

1 MITE infestation of germline accommodated by genome
2 editing in *Blepharisma*

3

4 Brandon Kwee Boon Seah¹, Minakshi Singh¹, Christiane Emmerich¹, Aditi Singh¹, Christian
5 Woehle², Bruno Huettel², Adam Byerly³, Naomi Stover⁴, Mayumi Sugiura⁵, Terue Harumoto⁵,
6 Estienne Carl Swart^{1,*}

7

8 ¹ Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany

9 ² Max Planck Genome Center Cologne, Max Planck Institute for Plant Breeding, Building B,
10 Carl-von-Linné-Weg 10, 50829 Cologne, Germany

11 ³ Department of Computer Science and Information Systems, Bradley University, Peoria IL,
12 USA

13 ⁴ Department of Biology, Bradley University, Peoria IL, USA

14 ⁵ Department of Chemistry, Biology, and Environmental Sciences, Faculty of Science, Nara
15 Women's University, Nara 630-8506, Japan

16

17 * Correspondence: estienne.swart@tuebingen.mpg.de

18 **Summary**

19 During a sophisticated developmental process, ciliates excise numerous internally eliminated
20 sequences (IESs) from a germline genome copy, producing a functional somatic genome.
21 Most IESs ultimately originate from transposons but homology is obscured by sequence
22 decay. To obtain more representative perspectives on ciliate genome editing, we assembled
23 forty thousand IESs of *Blepharisma stoltei*, from a much earlier-diverging lineage than
24 existing models. Short IESs (< 115 bp) were largely non-repetitive, with a pronounced ~10
25 bp length periodicity, whereas longer IESs (max 7 kbp) were non-periodic and contained
26 abundant interspersed repeats. Contrary to current models, the *Blepharisma* germline
27 genome encodes few transposases. Instead, its most abundant repeat (8000 copies) was a
28 Miniature Inverted-repeat Transposable Element (MITE), apparently a deletion derivative of
29 a germline-limited Pogo-family transposon. We propose MITEs as an important and
30 eventually self-limiting IES source. Rather than defending germline genomes against mobile
31 elements, we argue that transposase domestication actually facilitates junk DNA
32 accumulation.

33 **Keywords**

34 micronucleus, macronucleus, DNA elimination, mobile element, selfish gene, nuclear
35 dualism, sRNA, Ciliophora, protist

36 **Abbreviations**

- 37 • IES - internally eliminated sequence
- 38 • LTR - long terminal repeat
- 39 • MAC - macronucleus
- 40 • MIC - micronucleus
- 41 • MITE - miniature inverted-repeat transposable element
- 42 • MITIES - miniature inverted-repeat transposable internally eliminated sequences
- 43 • TDR - terminal direct repeat
- 44 • TIR - terminal inverted repeat
- 45 • TSD - target site duplication

46 **Introduction**

47 Ciliates are microbial eukaryotes that maintain separate germline and somatic genomes in
48 each cell, housed in two types of nuclei. During the sexual life cycle, germline micronuclei
49 (MICs) develop via a process of small RNA (sRNA)-assisted DNA elimination and DNA
50 amplification into new somatic macronuclei (MACs), which are the site of most gene
51 expression in vegetative cells. Germline-limited genome segments, called internally
52 eliminated sequences (IESs), are excised during development from MIC to MAC. The MAC
53 genome content is hence a subset of the germline MIC. Each of the few taxa studied so far
54 has its own peculiarities. For example, typical *Paramecium* IESs are short, have unique
55 sequence content, and are precisely excised, while *Tetrahymena* IESs are longer, more
56 repetitive, and imprecisely excised (Arnaiz et al., 2012; Feng et al., 2017; Hamilton et al.,
57 2016).

58 Ciliate IESs are thought to originate from cut-and-paste DNA transposons (Klobutcher and
59 Herrick, 1997) (Figure 1B), because: (i) 5'-TA-3' motifs at IES boundaries (*Euplotes*,
60 *Paramecium*) resemble the terminal direct repeats of Tc1/Mariner-superfamily transposons
61 (Klobutcher and Herrick, 1995); (ii) transposon-derived “domesticated” excisases are used to
62 remove IESs (Baudry et al., 2009; Cheng et al., 2010; Nowacki et al., 2009); and (iii) intact
63 transposons encoding transposases are mostly germline-limited (Arnaiz et al., 2012; Herrick
64 et al., 1985; Jahn et al., 1993; Le Mouél et al., 2003). Recently, IESs with non-autonomous
65 mobile elements that resemble miniature inverted-repeat transposable elements (MITEs)
66 have been reported in *Paramecium* spp. (Sellis et al., 2021). MITEs are deletion derivatives
67 of Tc1/Mariner transposons, generally short (<500 bp), lacking coding sequences, bounded
68 by terminal repeats, and are common in plants and animals (Feschotte et al., 2002).
69 However, the autonomous counterparts of most *Paramecium* putative MITEs, including the
70 most abundant ones with thousands of copies, have not been identified.

71 Developmental DNA elimination has been called “genome defense” because the process
72 removes IESs, which not only derive from selfish genetic elements (transposons), but are
73 often intragenic and hence deleterious if not removed (Yao et al., 2003). The “defense”
74 analogy was popularized due to parallels to other eukaryotes where small RNA-mediated
75 DNA heterochromatinization is thought to suppress mobile element proliferation (Coyne et
76 al., 2012; Grewal and Jia, 2007; Vogt and Mochizuki, 2013). Ciliates have been proposed to
77 use development-specific sRNAs to guide DNA elimination; in oligohymenophoreans, they
78 mark sequences for elimination (Mochizuki et al., 2002; Sandoval et al., 2014; Yao et al.,
79 2003), whereas spirotrich sRNAs mark sequences to be retained (Fang et al., 2012; Zahler
80 et al., 2012). Histone modifications are also required for elimination (Liu et al., 2007; Taverna

81 et al., 2002). sRNAs may not always be strictly necessary: in *Paramecium*, knockdown of
82 key sRNA biogenesis enzymes had a smaller effect on shorter IESs, and were only weakly
83 correlated with the more potent effects of knocking down the main IES excisase (Sandoval
84 et al., 2014; Swart et al., 2014).

85 Other phenomena during genome editing vary markedly between the few model species
86 studied in detail (reviews: (Chalker et al., 2013; Coyne et al., 2012; Rzeszutek et al., 2020)).
87 For example, in all species, germline chromosomes are fragmented into smaller somatic
88 ones to some degree, but spirotrichs produce extremely short somatic “nanochromosomes”
89 with only one or a few genes. “Unscrambling” of nonsequential MAC-destined sequences
90 into the correct order in the somatic genome occurs frequently in some spirotrichs, e.g.
91 *Oxytricha* and *Stylonychia* (Prescott and Greslin, 1992), infrequently in *Tetrahymena*
92 (Hamilton et al., 2016), and has not been reported in other ciliates (e.g. *Paramecium* and
93 *Euplotes*). Draft-quality germline genomes are available from only two out of eleven class-
94 level taxa (following taxonomy of Lynn, 2010): Oligohymenophorea (Arnaiz et al., 2012;
95 Guérin et al., 2017; Hamilton et al., 2016; Sellis et al., 2021) and Spirotrichea (Chen et al.,
96 2014) (Figure 1C).

97 Since it is not apparent which genome editing elements are common to all ciliates, we
98 targeted the heterotrich *Blepharisma stoltei* (class Heterotrichea), whose last common
99 ancestor with other ciliates with sequenced germline genomes is the last common ancestor
100 of all ciliates (Gao and Katz, 2014). *Blepharisma* has been a laboratory model for
101 photobiology (Giese, 1973) and mating factors (Kubota et al., 1973; Miyake and Beyer,
102 1974; Miyake et al., 1991; Sugiura and Harumoto, 2001), so cultivated strains and protocols
103 for inducing conjugation and development are available, and now too an accurate, highly
104 contiguous draft somatic genome (Singh et al., 2021). The somatic genome encodes a likely
105 IES excisase, *Blepharisma* PiggyMac (BPgm), most closely related to the main IES
106 excisases of *Paramecium* (PiggyMac) and *Tetrahymena* (Tpb2). Other somatic PiggyBac
107 paralogs are also present but lack a complete “catalytic triad”, similar to the situation in
108 *Paramecium* (Bischerour et al., 2018). BPgm is upregulated during formation of the new
109 somatic MAC alongside other development-specific genes, including homologs of sRNA
110 biogenesis proteins implicated in genome editing (Singh et al., 2021).

111

112 In this study, we assembled a draft germline genome for *Blepharisma stoltei*. Through single
113 molecule long read sequencing and targeted assembly, we assembled IESs including many
114 with long, repetitive elements, which is not feasible with short read shotgun sequencing
115 alone. We found about ten thousand short (≤ 115 bp), precisely excised IESs with a periodic

116 length distribution like *Paramecium*'s. However most IESs (about thirty thousand) were
117 longer, up to several kbp, and, importantly, also include a Tc1/Mariner transposon whose
118 non-autonomous MITE was also the most abundant repeat in the genome. Complementing
119 the genomic analyses, we also identified small RNAs expressed during sexual development
120 with characteristics of scnRNAs that guide DNA elimination in other ciliates. These results
121 show that characteristics of germline-limited DNA in ciliates may be disjunct to phylogeny,
122 and also illustrate how MITEs could be an intermediate stage in the origin and proliferation of
123 IESs.

124 Results

125 *Detection and targeted assembly of ca. forty thousand germline-limited IESs*

126 To investigate the *Blepharisma* germline genome we enriched germline micronuclei from *B.*
127 *stoltei* strain ATCC 30299, and reconstructed 39799 IESs (13.2 Mbp total, average coverage
128 ~45x) scaffolded on the previously assembled 41 Mbp somatic genome (Singh et al., 2021)
129 using a mapping and targeted assembly approach for PacBio long reads (Seah and Swart,
130 2021). This MAC-scaffolded germline assembly is here referred to as the “MAC+IES”
131 assembly. About 70% of all predicted IESs were intragenic (within coding sequences or
132 introns), implying precise excision of IESs, as they would otherwise cause deleterious
133 translation frameshifts. However, genes occupied 77% of the somatic assembly (excluding
134 telomeres), so there was a small but statistically significant ($p = 3 \times 10^{-269}$) relative depletion
135 of intragenic IESs.

136 *A “hybrid” IES length distribution with periodic length peaks for short IESs*

137 Most IESs were short (median 255 bp, mean 331 bp), but the distribution was long-tailed
138 (90th percentile 603 bp, max 7251 bp). The length distribution was not unimodal, but had
139 multiple peaks at specific length values (Figure 1A, Table S1). It appeared to be a “hybrid”
140 distribution composed of two ranges: a “periodic” range, from ~65 to 115 bp (10778 IESs),
141 and a “non-periodic” range, >115 bp (29021).

142 The “periodic” IES size range contained sharp peaks every 10 to 11 bp, similar to the
143 periodicity of IESs in *Paramecium tetraurelia* (Arnaiz et al., 2012; Guérin et al., 2017). The
144 first peak in *B. stoltei* was centered at 65 bp, compared to 28 bp in *P. tetraurelia*, and there
145 was no “forbidden” peak. The most abundant “periodic” length peaks were at 72 bp and 110
146 bp. The “non-periodic” range (≥ 115 bp) contained isolated peaks at 153, 174, 228, and 389
147 bp, which has no obvious periodicity. Only 9701 IESs (total 1.36 Mbp) were contained within
148 the size classes represented by the above peaks (both periodic and non-periodic) (Table
149 S1), meaning that most IESs had lengths outside the peak values.

150 *IESs are bounded by heterogeneous direct and inverted terminal repeats*

151 In other ciliates, IES boundaries often have conserved terminal repeat motifs that could
152 reflect excisase cut site preferences or IES origins from specific classes of transposons
153 (Klobutcher and Herrick, 1997). We therefore searched for both direct and inverted terminal
154 repeats in *Blepharisma* IESs.

155 About three quarters of IESs (30212, 9.43 Mbp) were bounded by terminal direct repeats
156 (TDRs) that contained the subsequence TA (“TA-bound”). Other non-TA TDRs accounted for
157 another 6566 (2.85 Mbp); the remainder were not TDR-bound, though some may be
158 assembly errors (Figure 1A). Like most ciliates, *B. stoltzei* genomes were AT-rich (somatic
159 33.5% GC, IESs 33.3% GC) but the number of TA- and TDR-bound sequences was unlikely
160 to be due to nucleotide composition alone (Figure 2A, 2B). The most common TDRs were
161 simple alternations of T and A (TA, TAT/ATA, TATA), especially in IESs up to 228 bp (Figure
162 2C), with the exception of TAA/TTA (see below).

163 Erroneous, low-frequency excision of MAC-destined sequences (MDSs) by the excision
164 machinery (“cryptic” IESs) was also detected in MAC DNA libraries, with a slight peak at 72
165 bp (Figure S1C). Of 10048 cryptic IESs, 56% were TA-bound; TAA/TTA-bound IESs were
166 also common, which suggests that the observed TDRs, including TAA/TTA, represented
167 intrinsic cut site preferences of the domesticated excisase(s) (Figure S1C to F).

168 Terminal inverted repeats (TIRs) at IES junctions were heterogeneous among IES size
169 classes (Figure 1D, Figure 2F), and no single TIR motif was generally conserved across all
170 *Blepharisma* IESs, unlike the common 5'-TAYNR-3' motif of *Paramecium* IESs. Considering
171 only TA-bound IESs, boundaries of “periodic” IESs had a weak consensus 5'-TAT rrn tt t-3'
172 (weakly conserved bases in lowercase), whereas IES from “non-periodic” peaks had other
173 signatures, e.g. 5'-TAT Agn nnT TT-3' for both ~153 and ~174 bp IESs. Despite their
174 heterogeneity, TIRs were more common and longer than expected by chance, even with a
175 strict criterion of no gaps or mismatches (Figure 2D to F). Sequence clustering of long (≥ 10
176 bp) TIRs showed distinct TIRs associated with specific IES lengths. Additionally, 376
177 completely palindromic IESs were identified, of which 153 (40.7%) fell within the same ~228
178 bp length peak, despite comprising several apparently unrelated palindrome sequences
179 (Figure S2, Supplemental Information).

180 IESs in the ~389 bp size peak had distinctive TDRs and TIRs, suggesting they are a family
181 of “mobile IESs”, i.e. homologous IESs inserted at nonhomologous genomic sites (Sellis et
182 al., 2021), described further below (see “Pogo/Tigger-family transposon with abundant
183 MITEs”).

184 *Repeat elements are abundant in long, non-periodic IESs*

185 Mobile elements that have recently proliferated should appear as interspersed repeat
186 elements in the genome. As identified by RepeatModeler, a quarter of the assembly (12.7
187 Mbp, 23.3%) was composed of such interspersed repeats; like in other model ciliates (Chen
188 et al., 2014; Hamilton et al., 2016), they made up a greater proportion of germline-limited

189 IESs (71.0%) than the somatic genome (8.12%) (Figure 3A). The majority of sequence in
190 IESs ≥ 115 bp was annotated as repetitive, whereas the converse was true for shorter
191 “periodic” IESs (Figure 3C), paralleling short IESs in *Paramecium* which are mostly unique
192 sequences (Arnaiz et al., 2012).

193 Most interspersed repeats could not be classified to a known transposable element class by
194 RepeatClassifier (Figure 3B, Table S2). The most abundant classifiable type was
195 “DNA/TcMar-Tc2”, all of which actually belonged to a single repeat family rnd-1_family-1,
196 followed by “LINE/RTE-X”. The most abundant family, rnd-1_family-0, was unclassified and
197 made up 21.2% (2.69 Mbp) of total repeats. Families rnd-1_family-0 and rnd-1_family-1 were
198 related to each other and are discussed further below (“Pogo/Tigger-family transposon with
199 abundant MITEs”).

200 Three non-periodic IES length peaks (153, 174, 389 bp) could be attributed to specific repeat
201 families, suggesting that they proliferated recently (Table S3, Figure 3C, S3B). This was
202 most pronounced for the ~ 389 bp peak, where 68.5% of the sequence content belonged to
203 rnd-1_family-0, whereas about a quarter of the ~ 153 and ~ 174 bp peaks was composed of
204 repeat families rnd-1_family-87 (palindromic) and rnd-1_family-82 respectively.

205 *Germline-limited repeats include few autonomous transposons but many MITEs*
206 Unlike *Tetrahymena* and *Oxytricha* where transposases are abundant in the germline-limited
207 IESs but rare in the somatic genome (Chen et al., 2014; Hamilton et al., 2016), *Blepharisma*
208 encoded only a few dozen identifiable transposase domains in either the germline-limited or
209 somatic genomes. Cut-and-paste DNA transposase domains of the DDE/D superfamily
210 identified in *Blepharisma* included DDE_1 and DDE_3 (Tc1/Mariner family), DDE_Tnp_1_7
211 (PiggyBac), DDE_Tnp_IS1595 (Merlin), and MULE (Mutator) (Figure 4E, Table S4). Not all
212 copies of DDE/D transposase domains in *Blepharisma* contained an intact catalytic triad,
213 suggesting that some may be inactive fragments or pseudogenes. Nonetheless, domains
214 with an intact triad were found in both germline-limited and somatic sequences. In general,
215 the expression level of somatic transposase genes was substantially higher than germline-
216 limited ones (Figure S4). This contrasts with the observations in *Oxytricha* of abundant
217 germline-limited transposase gene expression (Chen et al., 2014).

218 To identify intact transposon units, we examined the seven repeat families in the MAC+IES
219 assembly classified by RepeatClassifier (Figure 3B). Of these, only two were predominantly
220 germline-limited and represented by more than one full-length copy, namely rnd-1_family-1
221 and rnd-1_family-73 (Table S5). They contained distinct transposases from those found in
222 the MAC genome (Figure 4).

223 **Pogo/Tigger-family transposon with abundant MITEs**

224 Repeat elements of rnd-1_family-1 were bound by a ~30 bp terminal inverted repeat (TIR)
225 5'-CTC CCC CCC CCC CTC CGT GAG CGA ACA AAA-3' whose poly-C run length was
226 variable, possibly from assembly errors, and were flanked by a putative target site
227 duplication (TSD) 5'-TAA-3' (or its reverse complement 5'-TTA-3') (Figure 4B). All thirty
228 intact ($\geq 95\%$ of consensus length) copies of this family were found within IESs, and had high
229 sequence identity, with median 0.5% divergence from consensus.

230 The encoded transposase contained two domains characteristic of Pogo transposases from
231 the Tc1/Mariner superfamily: a DDE/D superfamily endonuclease domain (Pfam domain
232 DDE_1) and a helix-turn-helix domain (HTH_Tnp_Tc5) (Gao et al., 2020). The conserved
233 acidic residues (“catalytic triad”) characteristic of DDE/D transposases (Yuan and Wessler,
234 2011) were also present, with the motif DD35D, i.e. all three residues were Asp, 35 a.a.
235 between the second and third conserved Asp. A phylogeny of the DDE_1 domain placed the
236 transposase in the Pogo/Tigger family, most closely related to the Tc2 subfamily and a
237 sequence from the oyster *Crassostrea*, all of which also had the DD35D motif (Figure 4A).
238 The transposase appeared to be germline-limited, with only ten partial Tblastn hits in the
239 somatic MAC genome (seven on “cruft” contigs) mostly overlapping the HTH_Tnp_Tc5
240 domain (17 to 84 a.a., E-values 2.3×10^{-12} to 1.4×10^{-6}) and no matches to the DDE_1
241 domain. However, the TIR did not match previously characterized TIR signatures for the
242 Tc2, Fot, and Pogo subfamilies. A search of all *B. stoltei* IES sequences against HMMs for
243 known DNA transposon TIRs in the Dfam database found only three matches with E-value <
244 0.01, none from the above subfamilies.

245 The same TIR and TSD were also found in another repeat family rnd-1_family-0, which was
246 the most abundant repeat in the genome (Figure 4F), but these were short elements without
247 any predicted coding sequences. rnd-1_family-0 elements often constituted most of the ~389
248 bp IES size class (Figure 3C): the TSDs bounding the repeats (TAA/TTA) were the TDRs for
249 most of these IESs (Figure 2C), and the C-rich TIR motif corresponded to the C-rich IES
250 junctions (Figure 1D, Figure 2F). Copies of rnd-1_family-0 were also found nested in longer
251 IESs, suggesting recent proliferation (Figure S3C). Degenerated or partial copies were found
252 in shorter IESs (Figure 3C), with copies >5% divergence from consensus having median
253 length 308 bp, vs. 388 bp for copies <5% divergence (Figure 4D).

254 Therefore, we interpreted rnd-1_family-1 as a new Pogo/Tigger transposon, with a non-
255 autonomous derivative MITE, rnd-1_family-0. We propose the names Bogo for the
256 transposon and BogoMITE for its MITE, as well as the new term “MITIES” (miniature
257 inverted-repeat transposable internally eliminated sequences) to reflect their dual nature as

258 MITEs and IESs. Given their palindromic nature, sequences underlying rnd-1_family-87 and
259 rnd-1_family-160 repeats may also be MITIES.

260 **Tc1-family transposon with microsatellites**

261 Another IES-limited repeat family, rnd-1_family-73, also contained a DDE/D-type
262 transposase coding sequence. Twenty-two copies were >80% of the consensus length with
263 low sequence divergence (median 0.6% vs. consensus). A putative complete transposon
264 bounded by a TSD 5'-TATA-3' and a 38 bp TIR 5'-GTA CCC CCC CCC TCG TTT GTC GCA
265 TTT TCT AGT TTT TT-3' could be defined after manual curation of repeat boundaries
266 (Figure 4C). Nine of these were mobile IESs, with the TSDs corresponding to the IES
267 junctions. The remaining cases were nested in larger IESs alongside other repeat elements.
268 Ten repeats also contained a microsatellite with ~5 to 42 copies of its 10 bp repeat unit 5'-
269 GGG AAG GAC T-3' (Figure 4C) not found elsewhere in the genome. We propose the name
270 BstTc1 for this putative transposon.

271 The transposase encoded in full-length copies of BstTc1 contained a conserved DDE/D
272 superfamily domain DDE_3, phylogenetically affiliated to the Tc1 family although the exact
273 placement is unclear, grouping with only moderate support with Tc1 elements from
274 *Crassostrea* and *Hydra* (Figure 4A). Its catalytic triad motif DD34E differed from previously
275 reported motifs for the Tc1 family, DD41D, DD37D or DD36E (Dupeyron et al., 2020), so it
276 may be a novel subfamily.

277 *Non-LTR retrotransposon sequences in both the somatic and germline genomes*

278 Three retrotransposon repeat families in the MAC+IES assembly were classified by
279 RepeatClassifier, i.e. “LINE” or “LINE/RTE-X” (Table S5). Two of these were more closely
280 related with numerous very high identity sequences (>97%) (Figure 5A), suggesting recent
281 radiation of two related retrotransposon elements, while the third was more divergent (Figure
282 5B; Supplemental Information). Unlike the Bogo and BstTc1-derived elements, more
283 retrotransposon-derived sequences were detected in the *B. stoltzei* somatic MAC genome
284 than in assembled IESs (Figure 4E, Table S5). However genes in IESs may be
285 undercounted because of (i) lower completeness of germline vs. somatic assembly; (ii)
286 indels caused by the lower accuracy of the uncorrected long reads used to assemble IESs
287 that prevent prediction; and (iii) shorter total length of IESs than somatic sequence.
288 Consistent with them being true somatic sequences, mappings of error-corrected long reads
289 from a MAC-enrichment library spanned well into flanking regions (Figure 5C; Figure S5A,
290 S5B). In each repeat family, some loci showed sharp dips in coverage suggesting partial

291 excision as IESs while other loci did not (Figure S5B). In MAC-enriched DNA, coverage of
292 such sequences is well above residual IES coverage (Figure S1B).

293 Twenty-nine genes in the main somatic assembly encoded full or partial copies of reverse
294 transcriptase domain RVT_1 (Singh et al., 2021). The four longest retrotransposon genes
295 also encoded an N-terminal apurinic/apyrimidinic endonuclease (Exo_endo_phos_2) domain
296 upstream of RVT_1. This domain pair is characteristic of some proteins from non-LTR
297 retrotransposons/LINE-like transposable elements, e.g. the BS element from *Drosophila*
298 *melanogaster* (UniProt Q95SX7) (Han, 2010; Udomkit et al., 1995). In contrast to the
299 development-specific upregulation of retrotransposon genes in *Tetrahymena* (Fillingham et
300 al., 2004) and *Oxytricha* (Chen et al., 2014), expression of *Blepharisma* genes encoding
301 proteins containing RVT_1 or Exo_endo_phos_2 domains was negligible in starved cells and
302 throughout a post-conjugation developmental time series, for both germline-limited and
303 somatic copies (Figure S4) (Singh et al., 2021). The only exception was a somatic APEX1
304 protein homolog (BSTOLATCC_MAC3189). APEX1 is involved in DNA repair (Fritz, 2000),
305 and Blastp best matches of this *Blepharisma* protein to GenBank's NR database are other
306 similarly annotated proteins.

307 Six retrotransposon-derived sequences from repeat family rnd-1_family-273 contained a
308 central IES that encoded almost half the amino acids of an Exo_endo_phos_2 endonuclease
309 domain (Figure 5D). Excision of the IES during development thus knocks out the
310 endonuclease domain in the somatic version of the gene. Furthermore, the repeat units as a
311 whole had >99% identity to each other over their ~4.1 kbp length, and were flanked by
312 dissimilar sequences (Figure 5D). The similar lengths of these IESs (173 to 182 bp), their
313 homologous location relative to the coding sequence, and their high sequence identity
314 (>96%) all point to a replication of an ancestral retrotransposon which coincidentally
315 contained a sequence recognized and excised as an IES. In two of these cases, the
316 endonuclease and reverse transcriptase domains can be linked into a single reading frame
317 when the IES is present (Figure 5D). None of *Blepharisma*'s putative domesticated
318 transposases are anywhere near as abundant as the retrotransposon repeats in the somatic
319 genome, let alone show signs of substantial recent replication.

320 *Development-specific 24 nt small RNAs are likely scnRNAs in Blepharisma stoltei*
321 Small RNA (sRNA) libraries were sequenced from a developmental time series, where two
322 complementary mating types of *B. stoltei* (strains ATCC 30299 and HT-IV) were separately
323 gamone-treated and mixed to initiate conjugation. Expression patterns of somatic genes
324 from mRNA-seq and the morphological staging have been reported in our sister report on

325 the MAC genome (Singh et al., 2021). Briefly: after mating types were mixed (0 h), cells
326 paired, produced gametic nuclei by meiosis and exchanged them (2 to 18 h), followed by
327 karyogamy (18 to 22 h) and development of the zygotic nuclei to new macronuclei (22 h
328 onwards). At 38 h, about a third of observed cells were exconjugants.

329 The most abundant sRNA length classes were 22 and 24 nt, comprising 32% and 30% of
330 the total reads respectively (Figure 6A). This is consistent with model ciliates, where Dicer-
331 generated, mRNA-derived siRNAs employed in gene silencing are typically 21 or 22 nt long,
332 whereas development-specific sRNAs are distinct and consistently ≥ 2 bp longer (Lepère et
333 al., 2009; Mochizuki et al., 2002).

334 Developmental dynamics of the 24 nt *Blepharisma* sRNAs resembled scnRNAs of other
335 species. Coverage of 24 nt sRNAs mapping to all feature types initially increased from 2 to 6
336 h and plateaued until 14 h. Coverage over IESs increased further from 14 h to 22 h, reaching
337 ~ 25 RPKM by the last time point (38 h), whereas coverage declined over coding sequences
338 (CDSs) and other genomic regions ("NON") after 14 h. The initial increase across all feature
339 types coincided with meiotic stages iv to viii of (Miyake et al., 1991) (Singh et al., 2021),
340 whereas the divergence between IESs and the rest of the genome corresponded to the
341 onset of karyogamy (Figure 6B). In contrast, 22 nt sRNAs were initially abundant (albeit with
342 high variance) at CDS and NON regions but low (<1 RPKM) at IESs, and declined sharply to
343 < 5 RPKM in all features from 6 h onwards (Figure 6B).

344 *Blepharisma* 24 nt sRNAs had a strongly conserved 5'-U base preference, like scnRNAs in
345 other ciliates (Lepère et al., 2009; Mochizuki and Kurth, 2013; Zahler et al., 2012). For 24 nt
346 sRNAs mapping to IESs, all time points showed conserved 5'-U except for a slight decrease
347 at 6 h (Figure 6D, S6). 24 nt sRNAs mapping to CDSs only showed 5'-U bias after 6 h. We
348 interpret this to mean that 24 nt sRNAs mapping to IESs were predominantly scnRNAs at all
349 time points, whereas those mapping to CDSs initially comprised siRNAs and other types of
350 small RNAs, before being dominated by scnRNAs from 6 h onwards. In contrast, 22 nt
351 sRNAs mapping to CDSs showed no base biases at any time point, whereas 22 nt reads
352 mapping to IESs had a moderate 5'-U bias only from 6 h onwards. The latter may represent
353 true 22 nt scnRNAs, or fragments of originally 24 nt scnRNAs.

354 *Putative scnRNAs have lower coverage over periodic IESs and BogoMITE IESs*
355 Relative expression levels of putative scnRNAs differed between IES size classes. Based on
356 the IES length distribution and repeat content, we divided IESs into five groups: (1) short
357 "periodic" IESs (≤ 115 bp), (2) BogoMITEs, because that was the most abundant family, (3)
358 IESs with full-length Bogo transposons, (4) IESs with full-length BstTc1 transposons, and (5)

359 all other IESs (“non-periodic”). BogoMITEs and periodic IESs had lower scnRNA coverage
360 (max ~5 and 10 RPKM respectively) compared with nonperiodic IESs (~30 RPKM). The
361 former were comparable to or even lower than expression levels over non-IES features
362 (Figure 6C). Nonetheless, scnRNA coverage of BogoMITEs and periodic IESs showed an
363 initial increase then plateau, without the subsequent decline seen in non-IES regions. Bogo-
364 containing IESs had similar scnRNA coverage to other non-periodic IESs, but BstTc1-
365 containing IESs had higher coverage (Figure 6C).

366 Because of the repetitive sequence content in IESs and the short sRNA length, it is possible
367 that the expression levels calculated could be affected by mis-mapping. We reason that such
368 mismapping would not influence the results described above, because “periodic” IESs
369 (group 1) had low repetitive content, whereas the transposon-containing IESs (groups 2, 3,
370 4) each represented a single repeat family so any mismappings would be contained within
371 the same group and count towards the same RPKM value.

372 Discussion

373 Despite belonging to the earliest diverging lineage of ciliates sequenced to date, the
374 germline genome of *Blepharisma stoltei* has similarities to established model species,
375 especially the periodic lengths of short IESs like in *Paramecium*. It also provides fresh
376 observations, notably recent proliferation of non-autonomous MITEs that have autonomous
377 counterparts in the same genome, and retroelements in the somatic genome. Parallels
378 between *Paramecium* and *Blepharisma* suggest that ciliate germline characteristics may be
379 relatively plastic over evolutionary time and not strongly phylogenetically constrained.

380 Comparison to IESs in other ciliates

381 Most *Blepharisma* IESs are short, TA-bound, and intragenic, more similar to *Paramecium*
382 than *Tetrahymena* or spirotrichs. The most striking parallel is the sharply periodic length
383 distribution of short IESs with peaks every ~10 bp, coinciding with the DNA helical turn,
384 implying that the *Blepharisma* excisase complex has similar geometric constraints as
385 proposed for *Paramecium* (Arnaiz et al., 2012). *Blepharisma* “periodic” IESs are longer on
386 average and do not have a “forbidden” second peak, but the last peak (~110 bp; Figure 1A)
387 is still below the upper limit where such periodicity would be expected given the properties of
388 DNA (Figure 7 of (Arnaiz et al., 2012)). In contrast, *Tetrahymena thermophila* has a
389 continuous distribution (average length ~3 kbp) (Hamilton et al., 2016; Seah and Swart,
390 2021), while *Oxytricha trifallax* non-scrambled IESs (length ~20-100 bp) have weak
391 periodicity (Chen et al., 2014). Periodicity is consistent with a single primary IES excisase,
392 rather than multiple excisase families, which would smooth the length distribution.

393 Longer, nonperiodic IESs of *Blepharisma* contain more repeats, including whole
394 transposons, than short IESs. Unlike *Tetrahymena*, where 41.7% of high-confidence IESs
395 comprise putative autonomous transposons (Hamilton et al., 2016), some of which can be
396 grouped into families (Fillingham et al., 2004; Wuitschick et al., 2002), only a small fraction of
397 *Blepharisma*’s long IESs encode transposases, and their length distribution is not unimodal,
398 but long-tailed, with distinct peaks representing individual abundant families (Figure 3).
399 Germline-specific repeats and transposons across *Paramecium* spp. have recently been
400 surveyed (Sellis et al., 2021), but were likely underestimated because such repeats are
401 difficult to assemble from short-read data even with high coverage, as we saw with
402 *Blepharisma* BogoMITE elements, (Supplemental Information, Figure S1A).

403 The dynamics of *Blepharisma* 24 nt sRNAs are consistent with the scnRNA turnover model,
404 where RNA intermediates are produced from both IESs and MDSs (Malone et al., 2005;
405 Mochizuki and Gorovsky, 2005), but those from MDSs are selectively degraded, allowing the

406 remaining scnRNAs to mark IESs for excision. *Blepharisma* 24 nt sRNAs mapping to IESs
407 increase more than those mapping to CDSs during post-conjugation development (Figure
408 6B), complementing our finding that homologs of scnRNA biogenesis proteins, Dicer-like
409 (Dcl) and Piwi proteins, are highly upregulated during development (Singh et al., 2021).
410 Furthermore, higher coverage of *Blepharisma* scnRNAs in longer (presumably younger)
411 IESs than in short (~older) periodic IESs mirrors that of *Paramecium*, where younger IESs
412 are more likely to require scnRNAs for efficient excision (Lhuillier-Akakpo et al., 2014; Sellis
413 et al., 2021).

414 The longer an IES, the more likely it will contain a promoter by chance or contain one from a
415 transposase gene, thus giving rise to such sRNAs. This would explain the low 24 nt sRNA
416 level of BogoMITE IESs in contrast to their autonomous counterparts (Figure 6C), though
417 removal of both is essential. In contrast to the abundant Bogo transposon 24 nt sRNAs,
418 expression of these and other transposase genes in RNA-seq is negligible (Figure S4). This
419 raises the possibility that active, transcribed *Blepharisma* transposons are in fact silenced,
420 turning most of their transcripts into 24 nt sRNAs. This is contrary to the role of scnRNAs
421 proposed to target DNA for excision, but congruent with the role of sRNAs in transposon
422 silencing in other eukaryotes, from which the scnRNA biosynthesis enzymes originated
423 (Sandoval et al., 2014).

424 *Are MITEs a missing link in the IBAF model?*

425 The prevailing Invasion-Bloom-Abdication-Fade (IBAF) model for the evolution of IESs
426 hypothesizes that they originate from cut-and-paste DNA transposons that invade and
427 proliferate ("bloom") in the germline genome (Klobutcher and Herrick, 1997). Transposon
428 proliferation stops ("abdication") when its transposase is domesticated by a host promoter,
429 releasing the transposons from purifying selection, whereupon their sequences erode by drift
430 ("fade"). Depictions of the IBAF model usually show all the transposons expressing
431 transposases during "bloom", i.e. functioning as autonomous transposons (Feng and
432 Landweber, 2021; Klobutcher and Herrick, 1997). This is reasonable for *Tetrahymena* and
433 *Oxytricha*, which have hundreds of germline-encoded transposases that vastly outnumber
434 those in the somatic genome (Table S4). However, *Blepharisma* and *Paramecium* only have
435 a few dozen transposases, although germline-limited transposases may be underestimated,
436 especially for short-read assemblies.

437 This discrepancy can be resolved by taking MITIESs (MITE IESs) into account. In
438 *Blepharisma* this is best exemplified by the few autonomous Bogo transposon copies
439 compared to thousands of non-autonomous BogoMITEs. The narrow length distribution of

440 BogoMITEs, their high sequence identity, and occasional nested insertion inside unrelated
441 IESs are the clearest illustrations to date of recent MITE proliferation. Bogo is also the first
442 Pogo/Tigger transposon found in a ciliate germline genome; this subfamily is known to be
443 especially prone to MITE formation (Feschotte and Mouchès, 2000; Guermonprez et al.,
444 2008). The prevalence of IESs bound by terminal inverted repeats, including numerous
445 palindromic IESs (Figure 2D, S2), also suggest many more *Blepharisma* IESs are MITE
446 derivatives.

447 In *Paramecium* spp., MITEs of the Thon and Merou transposons have been identified but
448 only numbered about a dozen copies per genome, and their transposases belong to a
449 different transposase family than Bogo (Figure 4). The most abundant mobile IES family in
450 *Paramecium*, FAM_2183, is probably a MITE but its autonomous counterpart was not
451 reported (Sellis et al., 2021). MITEs as transposon/IES life cycle intermediates can hence
452 explain why *Blepharisma* and *Paramecium* have few MIC-encoded transposases compared
453 to *Oxytricha* and *Tetrahymena*, but nevertheless tens of thousands of IESs.

454 MITEs also provide a mechanism for transposon/IES proliferation self limitation (Figure 7A).
455 When MITEs outnumber the autonomous transposon, active transposase protein is more
456 likely to bind to target sites in MITEs than the full length transposon (“titration”), hindering the
457 replication of the autonomous version, giving time for loss-of-function mutations to inactivate
458 the transposases (“fade”). This “vertical inactivation” scenario (Hartl et al., 1997) was already
459 discussed in the original IBAF proposal (Klobutcher and Herrick, 1997), but no plausible
460 examples from ciliates were then known.

461 *Is “genome defense” a flawed analogy?*

462 The IBAF model also does not explain how ciliates can consistently and precisely excise
463 novel mobile elements from different transposon families that invade the germline genome.
464 The domesticated excisases of *Paramecium* (Baudry et al., 2009), *Tetrahymena* (Cheng et
465 al., 2010), and *Blepharisma* (Singh et al., 2021) belong to the PiggyBac family. Except for
466 *Tetrahymena* Tpb2, PiggyBacs are known to perform seamless excision, where the host
467 sequence after transposon excision is identical to that before insertion (Chen et al., 2020).
468 This would make them the ideal progenitor for IESs within coding sequences; indeed,
469 PiggyBac transposons are also known to produce MITEs (Mitra et al., 2013; Wang et al.,
470 2010). By extension, the first IESs probably originated from PiggyBac transposons. But what
471 about subsequent invasions by other transposons that leave behind “scars” upon excision?
472 Such imprecision would cause deleterious frameshift mutations in coding regions. How can
473 they invade the germline genome and yet avoid deleterious effects?

474 Part of the answer lies in the “hijacking” model proposed from *Paramecium* (Arnaiz et al.,
475 2012; Sellis et al., 2021), whereby the domestication of PiggyBac transposase changed the
476 dynamic for subsequent transposon invasions. New transposons would persist as IESs only
477 if they also encode a seamless excisase, or if they can also be recognized and cut by the
478 exapted PiggyBac transposase. The latter favors the invasion of transposons that produce a
479 TSD containing a submotif recognized as a cut site by PiggyBac (Figure 7B). The similarity
480 between IES and transposon boundaries would hence not be due to common origin or
481 sequence evolution after IES fixation in the germline (Klobutcher and Herrick, 1997), but
482 rather because of selection for transposons whose TSDs already match the excision site
483 preferences of domesticated PiggyBac. Analogous exaptation of TSDs for excision has been
484 demonstrated in another context: independent origin of introns from MITEs in at least two
485 different eukaryotes, where one of the TSDs produced upon MITE insertion was co-opted as
486 an intron splice site (Huff et al., 2016). Cross-talk between different (albeit related)
487 transposases for MITE transposition has also been documented (Feschotte et al., 2005).

488 We further argue that “genome defense” is a teleological expression that confuses cause
489 and effect. Domesticated excisases actually facilitate mobile element accumulation in the
490 germline, by shielding them from selection by effective exclusion from the somatic genome.
491 *Tetrahymena* is the exception that proves the rule: its domesticated excisase appears to be
492 imprecise; correspondingly, most of its IESs are intergenic, because intragenic IESs have
493 been efficiently removed by selection (Cheng et al., 2016; Feng et al., 2017). The origins of
494 gene silencing by DNA methylation in vertebrates have also been reinterpreted with similar
495 reasoning. Vertebrates have high levels of CpG methylation that inactivates transposons,
496 which was thus proposed to “compensate for” transposon proliferation in eukaryotic
497 genomes (Bestor, 1990). When seen from a non-teleological perspective, it is precisely
498 because CpG-mediated transposon inactivation is so effective, preventing exposure to
499 selection, that transposons persist, leading to larger genomes (Zhou et al., 2020).

500 *Why does the Blepharisma somatic genome contain retrotransposon sequences?*
501 Transposon-related sequences are typically germline-limited in other model ciliates, which
502 was formerly interpreted as successful “genome defense” keeping them out of the somatic
503 MAC genome (Chen et al., 2014; Fillingham et al., 2004; Guérin et al., 2017; Hamilton et al.,
504 2016; Swart et al., 2013). Counter to this, we found several retrotransposon-derived
505 sequences in the *Blepharisma* MAC genome (Figure 5; Table S2). Some show signs of
506 partial excision or possible absence of the locus in part of the population, but plenty have
507 uniform coverage typical of somatic sequences.

508 Recent retrotransposon proliferation in the soma and patchy distribution of different somatic
509 transposase classes across ciliates (Table S4) (Singh et al., 2021) suggest that “genome
510 defense” is at best leaky. We conjecture that if foreign DNA lacks suitable target sites
511 recognized by the excisase, it might still be marked by scnRNAs but fail to be excised or only
512 be partially excised (e.g. the IESs in Figure 5C). Such DNA would still be deleterious if
513 inserted intragenically.

514 Somatic MACs may be unable to repress mobile elements by heterochromatinization like
515 germline MICs and other eukaryotic nuclei. In *Tetrahymena*, most MAC DNA is not
516 associated with classical heterochromatin marks (Liu et al., 2007), while in *Paramecium*
517 MACs, H3K27me3 is not associated with transcription repression, despite being a classic
518 heterochromatin mark in multicellular eukaryotes (Drews et al., 2021). In such a permissive
519 expression environment, selection against mobile elements that are not already excised as
520 IESs may be especially effective, unless they are relatively transcriptionally inactive like the
521 *Blepharisma* retroelements. On the other hand, regular *Blepharisma* stock culture passaging
522 maintains a small effective population size, which would counteract selection against mobile
523 element accumulation in the soma.

524 The genome defense model may lead one to dismiss IES retention in the somatic genome
525 as excisase inefficiency or MIC contamination of the library, however, IES excision is not all-
526 or-nothing but a continuum. Experimental evolution experiments in *Paramecium* suggest IES
527 retention variability is itself a plastic and evolvable trait with consequences for somatic
528 genotypic diversity (Catania et al., 2021; Vitali et al., 2019). Assembly algorithms tend to
529 present an oversimplified, “pristine” view of somatic genomes, because they collapse
530 repetitive and lower-coverage regions, which are characteristic of mobile elements and
531 partially retained IESs. Accurate long read sequencing, haplotype-aware assemblers, and
532 sequence graphs will all play a role in building a more realistic picture of somatic genome
533 heterogeneity.

534 *Conclusion*

535 Why do we credit developmental DNA elimination with defending the genome, when natural
536 selection has been doing the hard work? Apart from technical biases during genome
537 assembly, there is also sampling bias by using lab strains. These are often clonal and largely
538 homozygous; if so, we would not observe accumulation of strongly deleterious foreign DNA
539 that actually needs defending against, but only IESs that have reached fixation and that are
540 already efficiently excised and non-deleterious. Purifying selection against deleterious IESs
541 has had to be indirectly observed, e.g. in the lack of intragenic IESs in *Tetrahymena*, where

542 excision is imprecise (Hamilton et al., 2016), and the statistical depletion of IES-like
543 sequences in the *Paramecium* somatic genome (Swart et al., 2014). Similar evolutionary
544 logic applies to prokaryotic CRISPR defense systems, where hidden fitness costs
545 (autoimmunity) have been underestimated because those individuals are removed by
546 selection (Stern et al., 2010), hence the phenomenon is easily misinterpreted as inheritance
547 of acquired traits (Weiss, 2015). Most studies on ciliate developmental DNA elimination to
548 date have focussed on the underlying molecular mechanisms, but to understand its origins
549 and evolution we should expand our view to diverse ciliates and their germline genomes
550 from natural populations.

551 **Figure Legends**

552 **Figure 1. A “hybrid” IES length distribution with periodic length peaks for short IESs.**

553 (A) IES length histogram (0 to 500 bp (inset: full range), stacked bars for types of terminal
554 direct repeats (TDRs) at IES boundaries. Peaks for IES size classes discussed are marked.
555 (B) Comparison of cut-and-paste DNA transposons (above) and ciliate genome editing
556 (below), showing parallels between target site duplications (TSD) of transposons and
557 terminal direct repeats (TDRs) bounding IESs, and effects of precise vs. imprecise excision.
558 (C) Diagrammatic tree of ciliates (following Lynn, 2008), branch lengths arbitrary. Genera
559 with draft MIC genomes listed on right. (D) Sequence logos for MDS-IES junctions for TA-
560 bound IESs of specific size classes, centered on the “TA”. See also Figure S1.

561 **Figure 2. IESs are bounded by heterogeneous direct and inverted terminal repeats. (A)**

562 Numbers of terminal direct repeats (TDRs) per TDR length observed (blue) vs. number
563 expected by random chance if bases were independently distributed (orange). (B) Ratio of
564 observed to expected numbers of TDRs by length. (C) Length distributions of IESs
565 containing TDRs of lengths 2, 3, 4, and 5 bp; the most abundant TDR sequences per TDR
566 length are shown in color (sequences and their reverse complements are counted together,
567 because TDRs could be encountered in either orientation, e.g. TAA/TTA), simple T/A
568 alternations are in shades of blue. NB: plots in panel C have different vertical axis scales. (D)
569 Observed IESs per terminal inverted repeat (TIR) length vs. expected number by chance
570 alone. (E) Same as panel D but for *P. tetraurelia*. (F) Lengths (scatter-overlaid boxplot) of
571 IESs containing long TIRs (≥ 10 bp), grouped by their TIR sequence (rows). Each TIR-cluster
572 is annotated with the median IES length (bp), cluster size (n), TDR consensus sequence,
573 and TIR representative sequence. See also Figure S2.

574 **Figure 3. Repeat elements are abundant in long, non-periodic IESs. (A)** Total sequence

575 length annotated as interspersed repeats vs. non-repetitive, in germline-limited vs. somatic
576 parts of the genome. (B) Classification of repeat families by RepeatClassifier, and total
577 annotated length per repeat class. (C) Total sequence length (vertical axis) per IES size
578 class (horizontal axis), stacked plot of non-repetitive fraction vs. interspersed repeats, with
579 the most abundant repeat families in the four non-periodic peaks overlaid in color. Inset:
580 Distribution to 1000 bp. See also Figure S3.

581 **Figure 4. Germline-limited repeats include few autonomous transposons but many**

582 **MITEs. (A)** Phylogenetic tree of DDE/D domains for Tc1/Mariner superfamily, including *B.*
583 *stoltei* germline-limited (Bogo and BstTc1) and somatic transposases. (B) Diagram of
584 features in Bogo and BogoMITE; TSD – target site duplications, TIR – terminal inverted

585 repeats, HTH_Tnp_Tc5, DDE_1 – conserved domains. **(C)** Diagram of features in BstTc1:
586 DDE_3 – conserved domain. **(D)** Histograms of sequence divergence from repeat family
587 consensus for copies of the Bogo and BogoMITE repeat families annotated by
588 RepeatMasker; for rnd-1_family-1, most low-divergence copies (<5% divergence) were short
589 fragments, but all full-length copies were low-divergence. **(E)** Counts of transposase-related
590 domains in different ciliates from six-frame translations of somatic vs. germline-limited
591 genome sequence. See also Figure S4. **(F)** Sequence logos for Bogo and BogoMITE repeat
592 boundaries, aligned on the terminal inverted repeats (TIRs) and terminal direct repeats
593 (TDRs). 3'-boundaries have been reverse complemented to show the TIRs. Sequence logos
594 were generated from alignments of full-length, intact Bogo elements (>1.8 kbp) and
595 BogoMITEs (between 385-395 bp), with columns comprising >90% gaps removed.

596 **Figure 5. Non-LTR retrotransposon sequences in both somatic and germline**
597 **genomes.** **(A)** Phylogeny of rnd-1_family-273 and rnd-1_family-276 retrotransposon
598 sequences. **(B)** Phylogeny of rnd-4_family-193 retrotransposon sequences. **(C)** Window of
599 mapped HiFi reads from sucrose gradient-purified MACs (grey) spanning a retrotransposon
600 gene with both an AP endonuclease domain and a reverse transcriptase domain (from rnd-
601 4_family-193). Only sequence columns with < 90% gaps are shown. **(D)** Multiple sequence
602 alignment of non-LTR retrotransposon copies from rnd-1_family-273. Schematic for
603 consequences of IES excision (Contig_45). Identity scale: green=100%; gold=30-99.9%;
604 red=0-29.9%. See also Figure S5.

605 **Figure 6. Development-specific 24 nt small RNAs are likely scnRNAs in *B. stoltei*.** **(A)**
606 Read length histogram for all sRNAs in the time series. **(B)** Relative expression (RPKM
607 units, vertical axis) of 22 and 24 nt sRNAs mapping to different feature types across time
608 series: blue - IES, orange - CDS, green - all other regions not annotated as IES or CDS
609 (including UTRs and intergenic regions which are difficult to delimit exactly with available
610 data). Timing of developmental stages inferred from morphology are labeled below (Singh et
611 al., 2021). **(C)** Relative expression of 22 and 24 nt sRNAs mapping to different categories of
612 IESs: containing full-length copies of BstTc1 and Bogo transposons, at least 90% covered by
613 BogoMITE elements, IESs in the periodic length range (< 115 bp), and all other IESs (“non-
614 periodic”). **(D)** Sequence logos for 22 and 24 sRNAs mapping to CDS and IES features in
615 controls and different time points (rows). See also Figure S6.

616 **Figure 7. Model for IES evolution in a ciliate genome with an existing domesticated**
617 **excisase.** **(A)** Graphs depict IES length distribution. **(1)** Invasion of germline genome by full
618 length transposon (green); existing IESs (blue) are excised by domesticated excisase. **(2)**
619 New transposon produces MITIES which are both MITES and IESs. **(3a)** If MITIES can be

620 excised by domesticated excisase, they proliferate and titrate the progenitor transposase. (4)
621 Proliferation of MITIES favors vertical inactivation of the full length transposon; loss of
622 function stops production of new MITIES, leading to eventual decay. (3b) If the MITE cannot
623 be excised by domesticated excisase (i.e. it is not an IES), it is more likely to cause
624 deleterious mutations upon insertion, and is therefore selected against and does not reach
625 fixation. (B) If a transposon TSD contains a submotif that can be recognized by the
626 domesticated excisase, it can theoretically be excised cleanly without leaving a “footprint”,
627 avoiding potential frameshift mutations.

628 **Supplemental Figure Legends**

629 **Figure S1. Length distributions and retention scores for different IES assembly**
630 **methods, MAC library, and cryptic IESs.** **(A)** Comparison of IES reconstructions from
631 MIC-enrichment library sequenced with short reads by ParTIES (above) vs. from long reads
632 by BleTIES (below). Main panels: IES length histograms up to 500 bp, insets: IES retention
633 scores colored by TDR sequence type. Length peak at ~390 bp representing BogoMITE
634 element is present in BleTIES reconstruction but not ParTIES. **(B)** Conventional IESs:
635 retention scores computed from MAC-enriched library, sequenced with PacBio HiFi reads.
636 **(C)** “Cryptic” IESs from MAC read library: length histogram, colored by TDR sequence type.
637 **(D)** Retention scores of “cryptic IESs”. **(E)** Length distribution of “cryptic” IESs that contain
638 “TTA” or “TAA” in their TDR, detail <500 bp, inset detail <150 bp. **(F)** Sequence logos of TA-
639 bound “cryptic” IES junctions centered on the TA motif, for all cryptic IESs (above) and the
640 subset in the ~72 bp size class (below). **(G)** Mapping pileup at IES with TA-containing TDR.
641 For aligned reads in panels E and F, dots: bases identical to reference, dashes: gaps
642 relative to reference, red bar: read clipping. **(H)** Mapping pileup at IES with non-TA-
643 containing TDR.

644 **Figure S2. Palindromic IESs clustering and length distribution.** Strip plots of IES lengths
645 for palindromic IESs ($\geq 90\%$ self-alignment identity), after they have been clustered by
646 sequence identity (rows represent clusters). Each cluster is annotated with the median IES
647 length and the cluster size. Insets: **(A)** Overall sequence length distribution histogram for all
648 palindromic IESs. The most common length of palindromic IESs is ~230 bp. **(B, C)**
649 Dendrogram of sequence distance and multiple sequence alignment of palindromic IESs
650 with ~230 bp length to illustrate that they comprise several distinct clusters of sequences.

651 **Figure S3. Most abundant repeat families in non-periodic IES size classes.** **(A)** Total
652 lengths (horizontal axis) of the top ten repeat families per IES size class (panel rows). **(B)**
653 Top repeat family (by sequence length) for each IES size class (panel rows); the total length
654 covered by that repeat family within IESs vs. the lengths of those IESs is shown in red,
655 superimposed on the total sequence vs. IES length distribution of IESs in general (grey).
656 Arrowheads mark centers of the size classes. **(C)** Examples of nested repeats within IESs.
657 Nested elements can be recognized when the two outer repeat elements belong to the same
658 family and align to consecutive parts of its family’s consensus sequence, implying that the
659 inner element has likely been inserted into the middle of an existing element. Coordinates of
660 the split segments are relative to the repeat family consensus.

661 **Figure S4. Expression of genes with transposase domains.** Comparison of expression
662 levels for MAC- vs. MIC-limited transposase-related domains across developmental time
663 series; heatmap color scaled to log(transcripts per million). Domain architecture shown
664 diagrammatically.

665 **Figure S5. Non-LTR retrotransposon sequences in both somatic and germline**
666 **genomes.** **(A)** As in Figure 5A. **(B)** As in Figure 5A. Inset shows coverage across the entire
667 contig and position of the retrotransposon gene. **(C)** Alignment of MAC+IES and somatic
668 genomic sequences for Contig_44 retroelement genes from Figure 5A, showing how
669 excision of the central IES deletes part of the endonuclease domain and produces a
670 premature stop codon.

671 **Figure S6. Per-position base entropy of 22 nt and 24 nt sRNAs from developmental**
672 **time series.** Plots show conservation of 5'-U in 24 nt sRNAs. Each plot symbol represents
673 positional sequence entropy (symbol size) for a given nucleotide base (columns) and
674 position in the sRNA sequence (vertical axis) and time point (horizontal axis), in sRNAs
675 mapping to different feature types (rows).

676 **Methods**

677 General reagents were analytical grade and purchased from Sigma-Aldrich or Merck unless
678 otherwise indicated.

679 *Ciliate strains origin and cultivation*

680 The strains used and their original isolation localities were: *Blepharisma stoltei* ATCC 30299,
681 Lake Federsee, Germany (Repak, 1968); *Blepharisma stoltei* HT-IV, Aichi prefecture, Japan
682 (Harumoto et al., 1998). Methods for cell cultivation and harvesting of material for
683 sequencing are described in our sister report (Singh et al., 2021).

684 *Enrichment of micronuclei, isolation and sequencing of genomic DNA*

685 *B. stoltei* ATCC 30299 cells were harvested and cleaned to yield 400 mL of cell suspension
686 (1600 cells/mL). This suspension was twice concentrated by centrifugation (100 g; 2 min;
687 room temperature) in pear-shaped flasks and in 50 mL tubes to ~8 mL. 10 mL chilled Qiagen
688 Buffer C1 (from the Qiagen Genomic DNA Buffer Set, Qiagen no. 19060) and 30 mL chilled,
689 autoclaved deionized water were added. The suspension was mixed by gently inverting the
690 tube until no clumps of cells were visible, and then centrifuged (1300 g; 15 min; 4°C). The
691 pellet was washed with chilled 2 mL Buffer C1 and 6 mL water, mixed by pipetting gently
692 with a wide-bore pipette tip, centrifuged (1300 g; 15 min; 4°C), and resuspended with chilled
693 2 mL Buffer C1 and 6 mL water by pipetting gently with a wide-bore pipette tip.

694 The nuclei suspension was layered over a discrete sucrose gradient of 20 mL 10% (w/v)
695 sucrose in TSC medium (0.1% (v/v) Triton X-100, 0.01% (w/v) spermidine trihydrochloride
696 and 5mM CaCl₂) on top of 40% (w/v) sucrose in TSC medium (Lauth et al., 1976). Gradients
697 were centrifuged (250 g; 10 min; 4°C). 10 to 12 mL fractions were collected by careful
698 pipetting from above, and the nuclei were pelleted by centrifugation (3000 g; 10 min; 4°C).
699 DNA was extracted from pelleted nuclei with the Qiagen Genomic tips 20/G and HMW DNA
700 extraction buffer set (Qiagen no. 19060) according to the manufacturer's instructions. DNA
701 concentration was measured by the Qubit dsDNA High-Sensitivity assay kit. Fragment size
702 distribution in each sample was assessed by a Femto Pulse analyzer.

703 *B. stoltei* ATCC 30299 DNA isolated from the MIC-enriched fraction on two separate
704 occasions was used to prepare two sets of DNA sequencing libraries. A low-input PacBio
705 SMRTbell library was prepared without shearing the DNA and was sequenced in the CLR-
706 (continuous long read) sequencing mode on a PacBio Sequel II instrument. Paired-end
707 short-read libraries were prepared for four sucrose gradient fractions (top (T), middle (M),

708 middle lower (ML), bottom (B)) and sequenced with 100 bp BGI-Seq paired-end reads on a
709 BGI-Seq instrument.

710 *IES prediction from PacBio subreads*

711 PacBio subreads (CLR reads) from a MIC-enriched sample (ENA accession ERR6548140)
712 were aligned to the somatic genome reference assembly (accession PRJEB40285) (Singh et
713 al., 2021) with minimap2 v2.17-r941 (Li, 2018), with options: -ax map-pb --secondary=no --
714 MD. Mapped reads were sorted and indexed with samtools v1.10 (Li et al., 2009), and then
715 used for predicting IESs with BleTIES MILRAA v0.1.9, with options: --type subreads --
716 junction_flank 5 --min_ies_length 15 --min_break_coverage 10 --
717 subreads_pos_max_cluster_dist 5. The BleTIES pipeline has been previously described
718 (Seah and Swart, 2021) and uses spoa v4.0.3 (Vaser et al., 2017) for assembly. After
719 inspecting the initial IES predictions, we removed IES predictions with length <50 bp and
720 retention score <0.075, which we judged to be more likely to be spurious or to have
721 insufficient coverage for an accurate assembly.

722 Terminal direct repeats (TDRs) at the boundary of a given IES were defined as a sequence
723 of any length that was exactly repeated on both ends of the IES, such that one copy lies
724 within the IES, and the other in the MAC-destined sequence. Because the sequence is
725 identical, it is not possible to determine from sequencing data alone where the physical
726 excision of the IES would occur; such ambiguous excision junctions have been termed
727 “floating IESs” (Sellis et al., 2021). Therefore, TDRs were always reported starting from the
728 left-most coordinate. If the TDR sequence contained 5'-TA-3', the corresponding IES was
729 also considered to be “TA-bound”, even if the TDR was longer than the 2 bp 5'-TA-3'
730 sequence.

731 Reconstructed IES sequences were computationally inserted into the MAC assembly with
732 BleTIES Insert, to produce a hybrid MAC+IES assembly, which approximates the part of the
733 MIC genome that is collinear with the MAC.

734 *Identification and comparison of IES length classes*

735 Visual inspection of the length distribution of BleTIES-predicted IESs showed sharp peaks
736 every ~10 bp between ~65 and 115 bp. Peak calling on the graph of number of IESs (TA-
737 bound only) vs. length (bp) was performed with the function `find_peaks` from the Python
738 package `scipy.signal v1.3.1` (Virtanen et al., 2020), with height cutoff 100. The ranges for
739 each IES size class were defined with the width at half peak height. In *Paramecium*
740 *tetraurelia*, where most IESs are TA-bound, the IES termini have a short, weakly conserved

741 inverted repeat (Arnaiz et al., 2012; Klobutcher and Herrick, 1995). To search for similar
742 motifs in *B. stoltzei*, sequences flanking TA-bound IES junctions were extracted, with one
743 from each pair reverse-complemented so that the sequences were always in the orientation
744 5'-(MDS segment)-TA-(IES segment)-3'. Sequence logos of the junctions (10 bp MDS, 14 bp
745 within IES, not including the TA itself) were drawn for each IES length class with Weblogo
746 (Crooks et al., 2004). Only TA-bound IESs were used for the sequence logos because they
747 could be aligned relative to the 5'-TA-3' repeat, whereas for IESs bound by other types of
748 junctions there is no common reference point to align the boundaries of the IES.

749 *Probability of a pair of repeated sequences*

750 Under a null model where all bases in a sequence are independently and identically
751 distributed, the probability P_n of having any possible sequence of length n bounding a given
752 sequence feature (either a TDR or a TIR) is the sum of probabilities of all possible
753 sequences (each of which notated as k) of length n , squared: $P_n = \sum_{k \in K} p_k^2$, which can be
754 transformed to $P_n = (\sum_{b \in B} p_b^2)^n$, where B is the alphabet of bases and p_b is the individual
755 probability of each base. The number of possible sequences k of length n is simply $|K| = |B|^n$.

756 The probability of having a repeat of length at least 2 is equal to the probability of having a
757 repeat of length 2, because all cases of repeat length > 2 implicitly have a repeat of length =
758 2. Therefore the probability of having a repeat of length exactly n , i.e. match in bases 1 to n ,
759 and mismatch on base $n+1$ is $P_n \times \text{Pr}(\text{mismatch}) = P_n \times (1 - \sum_{b \in B} p_b^2)$. The expected
760 number of TDRs in *Blepharisma* were calculated by using the empirical base frequencies of
761 the MAC+IES genome assembly for p_b , and multiplying this probability by the number of
762 IESs.

763 *Identification of terminal inverted repeats (TIRs) and palindromes in IESs*

764 The BleTIES-assembled IES sequences for *Blepharisma* were used to identify exact,
765 ungapped terminal inverted repeats (TIRs). Starting from the ends of the IES sequence
766 immediately within the flanking TDRs, each base was compared to the reverse complement
767 of the corresponding base on the opposite end for a match, extending the TIR until a
768 mismatch was encountered, up to a maximum length of 25 bp. The same procedure was
769 used for *Paramecium tetraurelia* using IESs sequences downloaded from ParameciumDB
770 (https://paramecium.i2bc.paris-saclay.fr/files/Paramecium/tetraurelia/51/annotations/ptetraurelia_mac_51_with_ies,
772 accessed 14 October 2021), except that the coordinates of TDRs were first renumbered and
773 extended beyond the "TA" motif if possible, following the BleTIES coordinate numbering

774 convention, in case there are potential TDRs that are longer than a simple TA. The expected
775 number of TIRs of given lengths under a null model was computed as described in
776 "Probability of a pair of sequences".

777 Long TIRs (≥ 10 bp) were clustered by sequence identity to look for IESs of potentially
778 related origin, using the cluster_fast algorithm (Edgar, 2010) implemented in Vsearch
779 v2.13.6 (Rognes et al., 2016) at 80% identity and the CD-HIT definition of sequence identity
780 (-iddef 0). For each resulting cluster of similar TIRs, the cluster centroid was used as the
781 representative sequence shown in Figure TIRS. TDRs associated with each cluster's IESs
782 were grouped by length, and for each TDR length a degenerate consensus was reported
783 with the degenerate_consensus function of the Bio.motifs module in Biopython v1.74.

784 Palindromic IESs were defined as IESs that align to their own reverse complement with a
785 sequence identity $\geq 90\%$ (matching columns over sequence length); this definition was less
786 strict and permitted inexact matches unlike the TIR search, to allow for sequence divergence
787 and assembly errors. IES sequences were aligned with the PairwiseAligner function from
788 Bio.Align in BioPython v1.74, using global mode and parameter match_score = 1.0, with all
789 other scores set to zero.

790 Palindromic IESs were clustered with Vsearch cluster_fast as described above, except that
791 one sequence (BSTOLATCCIES35757) was manually removed after inspection of results
792 because it appears to contain two different nested palindromic sequences. Cluster centroids
793 were aligned pairwise as above and used to calculate a matrix of edit distances (matching
794 columns / alignment length). The distance matrix was clustered with average linkage
795 clustering to produce a sequence distance dendrogram with the functions average and
796 dendrogram from scipy.cluster.hierarchy v1.3.1 (Virtanen et al., 2020).

797 *Comparison of intragenic:intergenic IES ratios*

798 Intragenic vs. intergenic IESs were defined by overlap of predicted IES annotations with
799 "gene" feature annotations on the MAC reference (ENA accession GCA_905310155), using
800 Bedtools v2.30.0 (Quinlan and Hall, 2010) and pybedtools v0.8.1 (Dale et al., 2011).

801 To test whether the underrepresentation of IESs within gene features was statistically
802 significant, compared to the null hypothesis of IESs and gene feature locations being
803 independently distributed, we assumed that the number of intragenic IESs would follow a
804 binomial distribution with individual probability equal to the fraction of the genome that is
805 covered by gene features. The p-value of the observed number of intragenic IESs would
806 then be equal to the cumulative probability density up to and including the observed value.

807 *Developmental time series small RNA-seq*

808 Complementary mating strains *B. stoltei* ATCC 30299 and HT-IV were pre-treated with
809 Gamone 2 and Gamone 1 respectively, and then mixed to initiate conjugation as described
810 previously; sRNA and mRNA were isolated from total RNA at the same time points
811 (“Conjugation time course”, (Singh et al., 2021)). sRNA libraries were prepared with the
812 BGISeq-500 Small RNA Library protocol, which selects 18 to 30 nt sRNAs by polyacrylamide
813 gel electrophoresis, and sequenced on a BGISeq 500 instrument.

814 *Small RNA libraries mapping and comparison*

815 Small RNA libraries were mapped to the MAC+IES assembly with bowtie2 v2.4.2
816 (Langmead and Salzberg, 2012) using default parameters. Total reads mapping to CDS vs.
817 IES features were counted with featureCounts v2.0.1 (Liao et al., 2014). To account for
818 different total sequence lengths represented by CDSs, IESs, and intergenic regions, the read
819 counts were converted to relative expression values (reads per kbp transcript per million
820 reads mapped, RPKM (Mortazavi et al., 2008)) using the total lengths of each feature type
821 in place of transcript length in the original definition of RPKM, with the following formula:

822 $10^9 \times (\text{reads mapped to feature type}) / (\text{total reads mapped} \times \text{total length of feature type})$.

823 Reads mapping to CDSs, IESs, or neither (but excluding tRNA and rRNA features) were
824 extracted with samtools view, with 22 and 24 nt reads extracted to separate files. Read
825 length distributions for each sequence length and feature type were summarized with
826 samtools stats.

827 *mRNA-seq read mapping*

828 To permit correct mapping of tiny introns RNA-seq data was mapped to the MAC genome
829 using a version of Hisat2 (Kim et al., 2019) with the static variable minIntronLen in hisat2.cpp
830 in the source code lowered to 9 from 20 (<https://github.com/Swart-lab/hisat2/>; commit hash
831 86527b9). Hisat2 was run with default parameters and parameters --min-intronlen 9 --max-
832 intronlen 30. It should be noted that spliced-reads do not span introns that are interrupted by
833 an IES due to the low maximum length, however such cases are not expected to occur
834 often.

835 *Gene prediction and domain annotation*

836 To predict protein-coding genes in IESs, non-IES nucleotides in the MAC+IES assembly
837 were first masked with 'N's. The Intronarrator pipeline (<https://github.com/Swart->

838 [lab/Intronarrator](#)), a wrapper around Augustus (Stanke and Waack, 2003), was run with the
839 same parameters as for the *B. stoltzei* MAC genome, i.e. a cut-off of 0.2 for the fraction of
840 spliced reads covering a potential intron, and ≥ 10 reads to call an intron (Singh et al., 2021).
841 Without masking, gene predictions around IESs were poor, with genuine MDS-limited genes
842 (with high RNA-seq coverage) frequently incorrectly extended into IES regions. The
843 possibility of genes spanning IES boundaries was not catered for.

844 Domain annotations for diagrams were generated with the InterproScan 5.44-79.0 pipeline
845 (Jones et al., 2014) incorporating HMMER (v3.3, Nov 2019, hmmscan) (Eddy, 2011).

846 For comparison of transposase-related domain content in MAC vs. MIC, reference
847 sequences were obtained from public databases for *Paramecium tetraurelia*
848 (https://paramecium.i2bc.paris-saclay.fr/files/Paramecium/tetraurelia/51/annotations/ptetraurelia_mac_51_with_ies/),
849 *Tetrahymena thermophila* (<http://www.ciliate.org/system/downloads/3-upd-cds-fasta-2021.fasta>), and *Oxytricha trifallax*
850 (https://oxy.ciliate.org/common/downloads/oxy/Oxy2020_CDS.fasta,
851 https://knot.math.usf.edu/mds_ies_db/data/gff/oxytri_mic_non_mds.gff). IES gene prediction
852 in *Blepharisma* was hampered by intermittent polynucleotide tract length errors, due to the
853 assembly of IESs from PacBio CLR reads. To mitigate this, a six-frame translation of the
854 MIC-limited genome regions was performed using a custom script, then scanned against the
855 Pfam-A database 32.0 (release 9) (Mistry et al., 2021) with hmmscan (HMMER), with i-E-
856 value cutoff $\leq 10^{-6}$. Domains were annotated from the MAC genome with three different
857 methods: using published coding sequences (“cds” in Table S4), six-frame translations
858 (“6ft”), and six-frame translations split on stop codons (“6ft_split”).
859
860

861 *Repeat annotation and clustering*

862 To evaluate the repetitive sequence content in IESs, we applied a repeat prediction and
863 annotation to the combined MAC+IES assembly, instead of clustering whole IESs by
864 sequence similarity. This was so that: (i) Repeats shared between the MDS and IES could
865 be identified. (ii) Complex structures such as nested repeats could be detected. (iii) Repeat
866 families were predicted *de novo*, permitting discovery of novel elements. (iv) Repeats did not
867 have to be strictly identical to be grouped into a family.

868 Interspersed repeat element families were predicted from the MAC+IES genome assembly
869 with RepeatModeler v2.0.1 (default settings, random number seed 12345) with the following
870 dependencies: rmlblast v2.9.0+ (<http://www.repeatmasker.org/RMBlast.html>), TRF 4.09
871 (Benson, 1999), RECON (Bao and Eddy, 2002), RepeatScout 1.0.6 (Price et al., 2005),

872 RepeatMasker v4.1.1 (<http://www.repeatmasker.org/RMDownload.html>). Repeat families
873 were also classified in the pipeline by RepeatClassifier v2.0.1 through comparison against
874 RepeatMasker's repeat protein database and the Dfam database. Consensus sequences of
875 the predicted repeat families, produced by RepeatModeler, were then used to annotate
876 repeats in the MAC+IES assembly with RepeatMasker, using rmblast as the search engine.

877 The consensus sequences for rnd-1_family-0 and rnd-1_family-73 were manually curated for
878 downstream analyses. For rnd-1_family-0 (BogoMITE) the original consensus predicted by
879 RepeatModeler for rnd-1_family-0 was 784 bp long, but this was a spurious inverted
880 duplication of the basic ~390 bp unit; the duplication had been favored in the construction of
881 the consensus because RepeatModeler attempts to find the longest possible match to
882 represent each family. For family rnd-1_family-73 (containing BstTc1 transposon), the actual
883 repeat unit was longer than the boundaries predicted by RepeatModeler. In most IESs that
884 contain this repeat (19 of 22), it was flanked by and partially overlapping with short repeat
885 elements from families rnd-4_family-1308 and rnd-1_family-117, which are spurious
886 predictions. Repeat unit boundaries were manually defined by alignment of full length
887 repeats and their flanking regions.

888 Terminal inverted repeats of selected repeat element families were identified by aligning the
889 consensus sequence from RepeatModeler, and/or selected full-length elements, with their
890 respective reverse complements using MAFFT (Katoh and Standley, 2013) (plugin version
891 distributed with Geneious).

892 TIRs from the Dfam DNA transposon termini signatures database (v1.1,
893 https://www.dfam.org/releases/dna_termini_1.1/dna_termini_1.1.hmm.gz) (Storer et al.,
894 2021) were searched with hmmsearch (HMMer v3.2.1) against the IES sequences, to
895 identify matches to TIR signatures of major transposon subfamilies.

896 *Phylogenetic analysis of Tc1/Mariner-superfamily transposases*
897 Repeat family rnd-1_family-1 was initially classified as a "TcMar/Tc2" family transposable
898 element by RepeatClassifier. 30 full length copies (>95% of the consensus length) were
899 annotated by RepeatMasker, all of which fell within IESs and contained CDS predictions.
900 However, CDSs were of varying lengths because of frameshifts caused by indels, which may
901 be biological or due to assembly error; nonetheless, the nucleotide sequences had high
902 pairwise identity (about 98%, except for one outlier). We chose BSTOLATCC_MIC4025 as
903 the representative CDS sequence for phylogenetic analysis because it was one of the
904 longest predicted and both predicted Pfam domains (HTH_Tnp_Tc5 and DDE_1) appeared
905 to be intact.

906 For repeat family rnd-1_family-73, the initial classification was “DNA/TcMar-Tc1”. As
907 described above, CDS predictions were of variable lengths, and the longest CDSs were not
908 necessarily the best versions of the sequence because of potential frameshift errors. For
909 phylogenetic analysis, we chose BSTOLATCC_MIC48344 as the representative copy,
910 because a complete *DDE_3* Pfam domain was predicted by HMMER that could align with
911 other DDE/D domains from reference alignments described below.

912 The representative CDSs of the rnd-1_family-1 and rnd-1_family-73 transposases were
913 aligned with MAFFT (E-INS-i mode) against a published DDE/D domain reference alignment
914 (Supporting Information Dataset_S01 of (Yuan and Wessler, 2011)) to identify the residues
915 at the conserved catalytic triad and the amino acid distance between the conserved
916 residues.

917 For the phylogenetic analysis of the DDE/D domains in the Tc1/Mariner superfamily, both
918 MAC- and MIC-limited genes containing *DDE_1* and *DDE_3* domains were separately
919 aligned for each Pfam domain with MAFFT v7.450 (algorithm: E-INS-i, scoring matrix:
920 BLOSUM62, Gap open penalty: 1.53) and trimmed to the DDE/D domain with Geneious and
921 incomplete domains were removed. As reference, 204 sequences from a published
922 alignment (Additional File 4 of (Dupeyron et al., 2020)) were selected to represent the 53
923 groups defined in that study, choosing only complete domains (with all three conserved
924 catalytic residues) and all *Oxytricha trifallax* TBE and *Euplotes crassus* Tec transposase
925 sequences. Thirteen *Paramecium* Tc1/Mariner DDE/D domain consensus sequences were
926 added (Additional File 4 of (Guérin et al., 2017)). Sequences were aligned with MAFFT (E-
927 INS-i mode) and trimmed to only the DDE/D domain boundaries with Geneious. Phylogeny
928 was inferred with FastTree2 v2.1.11 (Price et al., 2010) using the WAG substitution model.
929 The tree was visualized with Dendroscope v3.5.10 (Huson and Scornavacca, 2012), rooted
930 with bacterial IS630 sequences as outgroup

931 *Phylogenetic analysis of retrotransposon-derived sequences*

932 All the nucleotide sequences ≥500 bp for the repeat families identified by RepeatClassifier
933 as LINE or LINE/RTE-x: rnd-1_family-273, rnd-1_family-276 and rnd-4_family-193 were
934 aligned to one another with MAFFT v7.450 (automatic algorithm) (Katoh and Standley,
935 2013), with the option to automatically determine sequence direction (via the MAFFT plugin
936 for Geneious Prime (Kearse et al., 2012)). Since the alignment appeared to be poor between
937 the rnd-4-family-193 sequences and the rest, we generated separate alignments for this
938 family from the other two, also with MAFFT (E-INS-i mode). Maximum likelihood phylogenies

939 were generated by PhyML (Guindon et al., 2010) version 3.3.20180621 with the HKY85
940 substitution model.

941 **Data availability**

942 Annotated draft MAC+IES genome for *Blepharisma stoltei* strain ATCC 30299 (European
943 Nucleotide Archive (ENA) Bioproject PRJEB46944 under accession GCA_914767885). IES
944 sequences and annotations, MAC gene predictions with intervening IESs, and gene
945 predictions within IESs (EDMOND, doi:[10.17617/3.83](https://doi.org/10.17617/3.83); genome browser,
946 <https://bleph.ciliate.org>. Sequencing data for the MIC-enriched nuclear fractions (PacBio
947 CLR reads: ENA accession ERR6510520 and ERR6548140; BGI-seq reads: ENA
948 accessions ERR6474675, ERR6496962, ERR6497067, ERR6501836). Small RNA libraries
949 from developmental time series (ENA Bioproject PRJEB47200 under accessions
950 ERR6565537-ERR6565561). Repeat family predictions and annotations by RepeatModeler
951 and RepeatMasker (EDMOND, doi:[10.17617/3.82](https://doi.org/10.17617/3.82)). Alignment and phylogeny of Tc1/Mariner
952 superfamily transposase domains (EDMOND, doi:[10.17617/3.JLWBFM](https://doi.org/10.17617/3.JLWBFM))

953 **Acknowledgements**

954 We thank C. Lanz for assistance with DNA quality control, A. Noll for computer system
955 administration, L.A. Klobutcher, G. Herrick, O. Weichenrieder and A. Streit for helpful
956 discussions. Research reported in this publication was supported by the National Institutes
957 of Health (award No. P40OD010964) to N.A.S and the Max Planck Society.

958 **Author contributions**

959 Data curation: B.K.B.S., E.C.S., M.S.1. Formal analysis: B.K.B.S., M.S.1, E.C.S., C.W.
960 Funding acquisition: N.S., E.C.S. Investigation: B.K.B.S., M.S.1., E.C.S. Methodology:
961 B.K.B.S., M.S.1., E.C.S., M.S.2, T.H., A.S., C.E. Resources: M.S.2., T.H., C.W., B.H., A.B.,
962 N.S. Software: B.K.B.S., E.C.S., M.S.1, A.B., N.S. Supervision: M.S.2, T.H., E.C.S.
963 Visualization: B.K.B.S., M.S.1., E.C.S. Writing – original draft: B.K.B.S., M.S.1., E.C.S.
964 Writing – review & editing: B.K.B.S., M.S.1, E.C.S., M.S.2, T.H., A.S., C.W., N.S.

965 **Declaration of interests**

966 The authors declare no competing interests.

967 **References**

968 Arnaiz, O., Mathy, N., Baudry, C., Malinsky, S., Aury, J.-M., Denby Wilkes, C., Garnier, O.,
969 Labadie, K., Lauderdale, B.E., Le Mouël, A., et al. (2012). The *Paramecium* germline
970 genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal
971 eliminated sequences. *PLoS Genet.* 8, e1002984.

972 Bao, Z., and Eddy, S.R. (2002). Automated de novo identification of repeat sequence
973 families in sequenced genomes. *Genome Res.* 12, 1269–1276.

974 Baudry, C., Malinsky, S., Restituito, M., Kapusta, A., Rosa, S., Meyer, E., and Bétermier, M.
975 (2009). PiggyMac, a domesticated piggyBac transposase involved in programmed genome
976 rearrangements in the ciliate *Paramecium tetraurelia*. *Genes Dev.* 23, 2478–2483.

977 Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. *Nucleic
978 Acids Res.* 27, 573–580.

979 Bestor, T.H. (1990). DNA methylation: evolution of a bacterial immune function into a
980 regulator of gene expression and genome structure in higher eukaryotes. *Philos. Trans. R.
981 Soc. Lond. B Biol. Sci.* 326, 179–187.

982 Bischerour, J., Bhullar, S., Denby Wilkes, C., Régnier, V., Mathy, N., Dubois, E., Singh, A.,
983 Swart, E., Arnaiz, O., Sperling, L., et al. (2018). Six domesticated PiggyBac transposases
984 together carry out programmed DNA elimination in *Paramecium*. *ELife* 7.

985 Catania, F., Rothering, R., and Vitali, V. (2021). One cell, two gears: extensive somatic
986 genome plasticity accompanies high germline genome stability in *Paramecium*. *Genome
987 Biol. Evol.* 13.

988 Chalker, D.L., Meyer, E., and Mochizuki, K. (2013). Epigenetics of ciliates. *Cold Spring Harb.
989 Perspect. Biol.* 5, a017764.

990 Cheng, C.-Y., Vogt, A., Mochizuki, K., and Yao, M.-C. (2010). A domesticated piggyBac
991 transposase plays key roles in heterochromatin dynamics and DNA cleavage during
992 programmed DNA deletion in *Tetrahymena thermophila*. *Mol. Biol. Cell* 21, 1753–1762.

993 Cheng, C.-Y., Young, J.M., Lin, C.-Y.G., Chao, J.-L., Malik, H.S., and Yao, M.-C. (2016). The
994 piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like
995 excision during the developmental rearrangement of key genes in *Tetrahymena thermophila*.
996 *Genes Dev.* 30, 2724–2736.

997 Chen, Q., Luo, W., Veach, R.A., Hickman, A.B., Wilson, M.H., and Dyda, F. (2020).
998 Structural basis of seamless excision and specific targeting by piggyBac transposase. *Nat.
999 Commun.* 11, 3446.

1000 Chen, X., Bracht, J.R., Goldman, A.D., Dolzhenko, E., Clay, D.M., Swart, E.C., Perlman,
1001 D.H., Doak, T.G., Stuart, A., Amemiya, C.T., et al. (2014). The architecture of a scrambled
1002 genome reveals massive levels of genomic rearrangement during development. *Cell* 158,
1003 1187–1198.

1004 Coyne, R.S., Lhuillier-Akakpo, M., and Duharcourt, S. (2012). RNA-guided DNA
1005 rearrangements in ciliates: is the best genome defence a good offence? *Biol. Cell* 104, 309–
1006 325.

1007 Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004). WebLogo: a sequence
1008 logo generator. *Genome Res.* 14, 1188–1190.

1009 Dale, R.K., Pedersen, B.S., and Quinlan, A.R. (2011). Pybedtools: a flexible Python library
1010 for manipulating genomic datasets and annotations. *Bioinformatics* 27, 3423–3424.

1011 Drews, F., Salhab, A., Karunanithi, S., Cheaib, M., Jung, M., Schulz, M.H., and Simon, M.
1012 (2021). Broad domains of histone marks in the highly compact *Paramecium* macronuclear
1013 genome. *BioRxiv*.

1014 Dupeyron, M., Baril, T., Bass, C., and Hayward, A. (2020). Phylogenetic analysis of the
1015 Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. *Mob. DNA*
1016 11, 21.

1017 Eddy, S.R. (2011). Accelerated profile HMM searches. *PLoS Comput. Biol.* 7, e1002195.

1018 Edgar, R.C. (2010). Search and clustering orders of magnitude faster than BLAST.
1019 *Bioinformatics* 26, 2460–2461.

1020 Fang, W., Wang, X., Bracht, J.R., Nowacki, M., and Landweber, L.F. (2012). Piwi-interacting
1021 RNAs protect DNA against loss during *Oxytricha* genome rearrangement. *Cell* 151, 1243–
1022 1255.

1023 Feng, Y., and Landweber, L.F. (2021). Transposon debris in ciliate genomes. *PLoS Biol.* 19,
1024 e3001354.

1025 Feng, L., Wang, G., Hamilton, E.P., Xiong, J., Yan, G., Chen, K., Chen, X., Dui, W.,
1026 Plemens, A., Khadr, L., et al. (2017). A germline-limited piggyBac transposase gene is
1027 required for precise excision in *Tetrahymena* genome rearrangement. *Nucleic Acids Res.* 45,
1028 9481–9502.

1029 Feschotte, C., and Mouchès, C. (2000). Evidence that a family of miniature inverted-repeat
1030 transposable elements (MITEs) from the *Arabidopsis thaliana* genome has arisen from a
1031 pogo-like DNA transposon. *Mol. Biol. Evol.* 17, 730–737.

1032 Feschotte, C., Zhang, X., and Wessler, S.R. (2002). Miniature inverted-repeat transposable

1033 elements and their relationship to established DNA transposons. In *Mobile DNA II*, N.L.
1034 Craig, R. Craigie, M. Gellert, and A.M. Lambowitz, eds. (Washington, D.C.: ASM Press), pp.
1035 1147–1158.

1036 Feschotte, C., Osterlund, M.T., Peeler, R., and Wessler, S.R. (2005). DNA-binding specificity
1037 of rice mariner-like transposases and interactions with Stowaway MITEs. *Nucleic Acids Res.*
1038 33, 2153–2165.

1039 Fillingham, J.S., Thing, T.A., Vythilingum, N., Keuroghlian, A., Bruno, D., Golding, G.B., and
1040 Pearlman, R.E. (2004). A non-long terminal repeat retrotransposon family is restricted to the
1041 germ line micronucleus of the ciliated protozoan *Tetrahymena thermophila*. *Eukaryotic Cell*
1042 3, 157–169.

1043 Fritz, G. (2000). Human APE/Ref-1 protein. *Int. J. Biochem. Cell Biol.* 32, 925–929.

1044 Gao, F., and Katz, L.A. (2014). Phylogenomic analyses support the bifurcation of ciliates into
1045 two major clades that differ in properties of nuclear division. *Mol. Phylogenet. Evol.* 70, 240–
1046 243.

1047 Gao, B., Wang, Y., Diaby, M., Zong, W., Shen, D., Wang, S., Chen, C., Wang, X., and Song,
1048 C. (2020). Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons,
1049 revealing recurrent domestication events in vertebrates. *Mob. DNA* 11, 25.

1050 Giese, A.C. (1973). *Blepharisma: The Biology of a Light-sensitive Protozoan* (Stanford
1051 University Press).

1052 Grewal, S.I.S., and Jia, S. (2007). Heterochromatin revisited. *Nat. Rev. Genet.* 8, 35–46.

1053 Guérin, F., Arnaiz, O., Boggetto, N., Denby Wilkes, C., Meyer, E., Sperling, L., and
1054 Duharcourt, S. (2017). Flow cytometry sorting of nuclei enables the first global
1055 characterization of *Paramecium* germline DNA and transposable elements. *BMC Genomics*
1056 18, 327.

1057 Guermonprez, H., Loot, C., and Casacuberta, J.M. (2008). Different strategies to persist: the
1058 pogo-like Lemi1 transposon produces miniature inverted-repeat transposable elements or
1059 typical defective elements in different plant genomes. *Genetics* 180, 83–92.

1060 Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010).
1061 New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
1062 performance of PhyML 3.0. *Syst. Biol.* 59, 307–321.

1063 Hamilton, E.P., Kapusta, A., Huvos, P.E., Bidwell, S.L., Zafar, N., Tang, H., Hadjithomas, M.,
1064 Krishnakumar, V., Badger, J.H., Caler, E.V., et al. (2016). Structure of the germline genome
1065 of *Tetrahymena thermophila* and relationship to the massively rearranged somatic genome.

1066 ELife 5.

1067 Han, J.S. (2010). Non-long terminal repeat (non-LTR) retrotransposons: mechanisms, recent
1068 developments, and unanswered questions. *Mob. DNA* 1, 15.

1069 Hartl, D.L., Lohe, A.R., and Lozovskaya, E.R. (1997). Modern thoughts on an acentric
1070 marinere: function, evolution, regulation. *Annu. Rev. Genet.* 31, 337–358.

1071 Harumoto, T., Miyake, A., Ishikawa, N., Sugabayashi, R., Zenfuku, K., and Ito, H. (1998).
1072 Chemical defense by means of pigmented extrusomes in the ciliate *Blepharisma japonicum*.
1073 *Eur. J. Protistol.* 34, 458–470.

1074 Herrick, G., Cartinhour, S., Dawson, D., Ang, D., Sheets, R., Lee, A., and Williams, K.
1075 (1985). Mobile elements bounded by C4A4 telomeric repeats in *Oxytricha fallax*. *Cell* 43,
1076 759–768.

1077 Huff, J.T., Zilberman, D., and Roy, S.W. (2016). Mechanism for DNA transposons to
1078 generate introns on genomic scales. *Nature* 538, 533–536.

1079 Huson, D.H., and Scornavacca, C. (2012). Dendroscope 3: an interactive tool for rooted
1080 phylogenetic trees and networks. *Syst. Biol.* 61, 1061–1067.

1081 Jahn, C.L., Doktor, S.Z., Frels, J.S., Jaraczewski, J.W., and Krikau, M.F. (1993). Structures
1082 of the *Euplotes crassus* Tec1 and Tec2 elements: identification of putative transposase
1083 coding regions. *Gene* 133, 71–78.

1084 Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen,
1085 J., Mitchell, A., Nuka, G., et al. (2014). InterProScan 5: genome-scale protein function
1086 classification. *Bioinformatics* 30, 1236–1240.

1087 Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software version
1088 7: improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780.

1089 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S.,
1090 Cooper, A., Markowitz, S., Duran, C., et al. (2012). Geneious Basic: an integrated and
1091 extendable desktop software platform for the organization and analysis of sequence data.
1092 *Bioinformatics* 28, 1647–1649.

1093 Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based genome
1094 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* 37, 907–915.

1095 Klobutcher, L.A., and Herrick, G. (1995). Consensus inverted terminal repeat sequence of
1096 *Paramecium* IESs: resemblance to termini of Tc1-related and *Euplotes* Tec transposons.
1097 *Nucleic Acids Res.* 23, 2006–2013.

1098 Klobutcher, L.A., and Herrick, G. (1997). Developmental genome reorganization in ciliated

1099 protozoa: the transposon link. *Prog. Nucleic Acid Res. Mol. Biol.* 56, 1–62.

1100 Kubota, T., Tokoroyama, T., Tsukuda, Y., Koyama, H., and Miyake, A. (1973). Isolation and
1101 structure determination of blepharismin, a conjugation initiating gamone in the ciliate
1102 blepharisma. *Science* 179, 400–402.

1103 Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. *Nat.*
1104 *Methods* 9, 357–359.

1105 Lauth, M.R., Spear, B.B., Heumann, J., and Prescott, D.M. (1976). DNA of ciliated protozoa:
1106 DNA sequence diminution during macronuclear development of *Oxytricha*. *Cell* 7, 67–74.

1107 Le Mouël, A., Butler, A., Caron, F., and Meyer, E. (2003). Developmentally regulated
1108 chromosome fragmentation linked to imprecise elimination of repeated sequences in
1109 paramecia. *Eukaryotic Cell* 2, 1076–1090.

1110 Lepère, G., Nowacki, M., Serrano, V., Gout, J.-F., Guglielmi, G., Duharcourt, S., and Meyer,
1111 E. (2009). Silencing-associated and meiosis-specific small RNA pathways in *Paramecium*
1112 *tetraurelia*. *Nucleic Acids Res.* 37, 903–915.

1113 Lhuillier-Akakpo, M., Frapparti, A., Denby Wilkes, C., Matelot, M., Vervoort, M., Sperling, L.,
1114 and Duharcourt, S. (2014). Local effect of enhancer of zeste-like reveals cooperation of
1115 epigenetic and cis-acting determinants for zygotic genome rearrangements. *PLoS Genet.*
1116 10, e1004665.

1117 Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose
1118 program for assigning sequence reads to genomic features. *Bioinformatics* 30, 923–930.

1119 Liu, Y., Taverna, S.D., Muratore, T.L., Shabanowitz, J., Hunt, D.F., and Allis, C.D. (2007).
1120 RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA
1121 elimination in *Tetrahymena*. *Genes Dev.* 21, 1530–1545.

1122 Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34,
1123 3094–3100.

1124 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,
1125 G., Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009). The Sequence
1126 Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078–2079.

1127 Lynn, D.H. (2010). *The Ciliated Protozoa* (Dordrecht: Springer Netherlands).

1128 Malone, C.D., Anderson, A.M., Motl, J.A., Rexer, C.H., and Chalker, D.L. (2005). Germ line
1129 transcripts are processed by a Dicer-like protein that is essential for developmentally
1130 programmed genome rearrangements of *Tetrahymena thermophila*. *Mol. Cell. Biol.* 25,
1131 9151–9164.

1132 Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L.,
1133 Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., et al. (2021). Pfam: The protein
1134 families database in 2021. *Nucleic Acids Res.* **49**, D412–D419.

1135 Mitra, R., Li, X., Kapusta, A., Mayhew, D., Mitra, R.D., Feschotte, C., and Craig, N.L. (2013).
1136 Functional characterization of piggyBat from the bat *Myotis lucifugus* unveils an active
1137 mammalian DNA transposon. *Proc Natl Acad Sci USA* **110**, 234–239.

1138 Miyake, A., and Beyer, J. (1974). Blepharmone: a conjugation-inducing glycoprotein in the
1139 ciliate blepharisma. *Science* **185**, 621–623.

1140 Miyake, A., Rivola, V., and Harumoto, T. (1991). Double paths of macronucleus
1141 differentiation at conjugation in *Blepharisma japonicum*. *Eur. J. Protistol.* **27**, 178–200.

1142 Mochizuki, K., and Gorovsky, M.A. (2005). A Dicer-like protein in *Tetrahymena* has distinct
1143 functions in genome rearrangement, chromosome segregation, and meiotic prophase.
1144 *Genes Dev.* **19**, 77–89.

1145 Mochizuki, K., and Kurth, H.M. (2013). Loading and pre-loading processes generate a
1146 distinct siRNA population in *Tetrahymena*. *Biochem. Biophys. Res. Commun.* **436**, 497–502.

1147 Mochizuki, K., Fine, N.A., Fujisawa, T., and Gorovsky, M.A. (2002). Analysis of a piwi-related
1148 gene implicates small RNAs in genome rearrangement in tetrahymena. *Cell* **110**, 689–699.

1149 Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and
1150 quantifying mammalian transcriptomes by RNA-Seq. *Nat. Methods* **5**, 621–628.

1151 Nowacki, M., Higgins, B.P., Maquilan, G.M., Swart, E.C., Doak, T.G., and Landweber, L.F.
1152 (2009). A functional role for transposases in a large eukaryotic genome. *Science* **324**, 935–
1153 938.

1154 Prescott, D.M., and Greslin, A.F. (1992). Scrambled actin I gene in the micronucleus of
1155 *Oxytricha nova*. *Dev. Genet.* **13**, 66–74.

1156 Price, A.L., Jones, N.C., and Pevzner, P.A. (2005). De novo identification of repeat families
1157 in large genomes. *Bioinformatics* **21 Suppl 1**, i351–8.

1158 Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2 — approximately maximum-
1159 likelihood trees for large alignments. *PLoS ONE* **5**, e9490.

1160 Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing
1161 genomic features. *Bioinformatics* **26**, 841–842.

1162 Repak, A.J. (1968). Encystment and excystment of the heterotrichous ciliate *Blepharisma*
1163 *stoltei* Isquith. *Journal of Protozoology* **5**, 407–412.

1164 Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a versatile

1165 open source tool for metagenomics. *PeerJ* 4, e2584.

1166 Rzeszutek, I., Maurer-Alcalá, X.X., and Nowacki, M. (2020). Programmed genome
1167 rearrangements in ciliates. *Cell. Mol. Life Sci.* 77, 4615–4629.

1168 Sandoval, P.Y., Swart, E.C., Arambasic, M., and Nowacki, M. (2014). Functional
1169 diversification of Dicer-like proteins and small RNAs required for genome sculpting. *Dev. Cell*
1170 28, 174–188.

1171 Seah, B.K.B., and Swart, E.C. (2021). BleTIES: Annotation of natural genome editing in
1172 ciliates using long read sequencing. *Bioinformatics* 37, 3929–3931.

1173 Sellis, D., Guérin, F., Arnaiz, O., Pett, W., Lerat, E., Boggetto, N., Krenek, S., Berendonk, T.,
1174 Couloux, A., Aury, J.-M., et al. (2021). Massive colonization of protein-coding exons by
1175 selfish genetic elements in *Paramecium* germline genomes. *PLoS Biol.* 19, e3001309.

1176 Singh, M., Seah, B.K.B., Emmerich, C., Singh, A., Woehle, C., Huettel, B., Byerly, A., Stover,
1177 N.A., Sugiura, M., Harumoto, T., et al. (2021). The *Blepharisma stoltei* macronuclear
1178 genome: towards the origins of whole genome reorganization. *BioRxiv*.

1179 Stanke, M., and Waack, S. (2003). Gene prediction with a hidden Markov model and a new
1180 intron submodel. *Bioinformatics* 19 *Suppl* 2, ii215-25.

1181 Stern, A., Keren, L., Wurtzel, O., Amitai, G., and Sorek, R. (2010). Self-targeting by CRISPR:
1182 gene regulation or autoimmunity? *Trends Genet.* 26, 335–340.

1183 Storer, J., Hubley, R., Rosen, J., Wheeler, T.J., and Smit, A.F. (2021). The Dfam community
1184 resource of transposable element families, sequence models, and genome annotations.
1185 *Mob. DNA* 12, 2.

1186 Sugiura, M., and Harumoto, T. (2001). Identification, characterization, and complete amino
1187 acid sequence of the conjugation-inducing glycoprotein (blepharmone) in the ciliate
1188 *Blepharisma japonicum*. *Proc Natl Acad Sci USA* 98, 14446–14451.

1189 Swart, E.C., Bracht, J.R., Magrini, V., Minx, P., Chen, X., Zhou, Y., Khurana, J.S., Goldman,
1190 A.D., Nowacki, M., Schotanus, K., et al. (2013). The *Oxytricha trifallax* macronuclear
1191 genome: a complex eukaryotic genome with 16,000 tiny chromosomes. *PLoS Biol.* 11,
1192 e1001473.

1193 Swart, E.C., Wilkes, C.D., Sandoval, P.Y., Arambasic, M., Sperling, L., and Nowacki, M.
1194 (2014). Genome-wide analysis of genetic and epigenetic control of programmed DNA
1195 deletion. *Nucleic Acids Res.* 42, 8970–8983.

1196 Taverna, S.D., Coyne, R.S., and Allis, C.D. (2002). Methylation of histone h3 at lysine 9
1197 targets programmed DNA elimination in tetrahymena. *Cell* 110, 701–711.

1198 Udomkit, A., Forbes, S., Dalgleish, G., and Finnegan, D.J. (1995). BS a novel LINE-like
1199 element in *Drosophila melanogaster*. Nucleic Acids Res. 23, 1354–1358.

1200 Vaser, R., Sović, I., Nagarajan, N., and Šikić, M. (2017). Fast and accurate de novo genome
1201 assembly from long uncorrected reads. Genome Res. 27, 737–746.

1202 Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D.,
1203 Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al. (2020). SciPy 1.0: fundamental
1204 algorithms for scientific computing in Python. Nat. Methods 17, 261–272.

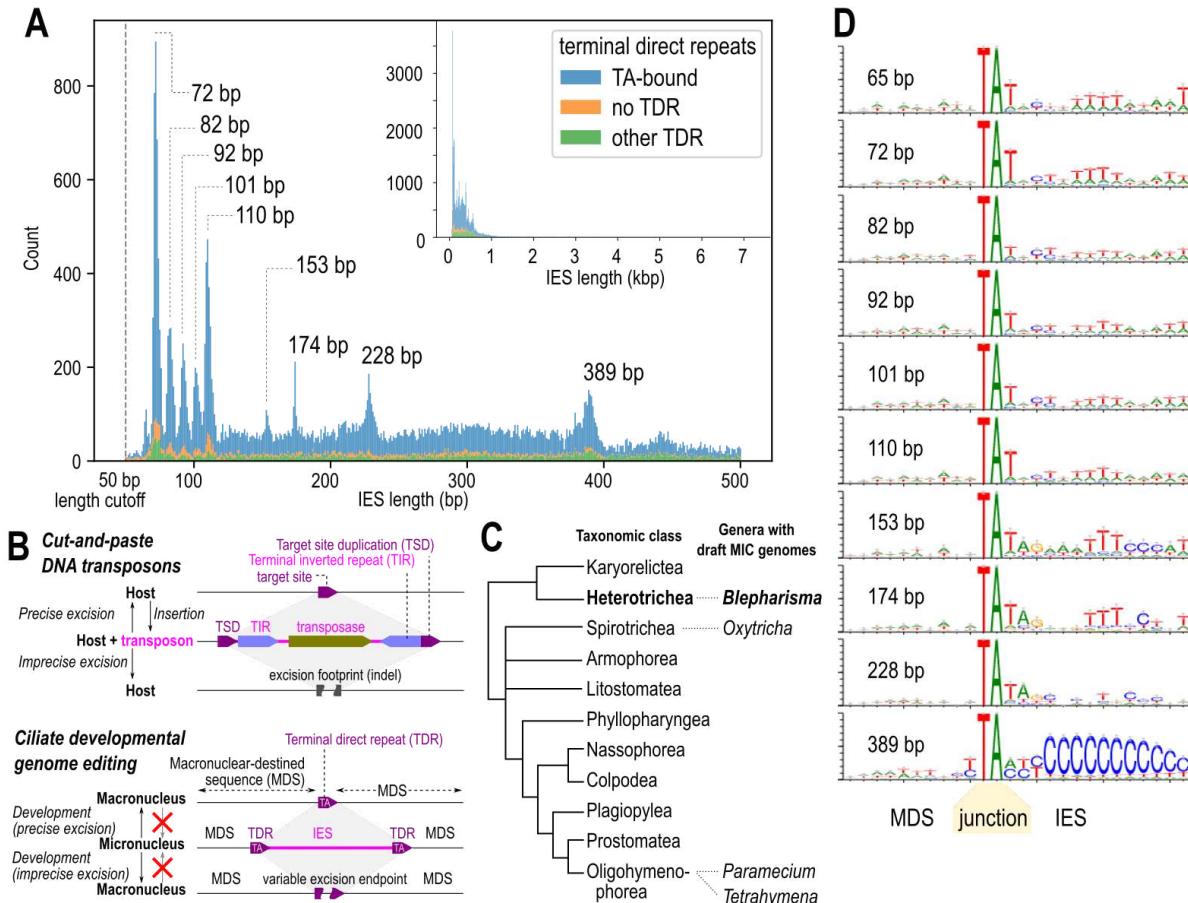
1205 Vitali, V., Hagen, R., and Catania, F. (2019). Environmentally induced plasticity of
1206 programmed DNA elimination boosts somatic variability in *Paramecium tetraurelia*. Genome
1207 Res. 29, 1693–1704.

1208 Vogt, A., and Mochizuki, K. (2013). A domesticated PiggyBac transposase interacts with
1209 heterochromatin and catalyzes reproducible DNA elimination in *Tetrahymena*. PLoS Genet.
1210 9, e1004032.

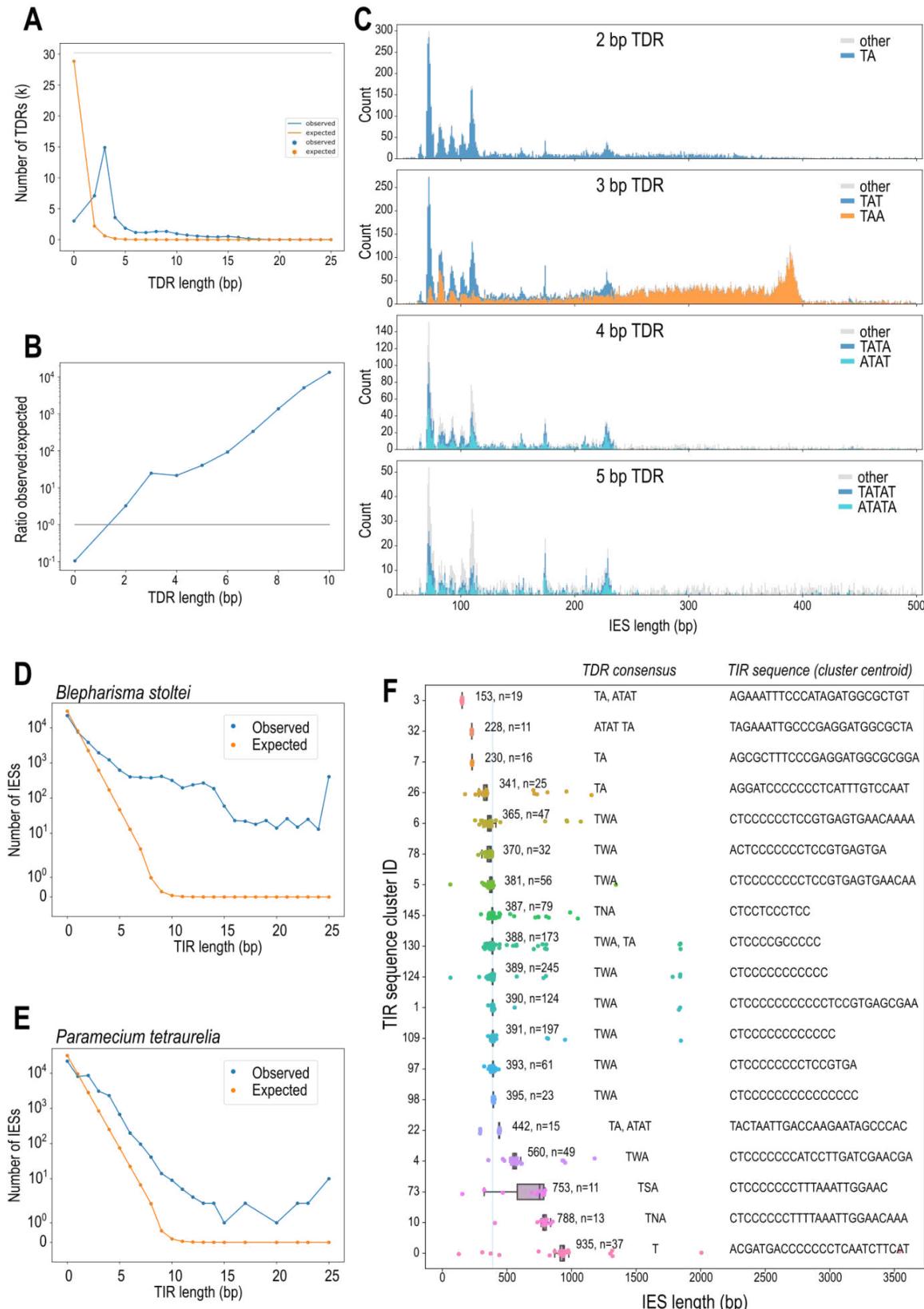
1211 Wang, S., Zhang, L., Meyer, E., and Matz, M.V. (2010). Characterization of a group of
1212 MITEs with unusual features from two coral genomes. PLoS ONE 5, e10700.

1213 Weiss, A. (2015). Lamarckian Illusions. Trends Ecol. Evol. 30, 566–568.

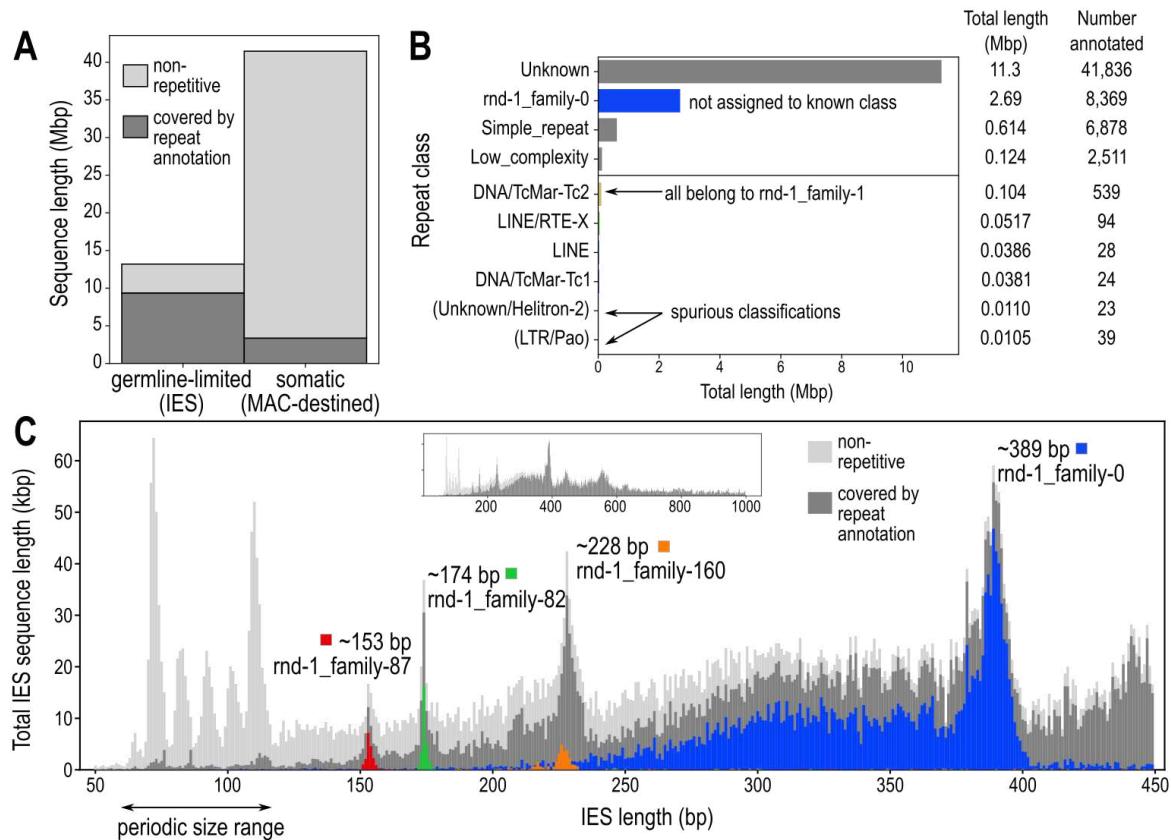
1214 Wuitschick, J.D., Gershan, J.A., Lochowicz, A.J., Li, S., and Karrer, K.M. (2002). A novel
1215 family of mobile genetic elements is limited to the germline genome in *Tetrahymena*
1216 *thermophila*. Nucleic Acids Res. 30, 2524–2537.

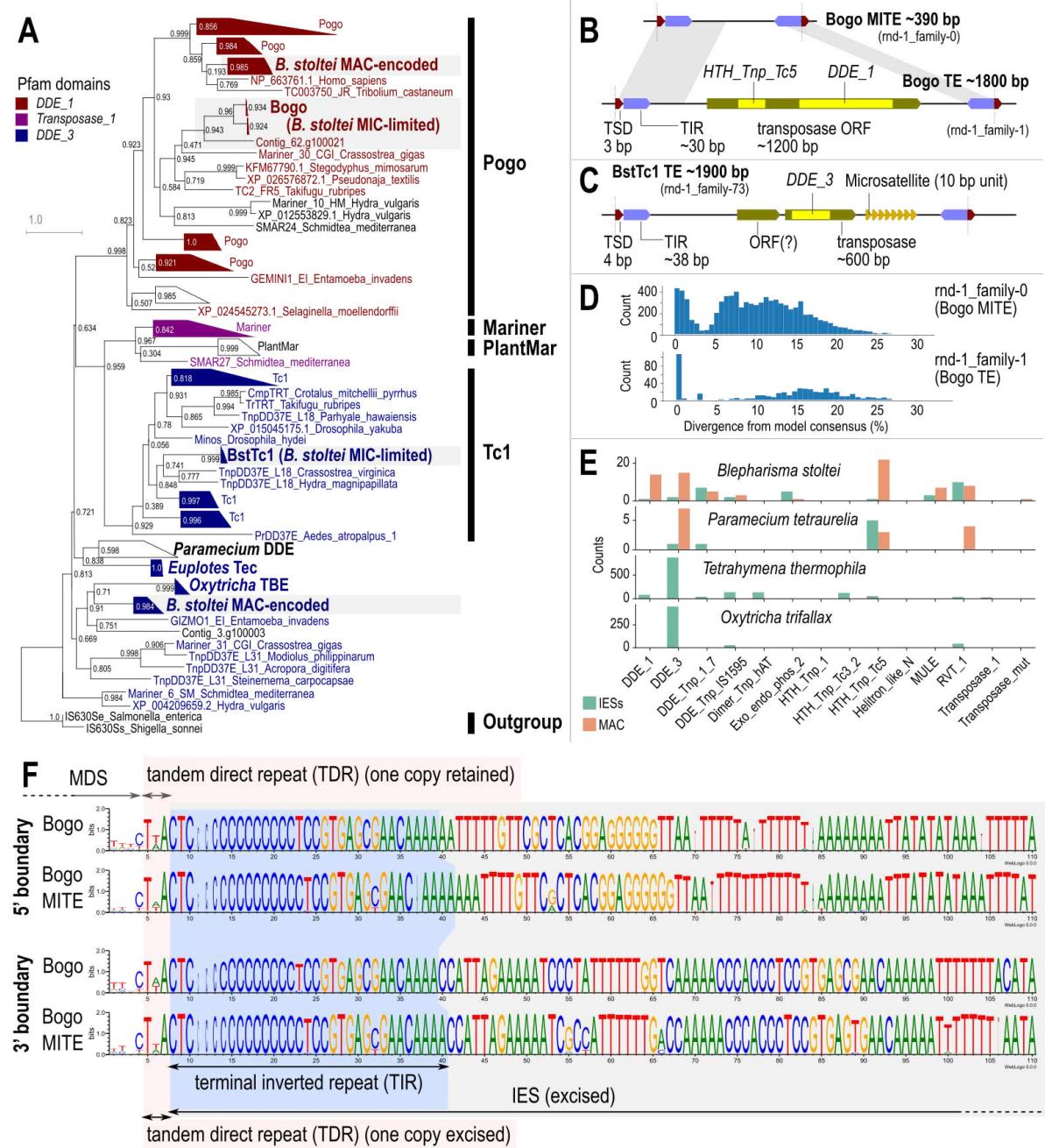

1217 Yao, M.-C., Fuller, P., and Xi, X. (2003). Programmed DNA deletion as an RNA-guided
1218 system of genome defense. Science 300, 1581–1584.

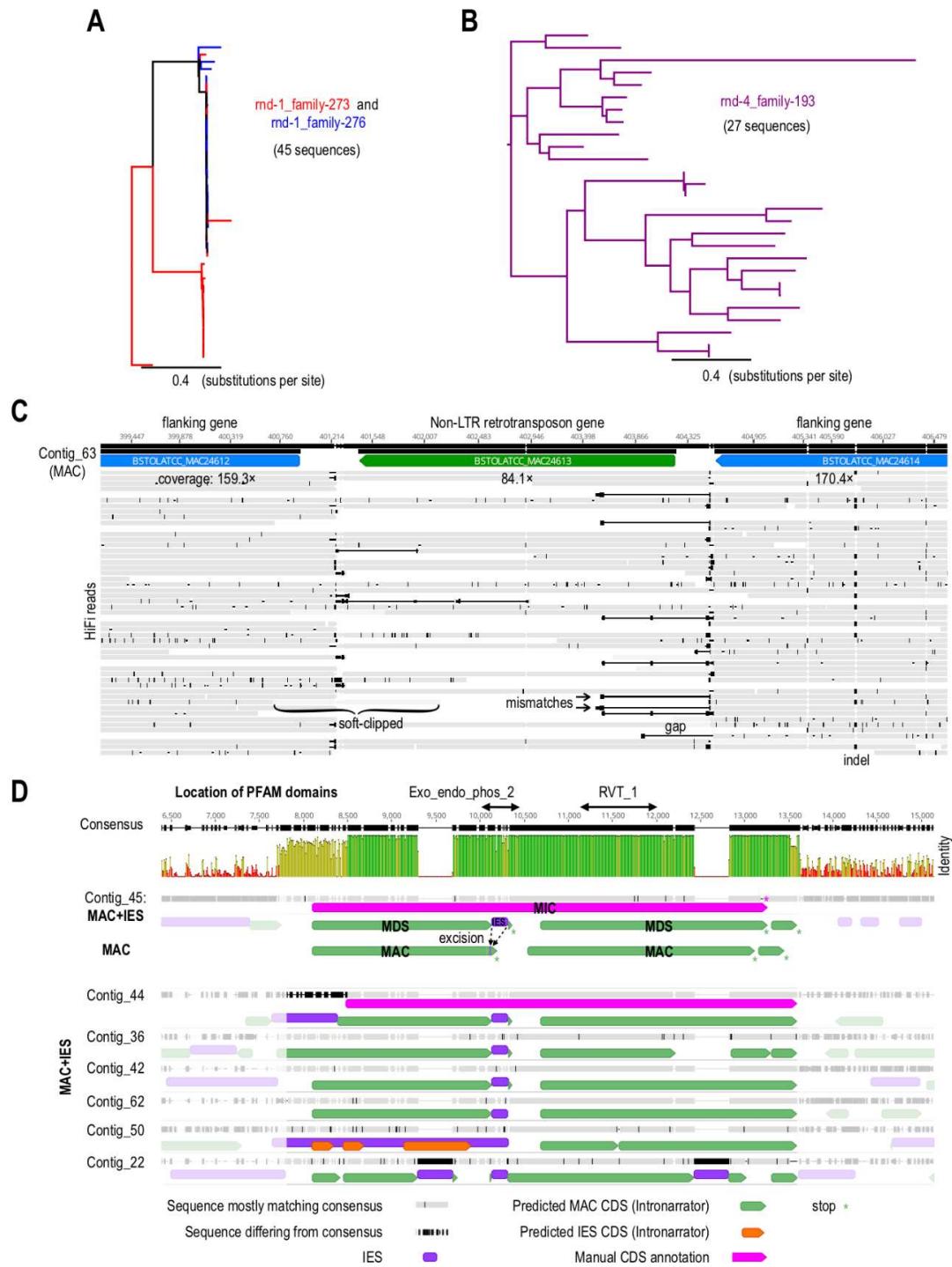
1219 Yuan, Y.-W., and Wessler, S.R. (2011). The catalytic domain of all eukaryotic cut-and-paste
1220 transposase superfamilies. Proc Natl Acad Sci USA 108, 7884–7889.

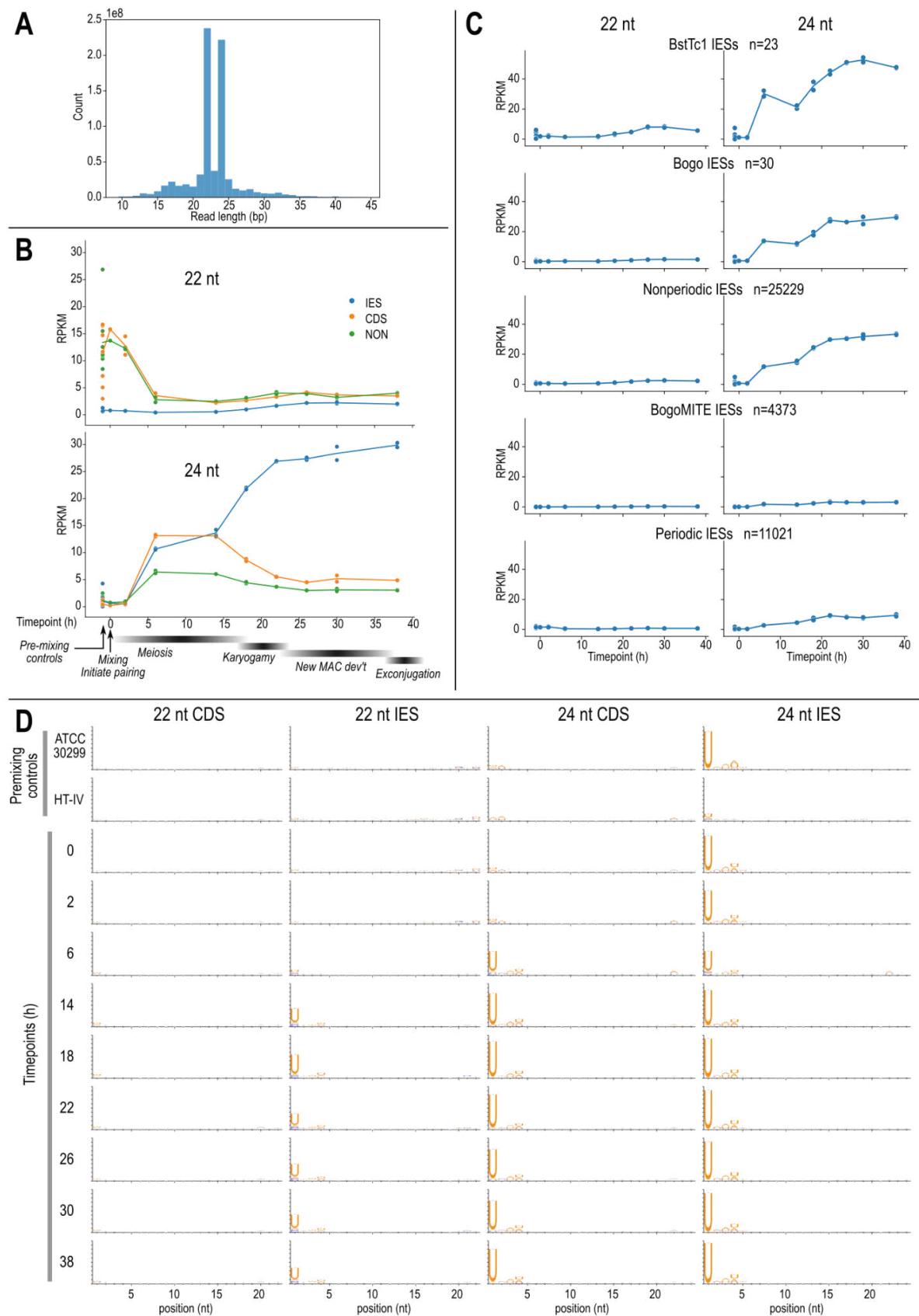

1221 Zahler, A.M., Neeb, Z.T., Lin, A., and Katzman, S. (2012). Mating of the stichotrichous ciliate
1222 *Oxytricha trifallax* induces production of a class of 27 nt small RNAs derived from the
1223 parental macronucleus. PLoS ONE 7, e42371.

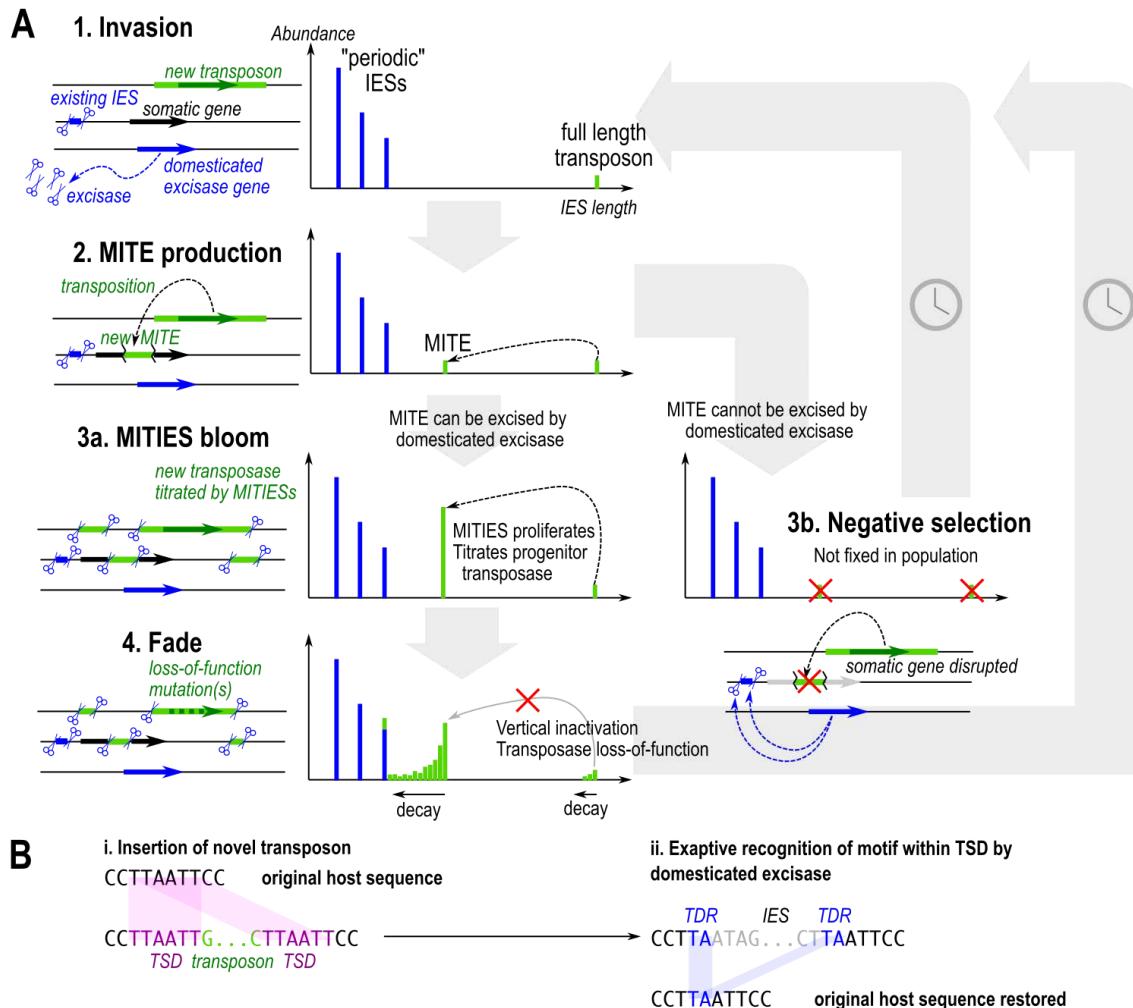
1224 Zhou, W., Liang, G., Molloy, P.L., and Jones, P.A. (2020). DNA methylation enables
1225 transposable element-driven genome expansion. Proc Natl Acad Sci USA 117, 19359–
1226 19366.

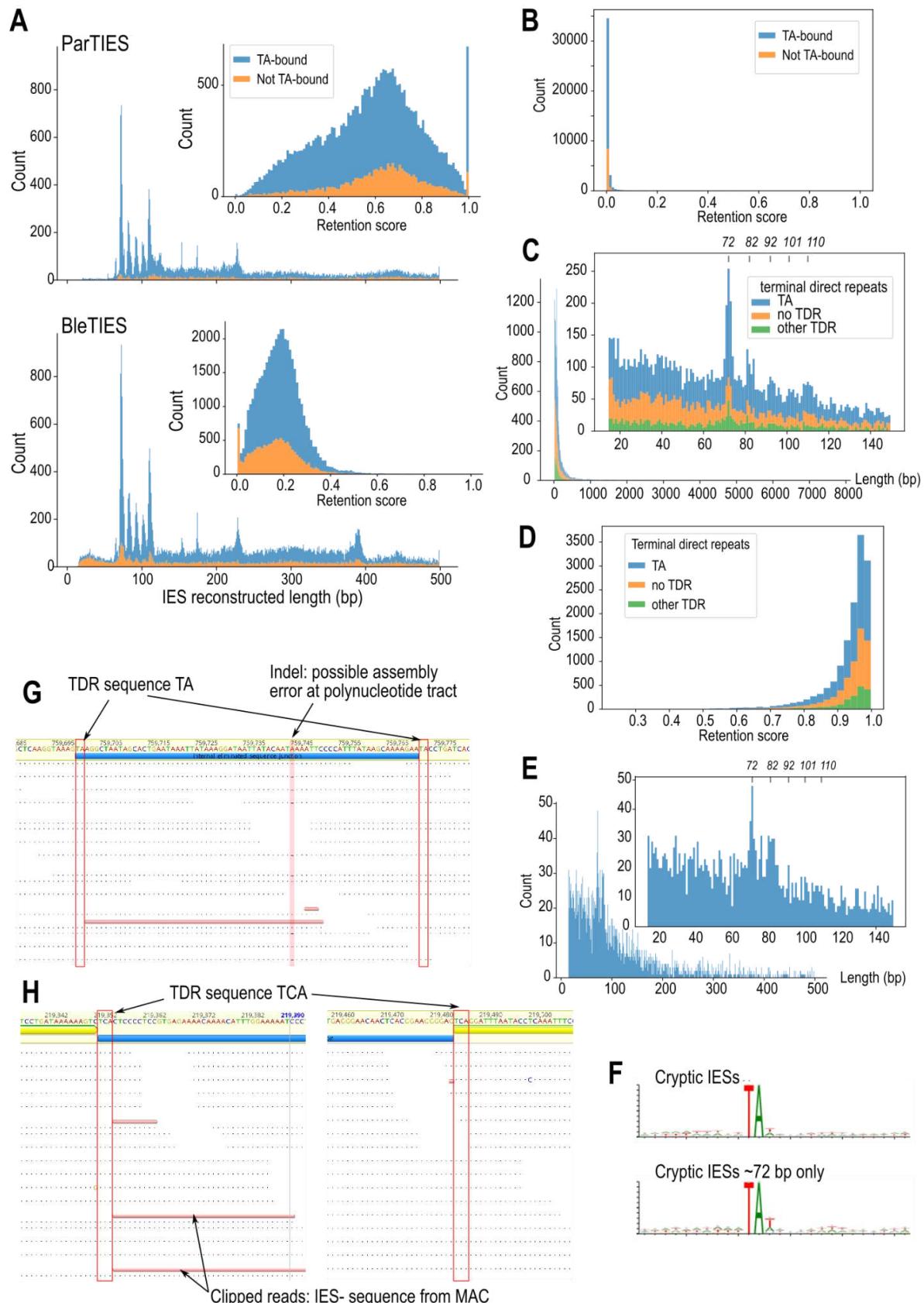

Figure 1.


Figure 2.


Figure 3.


Figure 4.


Figure 5.


Figure 6.

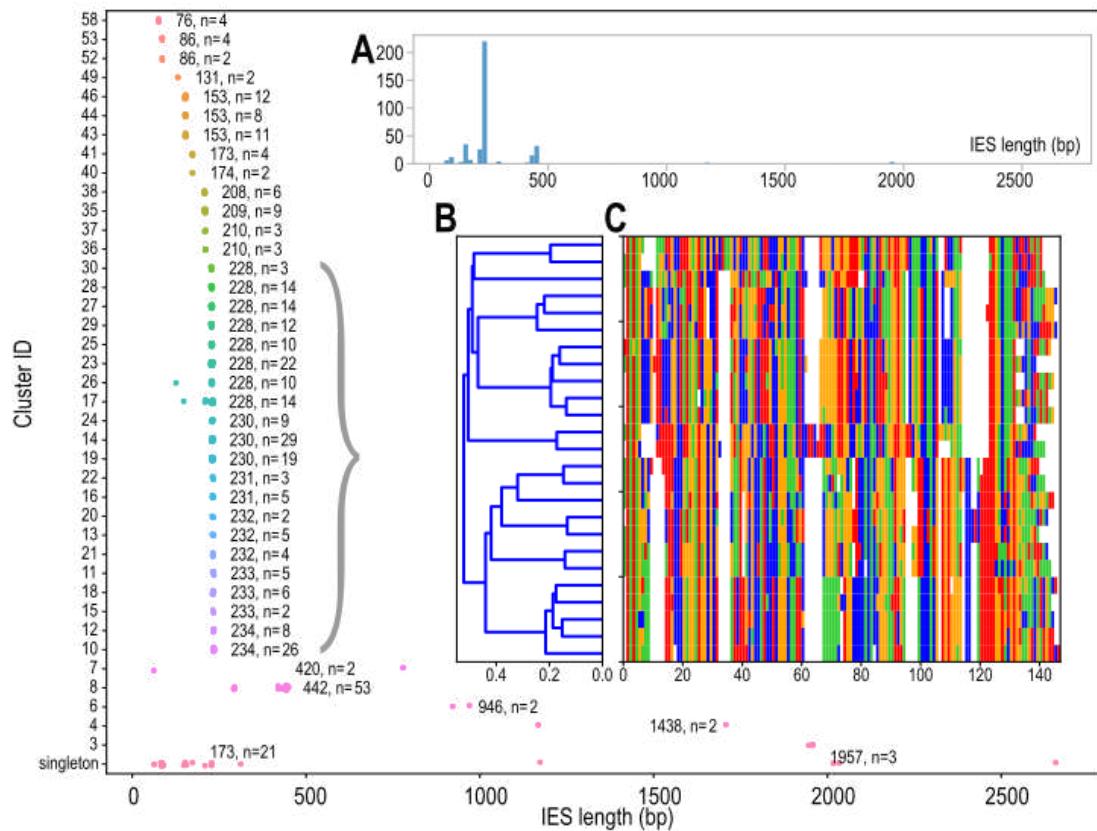
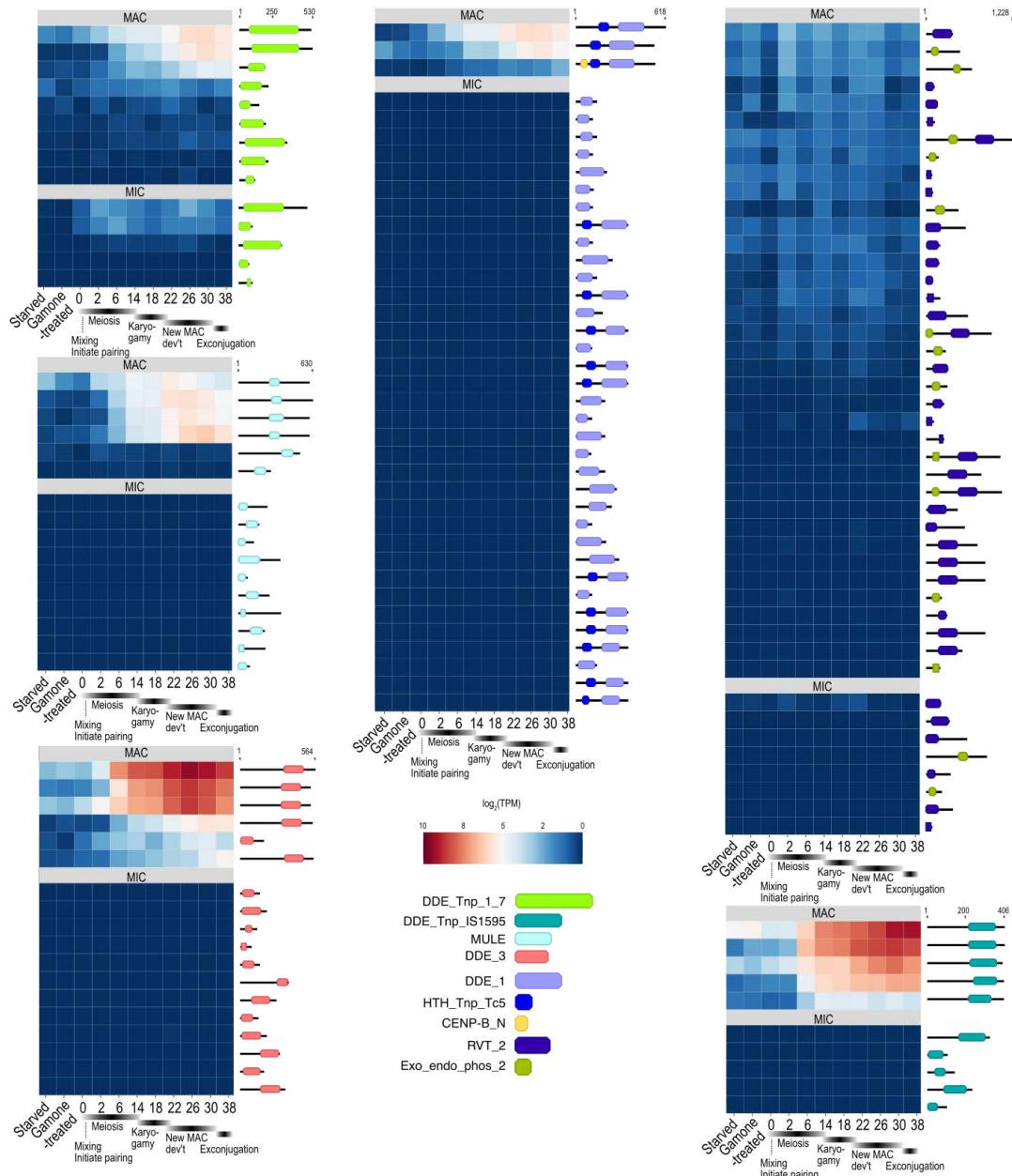
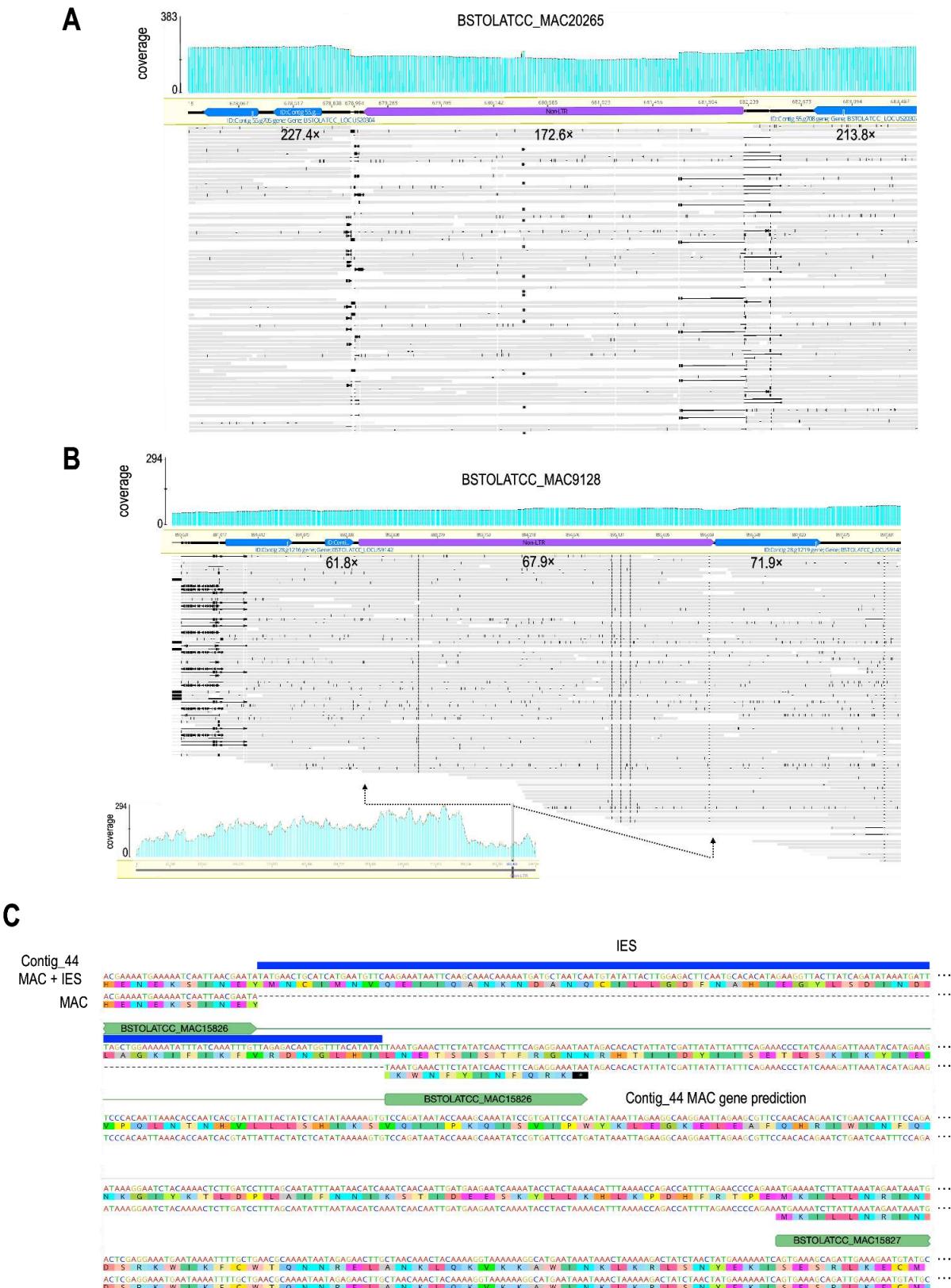

Figure 7.


Figure S1.


Figure S2.


Figure S3.

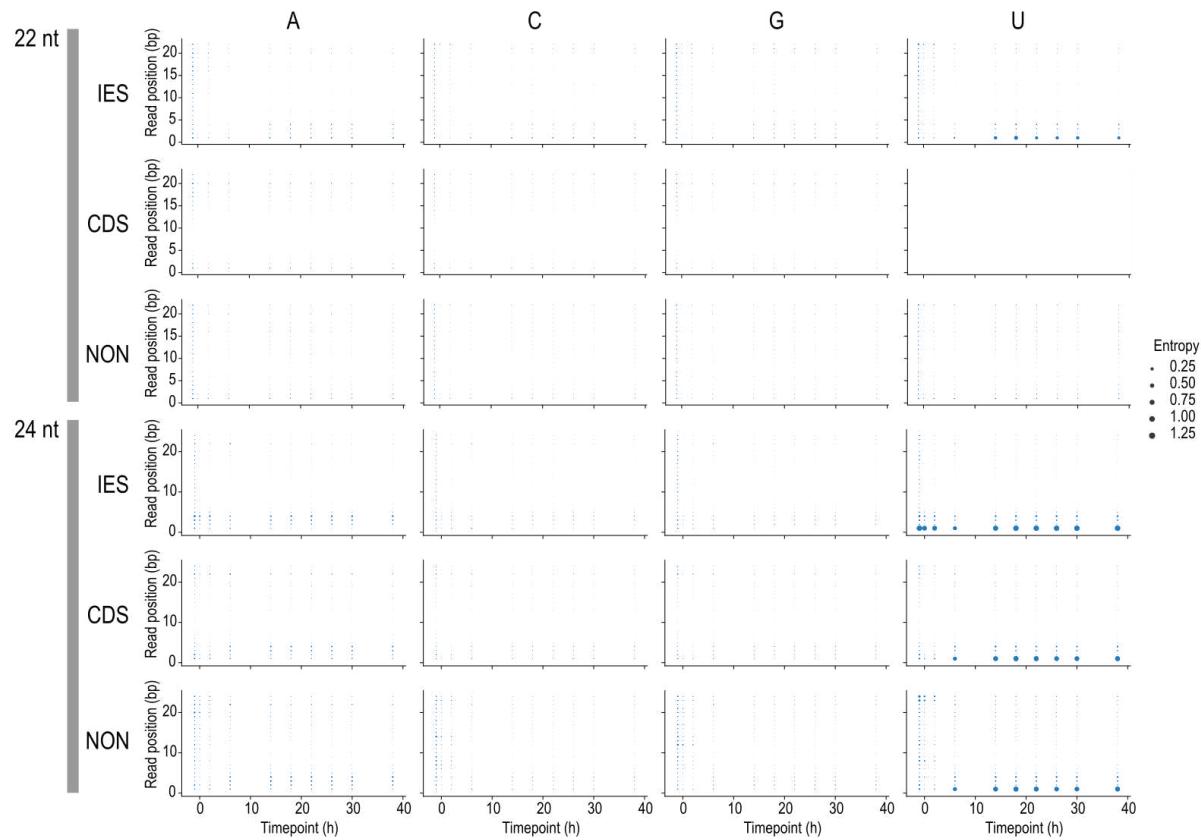

Figure S4.

Figure S5.

Figure S6.

