5
0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0
20| 0O 0 0 1 0 0 0
3c c c c c c
My=2 % & % 0 §-% §-% 3-% (18)
1 1 1
3 |15y sy 0 0 0 01 1-— N
4l & & o 00 R SR
IN IN 2N ) 2, z,
3 1 1 -~ -~ -~
8N 8N 2N 1 2 1
As before, we decompose this matrix into “fast” and “slow” transitions (Eq. 1):
1 0 0 0 0 0 0 0 0 0 0 O 0 0
0 0 1 0 0 0 0 0o 0 0 0 O 0 0
0 0 0 1 0 0 0 0 0 0 0 O 0 0
A=[3a a a o l_a l_a 3_al  B=[0 000 0 0 0 (19)
0 0 0 o 0 0 1 1200 0 0 -1
1 1 11 1 1 1
o 0 0 0 0 2 2 11320 0 -5 —3
o0 00 4 b R e
We next solve for the limiting distribution of the fast matrix A using the method of Appendix A:
1 0 0 0 0 0 0
3¢y 1 (16—8c; 4 (16=8¢c4 4 (16=8¢;
16f561 000 3 1675; 9 1675; 9 167521
3¢ 16—8¢ 4 (16-8c 4 (16—8c
16—éc1 000 % 16—501 9 16—501 9 16—501
P=1lim A" = 3c 1 (16—8c 4 (16—8c 4 (16—8c . 2
ri>rgo 16—;:)01 0 00 9 16—5c1 9 16—501 9 16—5c1 (20)
1 4 4
0 00 0 1 4 4
1 4 4
0 0 0 0 5 5 5
1 4 4
0 0 00 3 5 5
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Finally, recalling G = PBP, we solve for the matrix exponential G using the method of Appendix B. We then

solve for the continuous-time process II(¢) via Eq. 3, converting ¢ back to units of N generations:

I(t) = Pe'S
1 0 0 O 0 0 0
o 1 c1 cy
g (g g (g g - (i g
1 2 ¢ 1-95°1 00 0 % 2, 1— 551 % . 2 ¢ - e % . 2 e R
=151 I-15c1 1-35c 1-%a
o1 11 CL 1451 11 CL
L *ﬁ( Hsm = *ﬁ( 5o 1-4 *ﬁ( L o *ﬁ( 5
— = ; — 5 5 — = — 5 F
1-— 2 ¢ 1-36°1 0 0 O % . 2 o 1-Fe1 % . 2 ¢ 1-Ee % 2 FR-s,
1 ﬁq 1 1661 1 ﬁcl 1—ﬁ01
o1 11 CL 1461 14 CL
9 -3y ( 1+516 a -3 ( 50 g —3h ( L6 a -k ( G
_c - _er ] e o :
1-— 2 ¢ 1-g5c1 00 0 1% 3 o -5y 4 . 2 ¢ 1-Ser 4 2 e P
—Zor 9 1-Zc 9 T-Ea 5 T Za
€1 cy ey 1
,L( 1+5T ) ,L( 1t ) ,L( 1+51—6 ) ,L( 1+5T6 )
3N ; 3N 3N 3N
1—e 1-76°1 00 0 %6 1-75¢1 %6 1-e %e R,
c c c ¢
,i<1+r1713> ,L<1+r171;> 7#(1+51—%) *i<1+27‘13>
3N 3N 3N 3N
1—e 1-35°1 00 0 %6 1-5ey %6 - Dep %6 -5
c c c c
,L(l*ﬁ) ,L<1+5171;> ,L( 1+51—%) 7i<1+}%>
3N 3N ; 3N 3N
1—e 116 0 0 O %6 =151 %6 1-f5e1 %6 PR,

We are concerned with transitions from each of the various states to coalescence (state 0). The first column of
TI(¢) gives the limiting cumulative distribution functions for the time to the most recent common ancestor for two

lineages within an individual (state 1) and two lineages between individuals (states 3,4 and 5):

1—2 —L(Lﬁ )
Fr,(t)=Fy(t)=1— ——%—¢ """ \'7i51/, (22)
1-— Tﬁcl
,L( 4T )
Fme(t) = Fme(t) = Ffo(t) =l-e ™" s : (23)

To compute expectations, recalling that for X > 0, E[X] = [[°[1 — Fx(z)] dz, we find

Biry] = B0 =38 (12 ). (24)
_ 5.

Vo] = ElVins] = 5[y5] =38 (1515 ). (29
16

Egs. 24 and 25 are the same as Egs. 39 and 40 from Cotter et al. (2021). Egs. 22 and 23 are plotted in Figure 5.

3.2.4 Matrilateral cross

In the matrilateral-cross case, a union occurs between a male and his mother’s brother’s daughter. This case
is similar to the matrilateral-parallel case. With probability ¢1/2, two lineages in state 2; trace to the shared
grandparental pair. They coalesce with probability % (state 0), they are in the shared grandmother with probability
i (state 1), and they are in opposite individuals of the grandparental mating pair with probability % (state 2p).
With probability ¢;/2, two lineages in state 2; do not trace to the shared grandparental pair. Conditional

on the lineages not both tracing to the shared grandparental pair, they are in two males (state 3), a male and a

1
4

1 — ¢1, two lineages are not ancestral to a consanguineous mating pair. In this case, they follow the same pattern

female (state 4) or two females (state 5), with probabilities %, %, and 7, respectively. Finally, with probability
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as enumerated for the patrilateral-parallel case. The transition matrix is

transitions as before (Eq. 1):
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As before, using G = PBP, we calculate the matrix exponential, €@, using the method of Appendix B. We

then obtain II(t) from Eq. 3, converting ¢ back to units of N generations:

T(t) = Pe'C =
1 0 0 O 0 0 0
e 1< e _cr
Ly (R Ly () (= (=
1— 2 e 3N\ 1-3¢; 00 0 1.1 2 e 3N \1-3¢; 4 1 2 e 3N \1-2¢; 4 1 2 e 3N \1-3¢
1-gc 9 1-gca 9 1-gc1 9 1—gc1
t -4 t -4 t -9 t -4
1— 1- *W(l_%q 00 0 L. -4 e*ﬁ(l_%cl) 4 1= e*m(l_%q 4 1-% eim(l‘%”l
1—%01 9 1—%01 9 1—%01 9 1—%01
t -4 t -4 t -9 t -
=3 *W(l_gcl 1. 1-3 *W(l_gcl) 4 1- *W(l_gcl 4 1= *W(l_gcl
1 372—¢€ 8 0 0 0 32—¢€ 8 32—¢€ 8 2 8
1-gca 9 1-gc 9 1—gc1 9 1-gc1
c c c c
_e (1=F e (1=F e (1=F e (1=F
1—e ™ \FTa) g 00 e \EEs A o s (7 ga
9 9 9
,L(“s%l> ,L(“;?l> ,L<17::T1> ,L<17:71>
1—e *M\175a 000 fe PT\1mEe ge M\1mga ge “M\rmia
o (2=F o (=F ,L<17%> ,L<17%>
1—e *M\1-ga 0 0 O ée SNA1-§a %e SN\1-%e %6 SN\1-%e
(29)
We extract the cumulative distribution functions from the first column of the matrix, finding
1— ¢ ,L( 1*;?1 )
_ _ 2 3N\ 1-3¢
Fr, (t)=Fy(t)=1- — ¢ s/ (30)
1-— gCl
o ()
. . . —3N\ 1-3.
Fy,,.(t)=Fv,, () =Fy, () =1-c¢ 51/ (31)

Solving for the expectations of these distributions, recalling that for X > 0, E[X] = [;*[1 — Fx(z)] dz, we find

Biry] = BU] =3 (1=2 ) . (32)
8

E[Vim] = E[Vins] = E[V}] = 3N (1 __gjl) . (33)
8

Eqgs. 32 and 33 are the same as Eqs. 47 and 48 from Cotter et al. (2021). Egs. 30 and 31 are plotted in Figure 6.

3.2.5 Bilateral parallel

Having considered the four possible types of first-cousin consanguinity, we can also consider the two bilateral cases,
in which a mating pair are cousins through both sets of grandparents. In bilateral-parallel first-cousin consanguinity,
a union occurs between a male and a female who is both his mother’s sister’s daughter and his father’s brother’s
daughter. We can consider this case to be a combination of the matrilateral-parallel case and the patrilateral-parallel
case. In state 21, when the two lineages are ancestral to a bilateral-parallel mating pair, the male’s lineage must
transition through his mother because he cannot inherit an X chromosome from his father. Because there is no way
for the lineages to transition through the patrilateral-parallel grandparental pair, the transitions in state 2; follow
from the transitions for a matrilateral-parallel pair only. In the case of bilateral-parallel first-cousin consanguinity,
the transition matrix thus has the form given for matrilateral-parallel first-cousin consanguinity in Eq. 18. The

bilateral-parallel case thus also shares the same cumulative distribution functions given in Eqgs. 22 and 23.

11
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3.2.6 Bilateral cross

Bilateral-cross first-cousin consanguinity occurs when a male shares a union with a female who is both his fa-
ther’s sister’s daughter and his mother’s brother’s daughter. This case can be considered to be a combination of
matrilateral-cross and patrilateral-cross first-cousin consanguinity. The ancestral lineages cannot travel through the
patrilateral-cross pair, and the transitions follow those for matrilateral-cross consanguinity. The transition matrix

(Eq. 26) and cumulative distribution functions (Egs. 30 and 31) follow similarly.

3.2.7 Mixture of first-cousin mating types

We next examine a population that possesses a mixture of all four unilateral first-cousin mating types. To determine
the transition matrix, it suffices to determine the transition probabilities from state 2.

Recall that two lineages in state 2; are in two individuals ancestral to a mating pair that might or might not be
consanguineous. With probability c,, this mating pair is a patrilateral-parallel first-cousin pair, with probability
Cpe it is a patrilateral-cross first-cousin pair, with probability c,,), it is a matrilateral-parallel first-cousin pair, and
with probability ¢, it is a matrilateral-cross first-cousin pair. If the mating pair is a first-cousin pair of a particular
one of the four types, then transitions out of state 2; will match those derived for the associated case.

We can view the transition probabilities out of state 2; as a weighted combination of the transitions that each
of these first-cousin cases makes when considered on its own. For example, in the case of coalescence (transition
to state 0), two lineages in state 2; coalesce with probability % for a matrilateral-parallel first-cousin pair (rate
Cmp) and % for a matrilateral-cross first-cousin pair (rate ¢,,.). Because patrilateral-parallel and patrilateral-cross
consanguinity do not affect transitions from state 2;, corresponding rates c,, and cp. do not influence the transition
probability to state 0. Combining all four cases, the transition probability from state 2; to state 0 is l%cmp + %cmc.
For transitions from state 2 to states 0, 1, and 2, the probabilities are obtained by summing corresponding terms
in the matrices for the various types of unilateral first-cousin mating (Eqs. 12, 18, and 26).

For the transitions from state 2; to states 3, 4, and 5 (two lineages between individuals), consanguinity acts
to reduce the probabilities. The probabilities in the case of patrilateral parallel consanguinity (Eq. 12) represent a
null effect of no consanguinity. The ¢y, and ¢, terms (Egs. 18 and 26) reduce the probabilities of transitioning
to states 3, 4, and 5 (while inflating the 0, 1, and 2¢ transitions). For state 3, for example, the null transition
probability is %. Matrilateral-parallel consanguinity reduces this transition probability by ¢,,,/8, giving a combined
transition probability of % — Cmp/8; matrilateral-cross consanguinity has no effect on this transition.

We proceed similarly to combine the remaining transition probabilities from the four unilateral first-cousin

mating types to produce the transitions for state 2. The transition matrix is

0 1 20 21 3 4 5
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0
29 0 0 0 1 0 0 0
— 3Cmp Cmc Cmp Cmec Cmp Cme 1 Cmp 1 Cmp Cmc 3 Cmp Cmc
Iy =2 6 T 7% 16 T 7% i 0 §—% 22— 71— s— % | (34)
1 1 1
L L 0 0 0 0 -
1 1 1 0 -~ -~
iN N 2N . 2, 2,
5 3 1 1 0 1-% -~ -~
SN SN 2N 1 2 1

Matrices A and B follow from Eq. 1 and take the same form as those given for the matrilateral cases with state

27 in matrix A (Egs. 19 and 27), now adopting the new combinations of transition probabilities. We solve for the

12


https://doi.org/10.1101/2022.05.05.489432
http://creativecommons.org/licenses/by/4.0/

263

264

265

266

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.05.489432; this version posted May 5, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

stationary distribution of the “fast” transitions using the method of Appendix A:

1 0 0 O 0 0 0
16 Cmp+ 22 oo o % 1P fye 4 1P — fye 4 1_rc7gp_ﬁ75m
17%cmp7%cmc 9 17%67“;,7%67"6 9 171—5606”4;7%0"1C 9 lfﬁpcmpfgcmc
Sompttme 00001 (AommEodge § 0 aotadodpe § 0 qotar g
1—%cmp—%cmc 9 1_1%‘CCWP_%CWC 9 1—1%Ccmp—%cmc 9 1—1%Ccmp—%cmc
P= lim A" = 2 Cpnpt S 00 0 L 1-Cmp _ Cme 4 1-mP _ Cme 4 1-5mP _ Cme
r—00 1— 5 Cmp— 5 Cme 9 \1—%cmp—3Cme 9 \1-cmp—3Cme 9 \1—ZCmp— SCme
1 4 4
0 00 0 1 4 4
1 4 4
0 00 0 1 4 4
1 4 4
0 0 0 0 L 4 4

(35)
Once again, using G = PBP, we obtain the matrix exponential, e’ using the method of Appendix B. We
then compute II(t) with Eq. 3, converting ¢ back into units of N generations. The resulting matrix is structured in

such a way that we can write:

1 000 O 0 0
1-RE 0 0 0 (RE §RE 3§RE
1-RE 0 0 0 iRE 3$RE 34RE
Nt)=Pe'=|1-RE 0 0 0 ‘RE iRE &RE|, (36)
1 4 4
1-E 0 0 0 $E $E iE
1 4 4
1-E 0 0 0 iE £FE iE
1 4 4
1-E 0 0 0 iE 2ZE iE
%7 where
R LT ET

268

269

270

271

5 3
1-— Ecmp — gcmc
I AR s
E=¢ N \1-fgemp—§eme

In the matrix in Eq. 36, the first column represents transitions to coalescence. We extract from this column the
cumulative distribution functions for time to coalescence for two lineages within an individual (state 1) and two

lineages between individuals (states 3, 4, and 5):

1— %o ome ,f<1+T7*3T)
FTf (t) = FU(t) = 1 — = 2 32 e 3N 1—%6anp—§‘37nc (37)
1 — Ecmp — gcmc
Fy,,.(t) = Fy, ,(t) = Fy,,(t) =1 —e *7 \1~fgemp=Zeme (38)

Solving for the expectations of these distributions, recalling that for X > 0, E[X] = [[°[1 — Fx(«)] dz, we find

1— Cmp __ Cme
E[Ty] = E[U] = 3N (1 - o j) , (39)
16 8
1— 16Cmp — %cmc
E[me] = E[Vm ] = E[fo] = 3N 14 Sme _ Cme (40)
16 8
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3.3 Comparisons
3.3.1 Limiting distribution versus exact distribution

Under the mixture model, to see how well the limiting distribution of coalescence times approximates the exact
distribution, we perform simulations. In particular, for fixed values of the number of mating pairs N and rates of
matrilateral-parallel (¢;,,;,) and matrilateral-cross (¢;,.) first-cousin mating, we simulate 10,000 realizations of the
Markov chain in Eq. 34 to produce an empirical cumulative distribution function (CDF) of coalescence times for
lineage pairs within and between individuals. This procedure amounts to simulating a distribution of the time to
the most recent common ancestor (the time it takes to hit state 0) starting in either state 1 (within an individual)
or state 4 (between individuals).

Figure 7 plots the simulated empirical CDFs alongside the limiting CDFs presented in Egs. 37 and 38. Con-
ducting these simulations for different values of the number of mating pairs N, we see that as N increases, the

limiting distribution functions (Eqs. 37 and 38) closely approximate the simulated, empirical distributions.

3.3.2 X chromosome versus autosomes

Each of the limiting distributions for coalescence times for lineages from separate mating pairs, both for single
types of first-cousin consanguinity and for a superposition of multiple types, possesses a particular structure: an
exponential CDF whose rate is the product of the population size and a reduction by a factor that accounts for
consanguinity. We now examine these limiting CDF's for the X chromosome in relation to corresponding CDF's for
autosomes. The autosomal coalescence time distributions under first-cousin consanguinity are obtained in Appendix
C as a special case of the nth cousin mating model of Severson et al. (2019). Here, we calculate the ratio of the
expected time to coalescence for the X chromosome (Eqs. 39 and 40) and for autosomes (Egs. C4 and C5) within

and between individuals, respectively, as we vary rates of matrilateral and patrilateral consanguinity (Figure 8).
We first consider the ratio of expected coalescence times on the X chromosome relative to the autosomes for
pairs of lineages within individuals (Eq. 39/Eq. C4) as a function of patrilateral (cpp +c,c) and matrilateral-parallel
(cmp) consanguinity (Figure 8A). Because the expected coalescence time for two lineages on the X chromosome
is a function of 3N and the corresponding autosomal mean depends on 4N, in the absence of consanguinity, the
3

null value of the ratio is §. The ratio achieves its minimum value of %,

in reducing X-chromosomal coalescence times relative to autosomal coalescence times, when we set c,,, to 1. It

with a stronger effect of consanguinity

achieves its maximum value of 1, increasing X-chromosomal coalescence times compared to autosomal coalescence
times, when instead we set ¢,, + ¢pe to 1 (Figure 8A).

For the X:A ratio of between-individual expected coalescence times (Eq. 40/Eq. C5) as a function of patrilateral
(cpp + cpe) and matrilateral-parallel (¢,,,) consanguinity (Figure 8B), the minimum and maximum values differ less
than for the within-individual case. The minimum exceeds %, equaling %, and is again reached at ¢,,, = 1. The
maximum is less than 1, equaling 12, and is reached at ¢, + ¢, = 1. The minimum and maximum are less extreme
than in the within-individual case, as consanguinity has less of an effect on reducing the expected coalescence times
in the between-individual case, both for the X chromosome and for the autosomes.

We next examine the X:A coalescence time ratio within individuals (Eq. 39/Eq. C4) as a function of patrilateral
(cpp + ¢pc) and matrilateral-cross () consanguinity (Figure 8C). The minimal ratio is slightly larger than in the
matrilateral-parallel case, equaling % at ¢, = 1. The maximum occurs at 1, the same value as the corresponding
case with matrilateral-parallel in place of matrilateral-cross consanguinity, when cp, +cpc = 1. The slightly reduced
range of values (i.e., the greater minimum) traces to the fact that the effect of matrilateral-cross consanguinity on
X-chromosomal coalescence times is slightly weaker, producing a weaker reduction in coalescence times, than that

of matrilateral-parallel consanguinity.
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Finally, we analyze the X:A coalescence time ratio between individuals (Eq. 40/Eq. C5) as a function of pa-
trilateral (cpp + cpe) and matrilateral-cross (¢me) consanguinity (Figure 8D). The minimum occurs at ¢y, = 1,
equaling 92 As in the corresponding matrilateral-parallel case, the maximum, achieved at cp, + cpe = 1, is 12.
As was seen within individuals, the range of permissible values is reduced relative to the matrilateral-parallel case,

owing again to the weaker effect of matrilateral-cross consanguinity on X-chromosomal coalescence times.

4 Discussion

Extending our previous work on mean coalescence times on the X-chromosome in a consanguinity model, we have
derived large-N limiting distributions for within-individual and between-individual X-chromosomal coalescence
times under various types of first-cousin consanguinity. For between-individual coalescence times, each limiting
distribution is exponential with a rate equal to the product of the number of X chromosomes and a reduction factor
due to consanguinity (Eqgs. 17, 23, and 31). Limiting distributions of within-individual coalescence times each have
a point mass corresponding to instantaneous coalescence, and conditional on not coalescing instantaneously, are
exponential (Eqgs. 16, 22, and 30). These patterns also hold for limiting distributions of pairwise coalescence times
for a model with a mixture of types of first-cousin consanguinity (Eqgs. 37 and 38); in simulations, the limiting
distributions under this superposition agree with exact distributions from the Markov chain (Eq. 34, Figure 7).

Our limiting distribution results can inform comparisons of the X chromosome with autosomes. The four types
of first-cousin consanguinity have identical effects on the autosomes but vary in their effect on the X chromosome.
Hence, a comparison of coalescence time distributions for the X chromosome and autosomes can be informative
about features of consanguinity. Our results (Eqgs. 37 and 38) directly show the effect of different rates and types of
consanguinity on the distribution of X-chromosomal coalescence times. For example, increasing matrilateral-parallel
and matrilateral-cross consanguinity decreases the ratio of X and autosomal mean coalescence times; increasing
patrilateral-parallel and patrilateral-cross first-cousin consanguinity increases this ratio (Figure 8).

Consanguinity and other preferences for mate choice vary across populations, often depending on cultural norms
for certain types of consanguinity over others (Bittles, 2012). Because we have found that the different types of
first-cousin consanguinity generate an observable effect on X chromosomal coalescence times, it is possible that
features of coalescence times can be compared across populations to assess signatures of the different types of
consanguinity. Such assessments can potentially capitalize on the inverse relationship between coalescence times
and genomic sharing (Palamara et al., 2012; Carmi et al., 2014; Browning and Browning, 2015) to use genomic
sharing patterns to uncover features of consanguinity (Arciero et al., 2021).

One limitation of our approach is that in formulating our model, we have disregarded higher-order consanguinity.
While we have explicitly modeled first-cousin mating pairs, we have ignored the possibility that a pair has more
distant consanguinity that is not captured in the model. It may be possible, however, to allow for such possibilities
by incorporating into the nth cousin framework of Severson et al. (2021) sex-specific varieties of consanguinity at

different levels of relationship.
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Appendix A: Stationary distribution of the fast transition matrix

In this appendix, we solve for the stationary distribution of the “fast” transition matrix A in the case of sib mating
on the X chromosome. The same approach is also applied in the main text to obtain the stationary distribution of
the fast transition matrix in other models.

First, we permute the states to rewrite matrix A in a canonical form. The matrix A in Eq. 5 has one absorbing
state (state 0) and a closed communication class C; = {3,4,5}. For simplicity, we write the sib mating probability

co as c. We rearrange the matrix to take the form

o (5 o). (A
R Q

listing the recurrent states before the transient states. Thus, square matrix C includes transitions between recurrent
states (i.e., absorbing states and closed communication classes), and square matrix Q includes transitions between
transient states. Matrix R includes transitions from the transient states to the recurrent states. For matrix A in
Eq. 5, the recurrent states are state 0 (absorbing) and states 3, 4, and 5 (closed communication class C7). The

transient states are states 1 and 2. Permuting the matrix A to order the states 0, 3, 4, 5, 1, 2, we write

1 0 0 0 0 O

0 0 0 1 0 O

. o o 1 110 o0
AT = o 1 1 1 0 0

4 2 4

0 0 0 0 0 1

c (g lzc 1l=c | @ <«

4 2 4 2

We treat the closed communication class Cy as a single absorbing state because any transitions made into C}
transition infinitely often among the states it contains. We rewrite the transition matrix for the resulting Markov

chain by collapsing the columns and rows corresponding to the states in Cj. A* becomes

1 o |o o

0o 1 |0 o0
A**:

o 0 |o 1

2 l-a |} %

Matrix A** now has the form in Eq. A1, with 2 x 2 submatrices and C as the identity matrix.

Given a matrix in canonical form (Eq. A1 where C is the identity), the stationary distribution is given by

lim D' = I 0 ,
r—00 NR 0

where N is the fundamental matrix N = (I — Q)~! and I is the identity matrix (Kemeny and Snell, 1983, 3.3.7).
The matrix NR. defines for each pair consisting of a transient state and a recurrent state, the probability that from

the transient state, the process reaches the recurrent state. For matrix A**, we have

1 0 0 0

p = Tll}nolo (A ) = c 4—4cg 0 0
4—3co 4—3co

C 4—4CU O 0
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370 To recover the stationary distribution of A*, we expand the absorbing state for the closed communication class

sn (', replacing it with the stationary distribution for the irreducible 3 x 3 matrix associated with the class. We then

~

sz weight the transient transition probabilities in NR by this stationary distribution.

N

a3 In other words, NR now gives, for each pair consisting of a transient and a recurrent state, the probability of

s the associated transition. Expanding the absorbing state for the closed communication class C7, we get

1 0 0 0 0 0
1 4 4
0 9 9 9 00
) 0 1 4 4 0 0
P* = lim (A*)" = 7 : :
Y 1 4 4
=00 0 5 5 5 0 0
co 1 d-deq 4 d-deq 4 d-dc (g
4—3co 9 4-3co 9 4-3co 9 4-3co
c 1 4—4co 4 4—4co 4  4—4co 0 0
47360 9 47360 9 473C0 9 473C0

w5 Finally, we permute P* to recover P (Eq. 6).

« Appendix B: The matrix exponential /¢

s In this appendix, we obtain the matrix exponential, e!®, which is needed in calculating the large-N limit, I1(t) =
s Pe!®. The computations in this appendix are specific to sib mating on the X chromosome, but the same method

30 can be applied to obtain the matrix exponential in the other models.

380 We first obtain the generator matrix from Eqgs. 5 and 6:
0 0 0 0 0 0
(4—4co)(4—co) 0 0 1. (4—4co)(4—co) 4 . (4—4cp)(4—co) 4 . (4—4cp)(4—co)
3(4—3co)? 9 3(4—3cp)? 9 3(4—3co)? 9 3(4—3cp)?
(4—4co)(4—co) 0o o0 L. (4—4co)(4=co) 4  (4=4co)(4—co) 4  (4—4co)(4—co)
G — PBP = 3(4—3cp)? 9 3(4—3cp)? 9 3(4—3co)? 9 3(4—3cp)? (B1)
4—co 0 O 1, 4—co 4 . 4—co 4 . 4—co :
3(4—3co) 9 " 3(4—3co) 9 " 3(4—3co) 9 " 3(4—3co)
4—co 0 0 1. 4—co 4 . 4—co 4 . 4—co
3(4—3co) 9 " 3(4—3co) 9 " 3(4—3co) 9 " 3(4—3co)
4—co 0 0 1, 4—co 4 4—co 4 . 4—co
3(4—3co) 9 " 3(d—3co) 9 " 3(4—3co) 9 " 3(@—3co)

3

®
2

The generator matrix, G, has nonzero entries in the columns for state 0 and states 3, 4, and 5. It has the property

4 — Co
G2=_-G|——>2|.
[3 (4- 300)]
sz For the constant k = —(4 — ¢o)/[3 (4 — 3¢p)], we can then recursively write
G" =k""'G, (B2)

% The matrix exponential, e!® = Y77 #/G'/il, then equals

e!G :I—i—k‘l(}i

i=1

=I-k'(1-€")G.

tik
il

s Converting ¢ into units of N generations and multiplying by P (Eq. 6), we obtain Pe!© as in Eq. 7.
385 For each model studied, for the associated generator matrix G, the corresponding quantity k that satisfies

3 Q. B2 appears in Table B1.
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Appendix C: Limiting distribution of autosomal coalescence times for
first-cousin mating

Equation 46 of Severson et al. (2021) gives a limiting distribution of autosomal coalescence times for a model with a
superposition of levels of cousin mating, up to nth cousins. In order to recover first-cousin mating on the autosomes
to compare to our X-chromosomal results, we use the special case of this nth cousin model, where the rate of sibling
mating ¢ is 0 and the rate of first-cousin mating is ¢;, stopping at first cousins. This special case produces the
following transition matrix where state 0 is still coalescence, state 1 is two lineages in an individual, state 2 is two
lineages in opposite individuals of a mating pair, state 21 is two lineages in two individuals one generation ancestral

to a mating pair, and state 3 is two lineages in two individuals in different mating pairs:

0 1 2 2 3
0 1 0 0 0 0
0 0 1 0 0
My=2|0 0 0 1 0 (C1)
2% % ¥ 0 1-%
3 \ak a o 0 1%

Note here that there is no need to use a two-sex model, as for autosomes, states referring to two males, a male
and a female, and two females simply collapse into the combined state 3. No new information is gained for the

autosomes when separating these states. Using Eq. 1, we split the transition matrix into fast and slow processes:

1 0 00 o0 0000 0
0 0 1 0 0 0000 0
A=lo 0o 01 o |, B=|loo oo o
P 0000 0
0 0 0 0 1 i1z 0 -1

We solve for the stationary distribution of the fast matrix using the method in Appendix A (simpler here by a

single absorbing state for two lineages between individuals rather than a closed communication class):

1 0 0 O 0
c 16—4c
1671301 000 167351
S H T __ c 16—4c
P=1lm A"= | 5%= 0 0 0 =5
c 16—4c
16—13(,'1 0 00 16—3(,‘1

0 0 0 O 1
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w Using G = PBP, we obtain the matrix exponential e/© using the method of Appendix B. We then compute TI(t)

w2 via Eq. 3, converting t back into units of N generations:

403 We extract from the first column of this matrix the cumulative distribution functions for two lineages starting

s in state 1 (within an individual) and state 3 (between individuals):

S

1—< —ﬁ 1
Frit)=Fol) =1-1—3 e (=), (C2)
16
~a (=)
Fv(t):l—e =i/, (03)

w5 Severson et al. (2021) showed that the limiting distribution for nth cousin mating is given by their Eqs. 47 and 48:

w6 In the special case where we only have first-cousin mating, we replace their ¢ term with ¢;/16 and recover
w7 Egs. C2 and C3, respectively.
408 For the expectations of these distributions, by E[X] = [[°[1 — Fx ()] dz for X > 0, we find

E[T] = E[U] = 4N (1 - %) , (C4)
E[V] = AN (1 - 136@1) . (C5)

w  FEgs. C4 and C5, obtained from the limiting distribution, accord with the large-N limit of Egs. 8 and 10 from

a0 Severson et al. (2019), in which they were calculated via first-step analysis.
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Table B1: Constants used in matrix exponentiation for consanguinity models.

Type of consanguineous mating Chromosome Section Quantity k satisfying G™ =
k"~1@ for generator matrix
G (Eq. B2)

Sibling X 3.1 — 3y

Patrilateral-parallel first-cousin X 3.2.1 f%

Patrilateral-cross first-cousin X 3.2.2 —%

Matrilateral-parallel first-cousin X 3.2.3 —%

Matrilateral-cross first-cousin X 3.24 —ﬁ

Bilateral-parallel first-cousin X 3.2.5 —%

Bilateral-cross first-cousin X 3.2.6 —ﬁ

Superposition of unilateral first-cousin X 3.2.7 _3(12%;—2222.)

First-cousin Autosomes  Appendix C —ﬁ

Note that ¢, and ¢y, in Section 3.2.7 have the same meaning as c¢; in Sections 3.2.3 and 3.2.4, respectively.
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Figure 1: Five states for two lineages. Males are squares; females are circles. State 1: within a female (blue).
State 2: in two individuals in a mating pair (green). State 3: in two males in different mating pairs (yellow). State
4: in a male and a female in different mating pairs (orange). State 5: in two females in different mating pairs

(purple).
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Figure 2: Cumulative distributions of coalescence times within (7%) and between (V;,¢) individuals as functions
of the number of generations ¢ and the fraction of sib mating pairs ¢g. (A) Within individuals, P(Ty < t), Eq. 8.
(B) Between individuals, P(V;,,r < t), Eq. 9.
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Figure 3: Example pedigree illustrating transitions from state 2y in the absence of consanguinity. Considering a
pair of lineages in a mating pair, depicted in blue, the process always immediately transitions to the holding state
21 one generation in the past. From state 2;, the lineages transition to two separate mating pairs, and hence, to
states 3, 4, or 5.
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Figure 4: Example pedigree illustrating transitions from state 2y in the presence of first-cousin consanguinity.
Considering a pair of lineages in a mating pair, depicted in blue, the process always immediately transitions to the
holding state 2;. From state 21, the lineages can potentially transition to any of states 0, 1, 2¢, 3, 4, 5, depending
on the type of first-cousin consanguinity. Matrilateral-cross consanguinity is depicted.
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Figure 5: Cumulative distributions of coalescence times within (7%) and between (V;,¢) individuals as functions
of the number of generations ¢ and the fraction of matrilateral-parallel mating pairs ¢;. (A) Within individuals,
P(Ty <t), Eq. 22. (B) Between individuals, P(V,,; <t), Eq. 23.
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Figure 6: Cumulative distributions of coalescence times within (7%) and between (V;,¢) individuals as functions
of the number of generations ¢ and the fraction of matrilateral-cross mating pairs ¢;. (A) Within individuals,
P(Ty <t), Eq. 30. (B) Between individuals, P(V,,; <t), Eq. 31.
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Figure 7: Cumulative distribution functions (CDF's) of coalescence times in a model with a mixture of types of
consanguinity. The Markov chain is given in Eq. 34; we consider the case of ¢, = 0.2 and ¢y, = 0.2 with each of
three values for the number of mating pairs N. Dashed lines represent the limiting CDF's in Egs. 37 and 38, and
solid lines represent the simulated CDFs from 10,000 observations of the first-cousin mixture model (as described
by the Markov chain in Eq. 34).
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Figure 8: Ratios of X-chromosomal and autosomal mean coalescence times. Each point represents a ratio of
coalescence times for a specified mixture of two types of consanguinity, depicted on the x and y axes. (A) Within
individuals, matrilateral parallel and patrilateral consanguinity (Eq. 39/Eq. C4). (B) Between individuals, ma-
trilateral parallel and patrilateral consanguinity (Eq. 40/Eq. C5). (C) Within individuals, matrilateral cross and
patrilateral consanguinity (Eq. 39/Eq. C4). (D) Between individuals, matrilateral cross and patrilateral consanguin-
ity (Eq. 40/Eq. C5). In each panel, the minimal ratio is indicated (obtained by setting matrilateral consanguinity
to 1 and patrilateral consanguinity to 0), as is the maximum (obtained by setting matrilateral consanguinity to

0 and patrilateral consanguinity to 1). The value % occurs with no consanguinity, located at the origin in each
panel. Values greater than % appear in blue, indicating combinations of parameter values that bring expected X

chromosomal coalescence times closer to expected autosomal coalescence times. Values that reduce X chromosomal
coalescence times to a greater extent than on autosomes, thereby shifting the ratio less than %, appear in red.
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