

1 Limiting distribution of X-chromosomal coalescence times 2 under first-cousin consanguineous mating

3 Daniel J. Cotter^{a,*}, Alissa L. Severson^a Shai Carmi^b Noah A. Rosenberg^c

4 May 3, 2022

5 **Abstract**

6 By providing additional opportunities for coalescence within families, the presence of consanguineous unions in
7 a population reduces coalescence times relative to non-consanguineous populations. First-cousin consanguinity
8 can take one of six forms differing in the configuration of sexes in the pedigree of the male and female cousins who
9 join in a consanguineous union: patrilateral parallel, patrilateral cross, matrilateral parallel, matrilateral cross,
10 bilateral parallel, and bilateral cross. Considering populations with each of the six types of first-cousin consan-
11 guinity individually and a population with a mixture of the four unilateral types, we examine coalescent models
12 of consanguinity. We previously computed, for first-cousin consanguinity models, the mean coalescence time
13 for X-chromosomal loci and the limiting distribution of coalescence times for autosomal loci. Here, we use the
14 separation-of-time-scales approach to obtain the limiting distribution of coalescence times for X-chromosomal
15 loci. This limiting distribution has an instantaneous coalescence probability that depends on the probability that
16 a union is consanguineous; lineages that do not coalesce instantaneously coalesce according to an exponential
17 distribution. We study the effects on the coalescence time distribution of the type of first-cousin consanguinity,
18 showing that patrilateral-parallel and patrilateral-cross consanguinity have no effect on X-chromosomal coales-
19 cence time distributions and that matrilateral-parallel consanguinity decreases coalescence times to a greater
20 extent than does matrilateral-cross consanguinity.

21 **1 Introduction**

22 The phenomenon of consanguinity, in which unions occur between closely related individuals, is a form of population
23 structure that can dramatically affect properties of genetic variation (Crow and Kimura, 1970; Jacquard, 1974).
24 By increasing the probability that deleterious recessive variants appear in homozygous form, it contributes to
25 the incidence of recessive disease (Bittles, 2001; Woods *et al.*, 2006); recent studies suggest that it contributes to
26 the incidence of complex disease as well (Bittles and Black, 2010; Yengo *et al.*, 2017; Ceballos *et al.*, 2018; Johnson
27 *et al.*, 2018; Clark *et al.*, 2019). Consanguinity is common in human populations, with some populations promoting
28 consanguineous marriages as a cultural preference (Bittles, 2012; Romeo and Bittles, 2014; Sahoo *et al.*, 2021).

29 The offspring of a consanguineous union are expected to possess large portions of their genomes shared between
30 their two genomic copies, owing to the fact that an identical genomic segment can be inherited along both their
31 maternal and paternal lines. For the loci contained in such segments, the two copies *coalesce* at a common ancestor
32 relatively few generations in the past. At other locations, neither copy or only one copy traces to a recent shared

*Email: dcotter1@stanford.edu

^aDepartment of Genetics, Stanford University, Stanford, CA 94305 USA

^bBraun School of Public Health and Community Medicine, Hebrew University of Jerusalem, Jerusalem, 9112102, Israel

^cDepartment of Biology, Stanford University, Stanford, CA 94305 USA

33 ancestor, so that coalescence occurs only much farther back in the past. Indeed, empirical genetic studies have
34 identified multiple populations in which individuals carry long runs of homozygosity (ROH), attributable in large
35 part to consanguinity practices (McQuillan *et al.*, 2008; Pemberton *et al.*, 2012; Ceballos *et al.*, 2018)

36 In typical coalescent-based models that investigate coalescence times for sets of lineages, diploid organisms are
37 approximated by pairs of haploids independently drawn from a population (Hein *et al.*, 2004; Wakeley, 2009). This
38 modeling choice is unsuited to the study of consanguineous families, in which the two lineages in an individual can
39 be highly dependent. Hence, explicitly diploid coalescent models have been devised for the study of coalescence in
40 a setting of consanguinity. The earliest studies focused on selfing in plants (Pollak, 1987; Nordborg and Donnelly,
41 1997; Nordborg and Krone, 2002), an extreme form of “consanguinity” in which both parents of a diploid offspring
42 are the same individual. Campbell (2015) extended diploid coalescent models to consider a monogamous mating
43 model with sibling mating, computing mean coalescence times under the model. This approach was then extended
44 by Severson *et al.* (2019) to consider mean coalescence times in a diploid model with n th-cousin mating, for arbitrary
45 values of n and for superpositions of multiple levels of n th-cousin mating.

46 In an extension of the work of Severson *et al.* (2019), Severson *et al.* (2021) advanced beyond mean coalescence
47 times to derive a full limiting distribution of coalescence times under superposition models of autosomal consan-
48 guinity, considering the limit as the population size grows large. A limitation of the work of Severson *et al.* (2019)
49 and Severson *et al.* (2021), however, is that it does not distinguish between males and females in the mating model;
50 all individuals are exchangeable. Hence, it cannot accommodate the variety of scenarios in which differences be-
51 tween males and females are salient. We have recently extended the method of Severson *et al.* (2019) to distinguish
52 between males and females, evaluating mean coalescence times in a two-sex model, with a goal of evaluating the
53 effect that consanguinity has on X-chromosomal coalescence times specifically (Cotter *et al.*, 2021).

54 Here, we use the advance from Severson *et al.* (2021) to compute the full distribution of coalescence times under
55 a diploid, two-sex consanguinity model (Cotter *et al.*, 2021). Seeking to derive distributions of X-chromosomal
56 coalescence times, we consider each of the six types of first-cousin consanguinity and a model that includes all four
57 unilateral types in a single population. For each model, we evaluate the distribution of coalescence times for two
58 lineages sampled from the same individual and for two lineages sampled from members of different mating pairs.

59 2 Methods

60 We adapt the models of Severson *et al.* (2019, 2021) and Cotter *et al.* (2021). We consider a constant-sized
61 population of N diploid mating pairs. Individuals are sex-specific, the X chromosome is considered, and specified
62 forms of consanguinity are allowed. Using a Markov chain, we track lineage pairs back in time until they coalesce.

63 To analyze the large- N limit of the model, we make use of the separation-of-time-scales approach introduced by
64 Möhle (1998). This approach was used by Severson *et al.* (2021) to obtain the limiting distribution of coalescence
65 times under their autosomal diploid model of consanguinity. In the approach from Möhle (1998), the limiting
66 distribution of a Markov process with transition matrix Π_N is obtained by writing

$$\Pi_N = \mathbf{A} + \frac{1}{N} \mathbf{B}. \quad (1)$$

67 Here, \mathbf{A} describes “fast” transitions that have nontrivial probability in a single generation, and \mathbf{B} describes
68 “slow” transitions that have very small probabilities in a single generation. As $N \rightarrow \infty$, the fast transitions occur
69 instantaneously, and the fast process can be described by an equilibrium distribution

$$\mathbf{P} = \lim_{r \rightarrow \infty} \mathbf{A}^r. \quad (2)$$

70 Rescaling t in units of N generations, as $N \rightarrow \infty$, Π_N converges to a continuous-time process

$$\Pi(t) = \lim_{N \rightarrow \infty} (\Pi_N)^{Nt} = \mathbf{P} e^{t\mathbf{G}}. \quad (3)$$

71 The rate matrix \mathbf{G} satisfies $\mathbf{G} = \mathbf{P}\mathbf{B}\mathbf{P}$. Under Möhle's theorem, the process converges to a continuous-time process
72 with an instantaneous jump at time 0 that corresponds to the “fast” transitions.

73 As Severson *et al.* (2021) did with autosomal models, we apply the separation-of-time-scales approach to our
74 models of consanguinity on the X chromosome (Cotter *et al.*, 2021). We begin with the sib mating case and then
75 consider each of the four types of unilateral first-cousin mating, the two cases of bilateral first-cousin mating, and
76 a mixture of all four unilateral types in one model.

77 3 Results

78 3.1 Sibling mating

79 We consider N monogamous male–female mating pairs, a fraction c_0 of which are sib mating pairs. Pairs of X-
80 chromosomal lineages can be in one of six states (Figure 1): two lineages have already coalesced (state 0); two
81 lineages are in a female (state 1); two lineages are in opposite individuals of a mating pair (state 2); two lineages
82 are in two individuals in different mating pairs, where the two individuals are two males (state 3), a male and a
83 female (state 4), or two females (state 5). Note that for the X chromosome, there is no state for two lineages in a
84 male, as males contain only one X chromosome. We track the state of the process backward in time until it reaches
85 the most recent common ancestor for a pair of lineages (that is, until state 0 is reached). We denote by T_f , U ,
86 V_{mm} , V_{mf} , and V_{ff} the random coalescence time for pairs of lineages in states 1, 2, 3, 4, and 5, respectively.

87 If two lineages are in state 0 (coalesced), they remain in state 0 with probability 1; this state is absorbing. If
88 two lineages are in a female (state 1), in the previous generation they must have been in separate individuals in a
89 mating pair (state 2) with probability 1. If two lineages are in separate individuals in a mating pair (state 2), the
90 pair is a sib mating pair with probability c_0 . Given that the pair is a sib mating pair, the lineages transition to
91 state 0 with probability $\frac{1}{4}$, state 1 with probability $\frac{1}{4}$, and state 2 with probability $\frac{1}{2}$. If the two lineages are not in
92 a sib mating pair, an event with probability $1 - c_0$, then they transition to states 4 and 5 with equal probability $\frac{1}{2}$.

93 For each of the states 3–5, because we pick parental mating pairs with replacement from the previous generation,
94 the probability is $\frac{1}{N}$ that the same mating pair is chosen. Thus, if two lineages are in state 3, and the pair are
95 siblings (an event with probability $\frac{1}{N}$), then the lineages transition to state 0 or state 1, each with probability $\frac{1}{2}$.
96 If the two lineages in state 3 do not have the same parental pair (probability $1 - \frac{1}{N}$), then they must transition to
97 state 5 with probability 1. For state 4, if the two lineages are in siblings (probability $\frac{1}{N}$), then they transition to
98 state 0 with probability $\frac{1}{4}$, state 1 with probability $\frac{1}{4}$, and state 2 with probability $\frac{1}{2}$. If the lineages are not from
99 siblings (probability $1 - \frac{1}{N}$), then they transition to state 4 or 5, each with probability $\frac{1}{2}$. Finally, two lineages in
100 state 5, conditional on being in siblings (probability $\frac{1}{N}$), reach state 0 with probability $\frac{3}{8}$, state 1 with probability
101 $\frac{1}{8}$, and state 2 with probability $\frac{1}{2}$. Conditional on not being in siblings (probability $1 - \frac{1}{N}$), the lineages transition
102 to state 3 with probability $\frac{1}{4}$, state 4 with probability $\frac{1}{2}$, and state 5 with probability $\frac{1}{4}$.

103 Combining these transition probabilities, we can write the transition matrix as

$$\Pi_N = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 2 & \frac{c_0}{4} & \frac{c_0}{4} & \frac{c_0}{2} & 0 & \frac{1-c_0}{2} & \frac{1-c_0}{2} \\ 3 & \frac{1}{2N} & \frac{1}{2N} & 0 & 0 & 0 & 1 - \frac{1}{N} \\ 4 & \frac{1}{4N} & \frac{1}{4N} & \frac{1}{2N} & 0 & \frac{1-\frac{1}{N}}{2} & \frac{1-\frac{1}{N}}{2} \\ 5 & \frac{3}{8N} & \frac{1}{8N} & \frac{1}{2N} & \frac{1-\frac{1}{N}}{4} & \frac{1-\frac{1}{N}}{2} & \frac{1-\frac{1}{N}}{4} \end{pmatrix}. \quad (4)$$

104 We can decompose Π_N (Eq. 4) into its fast and slow transitions, as in Eq. 1:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \frac{c_0}{4} & \frac{c_0}{4} & \frac{c_0}{2} & 0 & \frac{1-c_0}{2} & \frac{1-c_0}{2} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & -1 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{2} \\ \frac{3}{8} & \frac{1}{8} & \frac{1}{2} & -\frac{1}{4} & -\frac{1}{2} & -\frac{1}{4} \end{pmatrix}. \quad (5)$$

105 We first find the equilibrium distribution of the “fast” process, obtained by iterating transition matrix \mathbf{A} . This
106 calculation appears in Appendix A, producing

$$\mathbf{P} = \lim_{r \rightarrow \infty} \mathbf{A}^r = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{c_0}{4-3c_0} & 0 & 0 & \frac{1}{9} \left(\frac{4-4c_0}{4-3c_0} \right) & \frac{4}{9} \left(\frac{4-4c_0}{4-3c_0} \right) & \frac{4}{9} \left(\frac{4-4c_0}{4-3c_0} \right) \\ \frac{c_0}{4-3c_0} & 0 & 0 & \frac{1}{9} \left(\frac{4-4c_0}{4-3c_0} \right) & \frac{4}{9} \left(\frac{4-4c_0}{4-3c_0} \right) & \frac{4}{9} \left(\frac{4-4c_0}{4-3c_0} \right) \\ 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \\ 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \\ 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \end{pmatrix}. \quad (6)$$

107 We then compute $\mathbf{G} = \mathbf{P} \mathbf{B} \mathbf{P}$ and solve for the limiting process $\Pi(t)$ using Eq. 3, obtaining the matrix exponential,
108 $e^{t\mathbf{G}}$, as in Appendix B. Converting t back into units of N generations, this gives

$$\Pi(t) = \mathbf{P} e^{t\mathbf{G}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 - \frac{1-c_0}{1-\frac{3}{4}c_0} e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & 0 & 0 & \frac{1}{9} \cdot \frac{1-c_0}{1-\frac{3}{4}c_0} e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & \frac{4}{9} \cdot \frac{1-c_0}{1-\frac{3}{4}c_0} e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & \frac{4}{9} \cdot \frac{1-c_0}{1-\frac{3}{4}c_0} e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} \\ 1 - \frac{1-c_0}{1-\frac{3}{4}c_0} e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & 0 & 0 & \frac{1}{9} \cdot \frac{1-c_0}{1-\frac{3}{4}c_0} e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & \frac{4}{9} \cdot \frac{1-c_0}{1-\frac{3}{4}c_0} e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & \frac{4}{9} \cdot \frac{1-c_0}{1-\frac{3}{4}c_0} e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} \\ 1 - e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & 0 & 0 & \frac{1}{9} \cdot e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & \frac{4}{9} \cdot e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & \frac{4}{9} \cdot e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} \\ 1 - e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & 0 & 0 & \frac{1}{9} \cdot e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & \frac{4}{9} \cdot e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & \frac{4}{9} \cdot e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} \\ 1 - e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & 0 & 0 & \frac{1}{9} \cdot e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & \frac{4}{9} \cdot e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} & \frac{4}{9} \cdot e^{-\frac{t}{3N} \left(\frac{1-\frac{c_0}{4}}{1-\frac{3}{4}c_0} \right)} \end{pmatrix}. \quad (7)$$

109 The first column of the matrix $\Pi(t)$ represents the cumulative probability of coalescence in time less than or
110 equal to t generations. States 1 and 2 have the same cumulative distribution, representing the coalescence time

111 for two lineages *within* a female (note that state 2, two lineages in the two individuals in a mating pair, is always
 112 reached from state 1 after one step). States 3–5 have the same cumulative distribution, representing the coalescence
 113 time for two lineages in two distinct individuals. The cumulative distributions are

$$F_{T_f}(t) = F_U(t) = 1 - \frac{1 - c_0}{1 - \frac{3}{4}c_0} e^{-\frac{t}{3N} \left(\frac{1 - \frac{c_0}{4}}{1 - \frac{3}{4}c_0} \right)}, \quad (8)$$

$$F_{V_{mm}}(t) = F_{V_{mf}}(t) = F_{V_{ff}}(t) = 1 - e^{-\frac{t}{3N} \left(\frac{1 - \frac{c_0}{4}}{1 - \frac{3}{4}c_0} \right)}. \quad (9)$$

114 Computing the expectations of these distributions, recalling that for $X > 0$, $\mathbb{E}[X] = \int_0^\infty [1 - F_X(x)] dx$, we find

$$\mathbb{E}[T_f] = E[U] = 3N \left(\frac{1 - c_0}{1 - \frac{1}{4}c_0} \right), \quad (10)$$

$$\mathbb{E}[V_{mm}] = \mathbb{E}[V_{mf}] = \mathbb{E}[V_{ff}] = 3N \left(\frac{1 - \frac{3}{4}c_0}{1 - \frac{1}{4}c_0} \right). \quad (11)$$

115 where Eqs. 10 and 11 are the same as Eqs. 25 and 26 from Cotter *et al.* (2021), obtained by first-step analysis.

116 Eqs. 8 and 9 are plotted in Figure 2. In the figure, we observe that the cumulative probability of coalescence
 117 increases with the consanguinity probability c_0 . For $c_0 = 0$, $\mathbb{E}[T_f] = \mathbb{E}[V_{mf}] = 3N$, as there are three copies of
 118 the X chromosome in each mating pair in the population. For $c_0 > 0$, $\mathbb{E}[T_f] < \mathbb{E}[V_{mf}]$ due to the probability of
 119 consanguinity whenever the two lineages are already in the same mating pair.

120 3.2 First cousins

121 We next consider first-cousin consanguinity on the X chromosome. We separately calculate the limiting distributions
 122 of coalescence times for each of the four types of first-cousin consanguinity: patrilateral parallel, a union of a
 123 male with his father's brother's daughter; patrilateral cross, a union of a male with his father's sister's daughter;
 124 matrilateral parallel, a union of a male with mother's sister's daughter; and matrilateral cross, a union of a male
 125 with his mother's brother's daughter.

126 For each of these four types of first-cousin consanguinity, two lineages have seven possible states. State 0 is an
 127 absorbing state representing coalescence. State 1 is two lineages in a female. States 3–5 represent, as in the sibling
 128 case, two lineages that are in two individuals in *different* mating pairs, where the two individuals are two males
 129 (state 3), a male and a female (state 4), or two females (state 5).

130 Next, for pairs of lineages from the two individuals in a mating pair, we follow the model of a superposition of
 131 multiple mating levels from Severson *et al.* (2021), taking a special case of this approach. Under the superposition
 132 model, each state 2_i , $0 \leq i \leq n$, represents an ancestral state for two lineages from a mating pair. These ancestral
 133 states can be viewed as “holding states” that keep track of ancestral lineages of a mating pair in order to allow all
 134 possible i th-cousin levels of consanguinity up to n th cousins. As we restrict attention to first-cousin mating, we
 135 need only states 2_0 and 2_1 from Severson *et al.* (2021).

136 State 2_0 represents two lineages in the two individuals in a mating pair. State 2_1 represents two lineages in two
 137 individuals ancestral to the two individuals in a mating pair. Because, unlike Severson *et al.* (2021), we disallow
 138 sib mating, two lineages in state 2_0 cannot coalesce (state 0), they cannot transition to the same individual (state
 139 1), nor can they transition to two individuals in a mating pair (state 2_0). Hence, lineages in 2_0 must transition to
 140 2_1 (Figures 3 and 4).

141 In the absence of consanguinity, two lineages in state 2_1 can transition only to states 3, 4, and 5 (Figure 3).
 142 With first-cousin consanguinity present (Figure 4), two lineages in state 2_1 can also coalesce (state 0) or transition
 143 to two lineages in the same female (state 1) or to two lineages in opposite individuals in a mating pair (state 2_0).

144 The transition matrix depends on the type of first-cousin consanguinity permitted. However, the type of
 145 consanguinity only affects transitions from state 2_1 . For all types of consanguinity, state 0 is an absorbing state.
 146 State 1, two lineages in the same female, always transitions to state 2_0 because the two lineages must come from
 147 opposite individuals of the same mating pair. Because of the constraints we have placed on the process, state 2_0
 148 always transitions to state 2_1 . Finally, the transition probabilities from states 3, 4, and 5 follow the same pattern
 149 as given in the transition matrix in Eq. 4 (with state 2_0 in place of state 2).

150 Below, we consider each of the four different types of first-cousin mating, two cases of bilateral first-cousin
 151 mating, and a mixture of the four unilateral types. In each case, we define the transitions that the process makes
 152 from state 2_1 , and we obtain the limiting distributions of coalescence times.

153 3.2.1 Patrilateral parallel

154 In patrilateral parallel first-cousin consanguinity, a union occurs between a male and his father's brother's daughter.
 155 There is no way for the X-chromosomal lineages in the first-cousin mating pair to have originated from the shared
 156 grandparental pair, because X chromosomes are never transmitted from fathers to sons. Hence, irrespective of the
 157 fraction c_1 in the population, lineages in state 2_1 can only transition to states 3, 4, and 5.

158 In state 2_1 , one X chromosome in one of the parental pairs is always in a female (the parent of the male in state
 159 2_0). The probability is then $\frac{1}{2}$ that this X chromosome is in a male one generation ancestral to 2_1 and $\frac{1}{2}$ that it is
 160 in a female. The other X chromosome in state 2_1 , located in a parent of the female in state 2_0 , can be in a male
 161 or female, with equal probability. Hence, one generation ancestral to 2_1 , this X chromosome is in a female with
 162 probability $\frac{3}{4}$ and in a male with probability $\frac{1}{4}$. We can multiply probabilities for the two separate X chromosomes
 163 to obtain transition probabilities from state 2_1 . In particular, the two lineages will be in two separate males one
 164 generation previously (state 3) with probability $\frac{1}{8}$. They will be in a male and a female (state 4) with probability
 165 $\frac{1}{2}$. They will be in two separate females (state 5) with probability $\frac{3}{8}$.

166 The transition matrix is:

$$\Pi_N = \begin{pmatrix} & 0 & 1 & 2_0 & 2_1 & 3 & 4 & 5 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 2_0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 2_1 & 0 & 0 & 0 & 0 & \frac{1}{8} & \frac{1}{2} & \frac{3}{8} \\ 3 & \frac{1}{2N} & \frac{1}{2N} & 0 & 0 & 0 & 0 & 1 - \frac{1}{N} \\ 4 & \frac{1}{4N} & \frac{1}{4N} & \frac{1}{2N} & 0 & 0 & \frac{1 - \frac{1}{N}}{2} & \frac{1 - \frac{1}{N}}{2} \\ 5 & \frac{3}{8N} & \frac{1}{8N} & \frac{1}{2N} & 0 & \frac{1 - \frac{1}{N}}{4} & \frac{1 - \frac{1}{N}}{2} & \frac{1 - \frac{1}{N}}{4} \end{pmatrix}. \quad (12)$$

167 As with the sibling case, we can decompose the transitions into “fast” and “slow” transitions (Eq. 1):

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{8} & \frac{1}{2} & \frac{3}{8} \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{2} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & -1 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} \\ \frac{3}{8} & \frac{1}{8} & \frac{1}{2} & 0 & -\frac{1}{4} & -\frac{1}{2} & -\frac{1}{4} \end{pmatrix}. \quad (13)$$

168 We next solve for the limiting distribution of the fast transition matrix \mathbf{A} using the method of Appendix A,

$$\mathbf{P} = \lim_{r \rightarrow \infty} \mathbf{A}^r = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \end{pmatrix}. \quad (14)$$

169 Recalling $\mathbf{G} = \mathbf{P}\mathbf{B}\mathbf{P}$, we solve for the limit $\Pi(t)$ as in the sibling mating case, using Eq. 3, calculating the
170 matrix exponential, $e^{t\mathbf{G}}$, as in Appendix B. We then convert t back into units of generations N . This step gives

$$\Pi(t) = \mathbf{P}e^{t\mathbf{G}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 - e^{-\frac{t}{3N}} & 0 & 0 & 0 & \frac{1}{9}e^{-\frac{t}{3N}} & \frac{4}{9}e^{-\frac{t}{3N}} & \frac{4}{9}e^{-\frac{t}{3N}} \\ 1 - e^{-\frac{t}{3N}} & 0 & 0 & 0 & \frac{1}{9}e^{-\frac{t}{3N}} & \frac{4}{9}e^{-\frac{t}{3N}} & \frac{4}{9}e^{-\frac{t}{3N}} \\ 1 - e^{-\frac{t}{3N}} & 0 & 0 & 0 & \frac{1}{9}e^{-\frac{t}{3N}} & \frac{4}{9}e^{-\frac{t}{3N}} & \frac{4}{9}e^{-\frac{t}{3N}} \\ 1 - e^{-\frac{t}{3N}} & 0 & 0 & 0 & \frac{1}{9}e^{-\frac{t}{3N}} & \frac{4}{9}e^{-\frac{t}{3N}} & \frac{4}{9}e^{-\frac{t}{3N}} \\ 1 - e^{-\frac{t}{3N}} & 0 & 0 & 0 & \frac{1}{9}e^{-\frac{t}{3N}} & \frac{4}{9}e^{-\frac{t}{3N}} & \frac{4}{9}e^{-\frac{t}{3N}} \\ 1 - e^{-\frac{t}{3N}} & 0 & 0 & 0 & \frac{1}{9}e^{-\frac{t}{3N}} & \frac{4}{9}e^{-\frac{t}{3N}} & \frac{4}{9}e^{-\frac{t}{3N}} \end{pmatrix}. \quad (15)$$

171 Here, examining the first column of the matrix in Eq. 15—representing transitions to coalescence—we can see
172 that two lineages within an individual (state 1), within a mating pair (state 2_0), or in in two separate mating pairs
173 (states 3, 4, and 5) have equal coalescence times. In fact, as coalescence times are unaffected by patrilateral-parallel
174 first-cousin consanguinity, they accord with the coalescence time distribution for a population of size $3N$ haploid
175 individuals. Using the same random variables from the sibling case (where U now represents 2_0), we can extract
176 the cumulative distribution functions of coalescence times from the first column of the matrix $\Pi(t)$:

$$F_{T_f}(t) = F_U(t) = 1 - e^{-\frac{t}{3N}}, \quad (16)$$

$$F_{V_{mm}}(t) = F_{V_{mf}}(t) = F_{V_{ff}}(t) = 1 - e^{-\frac{t}{3N}}. \quad (17)$$

177 For each of the five random random variables, the time to coalescence for two lineages is distributed as an
178 exponential random variable with rate $1/(3N)$. The mean of these distributions—the reciprocal of the coalescence
179 rate—is $3N$, matching the limiting means obtained by first-step analysis in Eqs. 28–32 of Cotter *et al.* (2021).

180 3.2.2 Patrilateral cross

181 For the patrilateral-cross case, a union occurs between a male and his father’s sister’s daughter. As with the parallel
182 case, there is no way for the X-chromosomal lineages in the first-cousin mating pair to have originated from a shared
183 ancestor. We obtain the exact same transition probabilities from state 2_1 and the same transition matrix (Eq. 12).
184 The coalescence times for the patrilateral-cross case are the same as in the patrilateral-parallel case.

185 3.2.3 Matrilateral parallel

186 In the matrilateral parallel case, a union occurs between a male and his mother’s sister’s daughter. With probability
187 $c_1/2$, two lineages in state 2_1 trace back to the shared grandparental pair. The lineages in state 2_1 coalesce with
188 probability $\frac{3}{8}$ (state 0), they are in the shared grandmother with probability $\frac{1}{8}$ (state 1), and they are in opposite
189 individuals of the grandparental mating pair with probability $\frac{1}{2}$ (state 2_0).

190 With probability $c_1/2$, two lineages in state 2_1 do not trace back to the shared grandparental pair. Conditional
 191 on not tracing to this pair, they are in a male and a female (state 4) or two females (state 5), each with probability
 192 $\frac{1}{2}$. Finally, with probability $1 - c_1$, the two lineages are not ancestral to a consanguineous mating pair; they then
 193 follow the same pattern as in the patrilateral-parallel case. Combining the cases gives the transition matrix,

$$\Pi_N = \begin{pmatrix} 0 & 1 & 2_0 & 2_1 & 3 & 4 & 5 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 2_0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 2_1 & \frac{3c_1}{16} & \frac{c_1}{16} & \frac{c_1}{4} & 0 & \frac{1}{8} - \frac{c_1}{8} & \frac{1}{2} - \frac{c_1}{4} & \frac{3}{8} - \frac{c_1}{8} \\ 3 & \frac{1}{2N} & \frac{1}{2N} & 0 & 0 & 0 & 0 & 1 - \frac{1}{N} \\ 4 & \frac{1}{4N} & \frac{1}{4N} & \frac{1}{2N} & 0 & 0 & \frac{1 - \frac{1}{N}}{2} & \frac{1 - \frac{1}{N}}{2} \\ 5 & \frac{3}{8N} & \frac{1}{8N} & \frac{1}{2N} & 0 & \frac{1 - \frac{1}{N}}{4} & \frac{1 - \frac{1}{N}}{2} & \frac{1 - \frac{1}{N}}{4} \end{pmatrix}. \quad (18)$$

194 As before, we decompose this matrix into “fast” and “slow” transitions (Eq. 1):

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \frac{3c_1}{16} & \frac{c_1}{16} & \frac{c_1}{4} & 0 & \frac{1}{8} - \frac{c_1}{8} & \frac{1}{2} - \frac{c_1}{4} & \frac{3}{8} - \frac{c_1}{8} \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & -1 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} \\ \frac{3}{8} & \frac{1}{8} & \frac{1}{2} & 0 & -\frac{1}{4} & -\frac{1}{2} & -\frac{1}{4} \end{pmatrix}. \quad (19)$$

195 We next solve for the limiting distribution of the fast matrix \mathbf{A} using the method of Appendix A:

$$\mathbf{P} = \lim_{r \rightarrow \infty} \mathbf{A}^r = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{3c_1}{16-5c_1} & 0 & 0 & 0 & \frac{1}{9} \left(\frac{16-8c_1}{16-5c_1} \right) & \frac{4}{9} \left(\frac{16-8c_1}{16-5c_1} \right) & \frac{4}{9} \left(\frac{16-8c_1}{16-5c_1} \right) \\ \frac{3c_1}{16-5c_1} & 0 & 0 & 0 & \frac{1}{9} \left(\frac{16-8c_1}{16-5c_1} \right) & \frac{4}{9} \left(\frac{16-8c_1}{16-5c_1} \right) & \frac{4}{9} \left(\frac{16-8c_1}{16-5c_1} \right) \\ \frac{3c_1}{16-5c_1} & 0 & 0 & 0 & \frac{1}{9} \left(\frac{16-8c_1}{16-5c_1} \right) & \frac{4}{9} \left(\frac{16-8c_1}{16-5c_1} \right) & \frac{4}{9} \left(\frac{16-8c_1}{16-5c_1} \right) \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \end{pmatrix}. \quad (20)$$

196 Finally, recalling $\mathbf{G} = \mathbf{P}\mathbf{B}\mathbf{P}$, we solve for the matrix exponential $e^{t\mathbf{G}}$ using the method of Appendix B. We then
 197 solve for the continuous-time process $\Pi(t)$ via Eq. 3, converting t back to units of N generations:

$$\Pi(t) = \mathbf{P}e^{t\mathbf{G}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 - \frac{c_1}{1 - \frac{5}{16}c_1} e^{-\frac{t}{3N} \left(\frac{1+c_1}{1-\frac{5}{16}c_1} \right)} & 0 & 0 & 0 & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{5}{16}c_1} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{5}{16}c_1} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} \\ 1 - \frac{c_1}{1 - \frac{5}{16}c_1} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} & 0 & 0 & 0 & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{5}{16}c_1} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{5}{16}c_1} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} \\ 1 - \frac{c_1}{1 - \frac{5}{16}c_1} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} & 0 & 0 & 0 & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{5}{16}c_1} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{5}{16}c_1} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} \\ 1 - \frac{c_1}{1 - \frac{5}{16}c_1} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} & 0 & 0 & 0 & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{5}{16}c_1} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{5}{16}c_1} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} \\ 1 - e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} & 0 & 0 & 0 & \frac{4}{9} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} & \frac{4}{9} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} \\ 1 - e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} & 0 & 0 & 0 & \frac{4}{9} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} & \frac{4}{9} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} \\ 1 - e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} & 0 & 0 & 0 & \frac{4}{9} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} & \frac{4}{9} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)} \end{pmatrix}. \quad (21)$$

198 We are concerned with transitions from each of the various states to coalescence (state 0). The first column of
 199 $\Pi(t)$ gives the limiting cumulative distribution functions for the time to the most recent common ancestor for two
 200 lineages *within* an individual (state 1) and two lineages *between* individuals (states 3, 4 and 5):

$$F_{T_f}(t) = F_U(t) = 1 - \frac{1 - \frac{c_1}{2}}{1 - \frac{5}{16}c_1} e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)}, \quad (22)$$

$$F_{V_{mm}}(t) = F_{V_{mf}}(t) = F_{V_{ff}}(t) = 1 - e^{-\frac{t}{3N} \left(\frac{1+\frac{c_1}{16}}{1-\frac{5}{16}c_1} \right)}. \quad (23)$$

201 To compute expectations, recalling that for $X > 0$, $\mathbb{E}[X] = \int_0^\infty [1 - F_X(x)] dx$, we find

$$\mathbb{E}[T_f] = E[U] = 3N \left(\frac{1 - \frac{c_1}{2}}{1 + \frac{c_1}{16}} \right), \quad (24)$$

$$\mathbb{E}[V_{mm}] = \mathbb{E}[V_{mf}] = \mathbb{E}[V_{ff}] = 3N \left(\frac{1 - \frac{5}{16}c_1}{1 + \frac{c_1}{16}} \right). \quad (25)$$

202 Eqs. 24 and 25 are the same as Eqs. 39 and 40 from Cotter *et al.* (2021). Eqs. 22 and 23 are plotted in Figure 5.

203 3.2.4 Matrilateral cross

204 In the matrilateral-cross case, a union occurs between a male and his mother's brother's daughter. This case
 205 is similar to the matrilateral-parallel case. With probability $c_1/2$, two lineages in state 2₁ trace to the shared
 206 grandparental pair. They coalesce with probability $\frac{1}{4}$ (state 0), they are in the shared grandmother with probability
 207 $\frac{1}{4}$ (state 1), and they are in opposite individuals of the grandparental mating pair with probability $\frac{1}{2}$ (state 2₀).

208 With probability $c_1/2$, two lineages in state 2₁ do not trace to the shared grandparental pair. Conditional
 209 on the lineages not both tracing to the shared grandparental pair, they are in two males (state 3), a male and a
 210 female (state 4) or two females (state 5), with probabilities $\frac{1}{4}$, $\frac{1}{2}$, and $\frac{1}{4}$, respectively. Finally, with probability
 211 $1 - c_1$, two lineages are not ancestral to a consanguineous mating pair. In this case, they follow the same pattern

²¹² as enumerated for the patrilateral-parallel case. The transition matrix is

$$\Pi_N = \begin{pmatrix} 0 & 1 & 2_0 & 2_1 & 3 & 4 & 5 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 2_0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 2_1 & \frac{c_1}{8} & \frac{c_1}{8} & \frac{c_1}{4} & 0 & \frac{1}{8} & \frac{1}{2} - \frac{c_1}{4} & \frac{3}{8} - \frac{c_1}{4} \\ 3 & \frac{1}{2N} & \frac{1}{2N} & 0 & 0 & 0 & 0 & 1 - \frac{1}{N} \\ 4 & \frac{1}{4N} & \frac{1}{4N} & \frac{1}{2N} & 0 & 0 & \frac{1 - \frac{1}{N}}{2} & \frac{1 - \frac{1}{N}}{2} \\ 5 & \frac{3}{8N} & \frac{1}{8N} & \frac{1}{2N} & 0 & \frac{1 - \frac{1}{N}}{4} & \frac{1 - \frac{1}{N}}{2} & \frac{1 - \frac{1}{N}}{4} \end{pmatrix}. \quad (26)$$

²¹³ We separate the “fast” and “slow” transitions as before (Eq. 1):

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \frac{c_1}{8} & \frac{c_1}{8} & \frac{c_1}{4} & 0 & \frac{1}{8} & \frac{1}{2} - \frac{c_1}{4} & \frac{3}{8} - \frac{c_1}{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & -1 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} \\ \frac{3}{8} & \frac{1}{8} & \frac{1}{2} & 0 & -\frac{1}{4} & -\frac{1}{2} & -\frac{1}{4} \end{pmatrix}. \quad (27)$$

²¹⁴ Using the method of Appendix A, we solve for the stationary distribution of the “fast” process:

$$\mathbf{P} = \lim_{r \rightarrow \infty} \mathbf{A}^r = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{c_1}{8-3c_1} & 0 & 0 & 0 & \frac{1}{9} \begin{pmatrix} 8-4c_1 \\ 8-3c_1 \end{pmatrix} & \frac{4}{9} \begin{pmatrix} 8-4c_1 \\ 8-3c_1 \end{pmatrix} & \frac{4}{9} \begin{pmatrix} 8-4c_1 \\ 8-3c_1 \end{pmatrix} \\ \frac{c_1}{8-3c_1} & 0 & 0 & 0 & \frac{1}{9} \begin{pmatrix} 8-4c_1 \\ 8-3c_1 \end{pmatrix} & \frac{4}{9} \begin{pmatrix} 8-4c_1 \\ 8-3c_1 \end{pmatrix} & \frac{4}{9} \begin{pmatrix} 8-4c_1 \\ 8-3c_1 \end{pmatrix} \\ \frac{c_1}{8-3c_1} & 0 & 0 & 0 & \frac{1}{9} \begin{pmatrix} 8-4c_1 \\ 8-3c_1 \end{pmatrix} & \frac{4}{9} \begin{pmatrix} 8-4c_1 \\ 8-3c_1 \end{pmatrix} & \frac{4}{9} \begin{pmatrix} 8-4c_1 \\ 8-3c_1 \end{pmatrix} \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \end{pmatrix}. \quad (28)$$

215 As before, using $\mathbf{G} = \mathbf{P}\mathbf{B}\mathbf{P}$, we calculate the matrix exponential, $e^{t\mathbf{G}}$, using the method of Appendix B. We
216 then obtain $\Pi(t)$ from Eq. 3, converting t back to units of N generations:

$$\Pi(t) = \mathbf{P}e^{t\mathbf{G}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 - \frac{1 - \frac{c_1}{2}}{1 - \frac{3}{8}c_1} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & 0 & 0 & 0 & \frac{1 - \frac{c_1}{2}}{1 - \frac{3}{8}c_1} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{3}{8}c_1} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{3}{8}c_1} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) \\ 1 - \frac{1 - \frac{c_1}{2}}{1 - \frac{3}{8}c_1} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & 0 & 0 & 0 & \frac{1}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{3}{8}c_1} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{3}{8}c_1} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{3}{8}c_1} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) \\ 1 - \frac{1 - \frac{c_1}{2}}{1 - \frac{3}{8}c_1} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & 0 & 0 & 0 & \frac{1}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{3}{8}c_1} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{3}{8}c_1} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & \frac{4}{9} \cdot \frac{1 - \frac{c_1}{2}}{1 - \frac{3}{8}c_1} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) \\ 1 - e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & 0 & 0 & 0 & \frac{1}{9} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & \frac{4}{9} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & \frac{4}{9} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) \\ 1 - e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & 0 & 0 & 0 & \frac{1}{9} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & \frac{4}{9} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & \frac{4}{9} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) \\ 1 - e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & 0 & 0 & 0 & \frac{1}{9} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & \frac{4}{9} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) & \frac{4}{9} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right) \end{pmatrix}. \quad (29)$$

217 We extract the cumulative distribution functions from the first column of the matrix, finding

$$F_{T_f}(t) = F_U(t) = 1 - \frac{1 - \frac{c_1}{2}}{1 - \frac{3}{8}c_1} e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right), \quad (30)$$

$$F_{V_{mm}}(t) = F_{V_{mf}}(t) = F_{V_{ff}}(t) = 1 - e^{-\frac{t}{3N}} \left(\frac{1 - \frac{c_1}{8}}{1 - \frac{3}{8}c_1} \right). \quad (31)$$

218 Solving for the expectations of these distributions, recalling that for $X > 0$, $\mathbb{E}[X] = \int_0^\infty [1 - F_X(x)] dx$, we find

$$\mathbb{E}[T_f] = E[U] = 3N \left(\frac{1 - \frac{c_1}{2}}{1 - \frac{c_1}{8}} \right), \quad (32)$$

$$\mathbb{E}[V_{mm}] = \mathbb{E}[V_{mf}] = \mathbb{E}[V_{ff}] = 3N \left(\frac{1 - \frac{3}{8}c_1}{1 - \frac{c_1}{8}} \right). \quad (33)$$

219 Eqs. 32 and 33 are the same as Eqs. 47 and 48 from Cotter *et al.* (2021). Eqs. 30 and 31 are plotted in Figure 6.

220 3.2.5 Bilateral parallel

221 Having considered the four possible types of first-cousin consanguinity, we can also consider the two bilateral cases,
222 in which a mating pair are cousins through both sets of grandparents. In bilateral-parallel first-cousin consanguinity,
223 a union occurs between a male and a female who is both his mother's sister's daughter *and* his father's brother's
224 daughter. We can consider this case to be a combination of the matrilateral-parallel case and the patrilateral-parallel
225 case. In state 2_1 , when the two lineages are ancestral to a bilateral-parallel mating pair, the male's lineage must
226 transition through his mother because he cannot inherit an X chromosome from his father. Because there is no way
227 for the lineages to transition through the patrilateral-parallel grandparental pair, the transitions in state 2_1 follow
228 from the transitions for a matrilateral-parallel pair only. In the case of bilateral-parallel first-cousin consanguinity,
229 the transition matrix thus has the form given for matrilateral-parallel first-cousin consanguinity in Eq. 18. The
230 bilateral-parallel case thus also shares the same cumulative distribution functions given in Eqs. 22 and 23.

231 **3.2.6 Bilateral cross**

232 Bilateral-cross first-cousin consanguinity occurs when a male shares a union with a female who is both his fa-
 233 ther's sister's daughter and his mother's brother's daughter. This case can be considered to be a combination of
 234 matrilateral-cross and patrilateral-cross first-cousin consanguinity. The ancestral lineages cannot travel through the
 235 patrilateral-cross pair, and the transitions follow those for matrilateral-cross consanguinity. The transition matrix
 236 (Eq. 26) and cumulative distribution functions (Eqs. 30 and 31) follow similarly.

237 **3.2.7 Mixture of first-cousin mating types**

238 We next examine a population that possesses a mixture of all four unilateral first-cousin mating types. To determine
 239 the transition matrix, it suffices to determine the transition probabilities from state 2_1 .

240 Recall that two lineages in state 2_1 are in two individuals ancestral to a mating pair that might or might not be
 241 consanguineous. With probability c_{pp} , this mating pair is a patrilateral-parallel first-cousin pair, with probability
 242 c_{pc} it is a patrilateral-cross first-cousin pair, with probability c_{mp} it is a matrilateral-parallel first-cousin pair, and
 243 with probability c_{mc} it is a matrilateral-cross first-cousin pair. If the mating pair is a first-cousin pair of a particular
 244 one of the four types, then transitions out of state 2_1 will match those derived for the associated case.

245 We can view the transition probabilities out of state 2_1 as a weighted combination of the transitions that each
 246 of these first-cousin cases makes when considered on its own. For example, in the case of coalescence (transition
 247 to state 0), two lineages in state 2_1 coalesce with probability $\frac{3}{16}$ for a matrilateral-parallel first-cousin pair (rate
 248 c_{mp}) and $\frac{1}{8}$ for a matrilateral-cross first-cousin pair (rate c_{mc}). Because patrilateral-parallel and patrilateral-cross
 249 consanguinity do not affect transitions from state 2_1 , corresponding rates c_{pp} and c_{pc} do not influence the transition
 250 probability to state 0. Combining all four cases, the transition probability from state 2_1 to state 0 is $\frac{3}{16}c_{mp} + \frac{1}{8}c_{mc}$.
 251 For transitions from state 2_1 to states 0, 1, and 2_0 , the probabilities are obtained by summing corresponding terms
 252 in the matrices for the various types of unilateral first-cousin mating (Eqs. 12, 18, and 26).

253 For the transitions from state 2_1 to states 3, 4, and 5 (two lineages between individuals), consanguinity acts
 254 to reduce the probabilities. The probabilities in the case of patrilateral parallel consanguinity (Eq. 12) represent a
 255 null effect of no consanguinity. The c_{mp} and c_{mc} terms (Eqs. 18 and 26) reduce the probabilities of transitioning
 256 to states 3, 4, and 5 (while inflating the 0, 1, and 2_0 transitions). For state 3, for example, the null transition
 257 probability is $\frac{1}{8}$. Matrilateral-parallel consanguinity reduces this transition probability by $c_{mp}/8$, giving a combined
 258 transition probability of $\frac{1}{8} - c_{mp}/8$; matrilateral-cross consanguinity has no effect on this transition.

259 We proceed similarly to combine the remaining transition probabilities from the four unilateral first-cousin
 260 mating types to produce the transitions for state 2_1 . The transition matrix is

$$\Pi_N = \begin{matrix} & \begin{matrix} 0 & 1 & 2_0 & 2_1 & 3 & 4 & 5 \end{matrix} \\ \begin{matrix} 0 \\ 1 \\ 2_0 \\ 3 \\ 4 \\ 5 \end{matrix} & \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \frac{3c_{mp}}{16} + \frac{c_{mc}}{8} & \frac{c_{mp}}{16} + \frac{c_{mc}}{8} & \frac{c_{mp}}{4} + \frac{c_{mc}}{4} & 0 & \frac{1}{8} - \frac{c_{mp}}{8} & \frac{1}{2} - \frac{c_{mp}}{4} - \frac{c_{mc}}{4} & \frac{3}{8} - \frac{c_{mp}}{8} - \frac{c_{mc}}{4} \\ \frac{1}{2N} & \frac{1}{2N} & 0 & 0 & 0 & 0 & 1 - \frac{1}{N} \\ \frac{1}{4N} & \frac{1}{4N} & \frac{1}{2N} & 0 & 0 & \frac{1 - \frac{1}{N}}{2} & \frac{1 - \frac{1}{N}}{2} \\ \frac{3}{8N} & \frac{1}{8N} & \frac{1}{2N} & 0 & \frac{1 - \frac{1}{N}}{4} & \frac{1 - \frac{1}{N}}{2} & \frac{1 - \frac{1}{N}}{4} \end{pmatrix} \end{matrix} \quad (34)$$

261 Matrices **A** and **B** follow from Eq. 1 and take the same form as those given for the matrilateral cases with state
 262 2_1 in matrix **A** (Eqs. 19 and 27), now adopting the new combinations of transition probabilities. We solve for the

263 stationary distribution of the “fast” transitions using the method of Appendix A:

$$\mathbf{P} = \lim_{r \rightarrow \infty} \mathbf{A}^r = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{3}{16}c_{mp} + \frac{c_{mc}}{8} & 0 & 0 & 0 & \frac{1}{9} \left(\frac{1 - \frac{c_{mp}}{2} - \frac{c_{mc}}{2}}{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}} \right) & \frac{4}{9} \left(\frac{1 - \frac{c_{mp}}{2} - \frac{c_{mc}}{2}}{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}} \right) \\ \frac{3}{16}c_{mp} - \frac{c_{mc}}{8} & 0 & 0 & 0 & \frac{1}{9} \left(\frac{1 - \frac{5}{2} - \frac{3}{2}}{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}} \right) & \frac{4}{9} \left(\frac{1 - \frac{5}{2} - \frac{3}{2}}{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}} \right) \\ \frac{3}{16}c_{mp} + \frac{c_{mc}}{8} & 0 & 0 & 0 & \frac{1}{9} \left(\frac{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}}{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}} \right) & \frac{4}{9} \left(\frac{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}}{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}} \right) \\ \frac{3}{16}c_{mp} - \frac{c_{mc}}{8} & 0 & 0 & 0 & \frac{1}{9} \left(\frac{1 - \frac{5}{2} - \frac{3}{2}}{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}} \right) & \frac{4}{9} \left(\frac{1 - \frac{5}{2} - \frac{3}{2}}{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}} \right) \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} \\ 0 & 0 & 0 & 0 & \frac{1}{9} & \frac{4}{9} \end{pmatrix}. \quad (35)$$

264 Once again, using $\mathbf{G} = \mathbf{P}\mathbf{B}\mathbf{P}$, we obtain the matrix exponential, $e^{t\mathbf{G}}$, using the method of Appendix B. We
265 then compute $\Pi(t)$ with Eq. 3, converting t back into units of N generations. The resulting matrix is structured in
266 such a way that we can write:

$$\Pi(t) = \mathbf{P}e^{t\mathbf{G}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 - RE & 0 & 0 & 0 & \frac{1}{9}RE & \frac{4}{9}RE \\ 1 - RE & 0 & 0 & 0 & \frac{1}{9}RE & \frac{4}{9}RE \\ 1 - RE & 0 & 0 & 0 & \frac{1}{9}RE & \frac{4}{9}RE \\ 1 - E & 0 & 0 & 0 & \frac{1}{9}E & \frac{4}{9}E \\ 1 - E & 0 & 0 & 0 & \frac{1}{9}E & \frac{4}{9}E \\ 1 - E & 0 & 0 & 0 & \frac{1}{9}E & \frac{4}{9}E \end{pmatrix}, \quad (36)$$

267 where

$$R = \frac{1 - \frac{c_{mp}}{2} - \frac{c_{mc}}{2}}{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}},$$

$$E = e^{-\frac{t}{3N} \left(\frac{1 + \frac{c_{mp}}{16} - \frac{c_{mc}}{8}}{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}} \right)}.$$

268 In the matrix in Eq. 36, the first column represents transitions to coalescence. We extract from this column the
269 cumulative distribution functions for time to coalescence for two lineages *within* an individual (state 1) and two
270 lineages *between* individuals (states 3, 4, and 5):

$$F_{T_f}(t) = F_U(t) = 1 - \frac{1 - \frac{c_{mp}}{2} - \frac{c_{mc}}{2}}{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}} e^{-\frac{t}{3N} \left(\frac{1 + \frac{c_{mp}}{16} - \frac{c_{mc}}{8}}{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}} \right)}, \quad (37)$$

$$F_{V_{mm}}(t) = F_{V_{mf}}(t) = F_{V_{ff}}(t) = 1 - e^{-\frac{t}{3N} \left(\frac{1 + \frac{c_{mp}}{16} - \frac{c_{mc}}{8}}{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}} \right)}. \quad (38)$$

271 Solving for the expectations of these distributions, recalling that for $X > 0$, $\mathbb{E}[X] = \int_0^\infty [1 - F_X(x)] dx$, we find

$$\mathbb{E}[T_f] = E[U] = 3N \left(\frac{1 - \frac{c_{mp}}{2} - \frac{c_{mc}}{2}}{1 + \frac{c_{mp}}{16} - \frac{c_{mc}}{8}} \right), \quad (39)$$

$$\mathbb{E}[V_{mm}] = \mathbb{E}[V_{mf}] = \mathbb{E}[V_{ff}] = 3N \left(\frac{1 - \frac{5}{16}c_{mp} - \frac{3}{8}c_{mc}}{1 + \frac{c_{mp}}{16} - \frac{c_{mc}}{8}} \right). \quad (40)$$

272 3.3 Comparisons

273 3.3.1 Limiting distribution versus exact distribution

274 Under the mixture model, to see how well the limiting distribution of coalescence times approximates the exact
275 distribution, we perform simulations. In particular, for fixed values of the number of mating pairs N and rates of
276 matrilateral-parallel (c_{mp}) and matrilateral-cross (c_{mc}) first-cousin mating, we simulate 10,000 realizations of the
277 Markov chain in Eq. 34 to produce an empirical cumulative distribution function (CDF) of coalescence times for
278 lineage pairs *within* and *between* individuals. This procedure amounts to simulating a distribution of the time to
279 the most recent common ancestor (the time it takes to hit state 0) starting in either state 1 (within an individual)
280 or state 4 (between individuals).

281 Figure 7 plots the simulated empirical CDFs alongside the limiting CDFs presented in Eqs. 37 and 38. Conducting these simulations for different values of the number of mating pairs N , we see that as N increases, the
282 limiting distribution functions (Eqs. 37 and 38) closely approximate the simulated, empirical distributions.
283

284 3.3.2 X chromosome versus autosomes

285 Each of the limiting distributions for coalescence times for lineages from separate mating pairs, both for single
286 types of first-cousin consanguinity and for a superposition of multiple types, possesses a particular structure: an
287 exponential CDF whose rate is the product of the population size and a reduction by a factor that accounts for
288 consanguinity. We now examine these limiting CDFs for the X chromosome in relation to corresponding CDFs for
289 autosomes. The autosomal coalescence time distributions under first-cousin consanguinity are obtained in Appendix
290 C as a special case of the n th cousin mating model of Severson *et al.* (2019). Here, we calculate the ratio of the
291 expected time to coalescence for the X chromosome (Eqs. 39 and 40) and for autosomes (Eqs. C4 and C5) within
292 and between individuals, respectively, as we vary rates of matrilateral and patrilateral consanguinity (Figure 8).

293 We first consider the ratio of expected coalescence times on the X chromosome relative to the autosomes for
294 pairs of lineages within individuals (Eq. 39/Eq. C4) as a function of patrilateral ($c_{pp} + c_{pc}$) and matrilateral-parallel
295 (c_{mp}) consanguinity (Figure 8A). Because the expected coalescence time for two lineages on the X chromosome
296 is a function of $3N$ and the corresponding autosomal mean depends on $4N$, in the absence of consanguinity, the
297 null value of the ratio is $\frac{3}{4}$. The ratio achieves its minimum value of $\frac{8}{17}$, with a stronger effect of consanguinity
298 in reducing X-chromosomal coalescence times relative to autosomal coalescence times, when we set c_{mp} to 1. It
299 achieves its maximum value of 1, increasing X-chromosomal coalescence times compared to autosomal coalescence
300 times, when instead we set $c_{pp} + c_{pc}$ to 1 (Figure 8A).

301 For the X:A ratio of between-individual expected coalescence times (Eq. 40/Eq. C5) as a function of patrilateral
302 ($c_{pp} + c_{pc}$) and matrilateral-parallel (c_{mp}) consanguinity (Figure 8B), the minimum and maximum values differ less
303 than for the within-individual case. The minimum exceeds $\frac{8}{17}$, equaling $\frac{132}{221}$, and is again reached at $c_{mp} = 1$. The
304 maximum is less than 1, equaling $\frac{12}{13}$, and is reached at $c_{pp} + c_{pc} = 1$. The minimum and maximum are less extreme
305 than in the within-individual case, as consanguinity has less of an effect on reducing the expected coalescence times
306 in the between-individual case, both for the X chromosome and for the autosomes.

307 We next examine the X:A coalescence time ratio within individuals (Eq. 39/Eq. C4) as a function of patrilateral
308 ($c_{pp} + c_{pc}$) and matrilateral-cross (c_{mc}) consanguinity (Figure 8C). The minimal ratio is slightly larger than in the
309 matrilateral-parallel case, equaling $\frac{4}{7}$ at $c_{mc} = 1$. The maximum occurs at 1, the same value as the corresponding
310 case with matrilateral-parallel in place of matrilateral-cross consanguinity, when $c_{pp} + c_{pc} = 1$. The slightly reduced
311 range of values (i.e., the greater minimum) traces to the fact that the effect of matrilateral-cross consanguinity on
312 X-chromosomal coalescence times is slightly weaker, producing a weaker reduction in coalescence times, than that
313 of matrilateral-parallel consanguinity.

314 Finally, we analyze the X:A coalescence time ratio between individuals (Eq. 40/Eq. C5) as a function of pa-
315 trilateral ($c_{pp} + c_{pc}$) and matrilateral-cross (c_{mc}) consanguinity (Figure 8D). The minimum occurs at $c_{mc} = 1$,
316 equaling $\frac{60}{91}$. As in the corresponding matrilateral-parallel case, the maximum, achieved at $c_{pp} + c_{pc} = 1$, is $\frac{12}{13}$.
317 As was seen within individuals, the range of permissible values is reduced relative to the matrilateral-parallel case,
318 owing again to the weaker effect of matrilateral-cross consanguinity on X-chromosomal coalescence times.

319 4 Discussion

320 Extending our previous work on mean coalescence times on the X-chromosome in a consanguinity model, we have
321 derived large- N limiting distributions for within-individual and between-individual X-chromosomal coalescence
322 times under various types of first-cousin consanguinity. For between-individual coalescence times, each limiting
323 distribution is exponential with a rate equal to the product of the number of X chromosomes and a reduction factor
324 due to consanguinity (Eqs. 17, 23, and 31). Limiting distributions of within-individual coalescence times each have
325 a point mass corresponding to instantaneous coalescence, and conditional on not coalescing instantaneously, are
326 exponential (Eqs. 16, 22, and 30). These patterns also hold for limiting distributions of pairwise coalescence times
327 for a model with a mixture of types of first-cousin consanguinity (Eqs. 37 and 38); in simulations, the limiting
328 distributions under this superposition agree with exact distributions from the Markov chain (Eq. 34, Figure 7).

329 Our limiting distribution results can inform comparisons of the X chromosome with autosomes. The four types
330 of first-cousin consanguinity have identical effects on the autosomes but vary in their effect on the X chromosome.
331 Hence, a comparison of coalescence time distributions for the X chromosome and autosomes can be informative
332 about features of consanguinity. Our results (Eqs. 37 and 38) directly show the effect of different rates and types of
333 consanguinity on the distribution of X-chromosomal coalescence times. For example, increasing matrilateral-parallel
334 and matrilateral-cross consanguinity decreases the ratio of X and autosomal mean coalescence times; increasing
335 patrilateral-parallel and patrilateral-cross first-cousin consanguinity increases this ratio (Figure 8).

336 Consanguinity and other preferences for mate choice vary across populations, often depending on cultural norms
337 for certain types of consanguinity over others (Bittles, 2012). Because we have found that the different types of
338 first-cousin consanguinity generate an observable effect on X chromosomal coalescence times, it is possible that
339 features of coalescence times can be compared across populations to assess signatures of the different types of
340 consanguinity. Such assessments can potentially capitalize on the inverse relationship between coalescence times
341 and genomic sharing (Palamara *et al.*, 2012; Carmi *et al.*, 2014; Browning and Browning, 2015) to use genomic
342 sharing patterns to uncover features of consanguinity (Arciero *et al.*, 2021).

343 One limitation of our approach is that in formulating our model, we have disregarded higher-order consanguinity.
344 While we have explicitly modeled first-cousin mating pairs, we have ignored the possibility that a pair has more
345 distant consanguinity that is not captured in the model. It may be possible, however, to allow for such possibilities
346 by incorporating into the n th cousin framework of Severson *et al.* (2021) sex-specific varieties of consanguinity at
347 different levels of relationship.

348 **Acknowledgments.** We acknowledge support from United States–Israel Binational Science Foundation grant 2017024,
349 NIH grant R01 HG005855, and NSF Graduate Research Fellowships to DJC and ALS.

350 Appendix A: Stationary distribution of the fast transition matrix

351 In this appendix, we solve for the stationary distribution of the “fast” transition matrix \mathbf{A} in the case of sib mating
 352 on the X chromosome. The same approach is also applied in the main text to obtain the stationary distribution of
 353 the fast transition matrix in other models.

354 First, we permute the states to rewrite matrix \mathbf{A} in a canonical form. The matrix \mathbf{A} in Eq. 5 has one absorbing
 355 state (state 0) and a closed communication class $C_1 = \{3, 4, 5\}$. For simplicity, we write the sib mating probability
 356 c_0 as c . We rearrange the matrix to take the form

$$\mathbf{D} = \begin{pmatrix} \mathbf{C} & \mathbf{0} \\ \mathbf{R} & \mathbf{Q} \end{pmatrix}, \quad (\text{A1})$$

357 listing the recurrent states before the transient states. Thus, square matrix \mathbf{C} includes transitions between recurrent
 358 states (i.e., absorbing states and closed communication classes), and square matrix \mathbf{Q} includes transitions between
 359 transient states. Matrix \mathbf{R} includes transitions from the transient states to the recurrent states. For matrix \mathbf{A} in
 360 Eq. 5, the recurrent states are state 0 (absorbing) and states 3, 4, and 5 (closed communication class C_1). The
 361 transient states are states 1 and 2. Permuting the matrix \mathbf{A} to order the states 0, 3, 4, 5, 1, 2, we write

$$\mathbf{A}^* = \left(\begin{array}{cccc|cc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 \\ \frac{c_0}{4} & 0 & \frac{1-c_0}{2} & \frac{1-c_0}{2} & \frac{c_0}{4} & \frac{c_0}{2} \end{array} \right).$$

362 We treat the closed communication class C_1 as a single absorbing state because any transitions made into C_1
 363 transition infinitely often among the states it contains. We rewrite the transition matrix for the resulting Markov
 364 chain by collapsing the columns and rows corresponding to the states in C_1 . \mathbf{A}^* becomes

$$\mathbf{A}^{**} = \left(\begin{array}{cc|cc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \frac{c_0}{4} & 1-c_0 & \frac{c_0}{4} & \frac{c_0}{2} \end{array} \right).$$

365 Matrix \mathbf{A}^{**} now has the form in Eq. A1, with 2×2 submatrices and \mathbf{C} as the identity matrix.

366 Given a matrix in canonical form (Eq. A1 where \mathbf{C} is the identity), the stationary distribution is given by

$$\lim_{r \rightarrow \infty} \mathbf{D}^r = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{NR} & \mathbf{0} \end{pmatrix},$$

367 where N is the fundamental matrix $\mathbf{N} = (\mathbf{I} - \mathbf{Q})^{-1}$ and \mathbf{I} is the identity matrix (Kemeny and Snell, 1983, 3.3.7).
 368 The matrix \mathbf{NR} defines for each pair consisting of a transient state and a recurrent state, the probability that from
 369 the transient state, the process reaches the recurrent state. For matrix \mathbf{A}^{**} , we have

$$\mathbf{P}^{**} = \lim_{r \rightarrow \infty} (\mathbf{A}^{**})^r = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{c}{4-3c_0} & \frac{4-4c_0}{4-3c_0} & 0 & 0 \\ \frac{c}{4-3c_0} & \frac{4-4c_0}{4-3c_0} & 0 & 0 \end{pmatrix}.$$

370 To recover the stationary distribution of \mathbf{A}^* , we expand the absorbing state for the closed communication class
 371 C_1 , replacing it with the stationary distribution for the irreducible 3×3 matrix associated with the class. We then
 372 weight the transient transition probabilities in \mathbf{NR} by this stationary distribution.

373 In other words, \mathbf{NR} now gives, for each pair consisting of a transient and a recurrent state, the probability of
 374 the associated transition. Expanding the absorbing state for the closed communication class C_1 , we get

$$\mathbf{P}^* = \lim_{r \rightarrow \infty} (\mathbf{A}^*)^r = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} & 0 & 0 \\ 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} & 0 & 0 \\ 0 & \frac{1}{9} & \frac{4}{9} & \frac{4}{9} & 0 & 0 \\ \frac{c_0}{4-3c_0} & \frac{1}{9} \cdot \frac{4-4c_0}{4-3c_0} & \frac{4}{9} \cdot \frac{4-4c_0}{4-3c_0} & \frac{4}{9} \cdot \frac{4-4c_0}{4-3c_0} & 0 & 0 \\ \frac{c}{4-3c_0} & \frac{1}{9} \cdot \frac{4-4c_0}{4-3c_0} & \frac{4}{9} \cdot \frac{4-4c_0}{4-3c_0} & \frac{4}{9} \cdot \frac{4-4c_0}{4-3c_0} & 0 & 0 \end{pmatrix}.$$

375 Finally, we permute \mathbf{P}^* to recover \mathbf{P} (Eq. 6).

376 Appendix B: The matrix exponential $e^{t\mathbf{G}}$

377 In this appendix, we obtain the matrix exponential, $e^{t\mathbf{G}}$, which is needed in calculating the large- N limit, $\Pi(t) =$
 378 $\mathbf{P}e^{t\mathbf{G}}$. The computations in this appendix are specific to sib mating on the X chromosome, but the same method
 379 can be applied to obtain the matrix exponential in the other models.

380 We first obtain the generator matrix from Eqs. 5 and 6:

$$\mathbf{G} = \mathbf{P}\mathbf{B}\mathbf{P} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{(4-4c_0)(4-c_0)}{3(4-3c_0)^2} & 0 & 0 & \frac{1}{9} \cdot \frac{(4-4c_0)(4-c_0)}{3(4-3c_0)^2} & \frac{4}{9} \cdot \frac{(4-4c_0)(4-c_0)}{3(4-3c_0)^2} & \frac{4}{9} \cdot \frac{(4-4c_0)(4-c_0)}{3(4-3c_0)^2} \\ \frac{(4-4c_0)(4-c_0)}{3(4-3c_0)^2} & 0 & 0 & \frac{1}{9} \cdot \frac{(4-4c_0)(4-c_0)}{3(4-3c_0)^2} & \frac{4}{9} \cdot \frac{(4-4c_0)(4-c_0)}{3(4-3c_0)^2} & \frac{4}{9} \cdot \frac{(4-4c_0)(4-c_0)}{3(4-3c_0)^2} \\ \frac{4-c_0}{3(4-3c_0)} & 0 & 0 & \frac{1}{9} \cdot \frac{4-c_0}{3(4-3c_0)} & \frac{4}{9} \cdot \frac{4-c_0}{3(4-3c_0)} & \frac{4}{9} \cdot \frac{4-c_0}{3(4-3c_0)} \\ \frac{4-c_0}{3(4-3c_0)} & 0 & 0 & \frac{1}{9} \cdot \frac{4-c_0}{3(4-3c_0)} & \frac{4}{9} \cdot \frac{4-c_0}{3(4-3c_0)} & \frac{4}{9} \cdot \frac{4-c_0}{3(4-3c_0)} \\ \frac{4-c_0}{3(4-3c_0)} & 0 & 0 & \frac{1}{9} \cdot \frac{4-c_0}{3(4-3c_0)} & \frac{4}{9} \cdot \frac{4-c_0}{3(4-3c_0)} & \frac{4}{9} \cdot \frac{4-c_0}{3(4-3c_0)} \end{pmatrix}. \quad (B1)$$

381 The generator matrix, \mathbf{G} , has nonzero entries in the columns for state 0 and states 3, 4, and 5. It has the property

$$\mathbf{G}^2 = -\mathbf{G} \left[\frac{4-c_0}{3(4-3c_0)} \right].$$

382 For the constant $k = -(4-c_0)/[3(4-3c_0)]$, we can then recursively write

$$\mathbf{G}^n = k^{n-1} \mathbf{G}, \quad (B2)$$

383 The matrix exponential, $e^{t\mathbf{G}} = \sum_{i=0}^{\infty} t^i \mathbf{G}^i / i!$, then equals

$$\begin{aligned} e^{t\mathbf{G}} &= \mathbf{I} + k^{-1} \mathbf{G} \sum_{i=1}^{\infty} \frac{t^i k^i}{i!} \\ &= \mathbf{I} - k^{-1} (1 - e^{kt}) \mathbf{G}. \end{aligned}$$

384 Converting t into units of N generations and multiplying by \mathbf{P} (Eq. 6), we obtain $\mathbf{P}e^{t\mathbf{G}}$ as in Eq. 7.

385 For each model studied, for the associated generator matrix \mathbf{G} , the corresponding quantity k that satisfies
 386 Eq. B2 appears in Table B1.

387 **Appendix C: Limiting distribution of autosomal coalescence times for**
 388 **first-cousin mating**

389 Equation 46 of Severson *et al.* (2021) gives a limiting distribution of autosomal coalescence times for a model with a
 390 superposition of levels of cousin mating, up to n th cousins. In order to recover first-cousin mating on the autosomes
 391 to compare to our X-chromosomal results, we use the special case of this n th cousin model, where the rate of sibling
 392 mating c_0 is 0 and the rate of first-cousin mating is c_1 , stopping at first cousins. This special case produces the
 393 following transition matrix where state 0 is still coalescence, state 1 is two lineages in an individual, state 2_0 is two
 394 lineages in opposite individuals of a mating pair, state 2_1 is two lineages in two individuals one generation ancestral
 395 to a mating pair, and state 3 is two lineages in two individuals in different mating pairs:

$$\Pi_N = \begin{pmatrix} & 0 & 1 & 2_0 & 2_1 & 3 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 2_0 & 0 & 0 & 0 & 1 & 0 \\ 2_1 & \frac{c_1}{16} & \frac{c_1}{16} & \frac{c_1}{8} & 0 & 1 - \frac{c_1}{4} \\ 3 & \frac{1}{4N} & \frac{1}{4N} & \frac{1}{2N} & 0 & 1 - \frac{1}{N} \end{pmatrix}. \quad (C1)$$

396 Note here that there is no need to use a two-sex model, as for autosomes, states referring to two males, a male
 397 and a female, and two females simply collapse into the combined state 3. No new information is gained for the
 398 autosomes when separating these states. Using Eq. 1, we split the transition matrix into fast and slow processes:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \frac{c_1}{16} & \frac{c_1}{16} & \frac{c_1}{8} & 0 & 1 - \frac{c_1}{4} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0 & -1 \end{pmatrix}.$$

399 We solve for the stationary distribution of the fast matrix using the method in Appendix A (simpler here by a
 400 single absorbing state for two lineages between individuals rather than a closed communication class):

$$\mathbf{P} = \lim_{r \rightarrow \infty} \mathbf{A}^r = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{c_1}{16-3c_1} & 0 & 0 & 0 & \frac{16-4c_1}{16-3c_1} \\ \frac{c_1}{16-3c_1} & 0 & 0 & 0 & \frac{16-4c_1}{16-3c_1} \\ \frac{c_1}{16-3c_1} & 0 & 0 & 0 & \frac{16-4c_1}{16-3c_1} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

401 Using $\mathbf{G} = \mathbf{P}\mathbf{B}\mathbf{P}$, we obtain the matrix exponential $e^{t\mathbf{G}}$ using the method of Appendix B. We then compute $\Pi(t)$
 402 via Eq. 3, converting t back into units of N generations:

$$\Pi(t) = \mathbf{P}e^{t\mathbf{G}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 - \frac{1 - \frac{c_1}{4}}{1 - \frac{3}{16}c_1} e^{-\frac{t}{4N} \left(\frac{1}{1 - \frac{3}{16}c_1} \right)} & 0 & 0 & \frac{1 - \frac{c_1}{4}}{1 - \frac{3}{16}c_1} e^{-\frac{t}{4N} \left(\frac{1}{1 - \frac{3}{16}c_1} \right)} \\ 1 - \frac{1 - \frac{c_1}{4}}{1 - \frac{3}{16}c_1} e^{-\frac{t}{4N} \left(\frac{1}{1 - \frac{3}{16}c_1} \right)} & 0 & 0 & \frac{1 - \frac{c_1}{4}}{1 - \frac{3}{16}c_1} e^{-\frac{t}{4N} \left(\frac{1}{1 - \frac{3}{16}c_1} \right)} \\ 1 - \frac{1 - \frac{c_1}{4}}{1 - \frac{3}{16}c_1} e^{-\frac{t}{4N} \left(\frac{1}{1 - \frac{3}{16}c_1} \right)} & 0 & 0 & \frac{1 - \frac{c_1}{4}}{1 - \frac{3}{16}c_1} e^{-\frac{t}{4N} \left(\frac{1}{1 - \frac{3}{16}c_1} \right)} \\ 1 - e^{-\frac{t}{4N} \left(\frac{1}{1 - \frac{3}{16}c_1} \right)} & 0 & 0 & e^{-\frac{t}{4N} \left(\frac{1}{1 - \frac{3}{16}c_1} \right)} \end{pmatrix}.$$

403 We extract from the first column of this matrix the cumulative distribution functions for two lineages starting
 404 in state 1 (within an individual) and state 3 (between individuals):

$$F_T(t) = F_U(t) = 1 - \frac{1 - \frac{c_1}{4}}{1 - \frac{3}{16}c_1} e^{-\frac{t}{4N} \left(\frac{1}{1 - \frac{3}{16}c_1} \right)}, \quad (C2)$$

$$F_V(t) = 1 - e^{-\frac{t}{4N} \left(\frac{1}{1 - \frac{3}{16}c_1} \right)}. \quad (C3)$$

405 Severson *et al.* (2021) showed that the limiting distribution for n th cousin mating is given by their Eqs. 47 and 48:

$$F_T(t) = F_U(t) = 1 - \frac{1 - 4c}{1 - 3c} e^{-\frac{t}{4N} \left(\frac{1}{1 - 3c} \right)},$$

$$F_V(t) = 1 - e^{-\frac{t}{4N} \left(\frac{1}{1 - 3c} \right)}.$$

406 In the special case where we only have first-cousin mating, we replace their c term with $c_1/16$ and recover
 407 Eqs. C2 and C3, respectively.

408 For the expectations of these distributions, by $\mathbb{E}[X] = \int_0^\infty [1 - F_X(x)] dx$ for $X > 0$, we find

$$\mathbb{E}[T] = E[U] = 4N \left(1 - \frac{c_1}{4} \right), \quad (C4)$$

$$\mathbb{E}[V] = 4N \left(1 - \frac{3}{16}c_1 \right). \quad (C5)$$

409 Eqs. C4 and C5, obtained from the limiting distribution, accord with the large- N limit of Eqs. 8 and 10 from
 410 Severson *et al.* (2019), in which they were calculated via first-step analysis.

411 References

412 Arciero, E., S. A. Dogra, D. S. Malawsky, M. Mezzavilla, T. Tsismenzoglou, *et al.*, 2021 Fine-scale population structure
413 and demographic history of British Pakistanis. *Nature Communications* **12**: 7189.

414 Bittles, A., 2001 Consanguinity and its relevance to clinical genetics. *Clinical Genetics* **60**: 89–98.

415 Bittles, A. H., 2012 *Consanguinity in Context*. Cambridge University Press, Cambridge, UK.

416 Bittles, A. H. and M. L. Black, 2010 Consanguinity, human evolution, and complex diseases. *Proceedings of the National
417 Academy of Sciences of the United States of America* **107**: 1779–1786.

418 Browning, S. R. and B. L. Browning, 2015 Accurate non-parametric estimation of recent effective population size from
419 segments of identity by descent. *American Journal of Human Genetics* **97**: 404–418.

420 Campbell, R., 2015 The effect of inbreeding constraints and offspring distribution on time to the most recent common
421 ancestor. *Journal of Theoretical Biology* **382**: 74–80.

422 Carmi, S., P. R. Wilton, J. Wakeley, and I. Pe'er, 2014 A renewal theory approach to IBD sharing. *Theoretical Population
423 Biology* **97**: 35–48.

424 Ceballos, F. C., P. K. Joshi, D. W. Clark, M. Ramsay, and J. F. Wilson, 2018 Runs of homozygosity: windows into population
425 history and trait architecture. *Nature Reviews Genetics* **19**: 220–234.

426 Clark, D. W., Y. Okada, K. H. S. Moore, D. Mason, N. Pirastu, *et al.*, 2019 Associations of autozygosity with a broad range
427 of human phenotypes. *Nature Communications* **10**: 4957.

428 Cotter, D. J., A. L. Severson, and N. A. Rosenberg, 2021 The effect of consanguinity on coalescence times on the X
429 chromosome. *Theoretical Population Biology* **140**: 32–43.

430 Crow, J. and M. Kimura, 1970 *An Introduction to Population Genetics Theory*. Harper and Row, New York.

431 Hein, J., M. Schierup, and C. Wiuf, 2004 *Gene Genealogies, Variation and Evolution*. Oxford University Press, New York.

432 Jacquard, A., 1974 *The Genetic Structure of Populations*. Springer-Verlag, Berlin.

433 Johnson, E. C., L. M. Evans, and M. C. Keller, 2018 Relationships between estimated autozygosity and complex traits in
434 the UK Biobank. *PLoS Genetics* **14**: e1007556.

435 Kemeny, J. G. and J. L. Snell, 1983 *Finite Markov Chains*. Springer-Verlag, New York.

436 McQuillan, R., A.-L. Leutenegger, R. Abdel-Rahman, C. S. Franklin, M. Pericic, *et al.*, 2008 Runs of homozygosity in
437 European populations. *American Journal of Human Genetics* **83**: 359–372.

438 Möhle, M., 1998 A convergence theorem for Markov chains arising in population genetics and the coalescent with selfing.
439 *Advances in Applied Probability* **30**: 493–512.

440 Nordborg, M. and P. Donnelly, 1997 The coalescent process with selfing. *Genetics* **146**: 1185–1195.

441 Nordborg, M. and S. M. Krone, 2002 Separation of time scales and convergence to the coalescent in structured populations.
442 In *Modern Developments in Theoretical Population Genetics*, edited by M. Slatkin and M. Veuille, pp. 194–232, Oxford
443 University Press, New York.

444 Palamara, P. F., T. Lencz, A. Darvasi, and I. Pe'er, 2012 Length distributions of identity by descent reveal fine-scale
445 demographic history. *American Journal of Human Genetics* **91**: 809–822.

446 Pemberton, T. J., D. Absher, M. W. Feldman, R. M. Myers, N. A. Rosenberg, *et al.*, 2012 Genomic patterns of homozygosity
447 in worldwide human populations. *American Journal of Human Genetics* **91**: 275–292.

448 Pollak, E., 1987 On the theory of partially inbreeding finite populations. I. Partial selfing. *Genetics* **117**: 353–360.

449 Romeo, G. and A. H. Bittles, 2014 Consanguinity in the contemporary world. *Human Heredity* **77**: 6–9.

450 Sahoo, S. A., A. A. Zaidi, S. Anagol, and I. Mathieson, 2021 Long runs of homozygosity are correlated with marriage
451 preferences across global population samples. *Human Biology* **93**: 10.1101/2021.03.04.433907.

452 Severson, A. L., S. Carmi, and N. A. Rosenberg, 2019 The effect of consanguinity on between-individual identity-by-descent
453 sharing. *Genetics* **212**: 305–316.

454 Severson, A. L., S. Carmi, and N. A. Rosenberg, 2021 Variance and limiting distribution of coalescence times in a diploid
455 model of a consanguineous population. *Theoretical Population Biology* **139**: 50–65.

456 Wakeley, J., 2009 *Coalescent Theory: an Introduction*. Roberts & Co., Greenwood Village, CO.

457 Woods, C. G., J. Cox, K. Springell, D. J. Hampshire, M. D. Mohamed, *et al.*, 2006 Quantification of homozygosity in
458 consanguineous individuals with autosomal recessive disease. *American Journal of Human Genetics* **78**: 889–896.

459 Yengo, L., Z. Zhu, N. R. Wray, B. S. Weir, J. Yang, *et al.*, 2017 Detection and quantification of inbreeding depression for
460 complex traits from SNP data. *Proceedings of the National Academy of Sciences of the United States of America* **114**:
461 8602–8607.

Table B1: Constants used in matrix exponentiation for consanguinity models.

Type of consanguineous mating	Chromosome	Section	Quantity k satisfying $G^n = k^{n-1}G$ for generator matrix G (Eq. B2)
Sibling	X	3.1	$-\frac{4-c_0}{3(4-3c_0)}$
Patrilateral-parallel first-cousin	X	3.2.1	$-\frac{1}{3}$
Patrilateral-cross first-cousin	X	3.2.2	$-\frac{1}{3}$
Matrilateral-parallel first-cousin	X	3.2.3	$-\frac{16+c_1}{3(16-5c_1)}$
Matrilateral-cross first-cousin	X	3.2.4	$-\frac{8-c_1}{3(8-3c_1)}$
Bilateral-parallel first-cousin	X	3.2.5	$-\frac{16+c_1}{3(16-5c_1)}$
Bilateral-cross first-cousin	X	3.2.6	$-\frac{8-c_1}{3(8-3c_1)}$
Superposition of unilateral first-cousin	X	3.2.7	$-\frac{16+c_{mp}-2c_{mc}}{3(16-5c_{mp}-6c_{mc})}$
First-cousin	Autosomes	Appendix C	$-\frac{4}{16-3c_1}$

Note that c_{mp} and c_{mc} in Section 3.2.7 have the same meaning as c_1 in Sections 3.2.3 and 3.2.4, respectively.

Figure 1: Five states for two lineages. Males are squares; females are circles. State 1: within a female (blue). State 2: in two individuals in a mating pair (green). State 3: in two males in different mating pairs (yellow). State 4: in a male and a female in different mating pairs (orange). State 5: in two females in different mating pairs (purple).

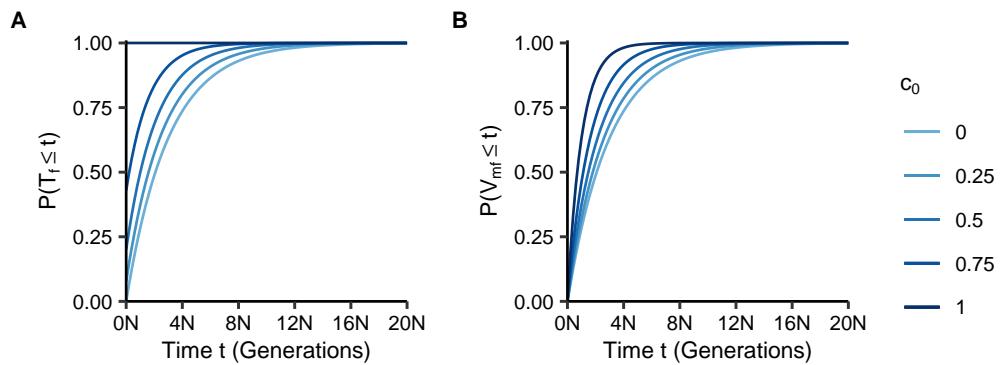


Figure 2: Cumulative distributions of coalescence times within (T_f) and between (V_{mf}) individuals as functions of the number of generations t and the fraction of sib mating pairs c_0 . **(A)** Within individuals, $P(T_f \leq t)$, Eq. 8. **(B)** Between individuals, $P(V_{mf} \leq t)$, Eq. 9.

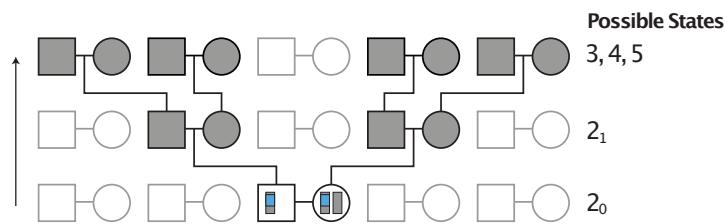


Figure 3: Example pedigree illustrating transitions from state 2_0 in the absence of consanguinity. Considering a pair of lineages in a mating pair, depicted in blue, the process always immediately transitions to the holding state 2_1 one generation in the past. From state 2_1 , the lineages transition to two separate mating pairs, and hence, to states 3, 4, or 5.

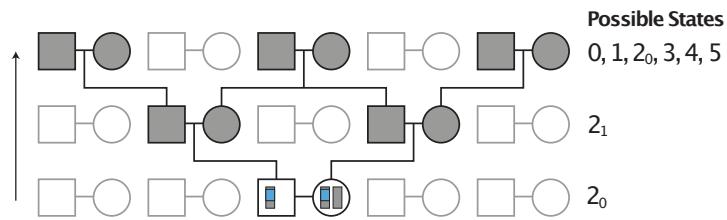


Figure 4: Example pedigree illustrating transitions from state 2_0 in the presence of first-cousin consanguinity. Considering a pair of lineages in a mating pair, depicted in blue, the process always immediately transitions to the holding state 2_1 . From state 2_1 , the lineages can potentially transition to any of states 0, 1, 2_0 , 3, 4, 5, depending on the type of first-cousin consanguinity. Matrilateral-cross consanguinity is depicted.

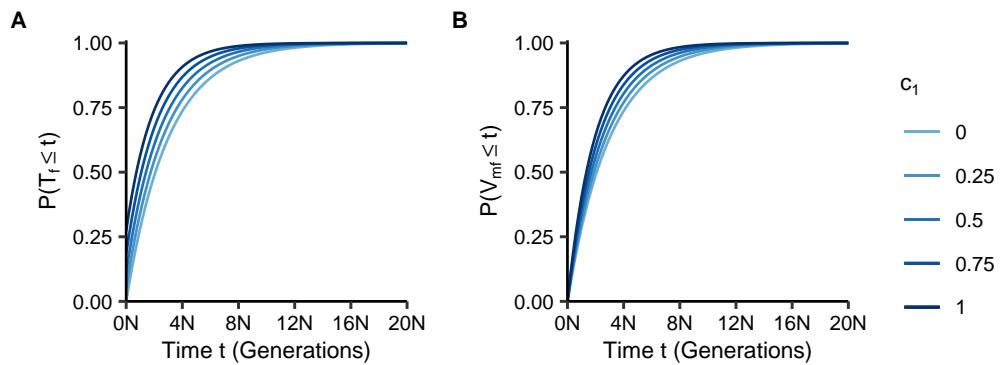


Figure 5: Cumulative distributions of coalescence times within (T_f) and between (V_{mf}) individuals as functions of the number of generations t and the fraction of matrilateral-parallel mating pairs c_1 . **(A)** Within individuals, $P(T_f \leq t)$, Eq. 22. **(B)** Between individuals, $P(V_{mf} \leq t)$, Eq. 23.

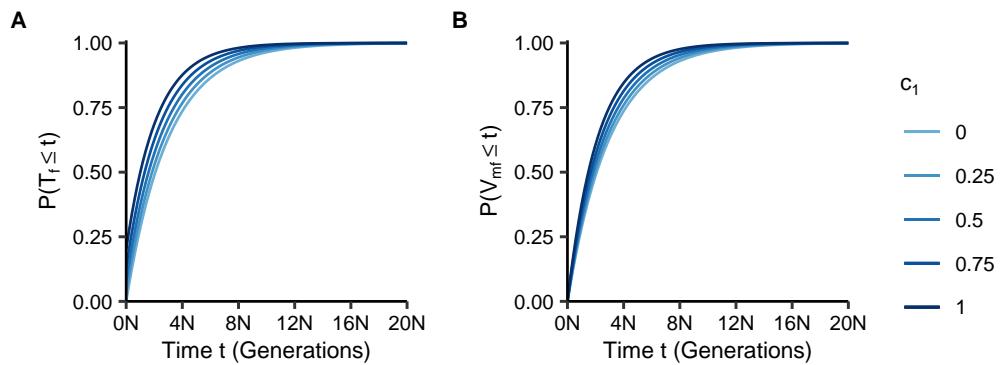


Figure 6: Cumulative distributions of coalescence times within (T_f) and between (V_{mf}) individuals as functions of the number of generations t and the fraction of matrilateral-cross mating pairs c_1 . **(A)** Within individuals, $P(T_f \leq t)$, Eq. 30. **(B)** Between individuals, $P(V_{mf} \leq t)$, Eq. 31.

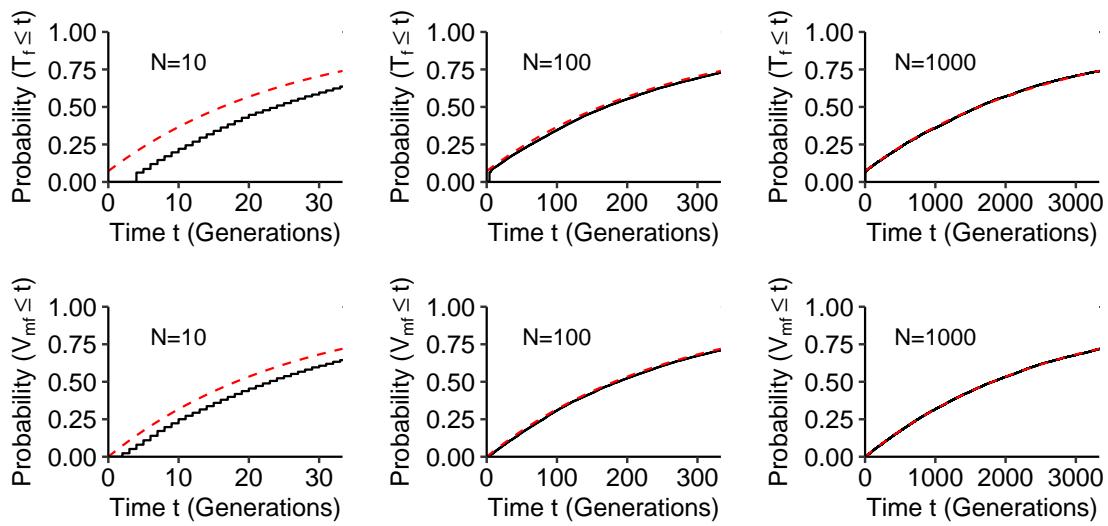


Figure 7: Cumulative distribution functions (CDFs) of coalescence times in a model with a mixture of types of consanguinity. The Markov chain is given in Eq. 34; we consider the case of $c_{mp} = 0.2$ and $c_{mc} = 0.2$ with each of three values for the number of mating pairs N . Dashed lines represent the limiting CDFs in Eqs. 37 and 38, and solid lines represent the simulated CDFs from 10,000 observations of the first-cousin mixture model (as described by the Markov chain in Eq. 34).

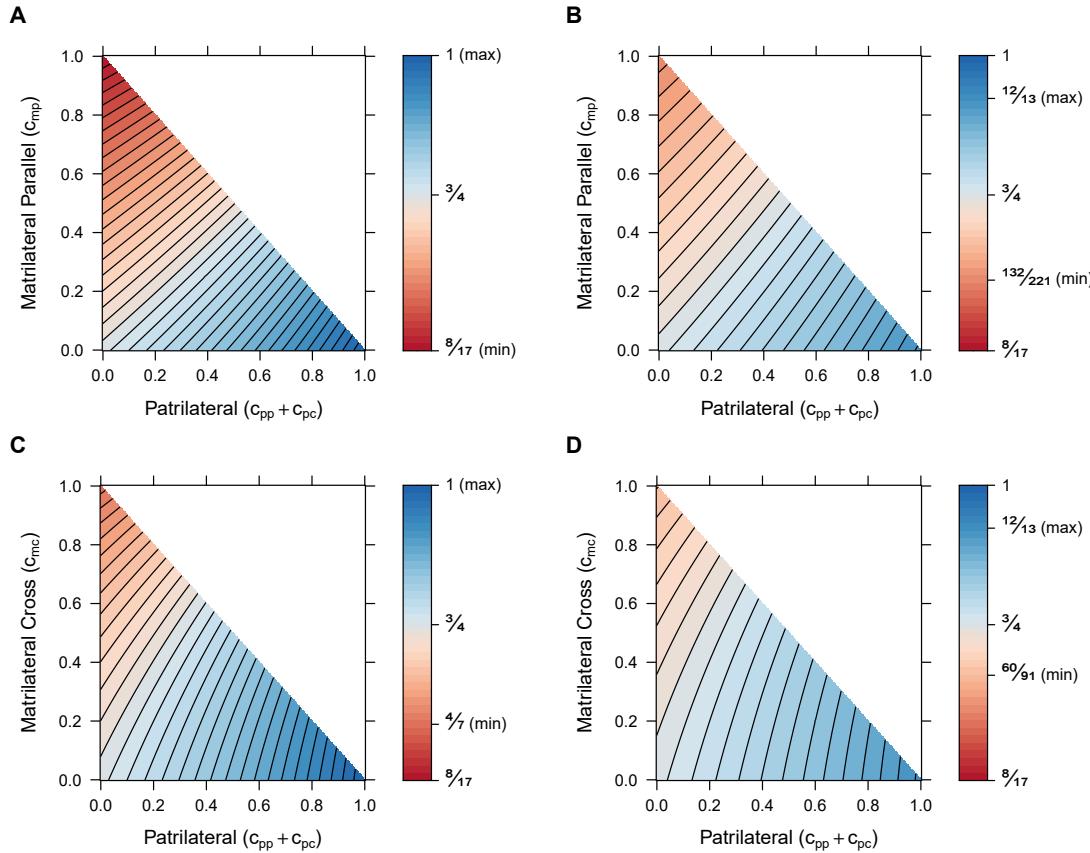


Figure 8: Ratios of X-chromosomal and autosomal mean coalescence times. Each point represents a ratio of coalescence times for a specified mixture of two types of consanguinity, depicted on the x and y axes. (A) Within individuals, matrilateral parallel and patrilateral consanguinity (Eq. 39/Eq. C4). (B) Between individuals, matrilateral parallel and patrilateral consanguinity (Eq. 40/Eq. C5). (C) Within individuals, matrilateral cross and patrilateral consanguinity (Eq. 39/Eq. C4). (D) Between individuals, matrilateral cross and patrilateral consanguinity (Eq. 40/Eq. C5). In each panel, the minimal ratio is indicated (obtained by setting matrilateral consanguinity to 1 and patrilateral consanguinity to 0), as is the maximum (obtained by setting matrilateral consanguinity to 0 and patrilateral consanguinity to 1). The value $\frac{3}{4}$ occurs with no consanguinity, located at the origin in each panel. Values *greater* than $\frac{3}{4}$ appear in blue, indicating combinations of parameter values that bring expected X chromosomal coalescence times closer to expected autosomal coalescence times. Values that reduce X chromosomal coalescence times to a greater extent than on autosomes, thereby shifting the ratio less than $\frac{3}{4}$, appear in red.