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ABSTRACT
Listening can be conceptualized as a process of active inference, in which the brain forms

internal models to predict and integrate auditory information in a complex interaction of

bottom-up and top-down processes. Whether inter-individual “prediction tendencies“ shape

listening experiences of real-world stimuli such as speech is, however, unknown. In the

current study, we used a passive paradigm presenting tone sequences of varying entropy

level, to independently quantify auditory prediction tendency (as the tendency to anticipate

low-level acoustic features according to their contextual probability) for each individual. This

measure was then used to predict the magnitude of cortical speech (envelope) tracking in a

multi speaker listening task, where participants listened to audiobooks narrated by a target

speaker in isolation or interfered by 1 or 2 distractors. Furthermore, rare semantic violations

were introduced into the story, enabling us to also examine effects of word surprisal during

continuous speech processing. Our results show that individual prediction tendency

facilitates cortical speech tracking. Furthermore, we find interactions between individual

prediction tendency and background noise as well as word surprisal in disparate brain

regions. In sum, our findings suggest that individual prediction tendencies are generalizable

across different listening situations and may serve as a valuable element to explain

interindividual differences in natural listening experience.
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INTRODUCTION
Listening is a neurobiological challenge that requires a complex interaction of bottom-up and

top-down processes. For instance, understanding speech in a noisy environment by

bottom-up input alone would be impossible due to the vast amount of overlapping

spectrotemporal information (McDermott, 2009). In line with notions of the so-called

predictive brain (K. Friston, 2010; Knill & Pouget, 2004; Yon et al., 2019), we assume that

our brain is actively engaged when listening to speech by fitting and testing internal models,

inferring which sound sources (“auditory objects“; Griffiths & Warren, 2004) are causing the

neural activity patterns. This process requires the constant generation of predictions that are

continuously compared with incoming bottom-up information.

With the rising scientific interest to prove the ubiquity of the predictive brain, also the

consideration of individual differences has received increased attention. In search of a

predictor of linguistic abilities, individual differences in statistical learning, “a general capacity

for picking up regularities”, have been proposed in this regard (for a review see Siegelman et

al., 2017). Crucially, however, statistical learning as an individual capacity should be

operationalised and precisely which of its components drive the relationship between

statistical learning and linguistic performance remains unclear. We propose that the

individual tendency to actively generate auditory predictions might be one such factor.

Following up on research focusing on individual differences, it is reasonable to assume that

humans differ in their capability as well as their overall tendency to actively predict incoming

sensory input. These differences have already been linked to a variety of clinical

psychological conditions and disorders such as autism (Sinha et al., 2014), schizophrenia

(Sterzer et al., 2018) and tinnitus (Partyka et al., 2019; Sedley et al., 2016). However,

prediction tendencies have so far not been studied as a potential factor that drives

interindividual differences in everyday listening abilities such as speech. Friston and

colleagues (2021) recently provide a theoretical perspective in which the predictive brain is

engaged in active listening, for example supporting (covertly) the dissection of words from a

continuous auditory signal based on prior assumptions. Here we aim to consider the

influence of individual differences in prediction tendencies on speech processing. Our main

assumption is that individual prediction tendency, which we operationalize as the tendency to

pre-activate sensory features of strong likelihood, contributes substantially to differences in

speech processing.

Another goal of the current study is to detail the circumstances under which strong prediction

tendencies are particularly beneficial for speech processing. Indeed, “normal” hearing

individuals vary considerably in their ability to understand speech with some even reporting

difficulties in everyday speech comprehension and communication (Ruggles et al., 2011).

These interindividual differences become especially apparent in noisy situations which are
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typical for natural environments. In the iconic cocktail party situation multiple speech streams

enter the auditory system, yet only one is to be followed (Oberfeld & Klöckner-Nowotny,

2016). This task gets increasingly challenging with increased interfering noise, revealing

and/or increasing inter-individual differences in listening experiences (Wöstmann et al.,

2015). To establish these contextual influences on speech processing with high temporal

resolution, cortical tracking of the acoustic envelope (extracted from the audiofile and used

as a predictor to explain variance in the neural signal) has become increasingly popular

(Brodbeck et al., 2018; Vanthornhout et al., 2018).

Regardless of signal-to-noise ratio, it should be considered that even under optimal

conditions not all incoming sensory information is equally predictable. Thus, how the

influence of prediction tendency on speech processing depends on the predictability of the

speech input itself is another important question that needs to be addressed. Although there

are several neuroimaging studies offering valuable insight to the effect of prior knowledge on

isolated sentences (Di Liberto et al., 2018) or target words (Sohoglu et al., 2012), it has been

questioned whether effects from controlled manipulation generalize to natural, narrative

language. Using artificial neural network (ANN) language models (which mimic human

language processing; Schrimpf et al., 2021) to quantify word predictability on a continuous

scale, recent evidence suggests cortical tracking of surprisal during continuous speech

perception (Donhauser & Baillet, 2020; Weissbart et al., 2020). Broderick and colleagues

(2019) further showed that semantic predictability also enhances acoustic envelope

encoding in continuous speech. Although the benefits of using natural speech with no

experimentally induced manipulations have to be acknowledged, one remaining

disadvantage is the difficulty in separating top-down from bottom-up influences. In narrative

language the acoustic signal is correlated with the higher level information it conveys and

any alteration in speech envelope encoding may be attributed to both aspects (Brodbeck &

Simon, 2020).

In the current study, we combined magnetoencephalographic (MEG) data from two different

paradigms in order to establish a link between individual prediction tendency and speech

perception: 1) An adapted paradigm as used by Demarchi and colleagues (2019), presenting

tone sequences of varying entropy level (in the following referred to as entropy modulation

paradigm) which was used to independently quantify individual prediction tendency. 2) A

multi speaker listening task to investigate individual differences in neural speech tracking

across different levels of background noise. We used natural, continuous speech but also

introduced rare semantic violations by randomly replacing a limited set of words with target

words that occurred elsewhere in the same storyline. This allowed us to investigate encoding

of the acoustic envelope on a continuous scale as well as on an individual word level (of

lexically identical stimuli), ensuring that effects of word surprisal cannot be attributed to
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differences in bottom-up input. Assuming that a strong individual prediction tendency will

allow for higher experiential certainty in language segments with low surprise, we expected

strong contextual violations to interfere with this facilitation of speech processing. Our results

show that prediction tendency, which we define as the tendency to anticipate auditory events

of high probability, facilitates cortical speech envelope encoding in perisylvian and inferior

frontal areas of both hemispheres. Furthermore, we find spatially dissociable interactions

between individual prediction tendency and background noise as well as word surprisal. In

sum, these findings suggest that individual prediction tendencies show considerable

generalizability across different listening situations and may serve as a valuable element to

explain interindividual differences in natural listening experience.

METHODS
Subjects
In total 53 (21 male) subjects were recruited to participate in the study, however 4 subjects

did not complete the experiment due to technical difficulties, leaving a total number of 49

subjects (mean age = 26.31, range = 19 - 40) for further data analysis. Participation was

compensated either monetarily or via course credits. All participants were German native

speakers and reported normal hearing which was confirmed using standard pure tone

audiometry. Participants gave written, informed consent and reported that they had no

previous neurological or psychiatric disorders. The experimental procedure was approved by

the ethics committee of the University of Salzburg and was carried out in accordance with

the declaration of Helsinki.

Stimuli
We used audio recordings of excerpts from German books and short-stories (see Appendix

table 1). In total, 6 different, consistent target stories (à ~10min) and 18 distractor stories (à

~3min) were recorded with a t.bone SC 400 studio microphone and a sampling rate of 44100

Hz. Prior to recording, target stories were split into separate trials of approximately 3 - 4 min

(mean = 3.46 min, range = 3.05 - 4.07 min). In addition, we randomly selected half of the

nouns that ended a sentence and replaced them with the other half to induce unexpected

semantic violations within each trial, resulting in two sets of lexically identical words (N = 79)

that differed greatly in their contextual probabilities (see Fig. 2C for an example). All 6 target

stories were recorded twice, narrated by a different speaker (male vs. female). The

remaining 18 recordings were narrated by the same two speakers (used as second

female/male distractor speaker to a male/female target speaker respectively) and two

additional speakers (used as first distractor speaker). Stimuli were presented in 6 blocks
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containing 3 trials each, resulting in 3 male and 3 female target speaker blocks for every

participant (see next section).

Experimental procedure
Before the start of the experiment, we performed standard pure tone audiometry using the

AS608 Basic (Interacoustics, Middelfart, Denmark) in order to assess participants’ individual

hearing ability. Afterwards, participants' individual head shapes were assessed using

cardinal head points (nasion and pre-auricular points), digitized with a Polhemus Fastrak

Digitizer (Polhemus) and around 300 points on the scalp. For every participant MEG

sessions started with a 5-minute resting state recording, after which the individual hearing

threshold was determined using a pure tone of 1043 Hz. This was followed by 2 blocks of

passive listening to tone sequences of varying entropy level to quantify individual prediction

tendencies (see quantification of individual prediction tendency) while participants watched a

landscape movie (LoungeV Films, 2017). In the main task 6 different stories were presented

in separate blocks in random order and with randomly balanced selection of the target

speaker (male vs. female voice). Each block consisted of 3 trials with a continuous storyline,

with each trial corresponding to one of 3 experimental conditions: a single speaker only, a

1-distractor speaker and a 2-distractor speaker condition (in the following: 0-dist, 1-dist,

2-dist, see Fig. 2A). The distractor speakers were always selected to be of the opposite sex

of the target speaker and were presented exactly 20 s after target speaker onset. All stimuli

were presented binaurally at equal volume for the left and right ear (i.e. at phantom center).

Participants were instructed to always attend to the first speaker and their understanding

was tested using comprehension questions (true vs. false statements) at the end of every

trial. Further, participants indicated their intrinsic motivation and their perceived task-difficulty

on a 5-point likert scale at the end of every trial. All stimuli were presented at 40db above the

individual hearing threshold. In total, the experiment lasted approximately 3.5h per

participant (including MEG preparation time). The experiment was coded and conducted with

the Psychtoolbox-3 (Brainard, 1997; Kleiner et al., 2007) with an additional class-based

library (‘Objective Psychophysics Toolbox’, o_ptb) on top of it (Hartmann & Weisz, 2020).

MEG Data Acquisition and Analysis
A whole head MEG system (Elekta Neuromag Triux, Elekta Oy, Finland), placed within a

standard passive magnetically shielded room (AK3b, Vacuumschmelze, Germany), was

used to capture magnetic brain activity with a sampling frequency of 10 kHz (hardware

filters: 0.1 - 3300 Hz). The signal was recorded with 102 magnetometers and 204

orthogonally placed planar gradiometers at 102 different positions. In a first step, a signal

space separation algorithm, implemented in the Maxfilter program (version 2.2.15) provided
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by the MEG manufacturer, was used to clean the data from external noise and realign data

from different blocks to a common standard head position. Data preprocessing was

performed using Matlab R2020b (The MathWorks, Natick, Massachusetts, USA) and the

FieldTrip Toolbox (Oostenveld et al., 2010). All data was filtered between 0.1 Hz and 30 Hz

(Kaiser windowed finite impulse response filter) and downsampled to 100 Hz. To identify

eye-blinks and heart rate artifacts, 50 independent components were identified from filtered

(0.1 - 100 Hz), downsampled (1000 Hz) continuous data of the recordings from the entropy

modulation paradigm and on average 3 components were removed for every subject. Data

of the entropy modulation paradigm was epoched into segments of 1200 ms (from 400 ms

before sound onset to 800 ms after onset). Multivariate pattern analysis (see quantification of

individual prediction tendency) was carried out using the MVPA-Light package (Treder,

2020). Single trial data from the main task were further projected into source-space using

LCMV spatial filters (Van Veen et al., 1997). To compute these filters, a​natomical template

images were warped to the individual head shape and brought into a common space by

co-registering them based on the three anatomical landmarks (nasion, left and right

preauricular points) with a standard brain from the Montreal Neurological Institute (MNI,

Montreal, Canada; (Mattout et al., 2007)). Afterwards, a single-shell head model (Nolte,

2003) was computed for each participant. As a source model, a grid with 1 cm resolution and

2982 voxels based on an MNI template brain was morphed into the brain volume of each

participant. This allows group-level averaging and statistical analysis as all the grid points in

the warped grid belong to the same brain region across subjects. Afterwards, the data was

temporally aligned with the corresponding features from the audio material.

Quantification of individual prediction tendency
In order to quantify individual prediction tendency, we used an entropy modulation paradigm

(see also Demarchi et al., 2019) where participants passively listened to sequences of 4

different pure tones (1: 440 Hz, 2: 587 Hz, 3: 782 Hz, 4: 1043 Hz, each lasting 100 ms)

during two separate blocks, each consisting of 1500 tones presented with a temporally

predictable rate of 3 Hz. Transitional probabilities between tones varied across two different

levels of entropy (ordered vs. random; see Fig. 1A). While in an “ordered” context certain

transitions (hereinafter referred to as forward transitions, i.e. 1→2, 2→3, 3→4, 4→1) were to

be expected with a high probability of 75%, self repetitions (e.g., 1→1, 2→2,...) were rather

unlikely with a probability of 25%. However, in a “random” context all possible transitions

were equally likely with a probability of 25%. Entropy levels changed between the two blocks

for half of the participants and pseudorandomly every 500 trials within each block for the

other half, always resulting in a total of 1500 trials per entropy condition. As Demarchi et al.

(2019) showed that preactivation of carrier-frequency related neural activity is systematically
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enhanced within low entropy conditions, it can be assumed that correct frequency-specific

predictions about upcoming events should only be generated for transitions of high

probability, i.e. (expected) forward transitions in an ordered context. Whereas in the same

ordered context, unexpected self-repetition trials should erroneously generate prestimulus

predictions to an upcoming tone in the expected forward direction, leading to poststimulus

model updating due to the unanticipated event. To test this assumption, we used a multiclass

linear discriminant analyser (LDA) which we trained on forward transition trials of the ordered

condition in order to capture any prediction related neural activity. Afterwards, the classifier

was tested on self-repetition trials to decode sound frequencies from brain activity in a

time-resolved manner, providing classifier decision values for every sound frequency which

were then transformed into corresponding transitions (e.g. 1(t)|1(t-1) → repetition, 1(t)|4(t-1) →

forward,...). This was done for repetition trials of the ordered and the random entropy

condition separately (see Fig. 1B). Resulting classifier decision tendencies (i.e. transformed

decision values) for a forward transition versus a repetition were contrasted for every

time-point from -0.3 s to 0.3 s of repetition trials (see Fig. 1C). Then, the average

forward-vs.-repetition tendency was zero-centered and compared between entropy

conditions (tested on ordered vs. tested on random repetitions). Since the classifier is trained

on forward transitions only, bottom-up representations of the preceding sound are also

labeled accordingly (carry-over classification effect). By balancing the transitions of both

conditions, we ensured an equal carry-over effect across conditions which enabled us to

isolate prestimulus prediction effects by contrasting “ordered” vs. “random”. Thus, we

quantified “prediction tendency” as the classifiers prestimulus tendency to a forward

transition in an ordered context exceeding the same tendency in a random context (see Fig.
1C). Analogously, we further quantified “updating tendency” as the poststimulus decision

tendency towards a repetition transition (again for ordered > random). Using the summed

difference across prestimulus/ poststimulus time, one prediction/ model updating value can

be extracted per individual subject. Note that condition contrasting was also applied to

ensure that individual differences in prediction tendency cannot be explained by subject

specific signal-to-noise ratio (as no vacuous differences in SNR is to be expected between

conditions). In addition, we used frequency decoding accuracy as a control variable to

correlate with speech tracking variables of interest (see Appendix).
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Fig.1: Quantification of individual prediction tendency. A) Participants have been presented

with sequences of 4 different pure tones at a rate of 3 Hz. Transitional probabilities varied

according to two different entropy conditions (ordered vs. random). B) Example of an

ordered sound sequence. An LDA classifier was used to decode sound frequency from brain

activity across time, trained on ordered forward transition trials and tested on all repetition

trials. C) Expected classifier decision values contrasting the brains prestimulus tendency to

predict a forward transition and poststimulus correction for the actually presented repetition.

Individual prediction and model updating quantification result from the difference between

conditions (ordered > random).

Encoding of acoustic features
First, the speech envelope was extracted from the audio files of the target speaker using the

Chimera toolbox (Smith et al., 2002) over a broadband frequency range of 100 Hz - 10 kHz

(in 9 steps, equidistant on the tonotopic map of auditory cortex, see Fig. 2B). Afterwards, to

quantify the neural representations corresponding to the acoustic envelope, we calculated a

multivariate temporal response function (TRF) using the Eelbrain toolkit (Brodbeck et al.,

2021). A deconvolution algorithm (boosting; (David et al., 2007)) was applied to the clear

speech condition (0-dist) to estimate the optimal TRF to predict the brain response from the

speech envelope for each individual virtual channel in source space (2982 voxels). The

defined time-lags to train the model were from -100 ms to 500 ms. To evaluate the model,

the 0-dist data was split into 4 folds, and a cross-validation approach was used to avoid

overfitting (Ying, 2019). Furthermore, the same model was used to deconvolve speech

envelope and brain data of the other two conditions (1-dist and 2-dist). The resulting
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predicted channel responses for all conditions were then correlated with the true channel

responses in order to quantify the model fit and the degree of speech envelope tracking in a

particular brain region.

Fig. 2.: Multi speaker paradigm. A) Subjects were instructed to listen to a “target speaker”

(purple). Depending on the experimental condition, the target speech stream was disrupted

by one or two additional distracting speakers. B) The speech envelope of the target speaker

was extracted and used to calculate a TRF (Brodbeck et al. 2021) with the associated brain

activity recorded using MEG. C) Semantic violations were introduced randomly by replacing

the last noun of a sentence with an improbable candidate to measure the effect of envelope

encoding in conjunction with prediction tendency on the processing of semantic violations.

Statistical analysis
To investigate the influence of individual prediction tendencies on speech tracking under

different noise conditions, we used Bayesian multilevel regression models with Bambi

(Capretto et al., 2022), a python package built on top of the PyMC3 package (Salvatier et al.,

2016) for probabilistic programming. The correlation between predicted brain activity from

speech envelope encoding and true brain activity was used as dependent variable, and

separate models were calculated per voxel using the following formula according to the

Wilkinson notation (Wilkinson & Rogers, 1973):

cortical tracking ~ n_distractors * prediction_tendency + (1|subject_id)
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To investigate the influence of higher-level probabilistic structure of speech, we also

calculated a model for which the dependent variable only included cortical tracking (i. e.

speech envelope encoding) results of lexically identical nouns of high vs. low surprisal:

cortical tracking ~ n_distractors * word-surprisal * prediction_tendency + (1|subject_id)

Before entering the models, prediction_tendency was zero-centered (note that in these

interaction models other predictors are assumed to be zero to estimate effects of one

predictor) and the number of distractors (0-2) was treated as a continuous variable. As priors

we used the weakly- or non-informative default priors of Bambi (Capretto et al., 2022). For a

summary of model parameters we report regression coefficients and 94% high density

intervals (HDI) of the posterior distribution. From the HDIs we can conclude that there is a

94% probability that the respective parameter falls within this interval given the evidence

provided by the data, prior and model assumptions. Effects were considered significantly

different from zero if the HDI did not include zero. Further, it was ensured that for all models

there were no divergent transitions (r̂ < 1.05 for all relevant parameters) and an effective

sample size > 400 (an exhaustive summary of bayesian model diagnostics can be found in

Vehtari et al., 2021). To further reduce the possibility of spatially spurious results, voxels

were only considered as significant if a minimum of two significant neighbours could be

detected. Subsequently, posterior distributions were aggregated over voxels that formed a

cluster to report summary statistics for each effect.

Due to an error in the experimental code that resulted in loss of data on accuracy for true vs.

false statements, we were not able to investigate listening comprehension on a behavioral

level. To investigate the influence of background noise and individual prediction tendency on

subjective perception we calculated two bayesian multilevel models using the following

formulas:

difficulty ~ n_distractors * prediction_tendency + (1|subject_id)

motivation ~ n_distractors * prediction_tendency + (1|subject_id)

As dependent variables we used perceived task difficulty as well as self reported motivation

(mean subjective ratings over blocks on a 5-point likert scale).
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RESULTS

Quantifying individual prediction tendencies
First, we used an entropy modulation paradigm to quantify the individual prediction tendency

which we define as the tendency to preactivate sound frequencies of high probability (i.e. a

forward transition from one tone to another). Results for quantification of individual prediction

tendencies are shown in Fig. 3. We find a clear prestimulus tendency to predict a forward

transition during repetition trials in the ordered condition which exceeds the carry-over effect

(see Fig.3). However, the data shows no visible difference in the correction for the actually

presented repetition between an ordered and a random context. Model updating

quantification was therefore dropped and only prediction tendency was used for further

analysis.

Fig.3: Individual prediction tendency. Time-resolved contrasted classifier decision: forward >

repetition for ordered and random repetition trials. Classifier tendencies showing

frequency-specific prediction for tones with the highest probability (forward transitions) can

be found even before stimulus onset but only in an ordered context (shaded areas always

indicate 95% confidence intervals).
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Speech comprehension becomes increasingly difficult with background noise
In order to investigate speech tracking, we used a multi speaker listening task. We find an

effect for the number of distractors on self reported difficulty, indicating that the task is

perceived more difficult as the number of distracting speakers increases. This result confirms

that our modulation of the background noise achieves the desired effect. A more detailed

description of all subjective task ratings (along with figures and summary statistics) can be

found in the Appendix.

Speech envelope encoding is modulated by individual prediction tendency and
background noise
Across 6 continuous audiobook stories, we measured the extent to which the auditory

speech envelope of a target speaker is encoded in 2982 virtual channels in source. First, we

find a negative effect for the number of distractors on envelope encoding in bilateral auditory

areas (b = -0.009, 94%HDI = [-0.023, -0.002], see Fig. 4A). This indicates that envelope

encoding decreases with increasing noise for average prediction tendency. Second, we find

a positive effect for prediction tendency in right perisylvian areas (namely inferior frontal,

precentral and superior temporal cortex) and left inferior frontal cortex (b = 0.011, 94%HDI =

[0.002, 0.025], see Fig. 4B). This suggests that individuals with stronger prediction tendency

show an increased envelope encoding in these areas. There was also a negative effect for

prediction tendency in the left inferior temporal cortex (b = -0.008, 94%HDI = [-0.015,

-0.001]). Furthermore, our results indicate a positive interaction effect between the number

of distracting speakers and prediction tendency in left inferior temporal and inferior frontal

cortex (b = 0.004, 94%HDI = [0.001, 0.008]). This suggests that as speech gets more difficult

to understand the role of prediction tendencies for envelope encoding increases in these left

hemispheric areas (see Fig. 4C). However, we also find a negative interaction effect

between the number of distracting speakers and prediction tendency in right inferior frontal,

mid temporal and superior temporal areas (b = -0.005, 94%HDI = [-0.011, -0.001]). This

indicates a right lateralized decreased effect for prediction tendencies on envelope encoding

with increasing noise (see Fig. 4C). In sum, these results suggest an important, albeit

differential role of individual prediction tendencies on speech envelope encoding.
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Fig. 4: Speech envelope encoding is modulated by individual prediction tendency and

background noise. A) The number of distracting speakers negatively affects speech

envelope encoding, as background noise increases the encoding accuracy of the speech

envelope decreases. B) Individual prediction tendency is positively associated with encoding

of clear, continuous speech. C) However, as background noise increases, we notice a

lateralized effect of prediction tendencies on speech envelope encoding. In right

temporo-frontal areas the role of prediction tendencies on speech envelope encoding

decreases with noise, while the opposite pattern was visible in left inferior frontal areas. In

sum, these results suggest an important, yet differential role for the relationship between

speech envelope encoding and individual prediction tendency.

Violations of semantic probability differentially affect speech tracking
In order to investigate how the beneficial effect of a strong prediction tendency on speech

processing in general might be affected by unpredictable events, we also induced rare

semantic violations into our paradigm. In a direct comparison of lexically identical words,

which have been differentially embedded into the semantic context, we find a positive effect

on envelope encoding for words of high surprisal vs. low surprisal in left perisylvian cortex (b
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= 0.024, 94%HDI = [0.005, 0.047], see Fig. 5A). We also find a weak negative cluster

showing a decreased encoding of surprising words in bilateral supplementary motor areas (b

= -0.017, 94%HDI = [-0.031, -0.002], see Fig. 5A). For prediction tendency, again there was

an overall positive effect in right superior temporal as well as bilateral inferior frontal cortex

for encoding of words of low surprisal (b = 0.020, 94%HDI = [0.004, 0.041]). Furthermore,

there was a left lateralized positive interaction between word surprisal and prediction

tendency, indicating an increase in encoding of surprising words with increased prediction

tendency in left angular gyrus (b = 0.017, 94%HDI = [0.004, 0.032], see Fig. 5B). Vice versa,

we find a right lateralized negative interaction in mid occipital and superior frontal cortex,

indicating that, with increased prediction tendency, encoding of surprising words is

decreased whereas encoding of unsurprising words seems to be increased in these areas (b

= -0.018, 94%HDI = [-0.033, -0.003], see Fig. 5B). Additionally, our results also show an

effect for the number of distracting speakers along with several interaction effects with noise

which are all listed in table 3 (see Appendix). In sum, the effects for the number of distractors

for words of low surprisal replicate those of the previous section. We also find that effects of

word surprisal along with the aforementioned interaction effects seem to diminish with

increasing noise. We therefore conclude that the interaction between the influence of word

surprisal and individual prediction tendency on encoding is negligible under conditions of

high background noise. Instead, we focus our interpretation on the interaction effects of word

surprisal and prediction tendency with respect to the clear speech condition.
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Fig. 5: Violations of semantic probability differentially affect speech tracking. A) Lexically

identical words differently affect the encoding of the envelope, if they are uttered in an

(un-)related context. In the left temporal lobe we notice a positive association between word

surprisal and encoding accuracy (the speech envelope was better encoded when words

were uttered in an unrelated context). However, there was also a weak negative effect of

word surprisal on envelope encoding in right bilateral motor areas (the speech envelope was

better encoded when words were uttered in a related context; marked by a black circle). B)

Furthermore, there was an interaction effect between individual prediction tendency and

word surprisal, suggesting a decreased encoding of semantic violations in the right, versus

an increased encoding of semantic violations in the left hemisphere, that scales with

prediction tendency.
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DISCUSSION
Based on previous research emphasizing the ubiquity of the predictive brain, the aim of the

current study was to investigate the supportive role of strong prediction tendencies in

everyday situations such as listening. We propose a link between individual auditory

prediction tendency and differences in the processing of spoken language. Across two

independent paradigms, we connected the individual tendency to preactivate expected

sound frequencies to the individual encoding of continuous narrative speech under varying

conditions of background noise. Our results demonstrate that individual prediction tendency

generally facilitates speech tracking. Furthermore, manipulating contextual predictability of

speech by including rare semantic violations allowed us to investigate how this in itself

beneficial effect is affected by unpredictable events, showing spatially differentiable

interactions.

Speech tracking is facilitated by individual prediction tendencies
Prediction tendency is conceptualized as an individual trait, a tendency that varies

considerably across individuals and generalizes across situations, and that could be linked

to psychiatric disorders such as autistic spectrum disorder (Pellicano & Burr, 2012) and

schizophrenia (Corlett et al., 2019). Taking into account its explanatory value for such

long-term and highly individualized disorders, predictions have worked their way from

feedback connections carrying expected lower-level neural activity (Rao & Ballard, 1999) to

an individual disposition that forms one of many core dimensions of personality. Here we

make no such claim, but we strongly suggest that more emphasis is put on the investigation

on the intraindividual stability of prediction tendencies (see Siegelman & Frost, 2015 for

similar efforts regarding statistical learning). However, so far the beneficial aspects of

prediction tendencies in complex listening situations have received little scientific attention.

Our findings show, for the first time, that the tendency to anticipate low-level acoustic

features according to their contextual probability facilitates the cortical tracking of the speech

envelope. Tracking of information conveyed by the speech envelope is critical for speech

comprehension and the processing of low-level linguistic features (Schmidt et al., 2021;

Vanthornhout et al., 2018). This suggests a potentially supportive role of the tendency to

anticipate low-level acoustic features on the processing of naturally spoken language.

Expectedly, this effect is most prominent in areas associated with auditory processing and

speech perception such as inferior frontal as well as temporal regions of the right

hemisphere, but also in Broca’s area of the left cortex (see Fig. 4B). To our knowledge, this

is the first study to link speech tracking capabilities to individual differences in prediction

tendency. This finding becomes all the more remarkable as our quantification of prediction

tendency stems from a very different auditory paradigm that was completely independent of
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speech processing. Therefore, we can infer some generalizability of individual prediction

tendencies across different listening situations. Most importantly, we argue that this link

cannot be explained by individual signal-to-noise ratio or other attributes (such as linearity

and distributive properties) that are known to have an influence on the performance of

classification and encoding algorithms. First, prediction tendency is quantified as the

difference in anticipatory predictions between conditions (thus uninformative idiosyncrasies

in feature decodability are canceled out) and second, we find that individual decoding

accuracy itself cannot predict envelope encoding, and its assumed beta shows no overlap

with that of prediction tendency (see Appendix).

The influence of prediction tendency on speech tracking decreases in the right and
increases in the left hemisphere as background noise increases
Regarding the question on how the beneficial effect of prediction tendency on speech

envelope tracking is affected by background noise, we find evidence for a dualistic effect

showing a clear lateralization. More precisely, we find that the extent to which prediction

tendency can explain speech tracking within the right hemisphere decreases with an

increasing number of distracting speakers. Thus showing the strongest effect of prediction

tendency on speech tracking whilst speech is clearly understandable. When simultaneously

confronted with multiple speakers at a real cocktail party, the distracting speech streams are

often spatially separable from the target stream, but in situations when a spatial segregation

is not possible (for example in an online meeting) speech intelligibility is heavily decreased.

As in our experiment the target and the distractor streams were both presented at phantom

center, we created a similar situation. It is possible that with decreased intelligibility in

bottom-up input, predictive processes are impaired from distortions in the auditory

feedback-loop. The current results support our assumption that differences in prediction

tendency can explain the variability in listening performance under optimal conditions.

However, we also find a left frontal cluster that shows decreased encoding of clear speech

for individuals with stronger prediction tendencies. Furthermore, the negative association

disappears and even slightly reverses with increasing noise. Thus, the extent to which the

left inferior frontal cortex is engaged in speech envelope tracking in individuals with lower vs.

stronger prediction tendencies seems to be dependent on background noise. For individuals

with low prediction tendency we find substantial encoding of clear speech, whereas for

individuals with strong prediction tendency speech encoding emerges only in conditions of

increased background noise. One possible explanation is that differences in prediction

tendency may result in differential allocation of attention depending on individual listening

effort. For example, Lesenfants and Francart (2020) found that attention plays a crucial role

in the cortical encoding of speech and showed an advanced encoding in frontal &
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fronto-central electrodes with focal attention. So far, differences in challenging listening

situations with low signal-to-noise ratio (such as in a cocktail party situation) have often been

linked to individual differences in selective attention (Kerlin et al., 2010). Yet, we argue that a

predictive theory of individual listening experience is not exclusive but rather complementary

to that as predictions are assumed to generate a selective attentional gain to the expected

sensory feature (e.g. Marzecová et al., 2018). It seems possible that people allocate

attention in a different or more parsimonious way depending on their tendency to rely on

predictions. An alternative (though not mutually exclusive) interpretation is that individuals

with weaker auditory prediction tendency have to rely more on sensorimotor integration in

speech processing.

The general idea behind the concept of sensorimotor integration is that auditory processing

is critically involved in speech production and, vice versa, that motor processes have a

modulatory influence on speech perception. An integrative model was proposed by Hickok

and colleagues (2011) in which the motor system promotes auditory forward predictions as

part of a sensory-to-motor feedback circuit. Critically, they claim that the motor-speech

networks are also involved in passive listening as feedback from auditory speech

information, both self and others', is relevant for production. Furthermore, it is assumed that

forward predictions from the motor systems can also have perceptual consequences as they

generate a sensory prediction that results in selective attentional gain for expected features.

Based on this, we propose the following interpretation of our results: Individuals with a

stronger tendency to generate purely auditory predictions are less reliant on predictions from

the motor system during clear speech perception. However, as background noise increases,

they start to use this mechanism as an alternative strategy to compensate for poor auditory

input. The idea that the tendency for multisensory integration shows great interindividual

variability is not new but has so far mainly focused on audiovisual integration for speech

perception (e.g. Nath & Beauchamp, 2012). We suggest that future research should explore

the possibility of an interaction between individual prediction tendency and sensorimotor

integration during speech perception in challenging listening situations.

Violations of semantic probabilities interact with individual prediction tendencies
To test the influence of individual prediction tendencies on changes in semantic probabilities

during speech processing, we compared speech envelope encoding between a subset of

surprising target words that are semantically unrelated to the preceding context and their

lexically identical counterparts for which contextual predictability was not manipulated. Our

results show an increased envelope tracking for surprising words in the left perisylvian

cortex. Over the last decades, most research that has investigated the effects of surprise in

speech perception has focused on event-related potentials and the typical N400 component
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- a negativity at 300 – 600 ms in central and/or parietal regions. It is a well established

finding that unexpected stimuli raise a stronger response (or from another perspective:

expected stimuli evoke a reduced neural response), but the relative information content of

these responses is still debated (de Lange et al., 2018). Our findings show considerable

spatial overlap with previous studies that have focused on surprisal-evoked responses in

speech perception (Frank & Willems, 2017; Willems et al., 2016), complementing them in

two ways. First, we provide evidence that these responses are not driven by a rather

unspecific error signal but instead actually encode information about the surprising stimulus

itself. Our results indicate that the low-level acoustic representation is sharpened for high

compared to low surprisal and, importantly, that this sharpening is a consequence of

contextual unpredictability and cannot be explained by any differences in bottom-up input.

Second, even though the impact of predictions on speech perception has widely been

emphasized (e.g. Heilbron et al., 2021), the question of how individual prediction tendency

interacts with the processing of semantic violations has, to the best of our knowledge, not

been investigated so far. Originally, we expected a disrupted encoding of surprising words,

scaling with individual prediction tendency. Instead, we find a spatially dissociable interaction

effect, indicating the expected interference for surprising words in right occipital and superior

frontal regions on the one hand (or hemisphere), but also an increased encoding of

surprising words in left angular gyrus with increased prediction tendency on the other. These

findings allow for different interpretations and in the following the two interaction effects are

separately discussed in more detail.

The superior frontal and occipital locations, for which we find a negative impact of surprise

and prediction tendency, could suggest a possible contribution of eye movements to the

encoding of acoustic information. Eye movements have already been linked to top-down

auditory attention, even in the absence of any visual stimulation, and great interindividual

variability has been observed in the extent to which they are used to support auditory

attention (Braga et al., 2016). As the current study focused on qualitative differences (i.e. the

extent to which an auditory feature is represented) rather than quantitative differences in

power or amplitude, we currently do not rule out the general possibility that speech envelope

may also to some extent be tracked via eye-movements.

In contrast, we also find a positive interaction of prediction tendency and word surprisal in

the left angular gyrus. One possible interpretation is that this enhanced encoding reflects a

prediction error that is increased in individuals with stronger prediction tendency. Prediction

errors are generally assumed to convey unexpected information to update internal models

and improve future predictions, however their content and functionality can vary across

situations and brain regions (Den Ouden et al., 2012). From the current results we cannot

draw any conclusions on internal model updating, but we suggest further investigations on
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the impact of error-driven learning in speech perception with respect to interindividual

differences.

Limitations
There are several limitations to the interpretation of our results. First, we were not able to

directly link prediction tendencies to differences in behavioral task performance (due to data

loss) or to subjective listening experience. Although one might argue that these variables are

of considerable importance for real-life implications, in the current study they are likely to be

biased by floor/ceiling effects (see Appendix). Second, we did only focus on one acoustic

feature although speech perception encompasses many more linguistic features (such as

formants, phonemes, syllable rate etc.), and even though we demonstrated an effect of word

surprisal on low-level encoding, we did not investigate the tracking of such higher-level

features directly. Future research should focus on the explanatory value of individual

prediction tendency for speech processing across all levels along the linguistic hierarchy.

Conclusion
We support the assumption that predictive processing is an ubiquitous perceptual

phenomenon and that it is crucial for continuous speech perception. Furthermore, we argue

that the tendency to engage in these predictive processes is different from individual to

individual and that this variability can explain differences in listening experience. Importantly,

individual prediction tendency can be assessed independently of the speech perception it

facilitates, thus we can infer some generalizability of auditory predictions across different

listening situations.
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APPENDIX

Stimulus Material
We used audio recordings of excerpts from German books and short-stories (listed in the

table below) for our multispeaker listening task. Excerpts were selected prior to recording in

such a way that one trial had an approximate reading duration of 3 - 4 min (mean = 3.46 min,

range = 3.05 - 4.07 min). In total 27 trials were recorded from the following material:

Table 1: List of all ebooks and short stories that were used as basis for audio material

“Ein zauberhafter Schrebergarten” by Anja Pompowsk1

“Winterzauber in der kleinen Keksbäckerei” by Holly Hepburn1

“Darius’ Radius” by Maida Thesy 1

“Die Möwe Jonathan” by Richard Bach1

“Die Eskimos: Geschichte und Schicksal der Jäger im hohen Norden by T. Jeier1

“Sofies Welt” by Jostein Gaarder1

“Die zwei Weiden” and “Der Zaunkönig und die Rose” by Florian C. Pichler2

“Der Goldstrauch und 66 weitere Kurzgeschichten für zwischendurch” by Alfred Bekker2

“Der Schneesturm” by Nadja Rohner2

“Die Burg” by Werner Kistler2

“Kishon's schönste Geschichten für Kinder” by Ephraim Kishon2

Note: 1main stories narrated by a target speaker (3 x ~3min excerpts each), 2distractor stories narrated by a distractor

speaker (18 x ~3min excerpts in total)

Speech tracking effects cannot be explained by differences in pure tone decoding

To show that the relationship between prediction tendency and the encoding of speech

features cannot merely be explained through individual differences in signal-to-noise ratio we

added individual (zero-centered) pure-tone decoding accuracy peaks from the entropy

modulation paradigm into our model. Envelope encoding was averaged over voxels that

showed a significant effect of prediction tendency and used as dependent variable. Model

summary statistics (see Table 2)  show that individual pure-tone decoding cannot predict

envelope encoding results (b = -0.001, 94%HDI = [-0.004, 0.002]) and the posterior

probability distribution shows no overlap with the posterior probability distribution of

prediction tendency (b = 0.011,  94%HDI = [0.007, 0.014]). We therefore conclude that the

influence of individual prediction tendency on speech encoding cannot be attributed to

differences in decoding results per se.
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Table 2: Model summary statistics including pure-tone decoding accuracy

b sd hdi 3% hdi 97%

Intercept 0.047 0.001 0.044 0.05

n distractors -0.015 0.001 -0.016 -0.013

prediction tendency 0.011 0.002 0.007 0.014

n distractors x prediction tendency -0.005 0.001 -0.006 -0.003

decoding accuracy -0.001 0.002 -0.004 0.002

n distractors x decoding accuracy 0.001 0.001 -0.001 0.002

prediction tendency x decoding accuracy 0.001 0.001 -0.002 0.003

n distractors x prediction tendency x decoding accuracy 0.001 0.001 -0.001 0.002

Note: Dependent Variable = mean envelope encoding over voxels showing a sign. effect for prediction tendency

Violations of semantic probabilities interact with individual prediction tendencies as
well as with background noise level

As we investigated how semantic violations are encoded differently in comparison to their
lexical identical counterparts we further included individual prediction tendency as well as
the number of distractors into our model. The results can be found in the table below. Note
that for most predictors we find a positive as well as a negative effect albeit in spatially
different locations (labels for all voxels were obtained using a template atlas;
Tzourio-Mazoyer et al., 2002).

Table 3: Model summary statistics for comparison of high vs. low word surprisal

b sd
hdi

3%

hdi

97%

Intercept L+R: auditory C. 0.046 0.024 0.013 0.101

n distractors L+R: auditory C. -0.019 0.010 -0.043 -0.005

prediction tendency L+R: front.inf./ precentr., R: temp.sup. 0.020 0.010 0.004 0.041

word surprisal (high > low) L: postcentr., temp.sup., perisylv.A. 0.024 0.011 0.005 0.047

L+R: SMA -0.017 0.008 -0.031 -0.002

n distractors x word surprisal L: SMA, S.calc., R: temp.mid., occ.mid. 0.015 0.006 0.003 0.027

L: postcentr., R: front.mid. -0.016 0.007 -0.031 -0.003

word surprisal x pred. tend. L: pariet.inf., angular G. 0.017 0.007 0.004 0.032

R: front.sup.med. ,occ.mid. -0.018 0.008 -0.033 -0.003

n distractors x pred. tend. L: occ.sup. 0.010 0.005 0.002 0.019

L: precentr., R: temp.mid./sup., front.mid. -0.012 0.005 -0.023 -0.002

n distractors x word surprisal x

prediction tendency

L: front.sup.med.,pre-/postcentr., R: occ.mid 0.014 0.006 0.003 0.027

L: perisylv.A., pariet.inf., R: front.inf./mid. -0.015 0.007 -0.028 -0.003

Note: Dependent Variable = mean envelope encoding over voxels showing a sign. effect for each predictor
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Behavioral Results

Fig. 6: Background is affecting subjective ratings of difficulty in a multi- speaker listening

task. A) Perceived task difficulty (indicated by subjective ratings on a 5-point likert scale)

increases with the number of distractors and is not affected by individual prediction

tendency. B) Motivation (indicated by subjective ratings on a 5-point likert scale) is neither

affected by the number of distractors nor by individual prediction tendency.

As we were not able to investigate speech comprehension on a behavioral level we had to

use self reported ratings on difficulty (on a 5-point likert scale) as a proxy for individual

perception. We clearly find an effect for the number of distractors indicating that the task was

perceived more difficult with increasing background noise (b = 1.251, 94%HDI = [1.173,

1.325]). There was no visible effect for individual prediction tendency (see Fig. 6A and Table

4) indicating that across subjects the task was perceived equally difficult across subjects with

different prediction tendencies. It should be noted, however, that the ratings for the dist-0

condition and the dist-2 condition show a pronounced floor and ceiling effect respectively

(see Fig. 6B). Further we investigated whether background noise and/or individual prediction

tendency had an effect on motivation. We found no difference in self reported motivation

between conditions (b = -0.059, 94%HDI = [-0.124, 0.005]) and no effect for individual

prediction tendency on motivation (b = -0.096, 94%HDI = [-0.318, 0.116]; see Fig. 6B and

Table 5).
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Table 4: Model summary statistics for perceived task difficulty

b sd hdi 3% hdi 97%

Intercept 1.941 0.083 1.780 2.094

n distractors 1.251 0.041 1.173 1.325

prediction tendency 0.090 0.082 -0.061 0.244

n distractors x prediction tendency -0.043 0.040 -0.117 0.034

Note: Dependent Variable = mean rating of task difficulty over blocks (on a 5-point likert scale)

Table 5: Model summary statistics for self reported motivation

b sd hdi 3% hdi 97%

Intercept 3.889 0.120 3.659 4.108

n distractors -0.059 0.035 -0.124 0.005

prediction tendency -0.096 0.118 -0.318 0.116

n distractors x prediction tendency -0.030 0.035 -0.097 0.034

Note: Dependent Variable = mean rating of motivation over blocks (on a 5-point likert scale)
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