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ABSTRACT. Among the factors affecting biological processes such as protein folding and 

ligand binding, hydration, which is represented by a three-dimensional water-site-distribution-

function around the protein, is crucial. The typical methods for computing the distribution 

functions, including molecular dynamics simulations and the three-dimensional reference 

interaction site model (3D-RISM) theory, require a long computation time from hours to tens of 
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hours. Here, we propose a deep-learning model rapidly estimating the distribution functions 

around proteins obtained by the 3D-RISM theory from the protein 3D structure. The distribution 

functions predicted using our deep-learning model are in good agreement with those obtained by 

the 3D-RISM theory. Particularly, the coefficient of determination between the distribution 

function obtained by the deep-learning model and that obtained using the 3D-RISM theory is 

approximately 0.98. Furthermore, using a graphics processing unit (GPU), the calculation by the 

deep learning model is completed in less than one minute, more than 2 orders of magnitude 

faster than the calculation time of 3D-RISM theory. Therefore, our deep learning model provides 

a practical and efficient way to calculate the three-dimensional water-site-distribution-functions. 

The program called “gr Predictor” is available under the GNU General Public License from 

https://github.com/YoshidomeGroup-Hydration/gr-predictor. 

 

1. INTRODUCTION 

Protein hydration is one of the factors governing the biophysical processes involving the protein, 

including folding and ligand binding1,2. Particularly, hydration strongly affects the stability of 

native structure and denaturation of proteins, whereas the ligand-protein complex is often 

stabilized by water-mediated interactions between the ligand and protein. Thus, elucidating the 

protein hydration properties is crucial to understand the biophysical processes and perform 

structure-based drug design in consideration of water molecules. 

Hydration of protein is characterized by the three-dimensional water-site-distribution-functions 

around the protein. The distribution functions can be obtained using molecular dynamics (MD) 
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simulations and the three-dimensional reference-interaction site model (3D-RISM) theory3. MD 

simulations exactly compute the three-dimensional water site distribution functions, whereas the 

3D-RISM theory, which is a statistical mechanical theory of solvation, approximately computes 

the distribution functions with the force fields employed by the MD simulations. The usefulness 

of the distribution functions has been demonstrated. As an example, the performance of the deep-

learning (DL) model for the pose prediction improved upon the incorporation of the three-

dimensional water-site-distribution-functions, obtained with MD simulations, inside the ligand-

bind pocket4. The distribution function obtained using the 3D-RISM theory has also been widely 

discussed. The position of the crystal waters inside the cavity of hen egg-white lysozyme is 

difficult to compute via MD simulation, because the movement of a water molecule from outside 

the protein towards inside is hardly attained in a reasonable simulation time; conversely, the 

three-dimensional water-site-distribution-functions obtained with the 3D-RISM theory 

successfully reproduced the crystal-water positions5. Furthermore, the partial molar volume 

(PMV) that can be computed with the Kirkwood-Buff solution theory combined with the three-

dimensional water-site-distribution-functions6 exhibited a perfect agreement with the 

experimental data of several proteins using the distribution functions obtained with the 3D-RISM 

theory7,8. 

The advantages of the 3D-RISM theory over the MD simulations include the shorter 

computation time for obtaining the three-dimensional water-site-distribution-functions. 

Exploiting the power of a supercomputer and the advantage of the shorter computation time of 

the 3D-RISM theory, we have statistically analyzed the hydration states of 3,706 static 

crystallographic structures of a protein9. However, the investigation of amino acid mutations, 

ligand binding processes, and protein conformational changes require more than hundred 
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thousand of protein structures. To this aim, the 3D-RISM theory is inadequate, because the 

calculation of the hydration state of a protein requires a few hours with a single central 

processing unit (CPU). Thus, a new method drastically reducing the computation time of the 3D-

RISM theory should be developed. 

In the present paper, we propose a DL model for predicting the three-dimensional water-site-

distribution-functions around the proteins obtained with the 3D-RISM theory. The data used for 

training the DL model, network architecture, prediction accuracy, and computation time of the 

DL model are described. Finally, a comparison of our DL model with other methodologies for 

obtaining the hydration states around proteins is discussed. Because our DL model accurately 

reproduced the distribution functions obtained with the 3D-RISM theory with a computation 

time of less than one minute using a single graphics processing unit (GPU), our DL model 

enables us to investigate amino acid mutations, ligand binding processes, and protein 

conformational changes. 

 

2. MATERIALS AND METHODS  

Proteins used for the computation. Twenty-seven proteins were selected from the proteins 

used in our previous study9 considering 3,706 proteins taken from the protein-ligand complexes 

deposited in the PDBbind refined set (v. 2017)11-16. The selection for this study was performed as 

follows. From the initial 3,706 proteins, only the proteins without ions were considered, to 

reduce the number of atom types in the deep-learning model. This led to the selection of 2,718 

proteins summarized in “Data2718-SI-Forsubmit.xlsx”. Afterwards, the twenty-seven proteins 

shown in Table 1 were randomly selected. Among the twenty-seven proteins, twenty-two 
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proteins were used for training, and the remaining five proteins were used for the test. The 

following preprocesses were conducted to the 3,706 proteins in the previous study9: the ligand 

and the crystal waters were removed, and the chain closest to the ligand was employed for the 

protein structure with multiple chains.  

The similarities of the sequences between the twenty-seven proteins are discussed in text S1 

(Supporting Information). None of the proteins used in the test had 90% sequence similarity to 

the twenty-two proteins used in the training. The effects of the random selection of the twenty-

seven proteins are discussed in the subsection “Discussion of the selection of twenty-seven 

proteins”. 

3D-RISM theory. In our previous study9, the 3D-RISM theory was applied to obtain the 

distribution function at the position ! for the water site " = H (hydrogen) or O (oxygen), denoted 

by #!(!) hereinafter. In the present study, #!(!) was used as a target variable for the 

construction of the DL model. In the following, the force fields and parameters employed in the 

previous study9 are described. The distribution functions were obtained using the Amber ff99SB 

force-fields17 for the proteins, whereas the coincident SPC/E model18 was employed for the water 

molecule. The values of the dielectric constant, bulk density, and temperature were 78.497, 

0.03332 Å-3, and 310 K, respectively. In the computation using the 3D-RISM theory, a water box 

surrounding the protein was prepared so that the minimum distance between the protein and the 

edge of the box was 14 Å. The linear grid spacing of 0.5 Å was set for the x, y, and z coordinates.  

Input and output formats for the deep-leaning model. To input a protein structure into our DL 

model, the protein structure was converted into the voxel format schematically illustrated in Fig. 

1. First, the protein was decomposed into five atom types composed of carbon, nitrogen, oxygen, 
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sulfur, and hydrogen. Afterwards, the box surrounding the protein with the same size as that of 

the water box used for the 3D-RISM theory was prepared. The grid size of the voxel and the 

position of the protein were also the same as those used for the computation using the 3D-RISM 

theory. Then, the contribution of the i-th atom of atom type j to k-th voxel, &(', ), *), was 

computed in accordance with Eq. (1)19:  

&(', ), *) = 1 2 exp 12 2"!"#,%

#&'
3$%4    (1) 

where 5&'(,* is the van-der-Waals-radius of the atom type j, and 6+, is the distance between the i-

th atom and the position of the k-th voxel. The value of 5&'(,* for each atom type is summarized 

in Table S1 in the Supporting Information. Finally, the contribution of the atom type j to k-th 

voxel, &(', ), *), 7(', *), was computed according to Eq. (2): 

7(', *) = 3 &(', ), *)-%

+.$
,    (2) 

where 7* is the number of atoms for the atom type j in the protein. Through this procedure, the 

protein structure was decomposed into five boxes according to the atom type, with each box 

composed of the voxels with the value of 7(', *). 

By decomposing each box into small boxes of 483 voxels (Fig. 1), we made our DL model 

applicable to proteins with arbitrary sizes. Hereinafter, the box is referred to as the “partial 

protein box” and the set of the boxes of five atom types at the same position in the protein is 

referred to as the “set of partial protein box”. To exclude the effect of the boundary of the partial 

protein box on the training and test by conducting them with the central 163 voxels, the 

decomposition was performed by translating the partial protein box by 16 voxels (Fig. 1).  
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The output format of our DL model was the same as that of the water box of #!(!) (" = H  or O) 

obtained using the 3D-RISM theory. For the training of our DL model, the water box was also 

decomposed into the boxes of 483 voxels as previously described. The resulting box is referred to 

as the “partial water box”. With a set of partial protein box as input, our DL model outputs the 

corresponding partial water box. By summing the central 163 voxels of each partial water box, 

#/(!) or #0(!) were obtained. 

Deep-learning model. For the network architecture for our DL model that predicts the protein 

hydration structure, we employed the U-net20. As schematically shown in Fig. 2, the U-net is an 

encoder-decoder type architecture21. The deep-learning model was constructed for predicting a 

distribution function #!(!)	("	 = 	H		or	O). 

The architecture we employed was essentially the same as that used in the original U-net model 

used for biomedical image segmentation10. As shown in Fig. 2, both encoder and decoder 

consisted of four layers, referred to as the “encoder-decoder layers”, and a 5th layer was prepared 

between the 4th layers of encoder and decoder. Each encoder-decoder layer consisted of two 

convolutional layers, each followed by the activation using the ReLU function. A 2Í2Í2 max-

pooling layer was added after the second convolutional layer of the encoder-decoder layer in the 

encoder. The max-pooling layer was replaced by an upsampling layer20 in the encoder-decoder 

layer in the decoders. The number of filters in the first convolutional layers in an encoder-

decoder layer was doubled from the previous layer in the encoder, and a half from the previous 

layer in the decoder, respectively. Skip connection was added according to the original U-net 

architecture. 
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Our DL model differed from the original U-net model in four aspects. First, while the original U-

net model was implemented for two-dimensional images, our model was implemented for three-

dimensional data of a partial protein box and a partial water box. Furthermore, in our model the 

zero-padding was added in the convolutional layers. Moreover, when training our DL model, the 

dropout layer was also added after the ReLU activation in the first convolutional layer, to reduce 

the overfitting. Finally, the convolution followed by the up-sampling in the original U-net 

architecture was removed in our architecture. The effect of convolution in the upsampling layer 

was small (text S2 in the Supporting Information). 

As shown in Table 2, our DL model had four hyperparameters, collectively referred to as 

“hyperparameter set”, one of which was the filter size (i.e., number of voxels in the filters) in the 

convolutional layers. Three sizes were prepared, namely 33, 43, and 53. The number of filters 

(NFirstfilter) for an atom type at the first encoder-decoder layer in the encoder was another 

hyperparameter. Because the number of atom types was five, the total number of filters was 

5·NFirstfilter. The third hyperparameter was the number of voxels whose value was set at zero in the 

dropout layer, 71. The ratio of 71 and the total number of voxels in the dropout layer, referred to 

as “dropout ratio”, was set to 0.3 or 0.5. Finally, the dropout was applied to the 5th layer, 4th–5th 

layers, 3rd–5th layers, 2nd–5th layers, or all layers for each of (i) only the encoder, (ii) only the 

decoder, or (iii) both the encoder and the decoder. The case in which no dropout was applied to 

both the encoder and the decoder was also considered. 

Our DL model was implemented using the TensorFlow library (2.1.0) for the models predicting 

#!(!)	("	 = 	H		or	O). The training was performed using Adam optimizer with default 

parameters.  
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Hyperparameter optimization. The hyperparameters were optimized through the two-fold 

cross validation. The twenty-two proteins used for the training were split into two sets to 

homogeneously adjust the total number of partial protein boxes of two sets: ten proteins and the 

remaining twelve proteins (Table 1). The number of partial protein boxes (NTData) was 6,858 and 

7,101 from the ten and twelve proteins, respectively. The number of partial water boxes was also 

NTData. In the cross validation, when the ten proteins were used for the training of our DL model, 

the remaining twelve proteins were used for the validation of the model and vice versa. 

Hereinafter, the data for the training and validation are denoted by “training data” and 

“validation data”, respectively. Each data is composed of the partial protein boxes and the 

corresponding partial water boxes. 

For a hyperparameter set of our DL model, the number of epochs was set to 200 and the mean-

square error in Eq. (3) was employed for the loss function, E:  

> = $

-()*+*-,-./0
3 3 ?#!,*23'45(!+) 2 #!,*61789:2(!+)@%-,-./0

+.$

-()*+*
*.$

  (3) 

where NVoxel is the number of voxels in the box, equal to 163; #!,*; (!+) (X=“Model” or “3D-

RISM”, and	 a=“O” or “H”) is the #!(!) value at the voxel position of !+ for the *-th box; the 

superscripts “Model” and “3D-RISM” indicate the #!(!) obtained from our DL model and the 

3D-RISM theory, respectively. Hereinafter, the > value at ) epoch is denoted by ETrain(i).  

For each epoch (i) in the training, we also computed the loss function of Eq. (3) using the 

validation data (EValidation(i)) to check whether the overfitting did not occur during the training. In 

the computation, all dropout layers used in the training were not used. The possible overfitting 

was checked by the comparability of the EValidation(200) and ETraining(200) values. 
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Each of the four hyperparameters was set to a value within the range shown in Table 3, leading 

to 162 hyperparameter sets. For each hyperparameter set, the following computations were 

performed: (1) Training was performed with the ten proteins and the corresponding #/(!) or 

#0(!) as the training data; (2) the EValidation(200) value was saved; (3) the procedures (1) and (2) 

were repeated with the twelve proteins for the training, and (4) the average of the two 

EValidation(200) values, namely �Validation(200), was computed. After the computations for all the 162 

hyperparameter sets, the hyperparameter set with the smallest �Validation(200) value, denoted by 

“optimized hyperparameter set”, was selected.  

Tests. After the training using the optimized hyperparameter set and the twenty-two proteins, 

#!(!) (a=“O” or “H”)	for the five proteins described in Table 1 was computed as a test. The 

training procedure was the same as that described in the previous subsection. In the test, each 

protein was first converted into the voxel format described in “Input and output formats for the 

DL model” subsection. Afterwards, using a partial protein box, #!(!) of the corresponding 

partial water box was predicted using our DL model. Finally, #!(!) of the whole protein was 

obtained by summing the central 163 voxels of the predicted water boxes.  

To quantitatively compare the peak positions of #0(!) of our DL model with those of the 3D-

RISM theory, the following analysis was conducted. First, water oxygen atoms were placed 

using the program Placevent22, in which water oxygen atoms were placed using the #0(!) 
values. In the program, the placement of water oxygen atoms was performed in three steps: (i) A 

water oxygen atom was placed at the position of the voxel with the largest #0(!) value (denoted 

by !2<=); (ii) The region A satisfying Eq. (4) was identified: 
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+ C>?1*.@A

?1*.
#0(!)D! = 1      (4) 

(iii) The #0(!) values at the voxels within the region A were set at zero (the obtained #0(!) is 

referred to as “new #0(!)”); (iv) Steps (i), (ii), and (iii) were repeated using the new #0(!) until 

#0(!2<=) < 1.5, which is the default value in the program Placevent. The placement of water 

oxygen atoms was performed using the #0(!) values obtained with the 3D-RISM theory and 

those obtained with our DL model. The positions of the i-th water oxygen atom obtained using 

the 3D-RISM theory and that using our DL model are denoted by !+89:2 and !+23'45, 

respectively. The number of placed water oxygen atoms is denoted by NRISM and NModel, and 

typically NRISM b NModel because #0(!) obtained using our DL model was slightly different from 

that obtained using the 3D-RISM theory.  

Afterwards, for each water oxygen atom placed using #0(!) obtained with the 3D-RISM theory, 

the distance Di defined in Eq. (5) was computed: 

H+ c min
*
M!+89:2 2 !*23'45M    (5) 

The average of Di among the water oxygen atoms placed using the 3D-RISM theory and its 

standard deviation were obtained to analyze the results and histogram of Di.  

To investigate the prediction performance at the ligand-binding pocket from the viewpoint of H+, 
the following analysis was further performed. The water oxygen atoms at the ligand-binding 

pocket were defined by the placed water oxygen atoms within 5 Å from the heavy atoms of the 

ligand. For each water oxygen atom placed using the #0(!) of 3D-RISM theory, the Di value 

was computed. 
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Finally, the prediction performance from the viewpoint of the positions of crystal waters was 

studied via the analysis of the crystal waters within 5 Å from the heavy atoms in the protein. For 

each crystal water, H+ was computed. 

 

3. RESULTS AND DISCUSSION 

In this section, the results obtained for #0(!) are presented, whereas those for #/(!), which 

were analogous to those for #0(!), are discussed in the subsection “Prediction of the distribution 

function of water hydrogen site”. 

Cross validations. To determine the optimized hyperparameter set, a two-fold cross validation 

was conducted as described in “Optimization of the hyperparameters”. The number of partial 

protein boxes was 6,858 and 7,101 from the ten and twelve protein sets, respectively. The error 

values at 200 epoch defined by Eq. (3) were computed using the ten and twelve proteins, and 

their EValidation(200) and �Validation(200) values are summarized in Table S1.  

The optimized hyperparameter with the smallest �Validation(200) value was the hyperparameter set 

number 44 (Table S2). The hyperparameter values and their statistics are summarized in Table 3. 

The �Validation(200) value, namely the difference between the #0(!) values of 3D-RISM and of our 

DL model, was sufficiently small (0.0042). The corresponding average deviation of #0(!) 
obtained by our DL model from #B(!) obtained by the 3D-RISM theory was 0.06. As shown in 

Fig. S1, �Validation(200) was analogous to �Train (200), indicating the absence of overfitting.  
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The results reported in the next paragraphs were performed using the DL model trained with the 

optimized hyperparameter set. The results for the other hyperparameters are discussed in text S3 

(Supporting Information). 

Prediction tests. The correlation between the #0(!) values predicted by our DL model and those 

calculated by the 3D-RISM theory, coefficient of determination R2 score values, and root mean 

square error (RMSE) of five proteins for the test are shown in Fig. 3. For the five proteins tested, 

the R2 values were high and most of the points resided close to the line representing y=x. Moreover, 

the RMSE values indicated the accuracy of the #0(!)	 prediction of our DL model. The 

encouraging result on the accuracy was accompanied by a drastic decrease of computation time of 

two orders of magnitude: the computation was completed within a minute with our DL model and 

a single GPU. 

Furthermore, the comparison was performed with the voxels in the ligand-binding pocket defined 

by those within 5 Å from the heavy atoms in the ligand (Fig. 4). The prediction performance of 

our DL model was high also in the ligand-binding pocket: most of the points resided close to the 

line y=x, with high R2 values. Therefore, our DL model can successfully predict the hydration 

structure in the ligand-binding pocket. High prediction-accuracy of #0(!) in the ligand-binding 

site is important for the structure-based design of new molecules using the information of the 

hydration in the binding site.  

For all the proteins, the RMSE value of the ligand-binding site was larger than that of all points, 

reasonably due to the value of #0(!) at the bulk region. It was found from slice 5 of Fig. 5 that the 

prediction performance at the bulk region is good: #0(!) at the bulk region was one for both of 
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the 3D-RISM theory and our DL model. This result explains the RMSE value of all points, 

including most of the bulk points, smaller than that of the ligand-binding site. 

Finally, the results for shank3 PDZ domain (Protein Data Bank (PDB) code: 3o5n) are shown in 

Fig. 5 to discuss how our DL model reproduced the #0(!) values in detail. The agreement between 

the #0(!) values of the 3D-RISM theory and those of our DL model was good, as both the peak 

heights and the peak positions were well predicted by our DL model. Additionally, our DL model 

reproduced the #0(!) values inside the protein (slice 6 in Fig. 5) and those at a bulk region (slice 

5 in Fig. 5). Moreover, a high R2-score value (0.985) indicated the good correlation between #0(!) 
values of our DL model and those of 3D-RISM theory (Fig. 3). However, for few points, the #0(!) 
values of our DL model deviated from those of the 3D-RISM theory. Particularly, the points with 

large deviation corresponded to the areas in the cavities with a size comparable to that of the water 

molecule (Fig. S2). The current training data did not contain sufficient data for such cavities. 

Adding such data would therefore improve the performance of our DL model. 

Placement of water oxygen atoms. To discuss how our DL model successfully predicted the 

peak positions of #0(!), water oxygen atoms were placed at the #0(!) peaks using the program 

Placevent. For the placement of water oxygen atoms, the values of #0(!) obtained using the 3D-

RISM theory and our DL model were used. The histograms of Di for the five proteins are shown 

in Fig. 6, whereas the average of Di, NRISM, and NModel for each protein are summarized in Table 

4. The histograms related to the water molecule placed at the point #0(!)>1.5 (probability 1.5 

times higher than that of a bulk water) in Fig. 6 (a), (d), (g), (j), and (m) indicate that 

approximately 60% of the water oxygen atoms of our DL model was placed within 0.5 Å from 

the water oxygen atoms of the 3D-RISM theory. The average of Di was 0.630.7 Å for all five 
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proteins (Table 4 and Fig. 7). The calculated value was 1/431/5 of the Lennard-Jones sigma 

value, associated to the radius of the atom, of the water oxygen atom for the coincident SPC/E 

model (3.17 +). Therefore, the #0(!) peak positions obtained using our DL model were close to 

those obtained using the 3D-RISM theory. Essentially the same results were obtained for the 

#0(!) values at the ligand-binding pocket (Fig. 6(b), (e), (h), (k), (n), and Table 5). 

Nevertheless, the NModel values were different from the NRISM values (Table 4), reasonably 

because the peak height and peak position of #0(!) were slightly different in the two methods. 

Particularly, the NModel values were smaller than the corresponding NRISM value for all the 

proteins because our DL model predicted smaller peak values of #0(!) than those obtained using 

the 3D-RISM theory. 

The water placement results of our DL model were afterwards compared with the positions of 

the crystal waters. To this end, Di was computed for the crystal waters within 5 Å from the heavy 

atoms of the protein. As shown in Table 4 and Fig. 6 and 7, the average of Di (1.031.6 Å for all 

five proteins) was 1/231/3 of the Lennard-Jones sigma value of the water oxygen atom for the 

coincident SPC/E model, indicating that the positions of water oxygen atoms obtained using our 

DL model were close to those of crystal waters. 

Prediction of the distribution function of water hydrogen sites. A DL model for predicting 

#/(!) was constructed using the same U-net architecture as that used in the deep-learning model 

for #0(!). The optimized hyperparameter set (44 in Table S1) was selected considering that the 

prediction results were not sensitive to this factor (text S3 in Supporting Information). After 

training the DL model for #/(!) using the optimized hyperparameter set and the twenty-two 

proteins described in Table 1, the DL model for #/(!) was applied to the five proteins described 
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in Table 1 to predict #/(!). The correlation between the predicted #/(!) values and the #/(!) 
values obtained using the 3D-RISM theory is reported in Fig. 8, together with the R2 score and 

RMSE values. The DL model for predicting #/(!) exhibited an analogous performance as that 

for predicting #0(!). Additionally, the RMSE values of #/(!) were smaller than those of #0(!). 

Selection of twenty-seven proteins. To investigate the possible effects of the selection of the 

proteins on the performance of our DL model, two analyses were conducted. 

First, our DL model was applied to the prediction of #0(!) for the 2,691 proteins that were not 

involved in the twenty-seven proteins in Table 1. The PDB codes of the 2,691 proteins, their R2 

score values, and their classes are summarized in “Data2718-SI-Forsubmit.xlsx”. The R2 score 

values for the 2691 proteins and the five test proteins were larger than 0.98 for all proteins (Fig. 

9). Therefore, our DL model can successfully be applied to various proteins. 

In the second analysis, a different pool of twenty-seven proteins was randomly selected for the 

training and test (Table S4). Twenty-two proteins were used for the training of the DL model for 

predicting #0(!), and the remaining five proteins were used for the test, with set 44 in Table 3 

adopted as hyperparameter set. As shown in Fig. S3, the prediction performance was comparable 

to that shown in Fig. 3, indicating that the negligible effects of the selection of the twenty-seven 

proteins on the performance of our DL model.  

Therefore, the selection of the twenty-seven proteins shown in Table 1 did not affect the 

performance of our deep-learning model.  

Comparison of our deep-learning model with other related methodologies. Our DL model 

was compared with three related methodologies. Two of the three are the method for obtaining 
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the hydration structures around proteins within a short computation time23,24. The other is the 

hybrid method of a DL and the 3D-RISM theory25.  

First, our DL model is compared with the hybrid method of a DL and the 3D-RISM theory 

proposed by Sosnin et al25. Contrarily to our DL model directly predicting #0(!) and #/(!), 
Sosnin et al. proposed a DL model for predicting the bioconcentration-factor values of organic 

molecules with the input of #0(!) and #/(!) obtained with the 3D-RISM theory. The employed 

DL model was also different: Sosnin et al. employed a three-dimensional convolutional neural 

network.  

Ghanbarpour et al.23 proposed a DL model for predicting the hydration structure around the 

proteins. In their study, the hydration structure was characterized by the water occupancy, 

namely the probability that a water molecule is found at a given grid position. From the 

definition of the water occupancy, it is closely related to #0(!). Although Ghanbarpour et al. 

attempted to predict the water occupancies using the model based on the U-net architecture, the 

prediction performance was unsatisfactory. Therefore, they proposed another regression model to 

predict the water occupancies. However, their model required a preliminary classification using 

the model predicting the grid points into those high and low water occupancies. Such 

classification was not required in our DL model. 

Maruyama and Hirata24 have proposed a fast algorithm to accelerate the 3D-RISM calculation 

using GPU. The computation of the 3D-RISM calculation for a single protein was finished 

within a few minutes with a Tesla-K40 GPU26. Compared with the algorithm proposed by 

Maruyama and Hirata, our DL model had two advantages. First, even with a single CPU, the 

computation was rapidly completed (a few minutes). Furthermore, our DL model enabled to 
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compute #0(!) at a focused region in the protein, such as the ligand-binding pocket or another 

region of interest, because the protein was decomposed into small boxes of 483 voxels. Such 

computation is unfeasible for the 3D-RISM theory. 

 

4. CONCLUSIONS 

In the present study, we proposed a DL model for predicting the hydration structure around the 

protein based on the U-net architecture. The output was the distribution function of water oxygen 

#0(!) and hydrogen #/(!) solely with the input of the protein 3D structure. 

Our DL model successfully reproduced #0(!) and #/(!) obtained using the 3D-RISM theory of 

five proteins not included in the training set. The coefficient of determination, R2-score values 

were approximately 0.98 for the five proteins, indicating the good performance of our DL model. 

Moreover, the model accurately predicted the peak positions of #0(!) from the comparison of 

the positions of the water oxygen atoms, using Placevent, between our DL model and the 3D-

RISM theory. The average of Di (0.630.7 Å), which is the distance of water molecules between 

that placed by the 3D-RISM theory and the one predicted by our DL model, was small compared 

to the size of the water oxygen atom, 3 +. Our DL model also successfully predicted #/(!). In 

summary, our DL model exhibited a good prediction performance for #0(!) and #/(!). 

For the whole protein, our DL model predicted #0(!) within a minute using a single GPU on 

average. Moreover, #0(!) was predicted for only a focused region of interest, such as the ligand 

binding domain. 
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One of the limitations of our DL model is the restricted atom types that can be included, namely 

carbon, nitrogen, oxygen, sulfur, and hydrogen. Therefore, the application of the current DL 

model to protein systems involving other atoms (e.g., metals, phosphorus of phosphorylated 

amino acids, selenium of selenomethione, ions, halogens of ligands, and co-factors) is 

unfeasible. To extend the applicability of our DL model, the number of atom types should be 

increased. The data including these atom types and training of our DL model are the object of 

our future publication.  

 

DATA AND SOFTWARE AVAILABILITY 

Our program, named “gr Predictor”, is available under the GNU General Public License from 

https://github.com/YoshidomeGroup-Hydration/gr-predictor. Usage of the program is described 

in the web page described above. All the data used in the present study have been exhaustively 

presented in the manuscript. 
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Table 1. Proteins used for developing and evaluating the deep-learning model. “Train: 10” and 

“Train: 12” are equal to “Train: Ten proteins” and “Train: Twelve proteins”, respectively.  

PDB 

ID 
Structure Title 

High 

Reso. 

Limit 

(Å) 

Dataset 

1A30 
HIV-1 protease complexed with a tripeptide 

inhibitor 
2.00 Train: Ten proteins 

1FCH 
PTS1 complexed to the TPR region of 

human PEX5 
2.20 Train: 10 

1PZ5 Antibody in complex with octapeptide 1.80 Train: 10 

2CE9 
A peptide bound to the Groucho-TLE WD40 

domain. 
2.12 Train: 10 

2HKF The complex Fab M75- Peptide 2.01 Train: 10 

2PV1 SurA complexed with peptide WEYIPNV 1.30 Train: 10 

2QBW PDZ-Fibronectin fusion protein 1.80 Train: 10 

3BZF 
Major histocompatibility in complex with 

HLA-E 
2.50 Train: 10 
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3DRF 
OppA complexed with an endogenous 

peptide 
1.30 Train: 10 

3DRI 
OppA co-crystallized with an octamer 

peptide 
1.80 Train: 10 

3ERY 
H-2 class I histocompatibility antigen in 

complex with peptide 
1.95 Train: Twelve proteins 

3G19 
ClpS protease adaptor protein in complex 

with peptide 
1.85 Train: 12 

3IFL Amyloid beta peptide:antibody complex 1.50 Train: 12 

3P9M H2-Kb in complex with epitope OVA-G4 2.00 Train: 12 

3T6B human DPPIII in complex with Tynorphin 2.40 Train: 12 

3TCG 
E. coli OppA complexed with the tripeptide 

KGE 
2.00 Train: 12 

3UPV pHsp70-complex of yeast Sti1 1.60 Train: 12 

4EZR E.coli DnaK in complex with drosocin 1.90 Train: 12 

4EZZ 
E.coli DnaK in complex with peptide 

ELPLVKI 
2.05 Train: 12 
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4YNL 
HetR in complex with the hexapeptide 

ERGSGR 
2.10 Train: 12 

5E6O 
C. elegans LGG-2 bound to an AIM/LIR 

motif 
1.80 Train: 12 

5LSO 
SPF45 UHM domain with cyclic peptide 

inhibitor 
2.22 Train: 12 

2HA2 
Acetylcholinesterase complexed with 

succinylcholine 
2.05 Test 

2O4L HIV-1 Protease in Complex with Tipranavir 1.33 Test 

3JVR Chk1 complexed with allosteric inhibitor 1.76 Test 

3O5N 
Shank PDZ domain complexed with small 

molecule 
1.83 Test 

4KAO 
Focal adhesion kinase in complex with 

inhibitor 
2.39 Test 
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Table 2. Hyperparameters and optimization ranges of our deep-learning model. 

Hyperparameter Range of the parameters for optimization 

A. The size of filter for convolution [36], [46], or [56] 

B. The number of filters at the first layer in the 

encoder 

16 or 32 

C. The dropout ratio 0.3 or 0.5 

D. The layers to which the dropout is applied 

ü The dropout was applied to (i) only the 

encoder, (ii) only the decoder, or (iii) 

both the encoder and the decoder. 

ü For each of (i), (ii), and (iii), the dropout 

was applied to 5th layer, 4th-5th layers, 3rd-

5th layers, 2nd-5th layers, or all layers. 

ü The case in which no dropout was 

applied to both the encoder and the 

decoder was also considered. 
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Table 3. The optimized hyperparameter and statics of our deep-learning model. The 

EValidation(200) values obtained using the ten and twelve proteins are denoted as >C<5D'$  and >C<5D'% , 

respectively. 

Hyperparameter 

A. The size of filter for convolution [36] 

B. The number of filters at the first layer in 

the encoder 

32 

C. The dropout ratio 0.3 

D. The layers to which the dropout is 

applied 

ü both encoder and decoder 

ü 2nd-5th layers 

Statistics 

E1
Valid 0.0045 

E2
Valid 0.0039 

Average of E1
Valid and E2

Valid 0.0042 
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Table 4. Results using the program Placevent for the five proteins. 

PDB 

code 

Placevent 

!!(#) > 1.5 

Placevent 

Ligand-binding pocket 

Placevent 

Crystal waters 

Average and 

SD of )" (+) 

+#$%& +&'()* 
Average and 

SD of )" (+) 

+#$%& +&'()* 
Average and 

SD of )" (+) 

++, 

2ha2 0.625±0.888 2326 2204 0.601±0.968 31 29 1.089±0.331 436 

2o4l 0.704±0.924 753 701 0.558±0.746 64 62 1.259±0.452 217 

3jvr 0.607±0.876 1530 1458 0.509±0.839 41 41 1.141±0.451 203 

3o5n 0.705±0.935 682 630 1.066±1.000 33 35 1.674±1.206 28 

4kao 0.626±0.860 1480 1400 0.542±0.671 39 37 0.994±0.427 30 
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Fig. 1. Schematic of the conversion of a protein structure into the voxel format. 
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Fig. 2. Schematic of the U-net architecture.  
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Fig. 3. Correlation between the #0(!) values predicted by our deep-learning model and those 

calculated by the 3D-RISM theory. The coefficient of determination R2-score values and root 

mean square error (RMSE) are indicated.  
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Fig. 4. Results at the ligand-binding site for the five test proteins. Correlation between the #0(!) 
values predicted by our deep-learning model and those calculated by 3D-RISM theory. The 

coefficient of determination R2-score values and root mean square error (RMSE) are indicated. 
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Fig. 5. Results of #0(!) for shank3 PDZ domain (PDB code: 3o5n). The #0(!) values at the six-

line regions illustrated in the protein are shown. The blue lines and blue points represent the 

#0(!) values obtained using the 3D-RISM theory, whereas the red points represent the #0(!) 
values obtained with our deep-learning model. 
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Fig. 6. Histograms of the Di values (Eq. (5)) for five proteins, namely (a), (b), and (c) 2ha2; (d), 

(e), and (f) 2o4l; (g), (h), and (i) 3jvr; (j), (k), and (l) 3o5n; (m), (n), and (o) 4kao. For each 

protein, Di was computed for the oxygen atoms at the positions with #0(!) > 1.5 [(a), (d), (g), 

(j), and (m)] and those in the ligand-binding pocket [(b), (e), (h), (k), and (n)], and for the crystal 

waters [(c), (f), (i), (l), and (o)].  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2022. ; https://doi.org/10.1101/2022.04.18.488616doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.18.488616
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

 
 

Fig. 7. Average and standard deviation of the Di values for the five proteins. 
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Fig. 8. Comparison of the #/(!) values obtained using the 3D-RISM theory and those obtained 

with our deep-learning model for (a) mouse acetylcholinesterase (PDB code: 2ha2), (b) HIV-1 

Protease (PDB code: 2o4l), (c) Checkpoint kinase 1 (PDB code: 3jvr), (d) shank3 PDZ domain 

(PDB code: 3o5n), and (e) focal adhesion kinase (PDB code: 4kao). The coefficient of 

determination R2-score values and root mean square error (RMSE) are indicated.  
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Fig. 9. R2-score values for the 2696 proteins. The label of each PDB is reported in the file 

“Data2718-SI-Forsubmit.xlsx”.  
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