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 2 

ABSTRACT  20 

The expeditious growth in spatial omics technologies enable profiling genome-wide molecular events at 21 

molecular and single-cell resolution, highlighting a need for fast and reliable methods to characterize spatial 22 

patterns. We developed SpaGene, a model-free method to discover any spatial patterns rapidly in large 23 

scale spatial omics studies. Analyzing simulation and a variety of spatial resolved transcriptomics data 24 

demonstrated that SpaGene is more powerful and scalable than existing methods. Spatial expression 25 

patterns by SpaGene reconstructed unobserved tissue structures.  SpaGene also successfully discovered 26 

ligand-receptor interactions through their colocalization.  27 
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INTRODUCTION 39 

Spatial omics technologies map out organizational structures of cells along with their genomics, 40 

transcriptomics, proteomics and epigenomics profiles, providing powerful tools for deciphering 41 

mechanisms of functional and spatial arrangements in normal development and disease pathology (Larsson 42 

et al. 2021; Longo et al. 2021; Marx 2021; Deng et al. 2022; Dhainaut et al. 2022; Ratz et al. 2022; Zhao et 43 

al. 2022). The collection of available approaches provides a wide spectrum of throughput and spatial 44 

resolution. Imaging-based approaches generally target pre-selected RNA or proteins at molecular and single 45 

cell resolution, while sequencing-based approaches allow genome-wide profiling with limited spatial 46 

resolution (Lewis et al. 2021; Zhuang 2021). Recent advances in those approaches move the field rapidly 47 

into the direction achieving both high throughput and spatial resolution, presenting a significant 48 

computational challenge for scalable and robust methods to derive biological insights in the spatial context 49 

(Atta and Fan 2021).   50 

One essential step in spatial omics analysis is to characterize spatial expression patterns and colocalization. 51 

Several methods have been developed to identify spatially variable genes (Edsgard et al. 2018; Svensson et 52 

al. 2018; Sun et al. 2020a; Anderson and Lundeberg 2021; Miller et al. 2021; Zhu et al. 2021). Trendsceek 53 

uses permutation test to detect significant dependency between the spatial distribution of points and their 54 

expression levels based on marked point processes (Edsgard et al. 2018). Sepal ranks spatially variable 55 

genes by the diffusion time with the rational that genes with spatial patterns require more time to reach a 56 

homogenous state than those with random spatial distributions (Anderson and Lundeberg 2021).  SpatialDE 57 

and SPARK both utilize Gaussian process regression as the underlying data generative model for  spatial 58 

covariance structures. SpatialDE decomposes expression variability into spatial variance and noise, and 59 

estimates statistical significance by comparing the likelihoods with and without a spatial component 60 

(Svensson et al. 2018). SPARK extends SpatialDE via generalized linear spatial error models, with the 61 

ability to directly model raw counts and  adjust for covariates (Sun et al. 2020a). SPARK-X examines the 62 

similarity of expression covariance matrix and distance covariance matrix and tests whether they are more 63 
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similar than expected by chance (Zhu et al. 2021).  The statistical power of such methods highly depends 64 

on spatial covariance models, i.e, how well they match true underlying expression patterns. Although 65 

multiple kernels, including Gaussian, linear and periodic kernels with different smoothness parameters, are 66 

considered to ensure identification of various spatial patterns, statistical power will be compromised 67 

substantially for identifying spatial patterns poorly modelled by those predefined kernel functions. 68 

Furthermore, spatial covariance models are built upon cellular distances, which would confound true 69 

expression variances with those driven by variances in cellular densities. To take non-uniform cellular 70 

densities into consideration, MERINGUE calculates spatial autocorrelation and cross-correlation based on 71 

spatial neighborhood graphs to identify spatially variable genes and gene interactions (Miller et al. 2021). 72 

Above all, even equipped with computationally efficient algorithms, it would still take days to months for 73 

most methods to analyze large-scale spatial data with genome-wide profiling in tens of thousands of 74 

locations (Zhu et al. 2021), resulting in a high demand for scalable and robust methods for characterizing 75 

spatial expression patterns.  76 

Here we developed SpaGene, a scalable and model-free method for detecting spatial patterns. SpaGene is 77 

built upon a simple intuition that spatially variable genes have uneven spatial distribution, meaning that 78 

cells/spots with high expression tend to be more spatially connected than random.  SpaGene is one of the 79 

most computationally efficient methods, which only takes seconds to minutes for analyzing large-scale 80 

spatial omics data. Independent of spatial covariance models and cellular densities, SpaGene demonstrated 81 

the power to identify any spatial patterns in the simulation and a variety of spatial transcriptomics datasets. 82 

Spatial expression patterns by SpaGene reconstructed unobserved tissue structures. Extended to identify 83 

spatial colocalization, SpaGene successfully discovered cell-cell communications mediated by ligand-84 

receptor interactions.   85 

RESULTS 86 

Simulation 87 
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 5 

A schematic diagram of SpaGene is shown in Fig. 1A, with details in the Methods section. We first applied 88 

SpaGene on two simulation datasets. One simulation was generated from negative binomial distributions 89 

following SPARK-X (Zhu et al. 2021), the other was sampled from real data following Trendsceek 90 

(Edsgard et al. 2018). Cells/spots with higher expression (spiked cells) were located in one of those five 91 

patterns, hotspot, streak, circularity, bi-quarter circularity, and Purkinje layer in mouse cerebellum (Fig. 92 

1B). The distinctness of the pattern was determined by effect sizes, which were controlled by the fold 93 

change (FC) of expression in spiked cells compared to the background. The pattern size was determined by 94 

the percentage of spiked cells. Higher effect sizes and larger pattern sizes generated more distinct and bigger 95 

patterns, which were easier to be identified. Among the simulated genes, 500 genes display spatial patterns 96 

(details in the Methods section). The area under the curve (AUC) was used to measure the ability to 97 

distinguish between spatially and non-spatially variable genes.  98 

We compared SpaGene with SpatialDE and SPARK-X. SpatailDE and SPARK-X both achieved high 99 

computational efficiency and good performance in other studies and SPARK-X is the only method 100 

applicable to data with sample size exceeding 30,000 (Zhu et al. 2021).  As expected, effect sizes are the 101 

major factor affecting performance. Larger effect sizes produced more distinct patterns, which were easier 102 

to be distinguished from random spatial distributions and resulted in higher AUC values. For hotspot and 103 

streak patterns, SpaGene, SpatialDE, and SPARK-X successfully distinguished spatially from non-spatially 104 

variable genes when patterns were distinct (AUC=1 at FC>=5 for hotspot and AUC=1 at FC>=8 for streak 105 

patterns). For less distinct patterns, SpaGene performed slightly better than SpatialDE and SPARK-X for 106 

smaller patterns, which obtained AUC of 0.64, 0.52 and 0.55 for SpaGene, SPARK-X and SpatialDE 107 

respectively at FC=2 and size=1 in hotspot patterns, while SPARK-X outperformed SpatialDE and 108 

SpaGene for bigger patterns (size>1) (Fig. 1C). For circularity and bi-quarter circularity patterns, SpaGene 109 

achieved much better performance than SpatialDE and SPARK-X. For the circularity pattern, SpaGene 110 

achieved AUC of 0.99 even for the smallest pattern at FC=3 and AUC of 1 at FC>=5. In comparison, 111 

SpatialDE only obtained AUC of 0.73 at FC=3, and SPARK-X failed to distinguish spatially from non-112 
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spatially variable genes even at FC=5 (AUC=0.5) for the smallest pattern (size=1).  SpaGene and SpatialDE 113 

achieved AUC of 1 while SPARK-X only obtained AUC of 0.72 at FC=8 and size=1. Although the 114 

performance of SpatialDE and SPARK-X improved with increasing pattern sizes, SpaGene was more 115 

powerful than SpatialDE and SPARK-X (Fig. 1C). For the bi-quarter circularity pattern, SPARK-X failed 116 

even at the largest effect size for the two small patterns (AUC=0.5 at FC=10, size=1 or 2), while SpaGene 117 

achieved AUC>=0.9 and SpatialDE obtained AUC of 0.7-0.83 at FC>=3 for any pattern sizes (Fig. 1C).  118 

For the Purkinje layer pattern, SPARK-X failed at any effect sizes (AUC=0.5), while SpaGene achieved 119 

AUC of 0.81 at FC= 2, 0.99 at FC= 3 and 1 at FC>=5 (Fig. 1C). SpatialDE was not applied in this setting 120 

due to long computational time. To summarize, SpaGene achieved good performance for all spatial patterns, 121 

which obtained AUC>=0.98 at FC>=3 for relatively big patterns (size>1) and AUC close to 1 at FC>=5 for 122 

any pattern sizes. In comparison, SPARK-X seemed to be very sensitive to pattern shapes, which worked 123 

well for hotspot and streak patterns, but not for circularity, bi-quarter circularity and Purkinje layer patterns 124 

even when patterns were strongly distinct from the background. Furthermore, SpaGene was more robust 125 

against pattern sizes than SpatialDE and especially SPARK-X, which sometimes showed more power to 126 

identify indistinct and large patterns than small distinct patterns.  For example, SPARK-X obtained AUC 127 

of 0.8 at FC=3 and size=3, but AUC of 0.7 even at FC=8 and size=1 for circularity patterns. SpatialDE 128 

obtained AUC of 0.7 at FC=3 and size=1, but 0.82 at FC=2 and size=5 for bi-quarter circularity patterns. 129 

We also simulated scenarios with varying number of genes and cells/locations (Fig. S1-S5). We found that 130 

the performance of SpaGene were less dependent on the number of cells/locations compared to SpatialDE 131 

and SPARK-X.  The evaluation on the simulation datasets sampled from real data obtained similar results 132 

(Fig. S6-S9).  133 

 In terms of time complexity, SpaGene and SPARK-X are much more computationally efficient than 134 

SpatialDE. SpatialDE requires several orders of computational time than SpaGene and SPARK-X, and its 135 

runtime increases linearly or cubically with the number of genes and the number of cells/locations (Fig. 136 

S10A). For example, it takes SpatialDE 4,045 seconds to analyze a data with 10,000 genes and 5,000 137 

cells/location, while it only takes SpaGene and SPARKX 11 and 22 seconds, respectively (Fig. S10B).  138 
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Fig. 1. Schematic of SpaGene and simulation results. A) Schematic of SpaGene; B) Visualization of five spatial 

patterns; C) AUC plots of SpaGene (red), SpatialDE (gray) and SPARK-X (blue) in simulated datasets with different effect 

sizes (x axis) and pattern sizes (point shapes) and 10,000 genes and 1,000 cells/locations. Simulated data were 

generated from negative binomial distributions. 
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Application to MOB by spatial transcriptomics 140 

We applied SpaGene to spatial transcriptomics data from main olfactory bulb (MOB) (Stahl et al. 2016), 141 

involving 16,218 genes measured on 262 spots. The MOB has a roughly concentric arrangement of seven 142 

cell layers (Nagayama et al. 2014). SpaGene identified 634 as spatially variable genes (adjusted p-value, 143 

adjp<0.05), including genes known to be located in specific layers. Several examples were shown in Fig. 144 

2A, such as Pcp4 in Granule cell layer (GCL) (adjp=3e-6) (Sangameswaran et al. 1989), Slc17a7 in Mitral 145 

cell layer (MCL) (adjp=7e-4) (Zhang et al. 2021), Cck in Glomerular layer (GL) (adjp=2e-3) (Sun et al. 146 

2020b), Serpine2 in External plexiform layer (EPL) (adjp=4e-3) (Mansuy et al. 1993) and Fabp7 in 147 

Olfactory nerve layer (ONL) (adjp=4e-76) (Young et al. 2013). Based on those identified spatially variable 148 

genes, SpaGene successfully reconstructed the underlying seven-layered MOB structure (Fig. S11). To be 149 

noted, SpaGene identified a pattern corresponding to subependymal zone (SEZ) (pattern 4 in Fig. S11). 150 

SEZ was unidentifiable by spatially unaware single-cell clustering, which only discovered five distinct 151 

clusters (Fig. S12A). SEZ harbors neural stem cells. Sp9 is the top gene specifically located in SEZ, which 152 

is a transcription factor that regulate MOB interneuron development (Li et al. 2018).  153 

We compared SpaGene with SPARK-X and SpatialDE. Overall, SpaGene and SpatialDE had more 154 

overlapping than SPARK-X (Fig. S12B). We ranked spatially variable genes by each method and carefully 155 

examined those genes identified to be very significant by one method but insignificant by another method. 156 

First, we ranked genes by SpaGene and listed the top 6 genes with inconsistent results (Fig. S13).  Kif5b, 157 

Atf5, Sorbs1, Piekhb1 and Mfap3l were detected to be very significant by SpaGene (adjp<e-21), which were 158 

all specifically expressed in ONL (Fig. S11). However, none of them were found by SPARK-X, while Atf5, 159 

Piekhb1 and Mfap3l were undiscovered by SpatialDE (Fig. S13). Another gene, Grb2 was identified by 160 

SPARK-X but missed by SpatialDE, showing a very clear GCL pattern (Fig. S13). Then we ranked genes 161 

by SPARK-X and checked the top 6 inconsistent ones (Fig. S14). Camk2a, Psd3, Meis2, Calm2, Arf3 and 162 

Stxbp1 ranked high by SPARK-X, which displayed strong GCL patterns. All were identified by SpaGene 163 

but none by SpatialDE, indicating SpatialDE had limited power in identifying GCL-specific genes (Fig. 164 

S14). Finally, we ranked genes by SpatialDE and examined the top 6 inconsistent ones, including Spem1, 165 
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Siglec1, Cck, Kif5b, Apoe, and Il12a (Fig. S15). Spem1, Siglec1, and Il12a, however, only expressed in one 166 

or two spots, which were likely to be false signals. Cck, Kif5b and Apoe exhibited GL or ONL patterns, 167 

which were identified by SpaGene but missed by SPARK-X (Fig. S15). These comparisons demonstrated 168 

that SpaGene successfully identified genes with visually distinct patterns, while SPARK-X and SpatialDE 169 

missed several genes in certain layers even they showed distinct patterns.  170 

Since spatially unaware single-cell clustering uncovered cell types located in MOB layers, we expected that 171 

top markers in each layer-specific cell type would be identified as spatially variable genes. We calculated 172 

scores to measure the enrichment of those top markers in SpaGene, SPARK-X and SpatialDE. SpaGene 173 

obtained high enrichment scores in all layers, suggesting it successfully identified all layer-specific marker 174 

Adjp:3e-6 

Adjp:4e-3 Adjp:4e-76 

Adjp:7e-4 Adjp:2e-3 

Enrichment Score 

GCL 

GL 

MCL 

ONL 

EPL 
0 0.4 0.8 

SpaGene SPARK-X SpatialDE 

A 

B 

Fig. 2. Application of SpaGene to spatial transcriptomics of main olfactory bulb data (MOB). A) Visualization of five 

known spatially variable genes located in specific MOB layers (high expression in red, and low in blue), with adjusted p-values 

from SpaGene; B) Enrichment scores of markers in location-restricted cell types by SpaGene, SpatialDE and SPARK-X.  
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genes as being very significant. In contrast, SPARK-X obtained high in GCL layers but low in other layers. 175 

SpatialDE achieved high scores in Mitral cell layer , but relatively low scores in GCL and EPL layers (Fig. 176 

2C).  177 

 178 

Application to mouse preoptic hypothalamus by MERFISH 179 

We applied SpaGene to mouse preoptic hypothalamus data by MERFISH (Moffitt et al. 2018), consisting 180 

of 161 genes measured on 5,665 cells . The 161 genes include 156 pre-selected markers of distinct cell 181 

populations and five blank control genes. Spatially unaware single-cell clustering identified multiple cell 182 

types, most of which were spatially localized in specific regions, such as mature oligodendrocyte (OD), 183 

ependymal, mural and some inhibitory and excitatory neuron cell types (Fig. 3A). SpaGene identified those 184 

markers from region-specific cell types as top variable genes. Some representative genes were shown in 185 

Fig. 3B, such as Ntng1 in inhibitory neurons (adjp=5e-108), Mbp in mature OD (adjp=0), Cd24a in 186 

Ependymal (adjp=0), Adcyap1 in excitatory neurons (adjp=0), and Myh11 in Mural cells (adjp=4e-24).  187 

Comparing SpaGene with SPARK-X and SpatialDE, we found their results were highly correlated in terms 188 

of significance (R=0.91 between SpaGene and SpatialDE, R=0.7 between SpaGene and SPARK-X, and 189 

R=0.8 between SPARK-X and SpatialDE) (Fig. 3C).  We also compared the number of positive genes given 190 

the number of negative control genes identified (Fig. 3D). The results supported a higher power of SpaGene. 191 

For example, SpaGene detected 149 true positives, while SpatialDE discovered 144 and SPARKX revealed 192 

128, when one negative control was detected (one false positive).   193 
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Fig. 3. Application of SpaGene to MERFISH of mouse preoptic hypothalamus data. A) Spatially-unaware cell 
clustering; B) Visualization of five spatial variable genes (high expression in red and low in blue) with adjusted p-values 
from SpaGene; C) Pairwise correlation of results from SpaGene, SpatialDE and SPARK-X; D)  Power plot shows the 
number of genes with spatial expression pattern (y axis) identified by SpaGene, SpatialDE and SPARK-X versus the 
number of blank control genes identified at the same threshold. 
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Application to mouse cerebellum by Slideseq V2  195 

We applied SpaGene to mouse cerebellum data by Slideseq V2 (Stickels et al. 2021), containing 20,141 196 

genes measured on 11,626 spots. SpaGene identified 619 genes with spatial patterns (adjp<0.05). The 197 

cerebellum is made of three layers, molecular, Purkinje and granular layers from outer to inner, and white 198 

matter underneath.  SpaGene detected genes, known to be specifically located in three layers and white 199 

matter,  to be very significant, such as Kcnd2 in granular layer (adjp=4e-253) (Varga et al. 2000), Car8 in 200 

Purkinje layer (adjp=0) (Miterko et al. 2019), Gad1 in molecular layer (adjp=2e-64) (Kirsch et al. 2012) 201 

and Mbp in white matter (adjp=0) (Verity and Campagnoni 1988) (Fig. 4A). Based on those identified 202 

spatially variable genes, SpaGene successfully reconstructed the tightly folded layer structure of cerebellum. 203 

Patterns 1 and 3 corresponded to granular layer, patterns 2, 6 and 8 represented molecular layer, patterns 4 204 

and 5 stood for Bergmann glia and purkinje neurons in Purkinje layer, and pattern 7 imaged white matter 205 

(Fig. S16).   206 

We compared SpaGene with SPARK-X but not SpatialDE because it would take hours to analyze such 207 

large-scale data. SPARK-X discovered 530 genes, while 230 overlapped with SpaGene (Fig. S17). We 208 

examined carefully at those genes detected to be very significant by one method but insignificant by the 209 

other one (Fig. S17). Those genes specifically located in Purkinje layer, such as Car8, Itpr1, Pcp2, and 210 

Pcp4, were detected as being the most significant by SpaGene (adjp=0) but undetected by SPARK-X, 211 

suggesting SPARK-X had limited power to identify the Purkinje pattern (Fig. S18). In comparison, 212 

Catsperd, Ifit3, and Ptprt ranked top by SPARK-X, but undetected by SpaGene, which didn9t seem to have 213 

obvious patterns (Fig. S19). SpaGene obtained the significance of Mog were just below the cutoff 214 

(adjp=0.05), which seemed to be dispersed in the white matter (Fig. S19).   215 

Spatially unaware single-cell clustering found localized cell types, such as molecular layer neurons, 216 

purkinje neurons in the purkinje layer, granule cells in the granule layer (Fig. 4B) . We expected markers 217 

in those spatially-restricted cell types were identified and ranked top by the methods. The enrichment 218 

analysis found that SpaGene obtained high enrichment scores in all three layers, while SPARK-X got a 219 
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high score in granular layer, but low scores in other two layers, especially in the Purkinje layer. This result 220 

further demonstrated that SpaGene is more robust to any spatial patterns (Fig. 4C).   221 

 222 

Application to MOB by HDST 223 

We applied SpaGene to olfactory bulb from high-definition spatial transcriptomics (HDST) (Vickovic et al. 224 

2019), involving 19,950 genes measured on 181,367 spots. HDST is extremely sparse, where only 21 spots 225 

have more than 50 genes detected. In this case, SpaGene used an adaptive strategy to expand the 226 

neighborhood search for genes with high sparsity. SpaGene identified 249 genes as being spatially variable. 227 

adjp=2e-64 

adjp=4e-253 adjp=0 

adjp=0 

0 0.4 0.8 
Enrichment Score 

GCL 

ML 

PL 

Granule 

MLI1 

ODC 

Purkinje 

MLI2 

Bergmann 

Other 

Choroid 

Golgi 

SpaGene SPARK-X 

A B 

C 

Fig. 4. Application of SpaGene to Slideseq V2 of mouse cerebellum data. A) Visualization of four known spatially 

variable genes located in specific cerebellum layers (high expression in red, and low in blue), with adjusted p-values from 

SpaGene; B) Spatially unaware cell clustering; C) Enrichment scores of markers in location-restricted cell types by 

SpaGene and SPARK-X. 
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The most significant genes included Ptgds (adjp=1e-232), Gphn (adjp=3e-114) and Camk1d (adjp=3e-61). 228 

Although spatial patterns of those genes were not visually distinct due to high sparsity of the HDST data, 229 

there were vague patterns showing Ptgds localized in ONL, Gphn in MCL and EPL, and Camk1d in GCL 230 

(Fig. 5A). Those specific localizations have been reported before (Rees et al. 2003; Perera et al. 2020) and 231 

validated by in situ hybridization in the Allen Brain Atlas (Fig. 5B).  232 

We compared SpaGene with SPARK-X but not SpatialDE because it would take months to analyze such 233 

large-scale data. SPARK-X detected 133 genes, which overlapped significantly with SpaGene (90 in 234 

common). Among the 40 genes most associated with each MOB layer (top 5 genes in eight patterns in Fig. 235 

S11), SpaGene found 12 genes (Ptgds, Fabp7, Gad1, Vtn, Kctd12, Kif5b, Apod, Pcp4, Gpsm1, Slc1a2, 236 

Nrgn, and Map1b), while SPARK-X only detected six (Ptgds, Fabp7, Kctd12, Kif5b, Apod, and Pcp4).  237 

 238 

 239 

 240 
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Identification of spatially colocalized ligand-receptor pairs 241 

We extended SpaGene to identify cell-cell communications mediated by colocalized ligand and receptor 242 

pairs. SpaGene found 35 ligand-receptor interactions from the mob data by spatial transcriptomics. The two 243 

most significant ligand-receptor pairs were Igfbp5-Cav1 (adjp=3e-31) and Apoe-Lrp6 (adjp=1e-18), both 244 

happening between ONL and GL. Apoe is known to be enriched in ONL and GL and also identified to be 245 

very significant by SpaGene (adjp=1e-50). Most spots with high Apoe expression were surrounded with 246 

spots with high Lrp6 expression (Fig.6A), suggesting potential interactions between them. Apoe-Lrp6 247 

mediates Wnt signaling, which is important for the regulation of synaptic integrity and cognition (Zhao et 248 

al. 2018). The identification of Apoe-Lrp6 between ONL and GL layers might be suggestive of the potential 249 

regulation of Wnt signaling in the establishment of periphery3CNS olfactory connections.  250 

AdjP=1e-232 AdjP=3e-114 
AdjP=3e-61 A 

B 

Fig. 5. Application of SpaGene to HDST of MOB data. Visualization of three spatially variable genes. A) gene-

expression levels from HDST (high in red, low in blue), with adjusted p-values from SpaGene; B) in situ hybridization 

results for the three genes obtained from the Allen Brain Atlas. 
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 251 

SpaGene found 13 ligand-receptor interactions from the mouse cerebellum data by Slideseq V2. The most 252 

significant pair was Psap-Gpr37l1 (adjp=1e-27) (Fig. 6B). Gpr37l1 was known to be strongly expressed in 253 

Purkinje layer and also identified by SpaGene (adjp=8e-130). Psap, in contrast, was not as specifically 254 

localized as Gpr37l1 (adjp=6e-8). Psap-Gpr37l1 protects neural cells from cellular damage (Li et al. 2017). 255 

The identification of Psap-Gpr37l1 between Purkinje layer and surrounding layers further supports its 256 

AdjP=3e-31 

AdjP=1e-18 

AdjP=3e-37 

A 

B 

Fig. 6. Extension of SpaGene to identify ligand-receptor interactions. A) Visualization of Igfbp5-Cav1 and 

Apoe-Lrp6 interactions for ST MOB data, with adjusted p-values from SpaGene. B) Visualization of the Psap-

Gpr37l1 interaction for Slideseq V2 mouse cerebellum data, with the adjusted p-value from SpaGene. Left is the 

relative expression of the ligand and the receptor, right is the interaction strength. 
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important role in brain function. Additionally, Ptn-Ptprz1, identified as the only interaction by MERINGUE 257 

(Miller et al. 2021), ranked the top four by SpaGene (adjp=2e-7).  258 

 259 

DISCUSSION 260 

Recent advances in spatial omics technologies increase the demand for scalable and robust methods to 261 

characterize spatially variable patterns. Here, we developed SpaGene, a fast and model-free method to 262 

identify spatially variable genes. SpaGene has been extensively evaluated on seven datasets generated from 263 

a variety of spatial technologies, ranging from low to high throughput and spatial resolution. Additional 264 

analyses on breast cancer from spatial transcriptomics, mouse brain from 10X Visium, and olfactory bulb 265 

from  Slide-seqV2 were shown in Supplementary Figures S20-S30.  The results consistently demonstrated 266 

that SpaGene successfully identified known spatially variable genes and also markers in spatially-restricted 267 

cell clusters. Simple factor analysis on those identified genes reconstructed underlying tissue structures, 268 

further demonstrating the ability of SpaGene to characterizing spatial patterns.   269 

Compared with existing approaches, SpaGene is more robust to pattern shapes, data distribution and 270 

sparsity, non-uniform cellular densities, and the number of spatial locations. The power of SpatialDE, 271 

SPARK and SPARK-X highly depend on spatial covariance models, that is, how well those predefined 272 

kernel functions match the true underlying spatial patterns.  Moreover, SpatialDE and SPARK use 273 

parametric modeling based on the assumption of spatial data following Gaussian or Poisson distributions. 274 

Therefore, their performance would be compromised significantly for those genes whose expression 275 

misalign the model defined by those kernel functions and whose distribution violate Gaussian or Poisson 276 

distributions. SpaGene, in contrast, is a model-free and distribution-free method. Without any assumption, 277 

SpaGene is able to identify any spatial patterns and applied on any spatial omics data, such as identification 278 

of spatially localized clones and histone markers in spatial genomics and epigenomics data. The 279 

significance from SpaGene reflects the distinctness of spatial patterns rather than the extent of match to the 280 

defined model. SpaGene uses neighborhood graphs to represent spatial connections, making it more robust 281 

to non-uniform cellular densities common in tissues. Furthermore, SpaGene is highly computationally 282 
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efficient. It only took seconds to minutes for SpaGene to analyze large-scale spatial transcriptomics data, 283 

which required hours, days or even months for most methods (Zhu et al. 2021) (Fig. S10C).  284 

SpaGene is very flexible, which can tune neighborhood search spaces automatically based on the data 285 

sparsity.  SpaGene can incorporate the cell type information to find spatially variable genes within the same 286 

cell type. For example, SpaGene identified Aldoc as the most spatially variable genes within the Purkinje 287 

layer (adjp=4e-90) (the function SpaGene_CT was provided in the package), which has been demonstrated 288 

to show a regional enrichment pattern that was consistent with the known paths of parasagittal stripes across 289 

individual lobules (Kozareva et al. 2021). Furthermore, SpaGene was easily extended to find colocalized 290 

gene pairs. It successfully identified Psap-Gpr37l1 and  Ptn-Ptprz1 in mouse cerebellum, and Fn1-Cd44 in 291 

invasive breast cancer regions (Fig. S30). The default neighborhood search regions could be further 292 

adjusted to identify those long-distance interactions. In summary, SpaGene is very powerful tool to 293 

characterize any localized and co-localized patterns. Potential extensions of SpaGene to find alterations in 294 

spatial patterns across conditions would further expands its application.  295 

 296 

METHODS 297 

Method overview 298 

Spatially variable genes are those with uneven spatial distribution of expression, where cells/spots with 299 

high expression are more likely to be spatially connected than random. Given a set of spatial locations, 300 

SpaGene first builds the spatial network using k-nearest neighbors. SpaGene then quantifies the spatial 301 

connection of cells/spots with high expression by their degree distribution. Finally SpaGene compares the 302 

observed spatial connection with those from random permutations (Fig. 1A). Genes with significantly 303 

higher spatial connection than random are identified as spatially variable genes.  304 

The degree distribution p(i) is defined to be the fraction of cells/spots with degree of i. Earth mover9s 305 

distance (EMD) is used to quantify the distance from the observed degree distribution to a distribution from 306 

a fully connected network. Smaller EMD distances indicate higher spatial connection.  307 
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To generate the null distribution of EMD, the same number of cells/spots is randomly sampled and the 309 

spatial connection of those cells/spots is quantified as EMD9.  The mean and the standard deviation of  310 

EMD9 is estimated after 5,00 random permutations. The observed EMD is compared to the null distribution 311 

of EMD9 to evaluate its significance.  312 

�(� > ���) = �(� < 	��� 2����(���')
��(���') ) 313 

  314 

Identification of spatial patterns 315 

Non-negative matrix factorization is applied on spatially variable genes detected by SpaGene to identify 316 

distinct spatial patterns. NMF is implemented by the RcppML R package. The Spearman correlation 317 

between expression of spatially variable genes and cells/spots factor matrix from NMF is used to find the 318 

most representative genes in each pattern.  319 

 320 

Simulation designs 321 

We followed simulation designs of SPARK-X and Trendsceek. Briefly we generated two datasets with five 322 

spatial expression patterns, local hotspot, streak, circularity, bi-quarter circularity and mouse purkinje layer. 323 

For the first four patterns, spatial locations of cells were generated by a random-point-pattern Poisson 324 

process. The spatial locations of the pattern of mouse purkinje layer was obtained from Slideseq V2 mouse 325 

cerebellum data. The expression values were either generated from negative binomial distributions 326 

following SPARK-X or bootstrap-sampled  from spatial transcriptomics MOB data following Trendsceek. 327 

Simulation datasets varied on a number of parameters: 1) the number of genes varied from 1000, 3000, and 328 

10,000, among of which 500 genes are spatially variable; 2) the number of cells varied from 300, 1000, 329 

2000 and 5000 except for the purkinje layer pattern; 3) the fold change of expression in the spatial region 330 

compared to those in the background; For the negative binomial distribution, the fold change varied from 331 
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2, 3,5, 8 to 10. For the resampled real dataset, the expression of spiked cells were generated from 65%, 332 

70%, 80% to 90% quantile of the expression distribution; 4) the number of spiked cells except for the 333 

purkinje layer pattern. For the hotspot and the streak patterns, the percentage of spiked cells varied from 334 

5%, 10%, 20% to 30%. For the circularity and bi-quarter circularity patterns, the width of circularity varied 335 

between 0.05, 0.075, 0.1, 0.125 and 0.15.  336 

 337 

Spatial transcriptomics datasets 338 

SpaGene was applied on seven spatial transcriptomics datasets, covering a variety of platforms with low 339 

and high throughput and spatial resolution.  Two spatial transcriptomics data from mouse olfactory bulb 340 

and human breast cancer contained genome-wide expression profiles on only hundreds of spots (low spatial 341 

resolution) (Stahl et al. 2016). MERFISH on the mouse preoptic region of the hypothalamus targeted only 342 

160 genes at single cell resolution. 10X Visium on the mouse brain comprised of whole transcriptomics on 343 

thousands of spots with a spatial resolution of 55 µm. Two Slideseq V2 from mouse cerebellum and 344 

olfactory bulb contained whole transcriptomics on tens of thousands of spots with a spatial resolution of 10 345 

um. HDST from mouse olfactory bulb measured whole transcriptomics on hundreds of thousands of spots 346 

with a spatial resolution of 2µm.  347 

 348 

DATA ACCESS 349 

Seven spatial transcriptomics data were available from original studies and also from the SpaGene Github 350 

repository https://github.com/liuqivandy/SpaGene .  In addition to identification of spatially variable genes 351 

and patterns, the R package SpaGene also provides functions to visualize spatial patterns and co-localized 352 

ligand-receptor pairs. Vignettes on seven spatial transcriptomics data with raw data, codes and results, 353 

including spatial variable genes identification, pattern identification and visualization, co-localized ligand-354 

receptor pairs identification and visualization, are also available at the GitHub.  355 
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