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ABSTRACT. Among the factors affecting biological processes such as protein folding and
ligand binding, hydration, which is represented by a three-dimensional water-site-distribution-
function around the protein, is crucial. The typical methods for computing the distribution
functions, including molecular dynamics simulations and the three-dimensional reference

interaction site model (3D-RISM) theory, require a long computation time from hours to tens of
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hours. Here, we propose a deep-learning model rapidly estimating the distribution functions
around proteins obtained by the 3D-RISM theory from the protein 3D structure. The distribution
functions predicted using our deep-learning model are in good agreement with those obtained by
the 3D-RISM theory. Particularly, the coefficient of determination between the distribution
function obtained by the deep-learning model and that obtained using the 3D-RISM theory is
approximately 0.98. Furthermore, using a graphics processing unit (GPU), the calculation by the
deep learning model is completed in less than one minute, more than 2 orders of magnitude
faster than the calculation time of 3D-RISM theory. Therefore, our deep learning model provides
a practical and efficient way to calculate the three-dimensional water-site-distribution-functions.
The program called “gr Predictor” is available under the GNU General Public License from

https://github.com/Y oshidomeGroup-Hydration/gr-predictor.

1. INTRODUCTION

Protein hydration is one of the factors governing the biophysical processes involving the protein,
including folding and ligand binding!?. Particularly, hydration strongly affects the stability of
native structure and denaturation of proteins, whereas the ligand-protein complex is often
stabilized by water-mediated interactions between the ligand and protein. Thus, elucidating the
protein hydration properties is crucial to understand the biophysical processes and perform

structure-based drug design in consideration of water molecules.

Hydration of protein is characterized by the three-dimensional water-site-distribution-functions

around the protein. The distribution functions can be obtained using molecular dynamics (MD)
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simulations and the three-dimensional reference-interaction site model (3D-RISM) theory?. MD
simulations exactly compute the three-dimensional water site distribution functions, whereas the
3D-RISM theory, which is a statistical mechanical theory of solvation, approximately computes
the distribution functions with the force fields employed by the MD simulations. The usefulness
of the distribution functions has been demonstrated. As an example, the performance of the deep-
learning (DL) model for the pose prediction improved upon the incorporation of the three-
dimensional water-site-distribution-functions, obtained with MD simulations, inside the ligand-
bind pocket*. The distribution function obtained using the 3D-RISM theory has also been widely
discussed. The position of the crystal waters inside the cavity of hen egg-white lysozyme is
difficult to compute via MD simulation, because the movement of a water molecule from outside
the protein towards inside is hardly attained in a reasonable simulation time; conversely, the
three-dimensional water-site-distribution-functions obtained with the 3D-RISM theory
successfully reproduced the crystal-water positions’. Furthermore, the partial molar volume
(PMV) that can be computed with the Kirkwood-Buff solution theory combined with the three-
dimensional water-site-distribution-functions® exhibited a perfect agreement with the
experimental data of several proteins using the distribution functions obtained with the 3D-RISM

theory’$.

The advantages of the 3D-RISM theory over the MD simulations include the shorter
computation time for obtaining the three-dimensional water-site-distribution-functions.
Exploiting the power of a supercomputer and the advantage of the shorter computation time of
the 3D-RISM theory, we have statistically analyzed the hydration states of 3,706 static
crystallographic structures of a protein’. However, the investigation of amino acid mutations,

ligand binding processes, and protein conformational changes require more than hundred
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thousand of protein structures. To this aim, the 3D-RISM theory is inadequate, because the
calculation of the hydration state of a protein requires a few hours with a single central
processing unit (CPU). Thus, a new method drastically reducing the computation time of the 3D-

RISM theory should be developed.

In the present paper, we propose a DL model for predicting the three-dimensional water-site-
distribution-functions around the proteins obtained with the 3D-RISM theory. The data used for
training the DL model, network architecture, prediction accuracy, and computation time of the
DL model are described. Finally, a comparison of our DL model with other methodologies for
obtaining the hydration states around proteins is discussed. Because our DL model accurately
reproduced the distribution functions obtained with the 3D-RISM theory with a computation
time of less than one minute using a single graphics processing unit (GPU), our DL model
enables us to investigate amino acid mutations, ligand binding processes, and protein

conformational changes.

2. MATERIALS AND METHODS

Proteins used for the computation. Twenty-seven proteins were selected from the proteins
used in our previous study® considering 3,706 proteins taken from the protein-ligand complexes
deposited in the PDBbind refined set (v. 2017)!!1. The selection for this study was performed as
follows. From the initial 3,706 proteins, only the proteins without ions were considered, to
reduce the number of atom types in the deep-learning model. This led to the selection of 2,718
proteins summarized in “Data2718-SI-Forsubmit.xlsx”. Afterwards, the twenty-seven proteins

shown in Table 1 were randomly selected. Among the twenty-seven proteins, twenty-two
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proteins were used for training, and the remaining five proteins were used for the test. The
following preprocesses were conducted to the 3,706 proteins in the previous study?’: the ligand
and the crystal waters were removed, and the chain closest to the ligand was employed for the

protein structure with multiple chains.

The similarities of the sequences between the twenty-seven proteins are discussed in text S1
(Supporting Information). None of the proteins used in the test had 90% sequence similarity to
the twenty-two proteins used in the training. The effects of the random selection of the twenty-
seven proteins are discussed in the subsection “Discussion of the selection of twenty-seven

proteins”.

3D-RISM theory. In our previous study’, the 3D-RISM theory was applied to obtain the
distribution function at the position r for the water site « = H (hydrogen) or O (oxygen), denoted
by g« () hereinafter. In the present study, g, (r) was used as a target variable for the
construction of the DL model. In the following, the force fields and parameters employed in the
previous study® are described. The distribution functions were obtained using the Amber ff99SB
force-fields!” for the proteins, whereas the coincident SPC/E model'® was employed for the water
molecule. The values of the dielectric constant, bulk density, and temperature were 78.497,
0.03332 A3, and 310 K, respectively. In the computation using the 3D-RISM theory, a water box
surrounding the protein was prepared so that the minimum distance between the protein and the

edge of the box was 14 A. The linear grid spacing of 0.5 A was set for the x, y, and z coordinates.

Input and output formats for the deep-leaning model. To input a protein structure into our DL
model, the protein structure was converted into the voxel format schematically illustrated in Fig.

1. First, the protein was decomposed into five atom types composed of carbon, nitrogen, oxygen,
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sulfur, and hydrogen. Afterwards, the box surrounding the protein with the same size as that of
the water box used for the 3D-RISM theory was prepared. The grid size of the voxel and the
position of the protein were also the same as those used for the computation using the 3D-RISM
theory. Then, the contribution of the i-th atom of atom type j to k-th voxel, n(k, i,j), was
computed in accordance with Eq. (1)*:

n(k,i,j) =1 —exp [— (M)lz] ()

Tik

where 0y 4y, ; i the van-der-Waals-radius of the atom type j, and 1y is the distance between the i-
th atom and the position of the k-th voxel. The value of g4, ; for each atom type is summarized
in Table S1 in the Supporting Information. Finally, the contribution of the atom type j to k-th

voxel, n(k,i,j), N(k,j), was computed according to Eq. (2):

N(k,j) = X0 nk, i, ), ®)

where N; is the number of atoms for the atom type j in the protein. Through this procedure, the
protein structure was decomposed into five boxes according to the atom type, with each box

composed of the voxels with the value of N(k, j).

By decomposing each box into small boxes of 48* voxels (Fig. 1), we made our DL model
applicable to proteins with arbitrary sizes. Hereinafter, the box is referred to as the “partial
protein box” and the set of the boxes of five atom types at the same position in the protein is
referred to as the “set of partial protein box”. To exclude the effect of the boundary of the partial
protein box on the training and test by conducting them with the central 163 voxels, the

decomposition was performed by translating the partial protein box by 16 voxels (Fig. 1).
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The output format of our DL model was the same as that of the water box of g,(r) (¢ =H or O)
obtained using the 3D-RISM theory. For the training of our DL model, the water box was also
decomposed into the boxes of 483 voxels as previously described. The resulting box is referred to
as the “partial water box”. With a set of partial protein box as input, our DL model outputs the
corresponding partial water box. By summing the central 16° voxels of each partial water box,

gu (1) or go(r) were obtained.

Deep-learning model. For the network architecture for our DL model that predicts the protein
hydration structure, we employed the U-net®. As schematically shown in Fig. 2, the U-net is an
encoder-decoder type architecture?'. The deep-learning model was constructed for predicting a

distribution function g(r) (¢ = H or 0).

The architecture we employed was essentially the same as that used in the original U-net model
used for biomedical image segmentation!®. As shown in Fig. 2, both encoder and decoder
consisted of four layers, referred to as the “encoder-decoder layers”, and a 5" layer was prepared
between the 4™ layers of encoder and decoder. Each encoder-decoder layer consisted of two
convolutional layers, each followed by the activation using the ReLU function. A 2X2X?2 max-
pooling layer was added after the second convolutional layer of the encoder-decoder layer in the
encoder. The max-pooling layer was replaced by an upsampling layer® in the encoder-decoder
layer in the decoders. The number of filters in the first convolutional layers in an encoder-
decoder layer was doubled from the previous layer in the encoder, and a half from the previous
layer in the decoder, respectively. Skip connection was added according to the original U-net

architecture.
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Our DL model differed from the original U-net model in four aspects. First, while the original U-
net model was implemented for two-dimensional images, our model was implemented for three-
dimensional data of a partial protein box and a partial water box. Furthermore, in our model the
zero-padding was added in the convolutional layers. Moreover, when training our DL model, the
dropout layer was also added after the ReLLU activation in the first convolutional layer, to reduce
the overfitting. Finally, the convolution followed by the up-sampling in the original U-net
architecture was removed in our architecture. The effect of convolution in the upsampling layer

was small (text S2 in the Supporting Information).

As shown in Table 2, our DL model had four hyperparameters, collectively referred to as
“hyperparameter set”, one of which was the filter size (i.e., number of voxels in the filters) in the
convolutional layers. Three sizes were prepared, namely 32, 4%, and 5°. The number of filters
(Nristier) fOr an atom type at the first encoder-decoder layer in the encoder was another
hyperparameter. Because the number of atom types was five, the total number of filters was

5 Nristiner- 1he third hyperparameter was the number of voxels whose value was set at zero in the
dropout layer, Np. The ratio of N, and the total number of voxels in the dropout layer, referred to
as “dropout ratio”, was set to 0.3 or 0.5. Finally, the dropout was applied to the 5% layer, 4h—5®
layers, 3-5" layers, 2-5™ layers, or all layers for each of (i) only the encoder, (ii) only the
decoder, or (iii) both the encoder and the decoder. The case in which no dropout was applied to

both the encoder and the decoder was also considered.

Our DL model was implemented using the TensorFlow library (2.1.0) for the models predicting
go(r) (@ = H or 0). The training was performed using Adam optimizer with default

parameters.
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Hyperparameter optimization. The hyperparameters were optimized through the two-fold
cross validation. The twenty-two proteins used for the training were split into two sets to
homogeneously adjust the total number of partial protein boxes of two sets: ten proteins and the
remaining twelve proteins (Table 1). The number of partial protein boxes (Ntp..) Was 6,858 and
7,101 from the ten and twelve proteins, respectively. The number of partial water boxes was also
N1paw. In the cross validation, when the ten proteins were used for the training of our DL model,
the remaining twelve proteins were used for the validation of the model and vice versa.
Hereinafter, the data for the training and validation are denoted by “training data” and
“validation data”, respectively. Each data is composed of the partial protein boxes and the

corresponding partial water boxes.

For a hyperparameter set of our DL model, the number of epochs was set to 200 and the mean-

square error in Eq. (3) was employed for the loss function, E:

_ 2
E = ;zyg?ata Z{VVoxel(gMQdel(ri) _ gSD RISM(Ti)) (3)

NtpataNvoxel =1 «J «J

where Ny 18 the number of voxels in the box, equal to 16%; gfx(' i(ry) (X="Model” or “3D-
RISM”, and a="0O" or “H”) is the g, (r) value at the voxel position of r; for the j-th box; the
superscripts “Model” and “3D-RISM” indicate the g, (r) obtained from our DL model and the

3D-RISM theory, respectively. Hereinafter, the E value at i epoch is denoted by Erin(i).

For each epoch (7) in the training, we also computed the loss function of Eq. (3) using the
validation data (Evaidaion(Z)) to check whether the overfitting did not occur during the training. In
the computation, all dropout layers used in the training were not used. The possible overfitting

was checked by the comparability of the Evajidaion(200) and Etpinin(200) values.
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Each of the four hyperparameters was set to a value within the range shown in Table 3, leading
to 162 hyperparameter sets. For each hyperparameter set, the following computations were
performed: (1) Training was performed with the ten proteins and the corresponding gy (7) or

go (1) as the training data; (2) the Evaiguion(200) value was saved; (3) the procedures (1) and (2)
were repeated with the twelve proteins for the training, and (4) the average of the two
Evaigaion(200) values, namely Evaiidaion(200), was computed. After the computations for all the 162
hyperparameter sets, the hyperparameter set with the smallest Evy.jig.i0n(200) value, denoted by

“optimized hyperparameter set”, was selected.

Tests. After the training using the optimized hyperparameter set and the twenty-two proteins,
9o (1) (a="0" or “H”) for the five proteins described in Table 1 was computed as a test. The
training procedure was the same as that described in the previous subsection. In the test, each
protein was first converted into the voxel format described in “Input and output formats for the
DL model” subsection. Afterwards, using a partial protein box, g, (r) of the corresponding
partial water box was predicted using our DL model. Finally, g, (7) of the whole protein was

obtained by summing the central 163 voxels of the predicted water boxes.

To quantitatively compare the peak positions of gqo(r) of our DL model with those of the 3D-
RISM theory, the following analysis was conducted. First, water oxygen atoms were placed
using the program Placevent??, in which water oxygen atoms were placed using the gq (1)
values. In the program, the placement of water oxygen atoms was performed in three steps: (1) A
water oxygen atom was placed at the position of the voxel with the largest go(r) value (denoted

by Tvax); (1) The region & satisfying Eq. (4) was identified:

10
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TMax+0
JMe 50 go(r)dr = 1 4)

T'Max

(iii) The go(r) values at the voxels within the region & were set at zero (the obtained gq (1) is
referred to as “new gq(1)”); (iv) Steps (i), (ii), and (iii) were repeated using the new g (7) until
9o (rmax) < 1.5, which is the default value in the program Placevent. The placement of water
oxygen atoms was performed using the go(7) values obtained with the 3D-RISM theory and
those obtained with our DL model. The positions of the i-th water oxygen atom obtained using
the 3D-RISM theory and that using our DL model are denoted by r}M and rliv“’del,
respectively. The number of placed water oxygen atoms is denoted by Nrism and Nyoqer, and
typically Nrism # Numodel because gq (1) obtained using our DL model was slightly different from

that obtained using the 3D-RISM theory.

Afterwards, for each water oxygen atom placed using go(r) obtained with the 3D-RISM theory,

the distance D; defined in Eq. (5) was computed:

D; = min|rRiSM — y-Model| (5)
j

The average of D; among the water oxygen atoms placed using the 3D-RISM theory and its

standard deviation were obtained to analyze the results and histogram of D..

To investigate the prediction performance at the ligand-binding pocket from the viewpoint of D;,
the following analysis was further performed. The water oxygen atoms at the ligand-binding
pocket were defined by the placed water oxygen atoms within 5 A from the heavy atoms of the
ligand. For each water oxygen atom placed using the g (1) of 3D-RISM theory, the D; value

was computed.

11
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Finally, the prediction performance from the viewpoint of the positions of crystal waters was
studied via the analysis of the crystal waters within 5 A from the heavy atoms in the protein. For

each crystal water, D; was computed.

3.RESULTS AND DISCUSSION

In this section, the results obtained for go(r) are presented, whereas those for gy (7), which
were analogous to those for g (1), are discussed in the subsection “Prediction of the distribution

function of water hydrogen site”.

Cross validations. To determine the optimized hyperparameter set, a two-fold cross validation
was conducted as described in “Optimization of the hyperparameters”. The number of partial
protein boxes was 6,858 and 7,101 from the ten and twelve protein sets, respectively. The error
values at 200 epoch defined by Eq. (3) were computed using the ten and twelve proteins, and

their Evaidaion(200) and Evqiigaion(200) values are summarized in Table S1.

The optimized hyperparameter with the smallest Evajiguion(200) value was the hyperparameter set
number 44 (Table S2). The hyperparameter values and their statistics are summarized in Table 3.
The Evaigaion(200) value, namely the difference between the gq (1) values of 3D-RISM and of our
DL model, was sufficiently small (0.0042). The corresponding average deviation of gq (1)
obtained by our DL model from g, () obtained by the 3D-RISM theory was 0.06. As shown in

Fig. S1, Evaidaion(200) was analogous to Er., (200), indicating the absence of overfitting.

12
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The results reported in the next paragraphs were performed using the DL model trained with the
optimized hyperparameter set. The results for the other hyperparameters are discussed in text S3

(Supporting Information).

Prediction tests. The correlation between the go (1) values predicted by our DL model and those
calculated by the 3D-RISM theory, coefficient of determination R? score values, and root mean
square error (RMSE) of five proteins for the test are shown in Fig. 3. For the five proteins tested,
the R? values were high and most of the points resided close to the line representing y=x. Moreover,
the RMSE values indicated the accuracy of the gq(r) prediction of our DL model. The
encouraging result on the accuracy was accompanied by a drastic decrease of computation time of
two orders of magnitude: the computation was completed within a minute with our DL model and

a single GPU.

Furthermore, the comparison was performed with the voxels in the ligand-binding pocket defined
by those within 5 A from the heavy atoms in the ligand (Fig. 4). The prediction performance of
our DL model was high also in the ligand-binding pocket: most of the points resided close to the
line y=x, with high R? values. Therefore, our DL model can successfully predict the hydration
structure in the ligand-binding pocket. High prediction-accuracy of go(r) in the ligand-binding
site is important for the structure-based design of new molecules using the information of the

hydration in the binding site.

For all the proteins, the RMSE value of the ligand-binding site was larger than that of all points,
reasonably due to the value of gy (1) at the bulk region. It was found from slice 5 of Fig. 5 that the

prediction performance at the bulk region is good: go(r) at the bulk region was one for both of

13
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the 3D-RISM theory and our DL model. This result explains the RMSE value of all points,

including most of the bulk points, smaller than that of the ligand-binding site.

Finally, the results for shank3 PDZ domain (Protein Data Bank (PDB) code: 305n) are shown in
Fig. 5 to discuss how our DL model reproduced the g () values in detail. The agreement between
the go (1) values of the 3D-RISM theory and those of our DL model was good, as both the peak
heights and the peak positions were well predicted by our DL model. Additionally, our DL model
reproduced the go () values inside the protein (slice 6 in Fig. 5) and those at a bulk region (slice
5 in Fig. 5). Moreover, a high R2-score value (0.985) indicated the good correlation between g (1)
values of our DL model and those of 3D-RISM theory (Fig. 3). However, for few points, the go (1)
values of our DL model deviated from those of the 3D-RISM theory. Particularly, the points with
large deviation corresponded to the areas in the cavities with a size comparable to that of the water
molecule (Fig. S2). The current training data did not contain sufficient data for such cavities.

Adding such data would therefore improve the performance of our DL model.

Placement of water oxygen atoms. To discuss how our DL model successfully predicted the
peak positions of gq (1), water oxygen atoms were placed at the gy (1) peaks using the program
Placevent. For the placement of water oxygen atoms, the values of g (1) obtained using the 3D-
RISM theory and our DL model were used. The histograms of D; for the five proteins are shown
in Fig. 6, whereas the average of D;, Nrism, and Ny for each protein are summarized in Table
4. The histograms related to the water molecule placed at the point go(7)>1.5 (probability 1.5
times higher than that of a bulk water) in Fig. 6 (a), (d), (g), (j), and (m) indicate that
approximately 60% of the water oxygen atoms of our DL model was placed within 0.5 A from

the water oxygen atoms of the 3D-RISM theory. The average of D; was 0.6-0.7 A for all five

14
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proteins (Table 4 and Fig. 7). The calculated value was 1/4—1/5 of the Lennard-Jones sigma
value, associated to the radius of the atom, of the water oxygen atom for the coincident SPC/E
model (3.17 A). Therefore, the go(r) peak positions obtained using our DL model were close to
those obtained using the 3D-RISM theory. Essentially the same results were obtained for the

go(r) values at the ligand-binding pocket (Fig. 6(b), (¢), (h), (k), (n), and Table 5).

Nevertheless, the Nwvodel values were different from the Nrism values (Table 4), reasonably
because the peak height and peak position of go (7) were slightly different in the two methods.
Particularly, the Mwvodet values were smaller than the corresponding Nrism value for all the
proteins because our DL model predicted smaller peak values of go (1) than those obtained using

the 3D-RISM theory.

The water placement results of our DL model were afterwards compared with the positions of
the crystal waters. To this end, D; was computed for the crystal waters within 5 A from the heavy
atoms of the protein. As shown in Table 4 and Fig. 6 and 7, the average of D; (1.0-1.6 A for all
five proteins) was 1/2—1/3 of the Lennard-Jones sigma value of the water oxygen atom for the
coincident SPC/E model, indicating that the positions of water oxygen atoms obtained using our

DL model were close to those of crystal waters.

Prediction of the distribution function of water hydrogen sites. A DL model for predicting
gu (1) was constructed using the same U-net architecture as that used in the deep-learning model
for go (7). The optimized hyperparameter set (44 in Table S1) was selected considering that the
prediction results were not sensitive to this factor (text S3 in Supporting Information). After
training the DL model for gy (r) using the optimized hyperparameter set and the twenty-two

proteins described in Table 1, the DL model for gy (1) was applied to the five proteins described

15


https://doi.org/10.1101/2022.04.18.488616
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.18.488616; this version posted April 18, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

in Table 1 to predict gy (7). The correlation between the predicted gy (r) values and the gy (1)
values obtained using the 3D-RISM theory is reported in Fig. 8, together with the R? score and
RMSE values. The DL model for predicting gy (1) exhibited an analogous performance as that

for predicting go (7). Additionally, the RMSE values of gy (r) were smaller than those of go (7).

Selection of twenty-seven proteins. To investigate the possible effects of the selection of the

proteins on the performance of our DL model, two analyses were conducted.

First, our DL model was applied to the prediction of go(r) for the 2,691 proteins that were not
involved in the twenty-seven proteins in Table 1. The PDB codes of the 2,691 proteins, their R?
score values, and their classes are summarized in “Data2718-SI-Forsubmit.xIsx”. The R? score

values for the 2691 proteins and the five test proteins were larger than 0.98 for all proteins (Fig.

9). Therefore, our DL. model can successfully be applied to various proteins.

In the second analysis, a different pool of twenty-seven proteins was randomly selected for the
training and test (Table S4). Twenty-two proteins were used for the training of the DL model for
predicting go (1), and the remaining five proteins were used for the test, with set 44 in Table 3
adopted as hyperparameter set. As shown in Fig. S3, the prediction performance was comparable
to that shown in Fig. 3, indicating that the negligible effects of the selection of the twenty-seven

proteins on the performance of our DL model.

Therefore, the selection of the twenty-seven proteins shown in Table 1 did not affect the

performance of our deep-learning model.

Comparison of our deep-learning model with other related methodologies. Our DL model

was compared with three related methodologies. Two of the three are the method for obtaining
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the hydration structures around proteins within a short computation time?*2*. The other is the

hybrid method of a DL and the 3D-RISM theory?.

First, our DL model is compared with the hybrid method of a DL and the 3D-RISM theory
proposed by Sosnin ef al**. Contrarily to our DL model directly predicting go () and gy (1),
Sosnin et al. proposed a DL model for predicting the bioconcentration-factor values of organic
molecules with the input of gq () and gy (7) obtained with the 3D-RISM theory. The employed
DL model was also different: Sosnin ef al. employed a three-dimensional convolutional neural

network.

Ghanbarpour et al.> proposed a DL model for predicting the hydration structure around the
proteins. In their study, the hydration structure was characterized by the water occupancy,
namely the probability that a water molecule is found at a given grid position. From the
definition of the water occupancy, it is closely related to gq (7). Although Ghanbarpour et al.
attempted to predict the water occupancies using the model based on the U-net architecture, the
prediction performance was unsatisfactory. Therefore, they proposed another regression model to
predict the water occupancies. However, their model required a preliminary classification using
the model predicting the grid points into those high and low water occupancies. Such

classification was not required in our DL model.

Maruyama and Hirata?* have proposed a fast algorithm to accelerate the 3D-RISM calculation
using GPU. The computation of the 3D-RISM calculation for a single protein was finished
within a few minutes with a Tesla-K40 GPU?%. Compared with the algorithm proposed by
Maruyama and Hirata, our DL model had two advantages. First, even with a single CPU, the

computation was rapidly completed (a few minutes). Furthermore, our DL. model enabled to
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compute go (1) at a focused region in the protein, such as the ligand-binding pocket or another
region of interest, because the protein was decomposed into small boxes of 48° voxels. Such

computation is unfeasible for the 3D-RISM theory.

4. CONCLUSIONS

In the present study, we proposed a DL model for predicting the hydration structure around the
protein based on the U-net architecture. The output was the distribution function of water oxygen

go (1) and hydrogen gy (r) solely with the input of the protein 3D structure.

Our DL model successfully reproduced gq(r) and gy (r) obtained using the 3D-RISM theory of
five proteins not included in the training set. The coefficient of determination, R2-score values
were approximately 0.98 for the five proteins, indicating the good performance of our DL model.
Moreover, the model accurately predicted the peak positions of go(r) from the comparison of
the positions of the water oxygen atoms, using Placevent, between our DL. model and the 3D-
RISM theory. The average of D; (0.6-0.7 A), which is the distance of water molecules between
that placed by the 3D-RISM theory and the one predicted by our DL model, was small compared
to the size of the water oxygen atom, 3 A. Our DL model also successfully predicted gy (). In

summary, our DL model exhibited a good prediction performance for go(r) and gy (7).

For the whole protein, our DL. model predicted go(r) within a minute using a single GPU on
average. Moreover, go(r) was predicted for only a focused region of interest, such as the ligand

binding domain.
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One of the limitations of our DL model is the restricted atom types that can be included, namely
carbon, nitrogen, oxygen, sulfur, and hydrogen. Therefore, the application of the current DL
model to protein systems involving other atoms (e.g., metals, phosphorus of phosphorylated
amino acids, selenium of selenomethione, ions, halogens of ligands, and co-factors) is
unfeasible. To extend the applicability of our DL model, the number of atom types should be
increased. The data including these atom types and training of our DL model are the object of

our future publication.

DATA AND SOFTWARE AVAILABILITY

Our program, named “gr Predictor”, is available under the GNU General Public License from
https://github.com/Y oshidomeGroup-Hydration/gr-predictor. Usage of the program is described
in the web page described above. All the data used in the present study have been exhaustively

presented in the manuscript.
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Table 1. Proteins used for developing and evaluating the deep-learning model. “Train: 10” and

“Train: 127 are equal to “Train: Ten proteins” and “Train: Twelve proteins”, respectively.

High
PDB Reso.
Structure Title Dataset
ID Limit
(A)
HIV-1 protease complexed with a tripeptide
1A30 2.00 Train: Ten proteins
inhibitor
PTS1 complexed to the TPR region of
1FCH 2.20 Train: 10
human PEX5
1PZ5 | Antibody in complex with octapeptide 1.80 Train: 10
A peptide bound to the Groucho-TLE WD40
2CE9 2.12 Train: 10
domain.
2HKF | The complex Fab M75- Peptide 2.01 Train: 10
2PV1 | SurA complexed with peptide WEYIPNV 1.30 Train: 10
2QBW | PDZ-Fibronectin fusion protein 1.80 Train: 10
Major histocompatibility in complex with
3BZF 2.50 Train: 10
HLA-E
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OppA complexed with an endogenous
3DRF 1.30 Train: 10
peptide

OppA co-crystallized with an octamer
3DRI 1.80 Train: 10
peptide

H-2 class I histocompatibility antigen in
3ERY 1.95 Train: Twelve proteins
complex with peptide

ClpS protease adaptor protein in complex

3G19 1.85 Train: 12
with peptide

3IFL | Amyloid beta peptide:antibody complex 1.50 Train: 12

3P9M | H2-Kb in complex with epitope OVA-G4 2.00 Train: 12

3T6B | human DPPIII in complex with Tynorphin 2.40 Train: 12

E. coli OppA complexed with the tripeptide

3TCG 2.00 Train: 12
KGE

3UPV | pHsp70-complex of yeast Stil 1.60 Train: 12

4EZR | E.coli DnaK in complex with drosocin 1.90 Train: 12

E.coli DnaK in complex with peptide
4EZ7Z 2.05 Train: 12
ELPLVKI
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HetR in complex with the hexapeptide
4YNL 2.10 Train: 12
ERGSGR

C. elegans LGG-2 bound to an AIM/LIR
5E60 1.80 Train: 12
motif

SPF45 UHM domain with cyclic peptide
SLSO 2.22 Train: 12
inhibitor

Acetylcholinesterase complexed with

2HA2 2.05 Test
succinylcholine

204L | HIV-1 Protease in Complex with Tipranavir 1.33 Test

3JVR | Chkl complexed with allosteric inhibitor 1.76 Test

Shank PDZ domain complexed with small
305N 1.83 Test
molecule

Focal adhesion kinase in complex with
4KAO 2.39 Test
inhibitor
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Table 2. Hyperparameters and optimization ranges of our deep-learning model.

Hyperparameter Range of the parameters for optimization

A. The size of filter for convolution [33], [43], or [53]

B. The number of filters at the first layer in the | 16 or 32

encoder
C. The dropout ratio 030r0.5
v" The dropout was applied to (i) only the
encoder, (ii) only the decoder, or (iii)
both the encoder and the decoder.
v For each of (i), (ii), and (iii), the dropout
D. The layers to which the dropout is applied was applied to 5 layer, 40-5" layers, 3%-

5™ layers, 2m-5t Jayers, or all layers.

v' The case in which no dropout was
applied to both the encoder and the

decoder was also considered.
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Table 3. The optimized hyperparameter and statics of our deep-learning model. The

Evaigaion(200) values obtained using the ten and twelve proteins are denoted as E\l,alid and E\z,alid,

respectively.
A. The size of filter for convolution [33]
B. The number of filters at the first layer in | 32
the encoder
Hyperparameter
C. The dropout ratio 0.3
D. The layers to which the dropout is v both encoder and decoder
applied
v 2.5t Jayers

E'valid 0.0045

Statistics E?Valid 0.0039
Average of E'vaia and E?vaiia 0.0042
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Table 4. Results using the program Placevent for the five proteins.

Placevent Placevent Placevent
PDB go(r)>15 Ligand-binding pocket Crystal waters
code Average and Average and Average and
| Nrism | Numodel | Nrism| Nmodel | New
SD of D; (A) SD of D; (A) SD of D; (A)

2ha2 | 0.625+0.888 | 2326 | 2204 | 0.601+0.968 31 29 1.089+0.331 | 436

2041 | 0.704+0.924 | 753 701 0.558+0.746 64 62 1.259+0.452 | 217

3jvr | 0.607+0.876 | 1530 | 1458 | 0.509+0.839 41 41 1.141+0.451 | 203

305n | 0.705+0.935 | 682 630 1.066+1.000 33 35 1.674+1.206 | 28

4kao | 0.626+0.860 | 1480 | 1400 | 0.542+0.671 39 37 0.994+0.427 30
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1. Conversion of the protein structure into the voxel format in accordance with Eq. (2)

‘@z‘%‘%e

C N
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2. Decomposition into (48)3 voxels by translating 16 voxels
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16 voxels

Fig. 1. Schematic of the conversion of a protein structure into the voxel format.
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Fig. 3. Correlation between the g (7) values predicted by our deep-learning model and those

calculated by the 3D-RISM theory. The coefficient of determination R2-score values and root
mean square error (RMSE) are indicated.

33


https://doi.org/10.1101/2022.04.18.488616
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.18.488616; this version posted April 18, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

2ha2
R2=0.982
RMSE=3.1 X 102
15
5
’ 0 5 10 15 20
g(})Dfl?ISM
305n
“I R2=0.980
RMSE=1.9 X 102
15
§£10
0

10
,3D — RISM
80

15

20

15

2041

R?=0.990
RMSE=1.1 X 102

0 5 10 15 20
3D - RISM
80

4kao

R?=0.988
RMSE=1.5 X102

10
3D —RISM
8o

Model
8o

3jvr

R?=0.990
RMSE=9.4 X 1073

3D - RISM
(8]

8

Fig. 4. Results at the ligand-binding site for the five test proteins. Correlation between the gq (1)

values predicted by our deep-learning model and those calculated by 3D-RISM theory. The

coefficient of determination R2-score values and root mean square error (RMSE) are indicated.
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Fig. 5. Results of go (1) for shank3 PDZ domain (PDB code: 305n). The go(r) values at the six-

line regions illustrated in the protein are shown. The blue lines and blue points represent the
go (1) values obtained using the 3D-RISM theory, whereas the red points represent the go (1)

values obtained with our deep-learning model.
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Fig. 6. Histograms of the D; values (Eq. (5)) for five proteins, namely (a), (b), and (c) 2ha2; (d),
(e), and (f) 204lL; (g), (h), and (i) 3jvr; (j), (k), and (1) 305n; (m), (n), and (o) 4kao. For each
protein, D; was computed for the oxygen atoms at the positions with go () > 1.5 [(a), (d), (g),

(j), and (m)] and those in the ligand-binding pocket [(b), (e), (h), (k), and (n)], and for the crystal

waters [(c), (), (1), (1), and (0)].
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Fig. 8. Comparison of the gy (r) values obtained using the 3D-RISM theory and those obtained

with our deep-learning model for (a) mouse acetylcholinesterase (PDB code: 2ha2), (b) HIV-1

Protease (PDB code: 204l), (c) Checkpoint kinase 1 (PDB code: 3jvr), (d) shank3 PDZ domain

(PDB code: 305n), and (e) focal adhesion kinase (PDB code: 4kao). The coefficient of

determination R2-score values and root mean square error (RMSE) are indicated.
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Fig. 9. R?-score values for the 2696 proteins. The label of each PDB is reported in the file

“Data2718-SI-Forsubmit.xIsx”.
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