

1 **Geographic Name Resolution Service: A tool for the standardization and indexing**
2 **of world political division names, with applications to species distribution**
3 **modeling**

4
5 Brad L. Boyle¹, Brian S. Maitner², George G. C. Barbosa¹, Rohith K. Sajja¹, Xiao Feng³, Cory
6 Merow², Erica A. Newman⁴, Daniel S. Park^{5,6}, Patrick R. Roehrdanz⁷, Brian J. Enquist^{1,8}

7
8 ¹Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721,
9 USA

10 ²Eversource Energy Center and Department of Ecology and Evolutionary Biology, University of
11 Connecticut, Storrs, CT 06269, USA

12 ³Department of Geography, Florida State University, Tallahassee, FL 32306, USA

13 ⁴School of Natural Resources & the Environment, University of Arizona, Tucson, AZ 85721, USA

14 ⁵Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA

15 ⁶Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA

16 ⁷The Moore Center for Science, Conservation International, Arlington, VA 22202, USA

17 ⁸The Santa Fe Institute, USA, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA

18
19 * Corresponding author

20 E-mail: bboyle@arizona.edu

21
22

23 **Abstract**

24
25 Massive biological databases of species occurrences, or georeferenced locations where a
26 species has been observed, are essential inputs for modeling present and future species
27 distributions. Location accuracy is often assessed by determining whether the observation

28 geocoordinates fall within the boundaries of the declared political divisions. This otherwise
29 simple validation is complicated by the difficulty of matching political division names to the
30 correct geospatial object. Spelling errors, abbreviations, alternative codes, and synonyms in
31 multiple languages present daunting name disambiguation challenges. The inability to resolve
32 political division names reduces usable data and analysis of erroneous observations can lead to
33 flawed results.

34
35 Here, we present the Geographic Name Resolution Service (GNRS), an application for the
36 correction, standardization and indexing of world political division names. The GNRS resolves
37 political division names against a reference database that combines names and codes from
38 GeoNames with geospatial object identifiers from the Global Administrative Areas Database
39 (GADM). In a trial resolution of political division names extracted from >270 million species
40 occurrences, only 1.9%, representing just 6% of occurrences, matched exactly to GADM
41 political divisions in their original form. The GNRS was able to resolve, completely or in part,
42 92% of the remaining 378,568 political division names, or 86% of the full biodiversity occurrence
43 dataset. In an assessment of geocoordinate accuracy for >239 million species occurrences,
44 resolution of political divisions by the GNRS enabled detection of an order of magnitude more
45 errors and an order of magnitude more error-free occurrences. By providing a novel solution to
46 a major data quality impediment, the GNRS liberates a tremendous amount of biodiversity data
47 for quantitative biodiversity research. The GNRS runs as a web service and can be accessed
48 via an API, an R package, and a web-based graphical user interface. Its modular architecture is
49 easily integrated into existing data validation workflows.

50
51 **Introduction**

52

53 Large databases of georeferenced species occurrences (GSOs) are fueling an increasingly
54 diverse body of research into past, current and future patterns of species distributions and traits
55 [1]. GSOs provide essential inputs for species distribution models (SDMs) [2–5], which in turn
56 have been used to predict relative vulnerability of species and populations to climate change [6],
57 identify priority conservation strategies [7] and assess the biodiversity impacts of policies
58 governing land use, deforestation and burning [8]. SDMs and the raw GSOs from which they are
59 derived are helping to clarify distributions of disease vector organisms and identify new disease
60 hotspots [9,10]. GSOs and associated trait data from museum specimens have been used to
61 disentangle patterns of temporal and spatial change in body size of birds [11] and melanism in
62 butterflies [12]. Given the breadth of applications of SDMs, it is crucial that they are robust,
63 which in turn depends on the accuracy of the species occurrence data that drive them. The
64 challenge is how to best identify, differentiate, and potentially correct erroneous or inaccurate
65 geographic distribution information.

66
67 The fitness of GSOs for such analyses hinges on the accuracy of the associated location data.
68 Despite recent advances in automated tools for standardization and correction of errors, the
69 potential presence of erroneous or inaccurate geo coordinates in biodiversity “big data” remains
70 a major concern [13,14]. A widely used method for assessing reliability of coordinates is to
71 check if they fall within the boundaries of their associated political divisions (hereafter,
72 “geopolitical validation”). A point falling outside a declared political division is flagged for
73 inspection and either corrected or rejected [15]. Another common validation links a GSO via its
74 declared political division to one or more country, state or county taxonomic checklists to
75 determine if the species is native or introduced in the region of observation; observations of
76 introduced species may be excluded from further analysis [16], unless modeling of invasive
77 species distributions is the focus of the research [17]. A surprising impediment to these

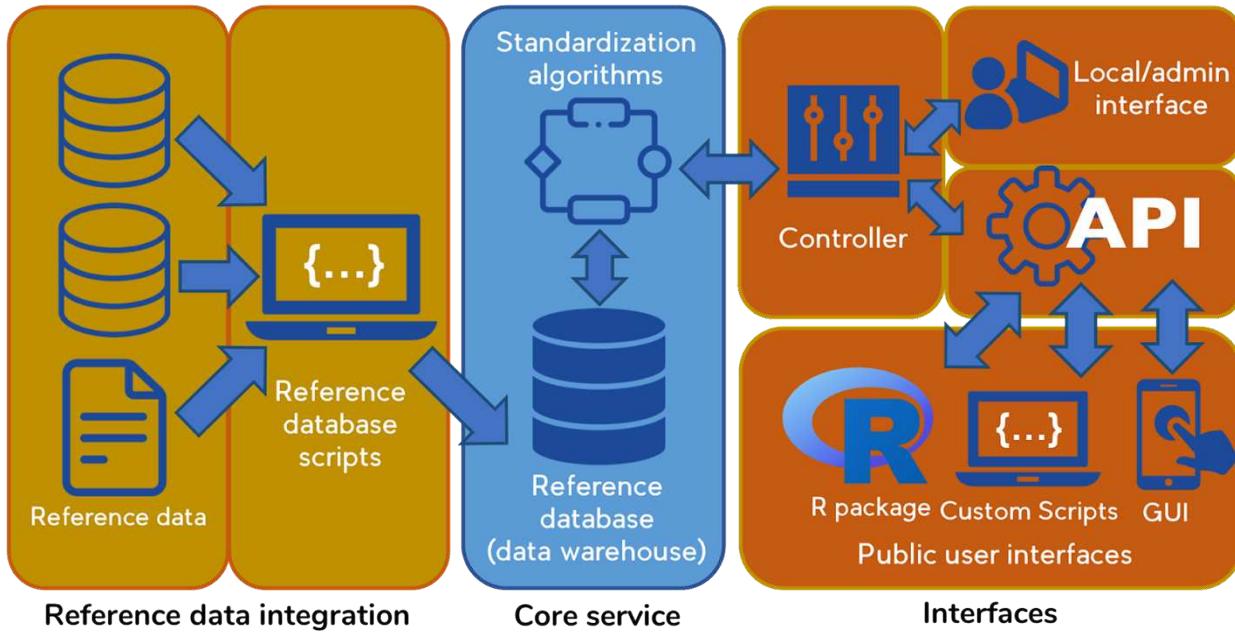
78 otherwise simple validations is lack of standardization among political division names, identifiers
79 and hierarchies.

80
81 The importance of political divisions as both units of data aggregation and data quality pitfalls
82 extends well beyond GSOs and SDMs. Analysis of relationships between environmental factors,
83 health care policy and health care outcomes are a mainstay of public health research, with
84 many studies relying on data aggregated by first- and second-level administrative divisions [19].
85 Multi-country comparisons of crime statistics aggregated at subnational levels are common in
86 criminology and sociological research [20]. A recent study of human reliance on protected
87 natural areas throughout the global tropics combined geospatial information on protected areas
88 with household survey data aggregated by subnational administrative units [18]. Incomplete or
89 inconsistent standardization of political division names and identifiers increases the burden of
90 data aggregation, especially when historical data are involved [21,22].

91
92 A promising way forward is the development of a general tool for the standardization of political
93 division names, identifiers and hierarchies. However, this goal is complicated by the myriad of
94 alternative names, spellings and abbreviations used to refer to the same country or subnational
95 unit. In addition, geographical data processing codes, such as ISO (International Organization
96 for Standardization; [23], FIPS (the United States' Federal Information Processing Standards;
97 [24], and HASC (Hierarchical Administrative Subdivision Codes; [25] may be used instead of
98 names. Multiple languages, accented characters, and different character set encodings provide
99 additional layers of complexity. Spelling errors may also be introduced during data entry.
100 Together, these issues represent a daunting disambiguation challenge on par with taxonomic
101 name resolution [26]. Failure to resolve political division names can lead to loss of data by
102 exclusion of GSOs of unknown quality or the inability to georeference historical observations
103 [27]. Naive use of unvalidated GSOs can result in misleading, erroneous or biased research
104 results [28].

105
106 Here, we describe a software tool for the correction, standardization and indexing of world
107 political division names, the Geographic Name Resolution Service (GNRS). The GNRS accepts
108 one or more 1-3 level political division name combinations (country, country+state or
109 country+state+county, or equivalent), and resolves them against the Database of Global
110 Administrative Areas (GADM; [29] and GeoNames [30], supplemented with additional names
111 and codes from Natural Earth [31]. For each name resolved, the application returns the
112 standard GADM name, a plain-ascii English-language name (minus class identifiers such “State
113 of”, “Provincia de”, “Département”, and so on), ISO codes, and Geonames and GADM
114 identifiers. (The GNRS remains neutral with respect to the validity of political division names and
115 competing jurisdictional claims). Match scores and summaries describing how the submitted
116 name was matched and overall matching completeness are also returned with the resolved
117 name. Other GNRS options support retrieval of alternative names in multiple languages and
118 character sets from both Geonames and GADM. Standardized political division names and
119 GADM identifiers can be used to retrieve spatial objects from GADM to perform political
120 geovalidation of GSOs, or to submit the GSO to other validation services such as the BIEN
121 Native Species Resolver [16]. Despite the importance of reference databases of administrative
122 district spatial objects (such as GADM) and names (such as GeoNames), standardizing and
123 indexing data against applying these databases remains challenging due to lack of
124 standardization of object names and identifiers and incomplete linkages among reference
125 databases. To our knowledge, no existing service links these databases and provides the
126 informatics tools for resolving large volumes of unstandardized data against them. Our goal in
127 developing the GNRS is to fill this gap.

128
129 **Overview of the GNRS**


130 **Architecture**

131
132 Originally developed as part of the BIEN database pipeline [16,26,32,33], the GNRS is the first
133 of a series of data validation and standardization tools which we are making available to the
134 biodiversity research community as modular web services. Each service will be accessible
135 through a variety of interfaces, using standardized plain text input and output that allows
136 multiple services to be chained together into more complex validations. We are releasing these
137 services as standalone applications to enable independent development of each service and to
138 encourage scrutiny and improvement of algorithms and data by the community.

139
140 All BIEN validations services share the common architecture shown in Fig 1. Components of the
141 architecture include: (1) a core service in which user data are standardized against a reference
142 database using algorithms implemented primarily in SQL; (2) a data integration application
143 which builds and periodically updates the reference database (a partly normalized “data
144 warehouse” *sensu Inmon* [34] from external sources, (3) a controller layer which manages
145 concurrent requests and implements parallelization using makeflow [35]; (4) an administrative
146 interface which interacts directly with the controller; (5) a JSON-based application programming
147 interface (API) which supports large input-output data payloads; (6) an R package; and (7) a
148 web-based graphical user interface. All public access to the core service, including via the R
149 package and web interface, is handled by the API. The GNRS runs in the Linux environment
150 and was developed under Ubuntu 16.04.7 LTS [36].

151
152 Several design elements of the BIEN validation service architecture optimize processing of very
153 large data sets within a multi-user environment. These performance features are described in
154 Supporting Information (S1 Appendix 1).

155

156

157

158 **Fig 1. BIEN validation service architecture, as implemented for the GNRS.** Reference data
159 are stored locally within the core service as a periodically-updated, versioned data warehouse.
160 A controller manages parallelization and optimization of concurrent requests. Interfaces include
161 a JSON API, an R package, and a web-based graphical user interface. All public interaction with
162 the core service is handled by the API.

163

164 **Reference database**

165

166 Political division names are resolved by the GNRS against a reference database consisting of
167 the names, codes and identifiers of all countries plus their first-level (state/province) and
168 second-level (county/parish) administrative divisions in GADM. In addition, each GADM political
169 division is linked to a lookup table of alternative names in multiple languages from
170 Geonames, supplemented with additional codes from the Natural Earth and a custom list of
171 name variants prepared by the authors (the latter included in the GNRS source code repository;
172 see https://github.com/ojalaquellueva/gnrs/tree/master/gnrs_db/data). Names, codes and

173 identifiers for country-, state- and county-level political divisions from these sources are merged
174 within a single PostgreSQL database [37] by a pipeline of SQL statements managed by Bash
175 shell commands [38]. The steps and challenges involved in merging these data sources are
176 described in detail in Supporting Information (S1 Appendix 2).

177

178 **Metadata**

179
180 Management of metadata within the GNRS database and transmission via user interfaces
181 follows the principles established by the BIEN database and its public interface, the BIEN R
182 package [16]. Summary tables within the GNRS reference database manage information on
183 reference data sources and the GNRS itself. Versions, date of access, source URLs, project
184 websites and bibtex-formatted citations for GADM, GeoNames and NaturalEarth are stored in
185 table “source”. Metadata on the GNRS (database release date, code version and citation) is
186 maintained in table “meta”. Metadata on other contributors of resources or data is stored in table
187 “collaborator”. All metadata can be queried via the API using routes “source”, “meta” and
188 “collaborator”; this information is also exposed by the RGNRS R package and displayed on the
189 GNRS website.

190

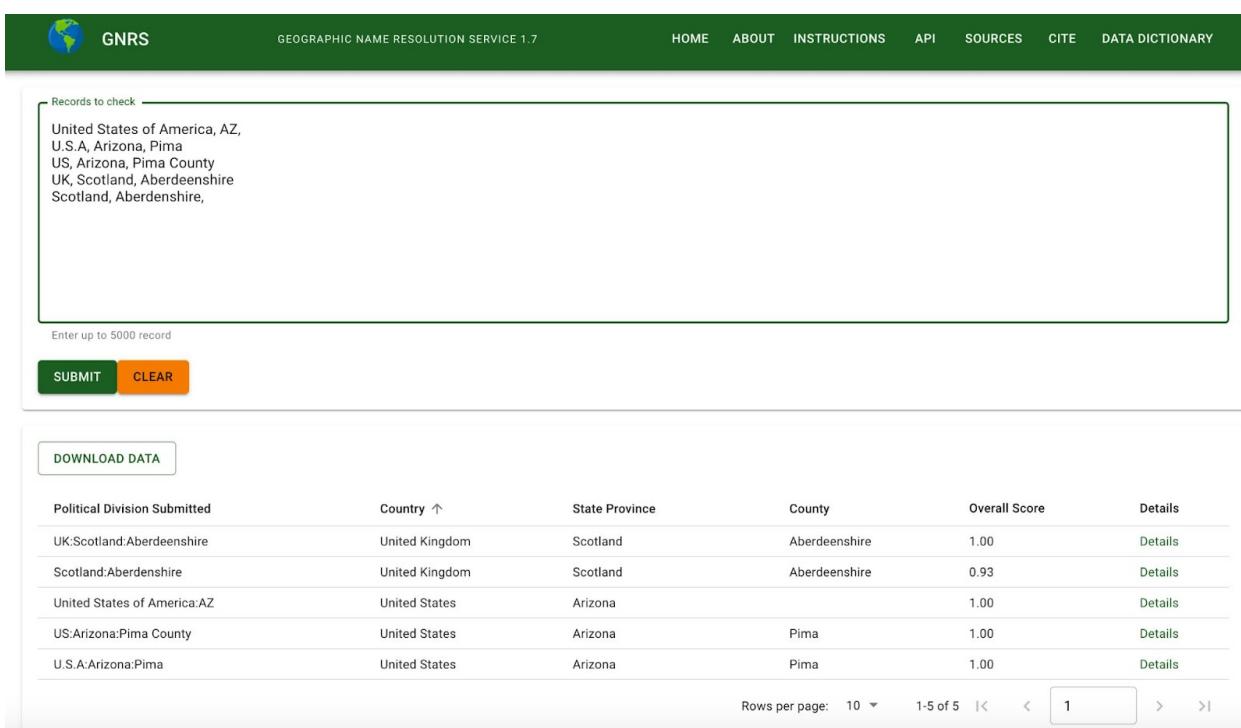
191 **User input**

192
193 The basic input for the GNRS is a 1- to 3-level political division combination (PDC) consisting of
194 a country, a 1st-level administrative division (state, province, department, etc.) and a 2nd-level
195 administrative division (county, parish, municipality, etc.), separated by commas. Country is
196 required but 1st- and 2nd-level divisions are optional; however, a 1st-level division must be
197 present if a 2nd-level division is supplied. Both comma delimiters must be present, even if one
198 or more administrative division is absent. Names which themselves contain commas must be

199 surrounded by double quotes. Each PDC must be on its own line. Examples of data suitable for
200 input to the GNRS are shown in Table 1.

201

202 Table 1. Input format for political divisions submitted to the GNRS via the web user interface
203 (<https://gnrs.biendata.org/>) and API. Format requirements for the GNRS R package are the
204 same as the API (see documentation).



Interface	Examples
Web	USA,Arizona,Pima County México,Oaxaca, Costa Rica,, Guyana,Upper Takutu-Upper Essequibo,"Yakarinta - Wowetta, Surama"
API (with id)	1,USA,Arizona,Pima County 2,México,Oaxaca, 3,Costa Rica,, 4,Guyana,Upper Takutu-Upper Essequibo,"Yakarinta - Wowetta, Surama"
API (no id)	,USA,Arizona,Pima County ,México,Oaxaca, ,Costa Rica,, ,Guyana,Upper Takutu-Upper Essequibo,"Yakarinta - Wowetta, Surama"

205
206 One or more PDCs in this format can be submitted directly to the GNRS web interface by
207 pasting them into the input box (Fig 2). The input format for the GNRS API and R package is
208 similar to the basic format, with the exception of an additional, user-supplied unique identifier
209 (“user_id”) in the first column (i.e., user_id, country, state_province, county_parish). A single-
210 column identifier provides a reliable way of joining the multi-column GNRS output back to
211 databases, where NULL values in some fields can result in failed joins and potential loss of
212 data. Use of identifiers is optional; however, the four column format must be maintained in the
213 order described, with all three comma delimiters present on all lines, as shown in the API
214 examples in Table 1. Data are submitted to the API as JSON attached to the body of a POST
215 request. The R package automatically handles the conversion to JSON and construction of the
216 API request.

217

The screenshot shows the GNRS web interface. At the top, there is a green header bar with the GNRS logo, the text 'GEOGRAPHIC NAME RESOLUTION SERVICE 1.7', and a navigation menu with links for HOME, ABOUT, INSTRUCTIONS, API, SOURCES, CITE, and DATA DICTIONARY. Below the header is a search input box with the placeholder text 'Records to check' and a note 'Enter up to 5000 record'. Inside the box, there is a list of input lines:
United States of America, AZ,
U.S.A, Arizona, Pima
US, Arizona, Pima County
UK, Scotland, Aberdeenshire
Scotland, Aberdeenshire,
Below the input box are two buttons: 'SUBMIT' (green) and 'CLEAR' (orange). At the bottom of the interface, there is a table titled 'DOWNLOAD DATA' with the following columns: Political Division Submitted, Country ↑, State Province, County, Overall Score, and Details. The table contains the following data:

Political Division Submitted	Country ↑	State Province	County	Overall Score	Details
UK:Scotland:Aberdeenshire	United Kingdom	Scotland	Aberdeenshire	1.00	Details
Scotland:Aberdeenshire	United Kingdom	Scotland	Aberdeenshire	0.93	Details
United States of America:AZ	United States	Arizona		1.00	Details
US:Arizona:Pima County	United States	Arizona	Pima	1.00	Details
U.S.A:Arizona:Pima	United States	Arizona	Pima	1.00	Details

Below the table, there are pagination controls: 'Rows per page: 10', '1-5 of 5', and a page number input field containing '1' with arrows for navigation.

218

219

220 **Fig 2. Screenshot of the GNRS web user interface.** Comma delimited political divisions are
221 pasted into the top input box. Paginated results, displayed below the input, can be sorted by any
222 column and downloaded as comma- or tab-delimited files. The “Details” hyperlink at the end of
223 each results row displays the full results for that row, along with field definitions from the GNRS
224 data dictionary.

225

226 **Name resolution workflow**

227
228 Political divisions are resolved by working down the 3-level political division hierarchy beginning
229 with country. The algorithm first tries matching by code (ISO, FIPS, HASC) before attempting to
230 match unresolved political divisions by standard and alternative names. After all exact matching
231 methods have been exhausted, fuzzy matching of the remaining unresolved names is attempted
232 using the Postgres implementation of trigram similarity [39]. The GNRS uses a default trigram
233 match threshold of 0.5, a conservative setting which we have found favors avoidance of false
234 positives. The match threshold can also be adjusted on the fly by the users of the R package or
235 API. At each step, the match method used for a successful match is saved and returned to the
236 user in fields “match_method_country”, “match_method_state_province” and
237 “match_method_county_parish” (example values: “iso code”, “exact match standard name”,
238 “fuzzy match alternate name”). A match score from 0 to 1 (where 0=“no match” and 1=“exact
239 match”) is calculated as the trigram similarity between the name submitted and the name
240 matched and saved to fields “match_score_country”, “match_score_state_province” and
241 “match_score_county_parish”. After all matching steps have been completed, an “overall_score”
242 is calculated as the average of the match scores of all submitted political divisions. One of three
243 descriptors of overall match completeness (“no match”, “partial match”, “full match”) is saved to
244 field “match_status”. The GNRS also returns the political division level submitted and the
245 political division level matched, using terms “country”, “state_province” and “county_parish”.

246
247 Two classes of political divisions not resolved by the default GNRS workflow required custom
248 solutions. These are (1) territories and other subnational geopolitical units treated as countries
249 (“states-as-countries”) by the reference databases, and (2) countries belonging to multinational
250 unions, with the latter treated as countries and its member countries treated as first-level
251 divisions (“countries-as-states”). An example of state-as-country is Puerto Rico, an
252 unincorporated territory of the United States which is treated by GADM and GeoNames as a
253 top-level political entity with ISO code PR, but frequently recorded in biodiversity data as a
254 state-level division of the United States (e.g., “USA, Puerto Rico”). Examples of countries-as-
255 states are England, Scotland and other member countries of the United Kingdom, which are
256 treated as 1st-level political divisions of the UK by GADM and GeoNames, but which also
257 appear as countries in biodiversity data. The GNRS solutions to these special cases are
258 described in Supporting Information (S1 Appendix 3).

259
260 **Interfaces**

261
262 **Linux command line**

263
264 Developers installing their own instance of the GNRS can invoke the GNRS directly from the
265 Linux shell using commands `gnrs_batch.sh` (single batch mode) or `gnrs_par.pl` (parallel
266 mode). See the main README in the GNRS GitHub repository for documentation of syntax and
267 usage examples (<https://github.com/ojalaquellueva/gnrs/blob/master/README.md>). Accessing
268 the GNRS directly via the shell bypasses the API and its default limit of 5000 rows per request,
269 thus enabling processing of very large data sets in a single operation.

270
271 **GNRS API**

272

273 All public interaction with the GNRS—including requests from the GNRS R package and GNRS
274 website—is handled by a JSON-based API (see [40] with a single route
275 (https://gnrs.biendata.org/gnrs_api.php). Different endpoints and their parameters are specified
276 in JSON object “opts” (options). Request data are converted to JSON object “data”. Objects
277 opts and data are combined into a single nested JSON object and attached to the body of the
278 POST request submitted to the API.

279
280 API endpoint “resolve” performs name resolution of the political divisions contained in the POST
281 data; it supports a single optional parameter “tfuzzy” which accepts a numeric value between 0
282 and 1 and allows the user to vary the default trigram fuzzy match score threshold. Other API
283 endpoints include a data dictionary defining all name resolution output fields; detailed lists of
284 names, alternate names, codes and identifiers of countries, states and counties; and metadata
285 and citations for the GNRS and its sources. Descriptions of all API endpoints are provided in
286 Table 2. Example scripts demonstrating calls to the GNRS API in R and PHP are provided in
287 the api subdirectory of the GitHub GNRS repository
288 (<https://github.com/ojalaquellueva/gnrs/tree/master/api>). Results are returned to the user as
289 JSON. The GNRS API is written in PHP [41].

290
291 Table 2. GNRS API endpoints and their meanings. Endpoints, parameters and input data are
292 attached to the body of the POST request as a nested JSON object, with the endpoint and its
293 parameters in element “option” and input data in element “data”.

294

Endpoint	Purpose	Data
resolve	Resolve submitted political names and identifiers	One or more sets of political divisions (country plus division and return standardized up to 2 lower political divisions) optionally preceded by user-supplied record identifiers
countrylist	Return names and identifiers of all countries in GNRS	none
statelist	Return names and identifiers of all states in submitted countries. Get country names from route "countrylist"	List of countries (name) for which to return states.
countylist	Return names and identifiers of all counties in submitted states. which to return counties. Values of state_province_id from route "statelist"	List of states (GNRS identifier state_province_id) for
meta	Return metadata on the GNRS	none
sources	Return metadata on reference data sources used by the GNRS	none
citations	Return citations for the GNRS and all data sources	none

Endpoint	Purpose	Data
dd	Return definitions of output fields (data dictionary)	none

295

296

297 **GNRS R package**

298

299 The R package GNRS provides a family of functions for interacting with the GNRS API using

300 the R language [42]. All major functionality available by calling the GNRS API directly is also

301 available through the R package (Table 3). GNRS can be installed from CRAN using the

302 command `install.packages("GNRS")` or the development version can be installed directly

303 from the GNRS GitHub repository (<https://github.com/EnquistLab/RGNRS>) using the `devtools`

304 package [43] with the command `devtools::install_github("EnquistLab/RGNRS")`. The

305 GNRS package relies on the package `httr` [44] to interact with the API, `jsonlite` [45] to convert to

306 and from `json`, and the packages `knitr`, `rmarkdown`, `devtools`, and `testthat` [46–49] for

307 development and testing. GNRS R package functions begin with the prefix “GNRS_...” to simplify

308 function location through tab-completion.

309

310 Table 3. GNRS R package functionality

311

API

Option	R function	Input data	Purpose
resolve	GNRS()	Political division dataframe containing 4 columns: user_id, country ,state_province, county_parish. Number of batches (Optional)	Resolve submitted political division and return standardized names and identifiers
resolve	GNRS_super_simple()	country, state_province (Optional), county_parish (Optional), user_id (Optional)	Resolve submitted political division and return standardized names and identifiers
countrylist	GNRS_get_countries()	none	Return names and identifiers of all countries in GNRS
statelist	GNRS_get_states()	country_id (Optional)	Return names and identifiers of all states, or states in submitted countries (if country_id is supplied).

API

Option	R function	Input data	Purpose
countylist	GNRS_get_counties()	state_province_id (Optional)	Return names and identifiers of all counties, or counties in submitted states (if state_province_id is supplied).
meta	GNRS_version()	none	Return version metadata on the GNRS
sources	GNRS_sources()	none	Return metadata on reference data sources used by the GNRS
citations	GNRS_citations()	none	Return citations for the GNRS and all data sources
dd	GNRS_data_dictionary()	none	Return definitions of output fields (data dictionary)
	GNRS_metadata()	bibtex_file (Optional)	Wrapper function that returns metadata on version, sources, acknowledgements, and citations.

API

Option	R function	Input data	Purpose
	GNRS_template()	nrow (Optional)	Returns an empty dataframe of nrow (default is 1) rows that can be populated by users.

312

313

314

315 **GNRS web interface**

316
317 The GNRS website is a graphical user interface to the GNRS that runs on both desktop and
318 mobile devices (Fig 2). Political divisions are pasted or typed directly into an input box and
319 results are displayed below. Results may be downloaded in comma-delimited (CSV) or tab-
320 delimited (TSV) formats. With the exception of user IDs, which are not supported, most
321 functionality available via the GNRS API and GNRS R package is also available through the
322 GNRS website. Metadata served via API options “meta”, “sources”, “citations” and “dd” (data
323 dictionary) are displayed on pages “Cite”, “Sources” and “Data dictionary”. The GNRS website
324 was developed using the open-source Next.js framework, written in JavaScript with the back-
325 end using [50] runtime and the front-end using the React library [51]. The interface was
326 designed using Material-UI, an open-source React-component library that follows Material
327 Design principles [52].

328

329 **Documentation**

330

331 The main README in the GNRS repository
332 (<https://github.com/ojalaquellueva/gnrs/blob/master/README.md>) documents GNRS installation
333 and configuration, command-line syntax for invoking the GNRS core service from the Linux
334 shell, format requirements for input data, and definitions of all output returned by the GNRS.
335 Working examples using sample data included in the repository are also provided. Example files
336 in the API subdirectory of the GNRS GitHub repository
337 (<https://github.com/ojalaquellueva/gnrs/tree/master/api>) demonstrate how to interact with the
338 GNRS API in PHP
339 (https://github.com/ojalaquellueva/gnrs/blob/master/api/gnrs_api_example.php) and in R without
340 using the GNRS R package
341 (https://github.com/ojalaquellueva/gnrs/blob/master/api/gnrs_api_example.R). The GNRS
342 website includes a short tutorial on how to use the web interface
343 (<https://gnrs.biendata.org/instructions/>). Examples demonstrating usage of the GNRS R
344 package are provided below.

345
346 **Sample workflow with the GNRS R package**

347
348 **Example 1: A few political divisions**

349
350 GNRS_super_simple() is the quickest method of standardizing a small number of political
351 division names. This function does not require that the user supply a dataframe, and instead
352 takes character vectors as input.

353
354 `library("GNRS")`
355 `GNRS_super_simple("USA")`
356 `GNRS_super_simple(country = c("USA", "Canada"))`

```
357     GNRS_super_simple(country = "USA",  
358                         state_province = "AZ",  
359                         county_parish = "Pima County")  
360
```

361 **Example 2: Many political divisions**

```
362  
363 In most cases, users will have existing data sets containing political division names that they  
364 wish to standardize. In this case, the user only has to generate an appropriately formatted  
365 dataframe from their dataset. This can be done manually, or the function GNRS_template()  
366 can be used to generate an empty dataframe that can then be populated. Here, we demonstrate  
367 this using the data that come packaged with the GNRS R package (accessed through the  
368 data() function).
```

```
369  
370     data("gnrs_testfile")  
371  
372     gnrs_dataframe <- GNRS_template(nrow = nrow(gnrs_testfile))  
373     gnrs_dataframe$country <- gnrs_testfile$country  
374     gnrs_dataframe$state_province <- gnrs_testfile$state_province  
375     gnrs_dataframe$county_parish <- gnrs_testfile$county_parish  
376     clean_dataframe <- GNRS(political_division_dataframe = gnrs_dataframe)  
377     metadata <- GNRS_metadata()
```

```
378 In both examples, the function GNRS_metadata() is usually the last step and is used to extract  
379 information that is needed for publication (e.g. version number, citation information). Complete  
380 input-output for this and the preceding example is provided in Supporting Information (S1  
381 Appendix 4).
```

```
382
```

383 **Case study: Validating species occurrences from the**

384 **BIEN database**

385
386 This example illustrates the challenges of working with political divisions from biodiversity data
387 from multiple sources and the ability of prior name resolution by the GNRS to improve the
388 effectiveness of downstream validations such as geopolitical validation.

389

390 **Methods**

391
392 As part of the validation workflow for the BIEN 4.2 database we extracted all distinct, verbatim
393 country-, state- and county-level political divisions (declared PDCs; see “User input” for
394 definition) from the >270 million species occurrence records in the BIEN biodiversity
395 observations database [16,32]. The BIEN 4.2 observations consist of herbarium specimen data
396 and vegetation plot occurrence records assembled from 4,946 distinct data sources ranging
397 from individual research data sets to herbarium collections databases to large aggregators of
398 regional and global biodiversity data (see [33] for details). The occurrence records included both
399 georeferenced and non-georeferenced observations. We then assessed performance of the
400 GNRS by comparing the numbers of declared political division names matching exactly to
401 political divisions in GADM in their original form to those matching after resolution by the GNRS.

402
403 To explore the consequences of political division name resolution for downstream validation of
404 geocoordinate accuracy, we used the subset of BIEN 4.2 species observations accompanied by
405 geocoordinates (BIEN GSOs) to compare rates of mismatch between the declared political
406 divisions and the political divisions indicated by the accompanying geocoordinates (“observed
407 political divisions”). For each GSO, we determined the observed country, state and county by
408 joining its coordinates to spatial object representations of world administrative divisions in the

409 GADM database. Spatial joins and retrieval of GADM political division identifiers were
410 performed using the BIEN GVS (see <https://github.com/ojalaquellueva/gvs>). GADM identifiers
411 (gid_0, gid_1 and gid_2) of the observed political divisions were then compared to the GADM
412 identifiers of the declared political divisions. A GSO with all observed political divisions matching
413 all corresponding declared political divisions was classified as having passed validation; a GSO
414 with one or more sets of non-matching observed and declared political division identifiers was
415 classified as having failed. This validation is equivalent to testing if the GSO's coordinates fall
416 within its declared political divisions. We performed validation twice: once using the GADM
417 identifiers retrieved by an exact match of the verbatim declared political division name to names
418 stored natively in the GADM database, and a second time using the GADM identifiers retrieved
419 by resolution of declared political division names using the GNRS.

420

421 **Results & Discussion**

422

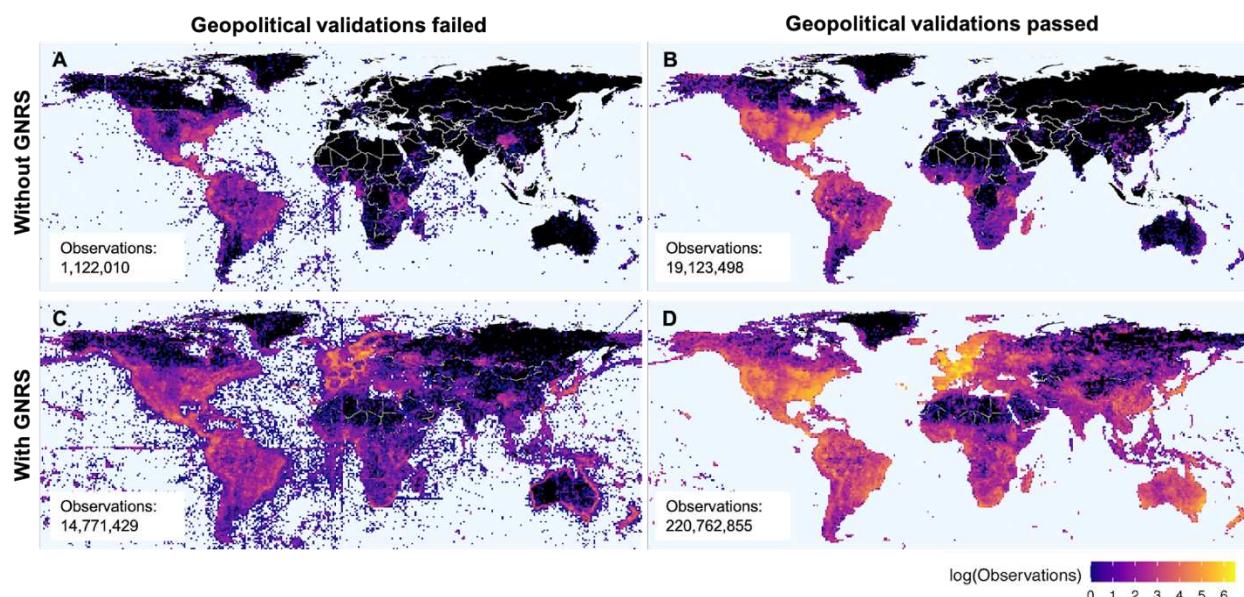
423 **Political division name resolution**

424

425 A total of 409,797 unique verbatim PDCs were extracted from the 271,188,222 species
426 observations in the BIEN 4.2 database. After processing by the GNRS, 163,174 (39.8%) of the
427 unique PDCs were fully matched, 234,452 (57.2%) were partly matched and 12,171 (3.0%)
428 returned no match, where “fully matched” PDCs had all declared political division names
429 matching exactly to GADM political division names and “partly matched” PDCs had one or more
430 unmatched political division names. Of the fully matched PDCs, only 7,593 (1.9% of total
431 PDCs), representing 16,138,042 (6.0%) of total observations matched exactly as submitted (that
432 is, all verbatim political division names matched exactly to names in the GADM database). The
433 remaining 155,581 fully matched PDCs (38.0% of total PDCs) required resolution by the
434 GNRS—either by exact matching on codes, exact matching on alternative names and spellings,

435 or fuzzy matching on standard and alternative names—to recover the corresponding GADM
436 administrative units. Of the partly matched names, 222,987 also required some degree of
437 resolution by the GNRS. Thus the GNRS was able to resolve, in part or completely, 378,568
438 initially non-matching PDCs (92.4% of the total PDCs) representing 232,270,686 observations,
439 or 85.6% of the total biodiversity observation data set.

440
441 After resolution by the GNRS, 30% of country names (429), 65.6% state names (78,710) and
442 58.6% (175,312) of county names remained unresolved. However, unmatched country and
443 state names represented only >0.1% (263,300) and 6.2% (16,870,530) of total observations,
444 respectively. Unmatched county-level names accounted for the majority of observations with
445 partly or completely unresolved PDCs (72,273,914, or 26.7% of total observations). At all levels,
446 most unmatched names appeared to be unresolvable genuine errors such as informal regions
447 (e.g., “Europe”, “Indochina”), locality descriptions (especially in the state field) and other
448 information unrelated to political division names (Supporting Information, Tables S5-S8).
449 However, many unmatched county-level names contained valid, correctly-spelled names
450 preceded or followed by administrative level 2 type identifiers (e.g., “Oblast”, “Prefecture”,
451 “District”, etc.) or their abbreviations (“Obl.”, “Pref.”, “Distr.”, “Cty.”, etc.). Although the GNRS
452 attempts to remove such class identifiers prior to matching, the reference tables used to detect
453 type identifiers are incomplete; matching of county-level names could be increased by
454 expanding these tables, in particular by adding commonly-used abbreviations (see S1 Appendix
455 5 for details).


456
457 **Geocoordinate validation with and without the GNRS**

458
459 A total of 239,662,948 species observations had non-null values of latitude and longitude on
460 range [0:90] and [-180:180], respectively, allowing validation of the declared political divisions
461 against the observed political divisions determined by their coordinates. The global distributions

462 of points passing and failing validation, with and without prior resolution of declared political
463 division names by the GNRS, are shown in Fig 3.

464
465 Of the GSOs passing validation, 19,123,498 (8.0% of total georeferenced GSOs) had declared
466 political divisions correct as submitted (Fig 3B) compared to 220,762,855 (92.1%) passing
467 validation after name resolution by the GNRS (Fig 3D). Of the GSOs failing validation,
468 1,122,010 (0.5%) had declared political divisions correct as submitted (Fig 3A), compared to the
469 14,771,429 (6.2%) erroneous GSOs detected after name resolution by the GNRS (Fig
470 3C). Thus, prior name resolution by the GNRS enabled detection of an additional 201,639,357
471 correct observations and exclusion of an additional 13,649,419 erroneous observations.

472

473

474 **Fig 3. Geopolitical validation results for 240 million georeferenced species occurrences,**
475 **with and without prior political division name resolution by the GNRS.** Using the GNRS
476 allows you to detect and reject an order of magnitude more bad points (A vs. C) and detect and
477 accept an order of magnitude more valid points (B vs. D). Colors represent density of
478 georeferenced observations per 1 x 1 degree cells failing or passing validation that observation
479 coordinates fall within the declared political divisions. (A) Political divisions correct as submitted,

480 validation failed; (B) political divisions correct as submitted, validation passed; (C) political
481 divisions correct or resolved by GNRS, validation failed; (D) political divisions correct or
482 resolved by GNRS, validation passed. Black=zero observations.

483
484 The increase in data validated following resolution by the GNRS had strong spatial components,
485 with especially striking increases in Africa, Asia and Australia. For some regions, such as
486 central Australia, density of validated GSOs increased from near zero to hundreds of thousands
487 following political division name resolution by the GNRS. Overall, name resolution by the GNRS
488 prior to geopolitical validation increased the number of observations validated (passed and
489 failed) by an order of magnitude, from 20,245,508 to 235,534,284.

490
491

Caveats

492
493 An important caveat to bear in mind when using the GNRS is that its data sources encompass
494 modern countries only. For example, Yugoslavia is not present in GADM or GeoNames;
495 historical collections from “Yugoslavia” will therefore not be resolved by the GNRS and will not
496 be available for downstream validation. In addition, historical changes to extant country
497 boundaries are not represented. For example, collections from the region of South Sudan
498 collected prior to 2011 (the year of South Sudan’s independence from Sudan) would most likely
499 bear the country name “Sudan”. Although the GNRS will resolve the latter name, subsequent
500 validation of the associated coordinates using GADM would locate the point of observation in
501 modern “South Sudan”, resulting in rejection of the occurrence as invalid. Future development
502 of the GNRS may address data validation of GSOs derived from historical collections. This
503 challenge will require reference data that includes historical geopolitical entities and their start
504 and end dates [53] in addition to modern political entities. Users would need to submit dates of
505 observation in addition to geocoordinates and declared political divisions.

506
507 A second caveat is that the GNRS currently resolves GADM spatial object identifiers only.
508 However, it also returns a variety of standard political division codes such as ISO 3166, FIPS
509 and HASC, which can in turn be used to retrieve spatial object identifiers from other widely used
510 administrative division databases such as Natural Earth [31]. Future releases of the GNRS will
511 store spatial object identifiers for additional sources natively within the GNRS database and
512 expose this information to users.

513
514 **Conclusions**

515
516 Political division name resolution is a critical but often neglected step in verifying the accuracy of
517 species occurrence data. Political geovalidation is of limited value if political divisions are
518 misspelled or represented by codes and spelling variants not present in the geospatial reference
519 data. The GNRS fills this gap by rapidly standardizing political division names, synonyms and
520 codes against widely-used administrative division reference data sets. A variety of interfaces
521 enable use of the GNRS by users with different skill levels and programming abilities (including
522 non-programmers) and simplifies integration into existing data quality pipelines. As
523 demonstrated by a case study involving >239 million georeference species occurrences, prior
524 name resolution by the GNRS can enable validation of an order of magnitude more error-free
525 data and detection of an order of magnitude more erroneous data, compared to using
526 unresolved political division names and codes.

527
528 **Software and data availability**

529
530 A publicly available instance of the GNRS API can be accessed directly at
531 https://gnrsapi.xyz/gnrs_api.php, or indirectly using the GNRS R package or GNRS web
532 interface. The GNRS R package can be downloaded from GitHub

533 (<https://github.com/EnquistLab/RGNRS>) using the devtools package [48], from CRAN (see
534 <https://cran.r-project.org/web/packages/GNRS/index.html>). The GNRS web interface can be
535 accessed at <https://gnrs.biendata.org>.

536
537 Source code for the GNRS database, core services and API are available from the GNRS
538 GitHub repository (<https://github.com/ojalaquellueva/gnrs>). Example scripts demonstrating how
539 to call the API in R and PHP are available from the API subdirectory of the GNRS repository
540 (<https://github.com/ojalaquellueva/gnrs/tree/master/api>). Code to import GADM content to
541 PostgreSQL is available from <https://github.com/ojalaquellueva/gadm>. Code to import
542 GeoNames is available from <https://github.com/ojalaquellueva/geonames>. Source code for the
543 GNRS web interface is available from <https://github.com/EnquistLab/GNRSweb>. All source code
544 for all GNRS components is freely available under MIT licenses.

545
546 Access to the complete GNRS database is governed by the licenses of the contributing
547 databases, which range from CC0 (NaturalEarth) to CC BY (GeoNames) to the equivalent of
548 CC BY-NC-ND (GADM). Limitations imposed by the GADM license prohibits us from directly
549 redistributing the complete copies of the GNRS database. However, users can build an identical
550 copy of the GNRS database using the GNRS source code with data obtained directly from the
551 contributing databases. Step-by-step instructions are provided in the GNRS GitHub repository.

552
553 An example data file for testing the GNRS is available here:
554 https://github.com/ojalaquellueva/gnrs/blob/master/data/user/gnrs_testfile.csv.

555
556 Data and code for replicating the GNRS case study (Fig 3 and all summary statistics) are
557 available from doi:10.5281/zenodo.6370837.

558
559 **Supporting Information**

560 **S1 File. Additional GNRS application details, analyses and examples.**

561

562 **Acknowledgements**

563 We gratefully acknowledge the authors and administrators of GADM, GeoNames and Natural
564 Earth for compiling, maintaining and distributing the data resources that made this project
565 possible. GNRS parallelization code was originally developed by Naim Matasci for the
566 Taxonomic Name Resolution Service [26]. The staff at NCEAS and CyVerse provided critical
567 computational support.

568

569 **Author contributions**

570
571 Conceptualization: BLB, BJE. Software – GNRS database, search engine and API: BLB.
572 Software – GNRS R package: BSM, BLB. Software – GNRS web interface: GGCB, RKS, BLB.
573 Writing – Original Draft Preparation: BLB. Writing – Figures: BLB, EAN. Writing – Review &
574 Editing: All authors.

575

576 **References**

577

578. Antonelli A, Ariza M, Albert J, Andermann T, Azevedo J, Bacon C, et al. Conceptual and
579 empirical advances in Neotropical biodiversity research. PeerJ. 2018 Oct 4;6:e5644.

580. Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecol Model.
581 2000;135(2-3):147–86.

582. Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models.
583 Ecol Lett. 2005 Sep;8(9):993–1009.

584. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, et al.
585 Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press; 2011.
586 328 p.

587. Franklin J. *Mapping Species Distributions: Spatial Inference and Prediction*. Cambridge
588 University Press; 2010. 339 p.

589. Willis SG, Foden W, Baker DJ, Belle E, Burgess ND, Carr JA, et al. Integrating climate change
590 vulnerability assessments from species distribution models and trait-based approaches. *Biol
591 Conserv.* 2015 Oct 1;190:167–78.

592. Hannah L, Roehrdanz PR, Marquet PA, Enquist BJ, Midgley G, Foden W, et al. 30% Land
593 Conservation and Climate Action Reduces Tropical Extinction Risk By More Than 50%.
594 *Ecography* . 2020;1–11.

595. Feng X, Merow C, Liu Z, Park DS, Roehrdanz PR, Maitner B, et al. How deregulation, drought
596 and increasing fire impact Amazonian biodiversity. *Nature* [Internet]. 2021 Sep 1; Available
597 from: <http://dx.doi.org/10.1038/s41586-021-03876-7>

598. Foley DH, Weitzman AL, Miller SE, Faran ME, Rueda LM, Wilkerson RC. The value of
599 georeferenced collection records for predicting patterns of mosquito species richness and
600 endemism in the Neotropics. *Ecol Entomol*. 2007 Nov 27;0(0):071203162814003 – ???

601. Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM, Eskew EA, et al. Climate change will
602 drive novel cross-species viral transmission [Internet]. Available from:
603 <http://dx.doi.org/10.1101/2020.01.24.918755>

604. Weeks BC, Willard DE, Zimova M, Ellis AA, Witynski ML, Hennen M, et al. Shared
605 morphological consequences of global warming in North American migratory birds. *Ecol Lett*.
606 2020 Feb;23(2):316–25.

607. MacLean HJ, Nielsen ME, Kingsolver JG, Buckley LB. Using museum specimens to track
608 morphological shifts through climate change. *Philos Trans R Soc Lond B Biol Sci* [Internet].
609 2018 Nov 19;374(1763). Available from: <http://dx.doi.org/10.1098/rstb.2017.0404>

610. Serra-Diaz JM, Enquist BJ, Maitner B, Merow C, Svenning J-C. Big data of tree species
611 distributions: how big and how good? *Forest Ecosystems*. 2018 Jan 15;4(1):30.

612. Park DS, Davis CC. Implications and alternatives of assigning climate data to geographical
613 centroids. *J Biogeogr*. 2017 Oct 28;44(10):2188–98.

614. Zizka A, Silvestro D, Andermann T, Azevedo J, Duarte Ritter C, Edler D, et al.
615 CoordinateCleaner: Standardized cleaning of occurrence records from biological collection
616 databases. *Methods Ecol Evol*. 2019;10(5):744–51.

617. Maitner BS, Boyle B, Casler N, Condit R, Donoghue J, Durán SM, et al. The bien r package: A
618 tool to access the Botanical Information and Ecology Network (BIEN) database. *Methods Ecol
619 Evol*. 2017;2017(July):1–7.

620. Barbet-Massin M, Rome Q, Villemant C, Courchamp F. Can species distribution models really
621 predict the expansion of invasive species? *PLoS One*. 2018 Mar 6;13(3):e0193085.

622. Fedele G, Donatti CI, Bornacelly I, Hole DG. Nature-dependent people: Mapping human direct
623 use of nature for basic needs across the tropics. *Glob Environ Change*. 2021 Nov 1;71:102368.

624. Wang F. Why Public Health Needs GIS: A Methodological Overview. *Ann GIS*. 2020;26(1):1–
625 12.

62²⁰ Piatkowska SJ, Hövermann A. A Culture of Hostility and Crime Motivated by Bias: A Cross-
627 National Multilevel Analysis of Structural Influences. *International Criminal Justice Review*. 2019
628 Jun 1;29(2):141–67.

62²¹ Foa RS. Decentralization, historical state capacity and public goods provision in Post-Soviet
630 Russia. *World Dev*. 2022 Apr 1;152:105807.

63²² Faye CM, Wehrmeister FC, Melesse DY, Mutua MKK, Maïga A, Taylor CM, et al. Large and
632 persistent subnational inequalities in reproductive, maternal, newborn and child health
633 intervention coverage in sub-Saharan Africa. *BMJ Glob Health*. 2020 Jan 26;5(1):e002232.

63²³ ISO 3166 [Internet]. 2021 [cited 2021 Sep 8]. Available from: <https://www.iso.org/iso-3166-country-codes.html>

63²⁴ Federal Information Processing Standards Publications (FIPS PUBS) [Internet]. 2021 [cited
637 Accessed: Sep 08 2021]. Available from: <https://www.nist.gov/itl/publications-0/federal-information-processing-standards-fips>

63²⁵ Law G. *Administrative Subdivisions of Countries: A Comprehensive World Reference*, 1900
640 through 1998. McFarland; 2010. 463 p.

64²⁶ Boyle B, Hopkins N, Lu Z, Raygoza Garay JA, Mozzherin D, Rees T, et al. The taxonomic name
642 resolution service: an online tool for automated standardization of plant names. *BMC
643 Bioinformatics*. 2013 Jan;14(1):16.

64²⁷ Burgio KR, Carlson CJ, Tingley MW. Lazarus ecology: Recovering the distribution and migratory
645 patterns of the extinct Carolina parakeet. *Ecol Evol*. 2017 Jul;7(14):5467–75.

64²⁸ Qian H. Are species lists derived from modeled species range maps appropriate for
647 macroecological studies? A case study on data from BIEN. *Basic Appl Ecol*. 2020 Nov
648 1;48:146–56.

64²⁹ University of California, Berkeley, Museum of Vertebrate Zoology. Global Administrative Areas
650 (GADM) [Internet]. GADM maps and data. 2018 [cited 2018 May 5]. Available from:
651 <http://www.gadm.org>

65³⁰ Geonames. GeoNames [Internet]. 2020 [cited 2020 Apr 20]. Available from:
653 <https://www.geonames.org/>

65³¹ Kelse NV, Patterson T, Furno D, Buckingham T, Springer N, Cross L. Natural Earth [Internet].
655 Natural Earth. 2020 [cited 2020 Apr 15]. Available from: <https://www.naturalearthdata.com>

65³² Enquist BJ, Condit R, Peet B, Schildhauer M, Thiers B, Bien WG. Cyberinfrastructure for an
657 integrated botanical information network to investigate the ecological impacts of global climate
658 change on plant biodiversity. *PeerJ Preprints*. 2016;No. e2615:1–32.

65³³ Enquist BJ, Feng X, Boyle B, Maitner B, Newman EA, Jørgensen PM, et al. The commonness
660 of rarity: Global and future distribution of rarity across land plants. *Sci Adv*. 2019
661 Nov;5(11):eaaz0414.

66³⁴ Inmon WH. *Building the data warehouse*. John wiley & sons; 2005.

6635. Albrecht M, Donnelly P, Bui P, Thain D. Makeflow: A portable abstraction for cluster, cloud, and
664 grid computing. Technical Report TR-2011-02 [Internet]. 2011; Available from:
665 <http://www.cse.nd.edu/Reports/2011/TR-2011-02.pdf>

6666. Enterprise Open Source and Linux [Internet]. [cited 2021 Sep 9]. Available from:
667 <https://ubuntu.com/>

6687. PostgreSQL Global Development Group. PostgreSQL [Internet]. 2021 [cited 2021 Sep 9].
669 Available from: <https://www.postgresql.org/>

6708. Bash - GNU Project - Free Software Foundation [Internet]. 2021 [cited 2021 Sep 9]. Available
671 from: <https://www.gnu.org/software/bash/>

6729. Angell RC, Freund GE, Willett P. Automatic spelling correction using a trigram similarity
673 measure. Inf Process Manag. 1983 Jan 1;19(4):255–61.

6740. JSON:API Latest Specification (v1.0) [Internet]. 2021 [cited 2021 Sep 23]. Available from:
675 <https://jsonapi.org/format/>

6761. PHP: Hypertext Preprocessor [Internet]. 2021 [cited 2021 Sep 17]. Available from:
677 <https://www.php.net/>

6782. Venable WN, Smith DM, Team RDC, Others. An introduction to R [Internet]. Citeseer; 2009.
679 Available from:
680 <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.8971&rep=rep1&type=pdf>

6813. Wickham H, Chang W. Devtools: Tools to make developing r packages easier. R package
682 version. 2016;1(0):9000.

6834. Wickham H. Tools for Working with URLs and HTTP [R package httr version 1.4.2]. 2020 Jul 20
684 [cited 2021 Sep 9]; Available from: <https://CRAN.R-project.org/package=httr>

6855. Ooms J. The jsonlite Package: A Practical and Consistent Mapping Between JSON Data and R
686 Objects [Internet]. arXiv:1403.2805 [stat.CO]. 2014. Available from:
687 <https://arxiv.org/abs/1403.2805>

6886. Xie Y. knitr: a comprehensive tool for reproducible research in R. In: Implementing reproducible
689 research. Chapman and Hall/CRC; 2018. p. 3–31.

6907. Allaire JJ, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, et al. rmarkdown: Dynamic
691 Documents for R [Internet]. 2020. Available from: <https://github.com/rstudio/rmarkdown>

6928. Wickham H, Hester J, Chang W. devtools: Tools to Make Developing R Packages Easier
693 [Internet]. 2020. Available from: <https://CRAN.R-project.org/package=devtools>

6949. Wickham H. testthat: Get Started with Testing [Internet]. Vol. 3, The R Journal. 2011. p. 5–10.
695 Available from: https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf

6960. Node.js [Internet]. [cited 2021 Sep 9]. Available from: <https://nodejs.org/en/>

6971. React [Internet]. [cited 2021 Sep 9]. Available from: <https://reactjs.org/>

6982. Material Design [Internet]. 2021 [cited 2021 Oct 27]. Available from: <https://material.io/>

69953. Weidmann NB, Kuse D, Gleditsch KS. The Geography of the International System: The
700 CShapes Dataset. *International Interactions*. 2010 Feb 26;36(1):86–106.

701

702

703

704