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Abstract5

By providing additional opportunities for coalescence within families, the presence of consanguineous unions in6

a population reduces coalescence times relative to non-consanguineous populations. First-cousin consanguinity7

can take one of six forms differing in the configuration of sexes in the pedigree of the male and female cousins who8

join in a consanguineous union: patrilateral parallel, patrilateral cross, matrilateral parallel, matrilateral cross,9

bilateral parallel, and bilateral cross. Considering populations with each of the six types of first-cousin consan-10

guinity individually and a population with a mixture of the four unilateral types, we examine coalescent models11

of consanguinity. We previously computed, for first-cousin consanguinity models, the mean coalescence time12

for X-chromosomal loci and the limiting distribution of coalescence times for autosomal loci. Here, we use the13

separation-of-time-scales approach to obtain the limiting distribution of coalescence times for X-chromosomal14

loci. This limiting distribution has an instantaneous coalescence probability that depends on the probability that15

a union is consanguineous; lineages that do not coalesce instantaneously coalesce according to an exponential16

distribution. We study the effects on the coalescence time distribution of the type of first-cousin consanguinity,17

showing that patrilateral-parallel and patrilateral-cross consanguinity have no effect on X-chromosomal coales-18

cence time distributions and that matrilateral-parallel consanguinity decreases coalescence times to a greater19

extent than does matrilateral-cross consanguinity.20

1 Introduction21

The phenomenon of consanguinity, in which unions occur between closely related individuals, is a form of population22

structure that can dramatically affect properties of genetic variation (Crow and Kimura, 1970; Jacquard, 1974).23

By increasing the probability that deleterious recessive variants appear in homozygous form, it contributes to24

the incidence of recessive disease (Bittles, 2001; Woods et al., 2006); recent studies suggest that it contributes to25

incidence of complex disease as well (Bittles and Black, 2010; Yengo et al., 2017; Ceballos et al., 2018; Johnson26

et al., 2018; Clark et al., 2019). Consanguinity is common in human populations, with some populations promoting27

consanguineous marriages as a cultural preference (Bittles, 2012; Romeo and Bittles, 2014; Sahoo et al., 2021).28

The offspring of a consanguineous union are expected to possess large portions of their genomes shared between29

their two genomic copies, owing to the fact that an identical genomic segment can be inherited along both their30

maternal and paternal lines. For the loci contained in such segments, the two copies coalesce at a common ancestor31

relatively few generations in the past. At other locations, neither copy or only one copy traces to a recent shared32
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ancestor, so that coalescence occurs only much farther back in the past. Indeed, empirical genetic studies have33

identified multiple populations in which individuals carry long runs of homozygosity (ROH), attributable in large34

part to consanguinity practices (McQuillan et al., 2008; Pemberton et al., 2012; Ceballos et al., 2018)35

In typical coalescent-based models that investigate coalescence times for sets of lineages, diploid organisms are36

approximated by pairs of haploids independently drawn from a population (Hein et al., 2004; Wakeley, 2009). This37

modeling choice is unsuited to the study of consanguineous families, in which the two lineages in an individual can38

be highly dependent. Hence, explicitly diploid coalescent models have been devised for the study of coalescence in39

a setting of consanguinity. The earliest studies focused on selfing in plants (Pollak, 1987; Nordborg and Donnelly,40

1997; Nordborg and Krone, 2002), an extreme form of “consanguinity” in which both parents of a diploid offspring41

are the same individual. Campbell (2015) extended diploid coalescent models to consider a monogamous mating42

model with sibling mating, computing mean coalescence times under the model. This approach was then extended43

by Severson et al. (2019) to consider mean coalescence times in a diploid model with nth-cousin mating, for arbitrary44

values of n and for superpositions of multiple levels of nth-cousin mating.45

In an extension of the work of Severson et al. (2019), Severson et al. (2021) advanced beyond mean coalescence46

times to derive a full limiting distribution of coalescence times under superposition models of autosomal consan-47

guinity, considering the limit as the population size grows large. A limitation of the work of Severson et al. (2019)48

and Severson et al. (2021), however, is that it does not distinguish between males and females in the mating model;49

all individuals are exchangeable. Hence, it cannot accommodate the variety of scenarios in which differences be-50

tween males and females are salient. We have recently extended the method of Severson et al. (2019) to distinguish51

between males and females, evaluating mean coalescence times in a two-sex model, with a goal of evaluating the52

effect that consanguinity has on X-chromosomal coalescence times specifically (Cotter et al., 2021).53

Here, we use the advance from Severson et al. (2021) to compute the full distribution of coalescence times under54

a diploid, two-sex consanguinity model (Cotter et al., 2021). Seeking to derive distributions of X-chromosomal55

coalescence times, we consider each of the six types of first-cousin consanguinity and a model that includes all four56

unilateral types in a single population. For each model, we evaluate the distribution of coalescence times for two57

lineages sampled from the same individual and for two lineages sampled from members of different mating pairs.58

2 Methods59

We adapt the models of Severson et al. (2019, 2021) and Cotter et al. (2021). We consider a constant-sized60

population of N diploid mating pairs. Individuals are sex-specific, the X chromosome is considered, and specified61

forms of consanguinity are allowed. Using a Markov chain, we track lineage pairs back in time until they coalesce.62

To analyze the large-N limit of the model, we make use of the separation-of-time-scales approach introduced by63

Möhle (1998). This approach was used by Severson et al. (2021) to obtain the limiting distribution of coalescence64

times under their autosomal diploid model of consanguinity. In the approach from Möhle (1998), the limiting65

distribution of a Markov process with transition matrix ΠN is obtained by writing66

ΠN = A+
1

N
B. (1)

Here, A describes “fast” transitions that have nontrivial probability in a single generation, and B describes67

“slow” transitions that have very small probabilities in a single generation. As N → ∞, the fast transitions occur68

instantaneously, and the fast process can be described by an equilibrium distribution69

P = lim
r→∞

Ar. (2)
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Rescaling t in units of N generations, as N → ∞, ΠN converges to a continuous-time process70

Π(t) = lim
N→∞

(ΠN )
Nt

= PetG. (3)

The rate matrix G satisfies G = PBP. Under Möhle’s theorem, the process converges to a continuous-time process71

with an instantaneous jump at time 0 that corresponds to the “fast” transitions.72

As Severson et al. (2021) did with autosomal models, we apply the separation-of-time-scales approach to our73

models of consanguinity on the X chromosome (Cotter et al., 2021). We begin with the sib mating case and then74

consider each of the four types of unilateral first-cousin mating, the two cases of bilateral first-cousin mating, and75

a mixture of all four unilateral types in one model.76

3 Results77

3.1 Sibling mating78

We consider N monogamous male–female mating pairs, a fraction c0 of which are sib mating pairs. Pairs of X-79

chromosomal lineages can be in one of six states (Figure 1): two lineages have already coalesced (state 0); two80

lineages are in a female (state 1); two lineages are in opposite individuals of a mating pair (state 2); two lineages81

are in two individuals in different mating pairs, where the two individuals are two males (state 3), a male and a82

female (state 4), or two females (state 5). Note that for the X chromosome, there is no state for two lineages in a83

male, as males contain only one X chromosome. We track the state of the process backward in time until it reaches84

the most recent common ancestor for a pair of lineages (that is, until state 0 is reached). We denote by Tf , U ,85

Vmm, Vmf , and Vff the random coalescence time for pairs of lineages in states 1, 2, 3, 4, and 5, respectively.86

If two lineages are in state 0 (coalesced), they remain in state 0 with probability 1; this state is absorbing. If87

two lineages are in a female (state 1), in the previous generation they must have been in separate individuals in a88

mating pair (state 2) with probability 1. If two lineages are in separate individuals in a mating pair (state 2), the89

pair is a sib mating pair with probability c0. Given that the pair is a sib mating pair, the lineages transition to90

state 0 with probability 1
4 , state 1 with probability 1

4 , and state 2 with probability 1
2 . If the two lineages are not in91

a sib mating pair, an event with probability 1− c0, then they transition to states 4 and 5 with equal probability 1
2 .92

For each of the states 3–5, because we pick parental mating pairs with replacement from the previous generation,93

the probability is 1
N

that the same mating pair is chosen. Thus, if two lineages are in state 3, and the pair are94

siblings (an event with probability 1
N
), then the lineages transition to state 0 or state 1, each with probability 1

2 .95

If the two lineages in state 3 do not have the same parental pair (probability 1− 1
N
), then they must transition to96

state 5 with probability 1. For state 4, if the two lineages are in siblings (probability 1
N
), then they transition to97

state 0 with probability 1
4 , state 1 with probability 1

4 , and state 2 with probability 1
2 . If the lineages are not from98

siblings (probability 1− 1
N
), then they transition to state 4 or 5, each with probability 1

2 . Finally, two lineages in99

state 5, conditional on being in siblings (probability 1
N
), reach state 0 with probability 3

8 , state 1 with probability100

1
8 , and state 2 with probability 1

2 . Conditional on not being in siblings (probability 1− 1
N
), the lineages transition101

to state 3 with probability 1
4 , state 4 with probability 1

2 , and state 5 with probability 1
4 .102
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Combining these transition probabilities, we can write the transition matrix as103

ΠN =























0 1 2 3 4 5

0 1 0 0 0 0 0

1 0 0 1 0 0 0

2 c0
4

c0
4

c0
2 0 1−c0

2
1−c0
2

3 1
2N

1
2N 0 0 0 1− 1

N

4 1
4N

1
4N

1
2N 0

1− 1
N

2

1− 1
N

2

5 3
8N

1
8N

1
2N

1− 1
N

4

1− 1
N

2

1− 1
N

4























. (4)

We can decompose ΠN (Eq. 4) into its fast and slow transitions, as in Eq. 1:104

A =























1 0 0 0 0 0

0 0 1 0 0 0
c0
4

c0
4

c0
2 0 1−c0

2
1−c0
2

0 0 0 0 0 1

0 0 0 0 1
2

1
2

0 0 0 1
4

1
2

1
4























, B =























0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
1
2

1
2 0 0 0 −1

1
4

1
4

1
2 0 − 1

2 − 1
2

3
8

1
8

1
2 − 1

4 − 1
2 − 1

4























. (5)

We first find the equilibrium distribution of the “fast” process, obtained by iterating transition matrix A. This105

calculation appears in Appendix A, producing106

P = lim
r→∞

Ar =

























1 0 0 0 0 0
c0

4−3c0
0 0 1

9

(

4−4c0
4−3c0

)

4
9

(

4−4c0
4−3c0

)

4
9

(

4−4c0
4−3c0

)

c0
4−3c0

0 0 1
9

(

4−4c0
4−3c0

)

4
9

(

4−4c0
4−3c0

)

4
9

(

4−4c0
4−3c0

)

0 0 0 1
9

4
9

4
9

0 0 0 1
9

4
9

4
9

0 0 0 1
9

4
9

4
9

























. (6)

We then compute G = PBP and solve for the limiting process Π(t) using Eq. 3, obtaining the matrix expo-107

nential, etG, as in Appendix B. Converting t back into units of N generations, this gives108

Π(t) = PetG =


































1 0 0 0 0 0

1− 1−c0
1− 3

4
c0
e
−

t
3N

(

1−
c0
4

1− 3
4
c0

)

0 0 1
9 · 1−c0

1− 3
4
c0
e
−

t
3N

(

1−
c0
4

1− 3
4
c0

)

4
9 · 1−c0

1− 3
4
c0
e
−

t
3N

(

1−
c0
4

1− 3
4
c0

)

4
9 · 1−c0

1− 3
4
c0
e
−

t
3N

(

1−
c0
4

1− 3
4
c0

)

1− 1−c0
1− 3

4
c0
e
−

t
3N

(

1−
c0
4

1− 3
4
c0

)

0 0 1
9 · 1−c0

1− 3
4
c0
e
−

t
3N

(

1−
c0
4

1− 3
4
c0

)

4
9 · 1−c0

1− 3
4
c0
e
−

t
3N

(

1−
c0
4

1− 3
4
c0

)

4
9 · 1−c0

1− 3
4
c0
e
−

t
3N

(

1−
c0
4

1− 3
4
c0

)

1− e
−

t
3N

(

1−
c0
4

1− 3
4
c0

)

0 0 1
9 · e

−
t

3N

(

1−
c0
4

1− 3
4
c0

)

4
9 · e

−
t

3N

(

1−
c0
4

1− 3
4
c0

)

4
9 · e

−
t

3N

(

1−
c0
4

1− 3
4
c0

)

1− e
−

t
3N

(

1−
c0
4

1− 3
4
c0

)

0 0 1
9 · e

−
t

3N

(

1−
c0
4

1− 3
4
c0

)

4
9 · e

−
t

3N

(

1−
c0
4

1− 3
4
c0

)

4
9 · e

−
t

3N

(

1−
c0
4

1− 3
4
c0

)

1− e
−

t
3N

(

1−
c0
4

1− 3
4
c0

)

0 0 1
9 · e

−
t

3N

(

1−
c0
4

1− 3
4
c0

)

4
9 · e

−
t

3N

(

1−
c0
4

1− 3
4
c0

)

4
9 · e

−
t

3N

(

1−
c0
4

1− 3
4
c0

)



































.

(7)

The first column of the matrix Π(t) represents the cumulative probability of coalescence in time less than or109

equal to t generations. States 1 and 2 have the same cumulative distribution, representing the coalescence time110

4
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for two lineages within a female (note that state 2, two lineages in the two individuals in a mating pair, is always111

reached from state 1 after one step). States 3–5 have the same cumulative distribution, representing the coalescence112

time for two lineages in two distinct individuals. The cumulative distributions are113

FTf
(t) = FU (t) = 1−

1− c0

1− 3
4c0

e
−

t
3N

(

1−
c0
4

1− 3
4
c0

)

, (8)

FVmm
(t) = FVmf

(t) = FVff
(t) = 1− e

−
t

3N

(

1−
c0
4

1− 3
4
c0

)

. (9)

Computing the expectations of these distributions, recalling that for X > 0, E[X] =
∫

∞

0
[1−FX(x)] dx, we find114

E[Tf ] = E[U ] = 3N

(

1− c0

1− 1
4c0

)

, (10)

E[Vmm] = E[Vmf ] = E[Vff ] = 3N

(

1− 3
4c0

1− 1
4c0

)

. (11)

where Eqs. 10 and 11 are the same as Eqs. 25 and 26 from Cotter et al. (2021), obtained by first-step analysis.115

Eqs. 8 and 9 are plotted in Figure 2. In the figure, we observe that the cumulative probability of coalescence116

increases with the consanguinity probability c0. For c0 = 0, E[Tf ] = E[Vmf ] = 3N , as there are three copies of117

the X chromosome in each mating pair in the population. For c0 > 0, E[Tf ] < E[Vmf ] due to the probability of118

consanguinity whenever the two lineages are already in the same mating pair.119

3.2 First cousins120

We next consider first-cousin consanguinity on the X chromosome. We separately calculate the limiting distributions121

of coalescence times for each of the four types of first-cousin consanguinity: patrilateral parallel, a union of a122

male with his father’s brother’s daughter; patrilateral cross, a union of a male with his father’s sister’s daughter;123

matrilateral parallel, a union of a male with mother’s sister’s daughter; and matrilateral cross, a union of a male124

with his mother’s brother’s daughter.125

For each of these four types of first-cousin consanguinity, two lineages have seven possible states. State 0 is an126

absorbing state representing coalescence. State 1 is two lineages in a female. States 3–5 represent, as in the sibling127

case, two lineages that are in two individuals in different mating pairs, where the two individuals are two males128

(state 3), a male and a female (state 4), or two females (state 5).129

Next, for pairs of lineages from the two individuals in a mating pair, we follow the model of a superposition of130

multiple mating levels from Severson et al. (2021), taking a special case of this approach. Under the superposition131

model, each state 2i, 0 ≤ i ≤ n, represents an ancestral state for two lineages from a mating pair. These ancestral132

states can be viewed as “holding states” that keep track of ancestral lineages of a mating pair in order to allow all133

possible ith-cousin levels of consanguinity up to nth cousins. As we restrict attention to first-cousin mating, we134

need only states 20 and 21 from Severson et al. (2021).135

State 20 represents two lineages in the two individuals in a mating pair. State 21 represents two lineages in two136

individuals ancestral to the two individuals in a mating pair. Because, unlike Severson et al. (2021), we disallow137

sib mating, two lineages in state 20 cannot coalesce (state 0), they cannot transition to the same individual (state138

1), nor can they transition to two individuals in a mating pair (state 20). Hence, lineages in 20 must transition to139

21 (Figures 3 and 4).140

In the absence of consanguinity, two lineages in state 21 can transition only to states 3, 4, and 5 (Figure 3).141

With first-cousin consanguinity present (Figure 4), two lineages in state 21 can also coalesce (state 0) or transition142

to two lineages in the same female (state 1) or to two lineages in opposite individuals in a mating pair (state 20).143
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The transition matrix depends on the type of first-cousin consanguinity permitted. However, the type of144

consanguinity only affects transitions from state 21. For all types of consanguinity, state 0 is an absorbing state.145

State 1, two lineages in the same female, always transitions to state 20 because the two lineages must come from146

opposite individuals of the same mating pair. Because of the constraints we have placed on the process, state 20147

always transitions to state 21. Finally, the transition probabilities from states 3, 4, and 5 follow the same pattern148

as given in the transition matrix in Eq. 4 (with state 20 in place of state 2).149

Below, we consider each of the four different types of first-cousin mating, two cases of bilateral first-cousin150

mating, and a mixture of the four unilateral types. In each case, we define the transitions that the process makes151

from state 21, and we obtain the limiting distributions of coalescence times.152

3.2.1 Patrilateral parallel153

In patrilateral parallel first-cousin consanguinity, a union occurs between a male and his father’s brother’s daughter.154

There is no way for the X-chromosomal lineages in the first-cousin mating pair to have originated from the shared155

grandparental pair, because X chromosomes are never transmitted from fathers to sons. Hence, irrespective of the156

fraction c1 in the population, lineages in state 21 can only transition to states 3, 4, and 5.157

In state 21, one X chromosome in one of the parental pairs is always in a female (the parent of the male in state158

20). The probability is then 1
2 that this X chromosome is in a male one generation ancestral to 21 and 1

2 that it is159

in a female. The other X chromosome in state 21, located in a parent of the female in state 20, can be in a male160

or female, with equal probability. Hence, one generation ancestral to 21, this X chromosome is in a female with161

probability 3
4 and in a male with probability 1

4 . We can multiply probabilities for the two separate X chromosomes162

to obtain transition probabilities from state 21. In particular, the two lineages will be in two separate males one163

generation previously (state 3) with probability 1
8 . They will be in a male and a female (state 4) with probability164

1
2 . They will be in two separate females (state 5) with probability 3

8 .165

The transition matrix is:166

ΠN =



























0 1 20 21 3 4 5

0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0

20 0 0 0 1 0 0 0

21 0 0 0 0 1
8

1
2

3
8

3 1
2N

1
2N 0 0 0 0 1− 1

N

4 1
4N

1
4N

1
2N 0 0

1− 1
N

2

1− 1
N

2

5 3
8N

1
8N

1
2N 0

1− 1
N

4

1− 1
N

2

1− 1
N

4



























. (12)

As with the sibling case, we can decompose the transitions into “fast” and “slow” transitions (Eq. 1):167

A =



























1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1
8

1
2

3
8

0 0 0 0 0 0 1

0 0 0 0 0 1
2

1
2

0 0 0 0 1
4

1
2

1
4



























, B =



























0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 −1

1
4

1
4

1
2 0 0 − 1

2 − 1
2

3
8

1
8

1
2 0 − 1

4 − 1
2 − 1

4



























. (13)
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We next solve for the limiting distribution of the fast transition matrix A using the method of Appendix A,168

P = lim
r→∞

Ar =



























1 0 0 0 0 0 0

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9



























. (14)

Recalling G = PBP, we solve for the limit Π(t) as in the sibling mating case, using Eq. 3, calculating the169

matrix exponential, etG, as in Appendix B. We then convert t back into units of generations N . This step gives170

Π(t) = PetG =



























1 0 0 0 0 0 0

1− e−
t

3N 0 0 0 1
9e

−
t

3N
4
9e

−
t

3N
4
9e

−
t

3N

1− e−
t

3N 0 0 0 1
9e

−
t

3N
4
9e

−
t

3N
4
9e

−
t

3N

1− e−
t

3N 0 0 0 1
9e

−
t

3N
4
9e

−
t

3N
4
9e

−
t

3N

1− e−
t

3N 0 0 0 1
9e

−
t

3N
4
9e

−
t

3N
4
9e

−
t

3N

1− e−
t

3N 0 0 0 1
9e

−
t

3N
4
9e

−
t

3N
4
9e

−
t

3N

1− e−
t

3N 0 0 0 1
9e

−
t

3N
4
9e

−
t

3N
4
9e

−
t

3N



























. (15)

Here, examining the first column of the matrix in Eq. 15—representing transitions to coalescence—we can see171

that two lineages within an individual (state 1), within a mating pair (state 20), or in in two separate mating pairs172

(states 3, 4, and 5) have equal coalescence times. In fact, as coalescence times are unaffected by patrilateral-parallel173

first-cousin consanguinity, they accord with the coalescence time distribution for a population of size 3N haploid174

individuals. Using the same random variables from the sibling case (where U now represents 20), we can extract175

the cumulative distribution functions of coalescence times from the first column of the matrix Π(t):176

FTf
(t) = FU (t) = 1− e−

t
3N , (16)

FVmm
(t) = FVmf

(t) = FVff
(t) = 1− e−

t
3N . (17)

For each of the five random random variables, the time to coalescence for two lineages is distributed as an177

exponential random variable with rate 1/(3N). The mean of these distributions—the reciprocal of the coalescence178

rate—is 3N , matching the limiting means obtained by first-step analysis in Eqs. 28–32 of Cotter et al. (2021).179

3.2.2 Patrilateral cross180

For the patrilateral-cross case, a union occurs between a male and his father’s sister’s daughter. As with the parallel181

case, there is no way for the X-chromosomal lineages in the first-cousin mating pair to have originated from a shared182

ancestor. We obtain the exact same transition probabilities from state 21 and the same transition matrix (Eq. 12).183

The coalescence times for the patrilateral-cross case are the same as in the patrilateral-parallel case.184

3.2.3 Matrilateral parallel185

In the matrilateral parallel case, a union occurs between a male and his mother’s sister’s daughter. With probability186

c1/2, two lineages in state 21 trace back to the shared grandparental pair. The lineages in state 21 coalesce with187

probability 3
8 (state 0), they are in the shared grandmother with probability 1

8 (state 1), and they are in opposite188

individuals of the grandparental mating pair with probability 1
2 (state 20).189
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With probability c1/2, two lineages in state 21 do not trace back to the shared grandparental pair. Conditional190

on not tracing to this pair, they are in a male and a female (state 4) or two females (state 5), each with probability191

1
2 . Finally, with probability 1− c1, the two lineages are not ancestral to a consanguineous mating pair; they then192

follow the same pattern as in the patrilateral-parallel case. Combining the cases gives the transition matrix,193

ΠN =



























0 1 20 21 3 4 5

0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0

20 0 0 0 1 0 0 0

21
3c1
16

c1
16

c1
4 0 1

8 − c1
8

1
2 − c1

4
3
8 − c1

8

3 1
2N

1
2N 0 0 0 0 1− 1

N

4 1
4N

1
4N

1
2N 0 0

1− 1
N

2

1− 1
N

2

5 3
8N

1
8N

1
2N 0

1− 1
N

4

1− 1
N

2

1− 1
N

4



























. (18)

As before, we decompose this matrix into “fast” and “slow” transitions (Eq. 1):194

A =



























1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0
3c1
16

c1
16

c1
4 0 1

8 − c1
8

1
2 − c1

4
3
8 − c1

8

0 0 0 0 0 0 1

0 0 0 0 0 1
2

1
2

0 0 0 0 1
4

1
2

1
4



























, B =



























0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 −1

1
4

1
4

1
2 0 0 − 1

2 − 1
2

3
8

1
8

1
2 0 − 1

4 − 1
2 − 1

4



























. (19)

We next solve for the limiting distribution of the fast matrix A using the method of Appendix A:195

P = lim
r→∞

Ar =































1 0 0 0 0 0 0
3c1

16−5c1
0 0 0 1

9

(

16−8c1
16−5c1

)

4
9

(

16−8c1
16−5c1

)

4
9

(

16−8c1
16−5c1

)

3c1
16−5c1

0 0 0 1
9

(

16−8c1
16−5c1

)

4
9

(

16−8c1
16−5c1

)

4
9

(

16−8c1
16−5c1

)

3c1
16−5c1

0 0 0 1
9

(

16−8c1
16−5c1

)

4
9

(

16−8c1
16−5c1

)

4
9

(

16−8c1
16−5c1

)

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9































. (20)
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Finally, recalling G = PBP, we solve for the matrix exponential etG using the method of Appendix B. We then196

solve for the continuous-time process Π(t) via Eq. 3, converting t back to units of N generations:197

Π(t) = PetG =












































1 0 0 0 0 0 0

1−
1−

c1
2

1− 5
16

c1
e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

0 0 0 1
9 ·

1−
c1
2

1− 5
16

c1
e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

4
9 ·

1−
c1
2

1− 5
16

c1
e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

4
9 ·

1−
c1
2

1− 5
16

c1
e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

1−
1−

c1
2

1− 5
16

c1
e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

0 0 0 1
9 ·

1−
c1
2

1− 5
16

c1
e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

4
9 ·

1−
c1
2

1− 5
16

c1
e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

4
9 ·

1−
c1
2

1− 5
16

c1
e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

1−
1−

c1
2

1− 5
16

c1
e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

0 0 0 1
9 ·

1−
c1
2

1− 5
16

c1
e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

4
9 ·

1−
c1
2

1− 5
16

c1
e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

4
9 ·

1−
c1
2

1− 5
16

c1
e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

1− e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

0 0 0 1
9e

−
t

3N

(

1+
c1
16

1− 5
16

c1

)

4
9e

−
t

3N

(

1+
c1
16

1− 5
16

c1

)

4
9e

−
t

3N

(

1+
c1
16

1− 5
16

c1

)

1− e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

0 0 0 1
9e

−
t

3N

(

1+
c1
16

1− 5
16

c1

)

4
9e

−
t

3N

(

1+
c1
16

1− 5
16

c1

)

4
9e

−
t

3N

(

1+
c1
16

1− 5
16

c1

)

1− e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

0 0 0 1
9e

−
t

3N

(

1+
c1
16

1− 5
16

c1

)

4
9e

−
t

3N

(

1+
c1
16

1− 5
16

c1

)

4
9e

−
t

3N

(

1+
c1
16

1− 5
16

c1

)













































.

(21)

We are concerned with transitions from each of the various states to coalescence (state 0). The first column of198

Π(t) gives the limiting cumulative distribution functions for the time to the most recent common ancestor for two199

lineages within an individual (state 1) and two lineages between individuals (states 3, 4 and 5):200

FTf
(t) = FU (t) = 1−

1− c1
2

1− 5
16c1

e
−

t
3N

(

1+
c1
16

1− 5
16

c1

)

, (22)

FVmm
(t) = FVmf

(t) = FVff
(t) = 1− e

−
t

3N

(

1+
c1
16

1− 5
16

c1

)

. (23)

To compute expectations, recalling that for X > 0, E[X] =
∫

∞

0
[1− FX(x)] dx, we find201

E[Tf ] = E[U ] = 3N

(

1− c1
2

1 + c1
16

)

, (24)

E[Vmm] = E[Vmf ] = E[Vff ] = 3N

(

1− 5
16c1

1 + c1
16

)

. (25)

Eqs. 24 and 25 are the same as Eqs. 39 and 40 from Cotter et al. (2021). Eqs. 22 and 23 are plotted in Figure 5.202

3.2.4 Matrilateral cross203

In the matrilateral-cross case, a union occurs between a male and his mother’s brother’s daughter. This case204

is similar to the matrilateral-parallel case. With probability c1/2, two lineages in state 21 trace to the shared205

grandparental pair. They coalesce with probability 1
4 (state 0), they are in the shared grandmother with probability206

1
4 (state 1), and they are in opposite individuals of the grandparental mating pair with probability 1

2 (state 20).207

With probability c1/2, two lineages in state 21 do not trace to the shared grandparental pair. Conditional208

on the lineages not both tracing to the shared grandparental pair, they are in two males (state 3), a male and a209

female (state 4) or two females (state 5), with probabilities 1
4 ,

1
2 , and

1
4 , respectively. Finally, with probability210

1− c1, two lineages are not ancestral to a consanguineous mating pair. In this case, they follow the same pattern211
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as enumerated for the patrilateral-parallel case. The transition matrix is212

ΠN =



























0 1 20 21 3 4 5

0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0

20 0 0 0 1 0 0 0

21
c1
8

c1
8

c1
4 0 1

8
1
2 − c1

4
3
8 − c1

4

3 1
2N

1
2N 0 0 0 0 1− 1

N

4 1
4N

1
4N

1
2N 0 0

1− 1
N

2

1− 1
N

2

5 3
8N

1
8N

1
2N 0

1− 1
N

4

1− 1
N

2

1− 1
N

4



























. (26)

We separate the “fast” and “slow” transitions as before (Eq. 1):213

A =



























1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0
c1
8

c1
8

c1
4 0 1

8
1
2 − c1

4
3
8 − c1

4

0 0 0 0 0 0 1

0 0 0 0 0 1
2

1
2

0 0 0 0 1
4

1
2

1
4



























, B =



























0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 −1

1
4

1
4

1
2 0 0 − 1

2 − 1
2

3
8

1
8

1
2 0 − 1

4 − 1
2 − 1

4



























. (27)

Using the method of Appendix A, we solve for the stationary distribution of the “fast” process:214

P = lim
r→∞

Ar =































1 0 0 0 0 0 0
c1

8−3c1
0 0 0 1

9

(

8−4c1
8−3c1

)

4
9

(

8−4c1
8−3c1

)

4
9

(

8−4c1
8−3c1

)

c1
8−3c1

0 0 0 1
9

(

8−4c1
8−3c1

)

4
9

(

8−4c1
8−3c1

)

4
9

(

8−4c1
8−3c1

)

c1
8−3c1

0 0 0 1
9

(

8−4c1
8−3c1

)

4
9

(

8−4c1
8−3c1

)

4
9

(

8−4c1
8−3c1

)

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9































. (28)
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As before, using G = PBP, we calculate the matrix exponential, etG, using the method of Appendix B. We215

then obtain Π(t) from Eq. 3, converting t back to units of N generations:216

Π(t) = PetG =












































1 0 0 0 0 0 0

1−
1−

c1
2

1− 3
8
c1
e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

0 0 0 1
9 ·

1−
c1
2

1− 3
8
c1
e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

4
9 ·

1−
c1
2

1− 3
8
c1
e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

4
9 ·

1−
c1
2

1− 3
8
c1
e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

1−
1−

c1
2

1− 3
8
c1
e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

0 0 0 1
9 ·

1−
c1
2

1− 3
8
c1
e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

4
9 ·

1−
c1
2

1− 3
8
c1
e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

4
9 ·

1−
c1
2

1− 3
8
c1
e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

1−
1−

c1
2

1− 3
8
c1
e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

0 0 0 1
9 ·

1−
c1
2

1− 3
8
c1
e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

4
9 ·

1−
c1
2

1− 3
8
c1
e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

4
9 ·

1−
c1
2

1− 3
8
c1
e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

1− e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

0 0 0 1
9e

−
t

3N

(

1−
c1
8

1− 3
8
c1

)

4
9e

−
t

3N

(

1−
c1
8

1− 3
8
c1

)

4
9e

−
t

3N

(

1−
c1
8

1− 3
8
c1

)

1− e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

0 0 0 1
9e

−
t

3N

(

1−
c1
8

1− 3
8
c1

)

4
9e

−
t

3N

(

1−
c1
8

1− 3
8
c1

)

4
9e

−
t

3N

(

1−
c1
8

1− 3
8
c1

)

1− e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

0 0 0 1
9e

−
t

3N

(

1−
c1
8

1− 3
8
c1

)

4
9e

−
t

3N

(

1−
c1
8

1− 3
8
c1

)

4
9e

−
t

3N

(

1−
c1
8

1− 3
8
c1

)













































.

(29)

We extract the cumulative distribution functions from the first column of the matrix, finding217

FTf
(t) = FU (t) = 1−

1− c1
2

1− 3
8c1

e
−

t
3N

(

1−
c1
8

1− 3
8
c1

)

, (30)

FVmm
(t) = FVmf

(t) = FVff
(t) = 1− e

−
t

3N

(

1−
c1
8

1− 3
8
c1

)

. (31)

Solving for the expectations of these distributions, recalling that for X > 0, E[X] =
∫

∞

0
[1− FX(x)] dx, we find218

E[Tf ] = E[U ] = 3N

(

1− c1
2

1− c1
8

)

, , (32)

E[Vmm] = E[Vmf ] = E[Vff ] = 3N

(

1− 3
8c1

1− c1
8

)

. (33)

Eqs. 32 and 33 are the same as Eqs. 47 and 48 from Cotter et al. (2021). Eqs. 30 and 31 are plotted in Figure 6.219

3.2.5 Bilateral parallel220

Having considered the four possible types of first-cousin consanguinity, we can also consider the two bilateral cases,221

in which a mating pair are cousins through both sets of grandparents. In bilateral-parallel first-cousin consanguinity,222

a union occurs between a male and a female who is both his mother’s sister’s daughter and his father’s brother’s223

daughter. We can consider this case to be a combination of the matrilateral-parallel case and the patrilateral-parallel224

case. In state 21, when the two lineages are ancestral to a bilateral-parallel mating pair, the male’s lineage must225

transition through his mother because he cannot inherit an X chromosome from his father. Because there is no way226

for the lineages to transition through the patrilateral-parallel grandparental pair, the transitions in state 21 follow227

from the transitions for a matrilateral-parallel pair only. In the case of bilateral-parallel first-cousin consanguinity,228

the transition matrix thus has the form given for matrilateral-parallel first-cousin consanguinity in Eq. 18. The229

bilateral-parallel case thus also shares the same cumulative distribution functions given in Eqs. 22 and 23.230
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3.2.6 Bilateral cross231

Bilateral-cross first-cousin consanguinity occurs when a male shares a union with a female who is both his fa-232

ther’s sister’s daughter and his mother’s brother’s daughter. This case can be considered to be a combination of233

matrilateral-cross and patrilateral-cross first-cousin consanguinity. The ancestral lineages cannot travel through the234

patrilateral-cross pair, and the transitions follow those for matrilateral-cross consanguinity. The transition matrix235

(Eq. 26) and cumulative distribution functions (Eqs. 30 and 31) follow similarly.236

3.2.7 Mixture of first-cousin mating types237

We next examine a population that possesses a mixture of all four unilateral first-cousin mating types. To determine238

the transition matrix, it suffices to determine the transition probabilities from state 21.239

Recall that two lineages in state 21 are in two individuals ancestral to a mating pair that might or might not be240

consanguineous. With probability cpp, this mating pair is a patrilateral-parallel first-cousin pair, with probability241

cpc it is a patrilateral-cross first-cousin pair, with probability cmp it is a matrilateral-parallel first-cousin pair, and242

with probability cmc it is a matrilateral-cross first-cousin pair. If the mating pair is a first-cousin pair of a particular243

one of the four types, then transitions out of state 21 will match those derived for the associated case.244

We can view the transition probabilities out of state 21 as a weighted combination of the transitions that each245

of these first-cousin cases makes when considered on its own. For example, in the case of coalescence (transition246

to state 0), two lineages in state 21 coalesce with probability 3
16 for a matrilateral-parallel first-cousin pair (rate247

cmp) and
1
8 for a matrilateral-cross first-cousin pair (rate cmc). Because patrilateral-parallel and patrilateral-cross248

consanguinity do not affect transitions from state 21, corresponding rates cpp and cpc do not influence the transition249

probability to state 0. Combining all four cases, the transition probability from state 21 to state 0 is 3
16cmp+

1
8cmc.250

For transitions from state 21 to states 0, 1, and 20, the probabilities are obtained by summing corresponding terms251

in the matrices for the various types of unilateral first-cousin mating (Eqs. 12, 18, and 26).252

For the transitions from state 21 to states 3, 4, and 5 (two lineages between individuals), consanguinity acts253

to reduce the probabilities. The probabilities in the case of patrilateral parallel consanguinity (Eq. 12) represent a254

null effect of no consanguinity. The cmp and cmc terms (Eqs. 18 and 26) reduce the probabilities of transitioning255

to states 3, 4, and 5 (while inflating the 0, 1, and 20 transitions). For state 3, for example, the null transition256

probability is 1
8 . Matrilateral-parallel consanguinity reduces this transition probability by cmp/8, giving a combined257

transition probability of 1
8 − cmp/8; matrilateral-cross consanguinity has no effect on this transition.258

We proceed similarly to combine the remaining transition probabilities from the four unilateral first-cousin259

mating types to produce the transitions for state 21. The transition matrix is260

ΠN =



























0 1 20 21 3 4 5

0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0

20 0 0 0 1 0 0 0

21
3cmp

16 + cmc

8
cmp

16 + cmc

8
cmp

4 + cmc

4 0 1
8 −

cmp

8
1
2 −

cmp

4 − cmc

4
3
8 −

cmp

8 − cmc

4

3 1
2N

1
2N 0 0 0 0 1− 1

N

4 1
4N

1
4N

1
2N 0 0

1− 1
N

2

1− 1
N

2

5 3
8N

1
8N

1
2N 0

1− 1
N

4

1− 1
N

2

1− 1
N

4



























. (34)

Matrices A and B follow from Eq. 1 and take the same form as those given for the matrilateral cases with state261

21 in matrix A (Eqs. 19 and 27), now adopting the new combinations of transition probabilities. We solve for the262
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stationary distribution of the “fast” transitions using the method of Appendix A:263

P = lim
r→∞

Ar =































1 0 0 0 0 0 0
3
16

cmp+
cmc
8

1− 5
16

cmp−
3
8
cmc

0 0 0 1
9

(

1−
cmp

2
−

cmc
2

1− 5
16

cmp−
3
8
cmc

)

4
9

(

1−
cmp

2
−

cmc
2

1− 5
16

cmp−
3
8
cmc

)

4
9

(

1−
cmp

2
−

cmc
2

1− 5
16

cmp−
3
8
cmc

)

3
16

cmp+
cmc
8

1− 5
16

cmp−
3
8
cmc

0 0 0 1
9

(

1−
cmp

2
−

cmc
2

1− 5
16

cmp−
3
8
cmc

)

4
9

(

1−
cmp

2
−

cmc
2

1− 5
16

cmp−
3
8
cmc

)

4
9

(

1−
cmp

2
−

cmc
2

1− 5
16

cmp−
3
8
cmc

)

3
16

cmp+
cmc
8

1− 5
16

cmp−
3
8
cmc

0 0 0 1
9

(

1−
cmp

2
−

cmc
2

1− 5
16

cmp−
3
8
cmc

)

4
9

(

1−
cmp

2
−

cmc
2

1− 5
16

cmp−
3
8
cmc

)

4
9

(

1−
cmp

2
−

cmc
2

1− 5
16

cmp−
3
8
cmc

)

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9

0 0 0 0 1
9

4
9

4
9































.

(35)

Once again, using G = PBP, we obtain the matrix exponential, etG, using the method of Appendix B. We264

then compute Π(t) with Eq. 3, converting t back into units of N generations. The resulting matrix is structured in265

such a way that we can write:266

Π(t) = PetG =



























1 0 0 0 0 0 0

1−RE 0 0 0 1
9RE 4

9RE 4
9RE

1−RE 0 0 0 1
9RE 4

9RE 4
9RE

1−RE 0 0 0 1
9RE 4

9RE 4
9RE

1− E 0 0 0 1
9E

4
9E

4
9E

1− E 0 0 0 1
9E

4
9E

4
9E

1− E 0 0 0 1
9E

4
9E

4
9E



























, (36)

where267

R =
1−

cmp

2 − cmc

2

1− 5
16cmp −

3
8cmc

,

E = e
−

t
3N

(

1+
cmp
16

−

cmc
8

1− 5
16

cmp−

3
8
cmc

)

.

In the matrix in Eq. 36, the first column represents transitions to coalescence. We extract from this column the268

cumulative distribution functions for time to coalescence for two lineages within an individual (state 1) and two269

lineages between individuals (states 3, 4, and 5):270

FTf
(t) = FU (t) = 1−

1−
cmp

2 − cmc

2

1− 5
16cmp −

3
8cmc

e
−

t
3N

(

1+
cmp
16

−

cmc
8

1− 5
16

cmp−

3
8
cmc

)

, (37)

FVmm
(t) = FVmf

(t) = FVff
(t) = 1− e

−
t

3N

(

1+
cmp
16

−

cmc
8

1− 5
16

cmp−

3
8
cmc

)

. (38)

Solving for the expectations of these distributions, recalling that for X > 0, E[X] =
∫

∞

0
[1− FX(x)] dx, we find271

E[Tf ] = E[U ] = 3N

(

1−
cmp

2 − cmc

2

1 +
cmp

16 − cmc

8

)

, (39)

E[Vmm] = E[Vmf ] = E[Vff ] = 3N

(

1− 5
16cmp −

3
8cmc

1 +
cmp

16 − cmc

8

)

. (40)
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3.3 Comparisons272

3.3.1 Limiting distribution versus exact distribution273

Under the mixture model, to see how well the limiting distribution of coalescence times approximates the exact274

distribution, we perform simulations. In particular, for fixed values of the number of mating pairs N and rates of275

matrilateral-parallel (cmp) and matrilateral-cross (cmc) first-cousin mating, we simulate 10,000 realizations of the276

Markov chain in Eq. 34 to produce an empirical cumulative distribution function (CDF) of coalescence times for277

lineage pairs within and between individuals. This procedure amounts to simulating a distribution of the time to278

the most recent common ancestor (the time it takes to hit state 0) starting in either state 1 (within an individual)279

or state 4 (between individuals).280

Figure 7 plots the simulated empirical CDFs alongside the limiting CDFs presented in Eqs. 37 and 38. Con-281

ducting these simulations for different values of the number of mating pairs N , we see that as N increases, the282

limiting distribution functions (Eqs. 37 and 38) closely approximate the simulated, empirical distributions.283

3.3.2 X chromosome versus autosomes284

Each of the limiting distributions for coalescence times for lineages from separate mating pairs, both for single285

types of first-cousin consanguinity and for a superposition of multiple types, possesses a particular structure: an286

exponential CDF whose rate is the product of the population size and a reduction by a factor that accounts for287

consanguinity. We now examine these limiting CDFs for the X chromosome in relation to corresponding CDFs for288

autosomes. The autosomal coalescence time distributions under first-cousin consanguinity are obtained in Appendix289

C as a special case of the nth cousin mating model of Severson et al. (2019). Here, we calculate the ratio of the290

expected time to coalescence for the X chromosome (Eqs. 39 and 40) and for autosomes (Eqs. C4 and C5) within291

and between individuals, respectively, as we vary rates of matrilateral and patrilateral consanguinity (Figure 8).292

We first consider the ratio of expected coalescence times on the X chromosome relative to the autosomes for293

pairs of lineages within individuals (Eq. 39/Eq. C4) as a function of patrilateral (cpp+cpc) and matrilateral-parallel294

(cmp) consanguinity (Figure 8A). Because the expected coalescence time for two lineages on the X chromosome295

is a function of 3N and the corresponding autosomal mean depends on 4N , in the absence of consanguinity, the296

null value of the ratio is 3
4 . The ratio achieves its minimum value of 8

17 , with a stronger effect of consanguinity297

in reducing X-chromosomal coalescence times relative to autosomal coalescence times, when we set cmp to 1. It298

achieves its maximum value of 1, increasing X-chromosomal coalescence times compared to autosomal coalescence299

times, when instead we set cpp + cpc to 1 (Figure 8A).300

For the X:A ratio of between-individual expected coalescence times (Eq. 40/Eq. C5) as a function of patrilateral301

(cpp+ cpc) and matrilateral-parallel (cmp) consanguinity (Figure 8B), the minimum and maximum values differ less302

than for the within-individual case. The minimum exceeds 8
17 , equaling

132
221 , and is again reached at cmp = 1. The303

maximum is less than 1, equaling 12
13 , and is reached at cpp+cpc = 1. The minimum and maximum are less extreme304

than in the within-individual case, as consanguinity has less of an effect on reducing the expected coalescence times305

in the between-individual case, both for the X chromosome and for the autosomes.306

We next examine the X:A coalescence time ratio within individuals (Eq. 39/Eq. C4) as a function of patrilateral307

(cpp + cpc) and matrilateral-cross (cmc) consanguinity (Figure 8C). The minimal ratio is slightly larger than in the308

matrilateral-parallel case, equaling 4
7 at cmc = 1. The maximum occurs at 1, the same value as the corresponding309

case with matrilateral-parallel in place of matrilateral-cross consanguinity, when cpp+cpc = 1. The slightly reduced310

range of values (i.e., the greater minimum) traces to the fact that the effect of matrilateral-cross consanguinity on311

X-chromosomal coalescence times is slightly weaker, producing a weaker reduction in coalescence times, than that312

of matrilateral-parallel consanguinity.313
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Finally, we analyze the X:A coalescence time ratio between individuals (Eq. 40/Eq. C5) as a function of pa-314

trilateral (cpp + cpc) and matrilateral-cross (cmc) consanguinity (Figure 8D). The minimum occurs at cmc = 1,315

equaling 60
91 . As in the corresponding matrilateral-parallel case, the maximum, achieved at cpp + cpc = 1, is 12

13 .316

As was seen within individuals, the range of permissible values is reduced relative to the matrilateral-parallel case,317

owing again to the weaker effect of matrilateral-cross consanguinity on X-chromosomal coalescence times.318

4 Discussion319

Extending our previous work on mean coalescence times on the X-chromosome in a consanguinity model, we have320

derived large-N limiting distributions for within-individual and between-individual X-chromosomal coalescence321

times under various types of first-cousin consanguinity. For between-individual coalescence times, each limiting322

distribution is exponential with a rate equal to the product of the number of X chromosomes and a reduction factor323

due to consanguinity (Eqs. 17, 23, and 31). Limiting distributions of within-individual coalescence times each have324

a point mass corresponding to instantaneous coalescence, and conditional on not coalescing instantaneously, are325

exponential (Eqs. 16, 22, and 30). These patterns also hold for limiting distributions of pairwise coalescence times326

for a model with a mixture of types of first-cousin consanguinity (Eqs. 37 and 38); in simulations, the limiting327

distributions under this superposition agree with exact distributions from the Markov chain (Eq. 34, Figure 7).328

Our limiting distribution results can inform comparisons of the X chromosome with autosomes. The four types329

of first-cousin consanguinity have identical effects on the autosomes but vary in their effect on the X chromosome.330

Hence, a comparison of coalescence time distributions for the X chromosome and autosomes can be informative331

about features of consanguinity. Our results (Eqs. 37 and 38) directly show the effect of different rates and types of332

consanguinity on the distribution of X-chromosomal coalescence times. For example, increasing matrilateral-parallel333

and matrilateral-cross consanguinity decreases the ratio of X and autosomal mean coalescence times; increasing334

patrilateral-parallel and patrilateral-cross first-cousin consanguinity increases this ratio (Figure 8).335

Consanguinity and other preferences for mate choice vary across populations, often depending on cultural norms336

for certain types of consanguinity over others (Bittles, 2012). Because we have found that the different types of337

first-cousin consanguinity generate an observable effect on X chromosomal coalescence times, it is possible that338

features of coalescence times can be compared across populations to assess signatures of the different types of339

consanguinity. Such assessments can potentially capitalize on the inverse relationship between coalescence times340

and genomic sharing (Palamara et al., 2012; Carmi et al., 2014; Browning and Browning, 2015) to use genomic341

sharing patterns to uncover features of consanguinity (Arciero et al., 2021).342

One limitation of our approach is that in formulating our model, we have disregarded higher-order consanguinity.343

While we have explicitly modeled first-cousin mating pairs, we have ignored the possibility that a pair has more344

distant consanguinity that is not captured in the model. It may be possible, however, to allow for such possibilities345

by incorporating into the nth cousin framework of Severson et al. (2021) sex-specific varieties of consanguinity at346

different levels of relationship.347
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Appendix A: Stationary distribution of the fast transition matrix350

In this appendix, we solve for the stationary distribution of the “fast” transition matrix A in the case of sib mating351

on the X chromosome. The same approach is also applied in the main text to obtain the stationary distribution of352

the fast transition matrix in other models.353

First, we permute the states to rewrite matrix A in a canonical form. The matrix A in Eq. 5 has one absorbing354

state (state 0) and a closed communication class C1 = {3, 4, 5}. For simplicity, we write the sib mating probability355

c0 as c. We rearrange the matrix to take the form356

D =

(

C 0

R Q

)

, (A1)

listing the recurrent states before the transient states. Thus, square matrixC includes transitions between recurrent357

states (i.e., absorbing states and closed communication classes), and square matrix Q includes transitions between358

transient states. Matrix R includes transitions from the transient states to the recurrent states. For matrix A in359

Eq. 5, the recurrent states are state 0 (absorbing) and states 3, 4, and 5 (closed communication class C1). The360

transient states are states 1 and 2. Permuting the matrix A to order the states 0, 3, 4, 5, 1, 2, we write361

A∗ =























1 0 0 0 0 0

0 0 0 1 0 0

0 0 1
2

1
2 0 0

0 1
4

1
2

1
4 0 0

0 0 0 0 0 1
c0
4 0 1−c0

2
1−c0
2

c0
4

c0
2























.

We treat the closed communication class C1 as a single absorbing state because any transitions made into C1362

transition infinitely often among the states it contains. We rewrite the transition matrix for the resulting Markov363

chain by collapsing the columns and rows corresponding to the states in C1. A
∗ becomes364

A∗∗ =













1 0 0 0

0 1 0 0

0 0 0 1
c0
4 1− c0

c0
4

c0
2













.

Matrix A∗∗ now has the form in Eq. A1, with 2× 2 submatrices and C as the identity matrix.365

Given a matrix in canonical form (Eq. A1 where C is the identity), the stationary distribution is given by366

lim
r→∞

Dr =

(

I 0

NR 0

)

,

where N is the fundamental matrix N = (I −Q)−1 and I is the identity matrix (Kemeny and Snell, 1983, 3.3.7).367

The matrix NR defines for each pair consisting of a transient state and a recurrent state, the probability that from368

the transient state, the process reaches the recurrent state. For matrix A∗∗, we have369

P∗∗ = lim
r→∞

(A∗∗)
r
=













1 0 0 0

0 1 0 0
c

4−3c0
4−4c0
4−3c0

0 0
c

4−3c0
4−4c0
4−3c0

0 0













.
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To recover the stationary distribution of A∗, we expand the absorbing state for the closed communication class370

C1, replacing it with the stationary distribution for the irreducible 3× 3 matrix associated with the class. We then371

weight the transient transition probabilities in NR by this stationary distribution.372

In other words, NR now gives, for each pair consisting of a transient and a recurrent state, the probability of373

the associated transition. Expanding the absorbing state for the closed communication class C1, we get374

P∗ = lim
r→∞

(A∗)r =























1 0 0 0 0 0

0 1
9

4
9

4
9 0 0

0 1
9

4
9

4
9 0 0

0 1
9

4
9

4
9 0 0

c0
4−3c0

1
9 · 4−4c0

4−3c0
4
9 · 4−4c0

4−3c0
4
9 · 4−4c0

4−3c0
0 0

c
4−3c0

1
9 · 4−4c0

4−3c0
4
9 · 4−4c0

4−3c0
4
9 · 4−4c0

4−3c0
0 0























.

Finally, we permute P∗ to recover P (Eq. 6).375

Appendix B: The matrix exponential etG376

In this appendix, we obtain the matrix exponential, etG, which is needed in calculating the large-N limit, Π(t) =377

PetG. The computations in this appendix are specific to sib mating on the X chromosome, but the same method378

can be applied to obtain the matrix exponential in the other models.379

We first obtain the generator matrix from Eqs. 5 and 6:380

G = PBP =























0 0 0 0 0 0
(4−4c0)(4−c0)

3(4−3c0)
2 0 0 1

9 · (4−4c0)(4−c0)

3(4−3c0)
2

4
9 · (4−4c0)(4−c0)

3(4−3c0)
2

4
9 · (4−4c0)(4−c0)

3(4−3c0)
2

(4−4c0)(4−c0)

3(4−3c0)
2 0 0 1

9 · (4−4c0)(4−c0)

3(4−3c0)
2

4
9 · (4−4c0)(4−c0)

3(4−3c0)
2

4
9 · (4−4c0)(4−c0)

3(4−3c0)
2

4−c0
3(4−3c0)

0 0 1
9 · 4−c0

3(4−3c0)
4
9 · 4−c0

3(4−3c0)
4
9 · 4−c0

3(4−3c0)
4−c0

3(4−3c0)
0 0 1

9 · 4−c0
3(4−3c0)

4
9 · 4−c0

3(4−3c0)
4
9 · 4−c0

3(4−3c0)
4−c0

3(4−3c0)
0 0 1

9 · 4−c0
3(4−3c0)

4
9 · 4−c0

3(4−3c0)
4
9 · 4−c0

3(4−3c0)























. (B1)

The generator matrix, G, has nonzero entries in the columns for state 0 and states 3, 4, and 5. It has the property381

G2 = −G

[

4− c0
3 (4− 3c0)

]

.

For the constant k = −(4− c0)/[3 (4− 3c0)], we can then recursively write382

Gn = kn−1G, (B2)

The matrix exponential, etG =
∑

∞

i=0 t
iGi/i!, then equals383

etG = I+ k−1G

∞
∑

i=1

tiki

i!

= I− k−1
(

1− ekt
)

G.

Converting t into units of N generations and multiplying by P (Eq. 6), we obtain PetG as in Eq. 7.384

For each model studied, for the associated generator matrix G, the corresponding quantity k that satisfies385

Eq. B2 appears in Table B1.386
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Appendix C: Limiting distribution of autosomal coalescence times for387

first-cousin mating388

Equation 46 of Severson et al. (2021) gives a limiting distribution of autosomal coalescence times for a model with a389

superposition of levels of cousin mating, up to nth cousins. In order to recover first-cousin mating on the autosomes390

to compare to our X-chromosomal results, we use the special case of this nth cousin model, where the rate of sibling391

mating c0 is 0 and the rate of first-cousin mating is c1, stopping at first cousins. This special case produces the392

following transition matrix where state 0 is still coalescence, state 1 is two lineages in an individual, state 20 is two393

lineages in opposite individuals of a mating pair, state 21 is two lineages in two individuals one generation ancestral394

to a mating pair, and state 3 is two lineages in two individuals in different mating pairs:395

ΠN =

















0 1 20 21 3

0 1 0 0 0 0

1 0 0 1 0 0

20 0 0 0 1 0

21
c1
16

c1
16

c1
8 0 1− c1

4

3 1
4N

1
4N

1
2N 0 1− 1

N

















. (C1)

Note here that there is no need to use a two-sex model, as for autosomes, states referring to two males, a male396

and a female, and two females simply collapse into the combined state 3. No new information is gained for the397

autosomes when separating these states. Using Eq. 1, we split the transition matrix into fast and slow processes:398

A =

















1 0 0 0 0

0 0 1 0 0

0 0 0 1 0
c1
16

c1
16

c1
8 0 1− c1

4

0 0 0 0 1

















, B =

















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
1
4

1
4

1
2 0 −1

















.

We solve for the stationary distribution of the fast matrix using the method in Appendix A (simpler here by a399

single absorbing state for two lineages between individuals rather than a closed communication class):400

P = lim
r→∞

Ar =

















1 0 0 0 0
c1

16−3c1
0 0 0 16−4c1

16−3c1
c1

16−3c1
0 0 0 16−4c1

16−3c1
c1

16−3c1
0 0 0 16−4c1

16−3c1

0 0 0 0 1

















.
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Using G = PBP, we obtain the matrix exponential etG using the method of Appendix B. We then compute Π(t)401

via Eq. 3, converting t back into units of N generations:402

Π(t) = PetG =





























1 0 0 0 0

1−
1−

c1
4

1− 3
16

c1
e
−

t
4N

(

1

1− 3
16

c1

)

0 0 0
1−

c1
4

1− 3
16

c1
e
−

t
4N

(

1

1− 3
16

c1

)

1−
1−

c1
4

1− 3
16

c1
e
−

t
4N

(

1

1− 3
16

c1

)

0 0 0
1−

c1
4

1− 3
16

c1
e
−

t
4N

(

1

1− 3
16

c1

)

1−
1−

c1
4

1− 3
16

c1
e
−

t
4N

(

1

1− 3
16

c1

)

0 0 0
1−

c1
4

1− 3
16

c1
e
−

t
4N

(

1

1− 3
16

c1

)

1− e
−

t
4N

(

1

1− 3
16

c1

)

0 0 0 e
−

t
4N

(

1

1− 3
16

c1

)





























.

We extract from the first column of this matrix the cumulative distribution functions for two lineages starting403

in state 1 (within an individual) and state 3 (between individuals):404

FT (t) = FU (t) = 1−
1− c1

4

1− 3
16c1

e
−

t
4N

(

1

1− 3
16

c1

)

, (C2)

FV (t) = 1− e
−

t
4N

(

1

1− 3
16

c1

)

. (C3)

Severson et al. (2021) showed that the limiting distribution for nth cousin mating is given by their Eqs. 47 and 48:405

FT (t) = FU (t) = 1−
1− 4c

1− 3c
e−

t
4N ( 1

1−3c ),

FV (t) = 1− e−
t

4N ( 1
1−3c ).

In the special case where we only have first-cousin mating, we replace their c term with c1/16 and recover406

Eqs. C2 and C3, respectively.407

For the expectations of these distributions, by E[X] =
∫

∞

0
[1− FX(x)] dx for X > 0, we find408

E[T ] = E[U ] = 4N
(

1−
c1
4

)

, (C4)

E[V ] = 4N

(

1−
3

16
c1

)

. (C5)

Eqs. C4 and C5, obtained from the limiting distribution, accord with the large-N limit of Eqs. 8 and 10 from409

Severson et al. (2019), in which they were calculated via first-step analysis.410
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Table B1: Constants used in matrix exponentiation for consanguinity models.

Type of consanguineous mating Chromosome Section Quantity k satisfying Gn =
kn−1G for generator matrix
G (Eq. B2)

Sibling X 3.1 − 4−c0
3(4−3c0)

Patrilateral-parallel first-cousin X 3.2.1 − 1
3

Patrilateral-cross first-cousin X 3.2.2 − 1
3

Matrilateral-parallel first-cousin X 3.2.3 − 16+c1
3(16−5c1)

Matrilateral-cross first-cousin X 3.2.4 − 8−c1
3(8−3c1)

Bilateral-parallel first-cousin X 3.2.5 − 16+c1
3(16−5c1)

Bilateral-cross first-cousin X 3.2.6 − 8−c1
3(8−3c1)

Superposition of unilateral first-cousin X 3.2.7 −
16+cmp−2cmc

3(16−5cmp−6cmc)

First-cousin Autosomes Appendix C − 4
16−3c1

Note that cmp and cmc in Section 3.2.7 have the same meaning as c1 in Sections 3.2.3 and 3.2.4, respectively.
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Figure 1: Five states for two lineages. Males are squares; females are circles. State 1: within a female (blue).
State 2: in two individuals in a mating pair (green). State 3: in two males in different mating pairs (yellow). State
4: in a male and a female in different mating pairs (orange). State 5: in two females in different mating pairs
(purple).

23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.05.489432doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.489432
http://creativecommons.org/licenses/by/4.0/


0.00

0.25

0.50

0.75

1.00

0N 4N 8N 12N 16N 20N
Time t (Generations)

P
(T

f
≤

t)

A

0.00

0.25

0.50

0.75

1.00

0N 4N 8N 12N 16N 20N
Time t (Generations)

P
(V

m
f
≤

t)
B

c0

0

0.25

0.5

0.75

1

Figure 2: Cumulative distributions of coalescence times within (Tf ) and between (Vmf ) individuals as functions
of the number of generations t and the fraction of sib mating pairs c0. (A) Within individuals, P (Tf ≤ t), Eq. 8.
(B) Between individuals, P (Vmf ≤ t), Eq. 9.
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21

20

3,4,5
Possible States

Figure 3: Example pedigree illustrating transitions from state 20 in the absence of consanguinity. Considering a
pair of lineages in a mating pair, depicted in blue, the process always immediately transitions to the holding state
21 one generation in the past. From state 21, the lineages transition to two separate mating pairs, and hence, to
states 3, 4, or 5.
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0,1,20,3,4,5

21

20

Possible States

Figure 4: Example pedigree illustrating transitions from state 20 in the presence of first-cousin consanguinity.
Considering a pair of lineages in a mating pair, depicted in blue, the process always immediately transitions to the
holding state 21. From state 21, the lineages can potentially transition to any of states 0, 1, 20, 3, 4, 5, depending
on the type of first-cousin consanguinity. Matrilateral-cross consanguinity is depicted.
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Figure 5: Cumulative distributions of coalescence times within (Tf ) and between (Vmf ) individuals as functions
of the number of generations t and the fraction of matrilateral-parallel mating pairs c1. (A) Within individuals,
P (Tf ≤ t), Eq. 22. (B) Between individuals, P (Vmf ≤ t), Eq. 23.
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Figure 6: Cumulative distributions of coalescence times within (Tf ) and between (Vmf ) individuals as functions
of the number of generations t and the fraction of matrilateral-cross mating pairs c1. (A) Within individuals,
P (Tf ≤ t), Eq. 30. (B) Between individuals, P (Vmf ≤ t), Eq. 31.
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Figure 7: Cumulative distribution functions (CDFs) of coalescence times in a model with a mixture of types of
consanguinity. The Markov chain is given in Eq. 34; we consider the case of cmp = 0.2 and cmc = 0.2 with each of
three values for the number of mating pairs N . Dashed lines represent the limiting CDFs in Eqs. 37 and 38, and
solid lines represent the simulated CDFs from 10,000 observations of the first-cousin mixture model (as described
by the Markov chain in Eq. 34).
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Figure 8: Ratios of X-chromosomal and autosomal mean coalescence times. Each point represents a ratio of
coalescence times for a specified mixture of two types of consanguinity, depicted on the x and y axes. (A) Within
individuals, matrilateral parallel and patrilateral consanguinity (Eq. 39/Eq. C4). (B) Between individuals, ma-
trilateral parallel and patrilateral consanguinity (Eq. 40/Eq. C5). (C) Within individuals, matrilateral cross and
patrilateral consanguinity (Eq. 39/Eq. C4). (D) Between individuals, matrilateral cross and patrilateral consanguin-
ity (Eq. 40/Eq. C5). In each panel, the minimal ratio is indicated (obtained by setting matrilateral consanguinity
to 1 and patrilateral consanguinity to 0), as is the maximum (obtained by setting matrilateral consanguinity to
0 and patrilateral consanguinity to 1). The value 3

4 occurs with no consanguinity, located at the origin in each
panel. Values greater than 3

4 appear in blue, indicating combinations of parameter values that bring expected X
chromosomal coalescence times closer to expected autosomal coalescence times. Values that reduce X chromosomal
coalescence times to a greater extent than on autosomes, thereby shifting the ratio less than 3

4 , appear in red.
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