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ABSTRACT

Spatial transcriptomics is an emerging technology to profile spatially resolved gene
expression. Its preserved capture locations allow researchers to investigate transcriptomes in
the tissue context. Large volumes of spatial transcriptomics data under different study designs
have been generated, but the lack of a public database with systematically collected and
processed data makes data reuse challenging. We present Spatial transcriptOmics Analysis
Resource (SOAR), a database with analysis capability and an extensive collection of spatial
transcriptomics data. We systematically curated, reviewed, annotated, and pre-processed 132
datasets containing 1,633 samples across 22 tissue types from 6 species. SOAR provides
interactive web interfaces for users to visualize spatial gene expression, evaluate gene spatial
variability across cell types, and assess cell-cell interactions. Besides data access and
download, SOAR can aid researchers in investigating whether a specific gene expression is
associated with distinct spatial patterns or cell-cell communications. SOAR is publicly

available at https://soar.fsm.northwestern.edu/.
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INTRODUCTION

Recent technological advances in spatial transcriptomics have made it possible to measure the
transcriptome while retaining the coordinates of capture locations in tissues. Spatially
resolved transcriptomics allows researchers to study the association between gene expression
and the spatial organization of capture locations !. This provides helpful insights into tissue
functions and disease pathology, facilitating discoveries in cancer research >, neuroscience
21023 "and developmental biology 2+, Spatial transcriptomics can also play an important role
in generating insights in precision medicine which increasingly integrates Omics data with
other modalities of health care data (e.g., clinical data) 23, In recent years, various spatial
transcriptomics technologies have been proposed and widely applied, including next-
generation sequencing (NGS) approaches like 10x Visium, ST 2, Slide-seq '***, and DBiT-
seq %6, as well as fluorescence in situ hybridization (FISH) methods like MERFISH 3433,
osmFISH '3, seqFISH !!33¢ and seqFISH+ . Despite the rapid accumulation of spatial
transcriptomics publications and datasets, the vastly dissimilar formats of datasets from
different techniques make data reuse challenging. A user-friendly and comprehensive public
database for spatial transcriptomics with analysis capability will greatly facilitate data
sharing, exploration and meta-analysis among the research community.

A limited number of public spatial transcriptomics resources is available, including
SpatialDB 8, Museum of Spatial Transcriptomics *°, spatialLIBD '?, and STAR-FINDer >°,
Amyotrophic Lateral Sclerosis Spinal Cord Atlas *°. SpatialDB * is a manually curated
database with 24 datasets that provides spatial transcriptomics data visualization and spatially
variable gene identification results. Museum of Spatial Transcriptomics * is an annotated
literature list with download links to public spatial transcriptomics datasets. The other

12,25,40

resources are data atlases regarding one tissue type and provides spatial expression

visualisations of brain, fetal intestine, and spinal cord, respectively. To the best of our
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knowledge, there is a lack of a large-scale, systematically curated spatial transcriptomics
database that provides unified data access, exploration and analysis across different tissue
types.

Here, we present SOAR (Spatial transcriptOmics Analysis Resource), an extensive and
publicly accessible resource of spatial transcriptomics data. SOAR
(https://soar.fsm.northwestern.edu/) is a comprehensive database hosting a total of 1,633
samples from 132 datasets, which were uniformly processed using a standardized workflow.
Its data collection covers 22 different tissue types including numerous organs, developmental
stages, and pathological conditions such as cancer. SOAR also provides interactive web
interfaces for users to visualize spatial gene expression, explore gene spatial variability, and
assess cell-cell interactions using an in-house developed, novel approach. SOAR will be
continuously maintained in order to provide great utility to the biological, biomedical, and

clinical research communities for harnessing the power of spatial transcriptomics data.

MATERIAL AND METHODS

Data collection

We queried the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) for

human and mouse spatial transcriptomics datasets using the keywords
“spatial+transcriptomics”, “spatial+transcriptome”, “spatial+tRNA-seq”, and
“spatialtRNA+sequencing”, and downloaded 353 datasets from unique GEO series (GSE)
accessions. Additionally, we manually reviewed the papers in the Museum of Spatial
Transcriptomics * and collected 73 publicly available datasets (19 FISH, 54 NGS). We also

collected 114 datasets from other resources including Single Cell Portal

(https://singlecell.broadinstitute.org/single cell), 10x spatial gene expression demonstration

datasets (https://support.10xgenomics.com/spatial-gene-expression/datasets), Spatial
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Research Lab (https://www.spatialresearch.org/resources-published-datasets/), 10x spatial

publication list (https://www.10xgenomics.com/resources/publications), Amyotrophic Lateral

Sclerosis Spinal Cord Atlas 40, spatial LIBD 12 STAR-FINDer %, and Brain Research through
Advancing Innovative Neurotechnologies Initiative — Cell Census Network

(https://biccn.org/data). Next, we removed the duplicative datasets, validated that the

downloaded data used FISH or NGS-based spatial transcriptomics technology, and excluded
the datasets missing spatial coordinates information. In total, we collected 132 datasets
containing 1,633 spatial transcriptomics samples from eight different technologies (Figure

1A).
Data processing

We downloaded the count matrices and coordinate information for each dataset and applied a
systematic data processing workflow (Figure 1A) to all the collected datasets. To account for
the resolution and sequencing depth difference among spatial transcriptomics techniques,
samples measured using different technologies were processed with different quality control
(QC) protocols. For 10x Visium, ST and DBiT-seq datasets, we removed the capture
locations with fewer than 500 unique molecular identifiers (UMIs), fewer than 500 genes, or
> 25% mitochondrial reads *'*. We further excluded the capture locations with a total UMI
count (or a total number of genes) three standard deviations below the medium **. Finally, we
filtered out the genes that are expressed in less than five capture locations. The QC pipeline
for MERFISH, osmFISH, seqFISH, and seqFISH+ datasets was similar. Genes expressed in
fewer than five capture locations were excluded **, and capture locations with fewer than 500
UMISs or > 25% mitochondrial reads were removed *!. We performed QC on Slide-seq
samples so that only the capture locations with total UMI counts greater than 100 and the
genes with UMI count greater than 300 in all the capture locations are included 8. After QC,

we normalized and transformed the datasets with raw, unnormalized expression matrices
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using SCTransform, a framework for the normalization and variance stabilization of
molecular count data **. We next performed principal component analysis on normalized data
and clustered the capture locations through a shared nearest neighbour approach. All data

processing was conducted using Seurat V3 %,
Cell type annotation

We performed cell type annotation on SOAR’s spatial transcriptomics datasets using SingleR
45 a method capable of annotating the cells in test datasets based on their similarities to
reference single-cell RNA sequencing (scRNA-seq) datasets with known cell types. To
identify such reference datasets, we queried the GEO and curated an average of two well-
annotated scRNA-seq datasets for each tissue type featured in SOAR. After QC,
normalization, and transformation, these sSCRNA-seq datasets were used as references for
annotating the cell types of spatial transcriptomic capture locations of the corresponding
tissue type. In particular, for complex tissues such as tumour and brain, we adopted
heuristics-guided approaches to improve the performance of cell type annotation.

For cancer datasets (185 samples in total), we first identified possible lymphocyte capture
locations using known biomarkers (CD45, CD3D, CD3E, and CD3G) through differential
expression analysis, identifying clusters with greater than 1.2 average log fold-changes for
one or more lymphocyte genes and over 20% capture locations expressing at least one of the
biomarkers. Next, we identified capture location clusters that differentially expressed CD4 or
CD8A/CD8B genes in a similar manner. Among these clusters, we annotated those that were
also found to be possible lymphocyte clusters in the first step as CD4 or CD8 based on the
percentage of capture locations in the cluster expressing CD4 versus CDSA/CD8B genes.
Next, we performed cell type annotation on all the remaining clusters using SingleR *°, with

scRNA-seq datasets of the same cancer type curated in a previous study *° as the reference.
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The cell type of each cluster was then determined by the annotation results from different
references, weighted by the number of cells in the respective reference dataset.

For brain datasets (866 samples in total), we followed the Common Cell Type
Nomenclature (CCN) #7 and annotated their capture locations as glutamatergic, GABAergic,

or non-neuronal. Two scRNA-seq datasets from the Allen Brain Map (https://portal.brain-

map.org/atlases-and-data/rnaseq) were used as the references — the Human Multiple Cortical

Areas SMART-seq dataset (for annotating human samples) and the Mouse Whole Cortex and
Hippocampus dataset (for annotating mouse samples). Firstly, we identified marker gene sets
for each cell type and each species by performing differential gene expression analysis on the
corresponding reference scRNA-seq dataset using Seurat V3 3. Next, we used AUCell *® to
score the activity of glutamatergic, GABAergic, and non-neuronal gene sets at each capture
location based on marker gene expressions. Capture location clusters in the sample can then
be classified as neuronal or non-neuronal according to the sum of AUCell scores across
capture locations. Finally, we used SingleR * to annotate the neuronal clusters as
glutamatergic or GABAergic based on a filtered version of the reference dataset that only

contained neuronal cells.
Data analysis

To facilitate the characterization of the functional architecture of complex tissues, we
identified genes with spatial patterns of significant expression variation using SPARK-X #°.
Spatial variability analyses were conducted across the whole tissue and in different cell types,
respectively.

Cells of different cell types may interact through cell-cell contact or long-distance
signalling *°. To study possible cell type interactions, we investigated whether the gene
expression levels in a query cell type (CTp) are influenced by its spatial proximity to another

cell type (CTy). In order to evaluate neighbouring interactions, we performed Wilcoxon rank-
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sum tests to test if genes are differentially expressed in C7; adjacent and nonadjacent to CTp
using the FindAllMarkers function in Seurat V3 **. Next, to assess the cell type interactions
over distance, we regressed the expression of a gene G in CTy (E¢rq ) capture locations on
their median Euclidean distance to CT; capture locations (Distancecrq cr;)- Intuitively, the
calculated regression coefficient (£) quantified the association between the gene expression
in CTg capture locations and the distance between CTp and CT;. Therefore, a positive § may
reflect CT7’s inhibitory effect on the expression of G in CTp, whereas when 8 < 0, CT;
capture locations may play a promotional role.
Ecrge =a+ B - Median(DistanceCTQ,CTI)
All the p-values were adjusted for multiple testing using the false discovery rate (FDR)

approach, and we assume statistical significance at an adjusted p-value of g < 0.05.
Website development

SOAR is a comprehensive and user-friendly database that aids the exploration and analysis of
spatial transcriptomics datasets. The website was implemented using the R Shiny framework
(R v4.0.5) on an Apache2 HTTP server and is compatible with smartphones and tablets. The
website consists of five functional components, “Home”, “Data Browser”, “Explore Gene”,
“Download”, and “Help”. The “Home” module includes an overview of SOAR, and users
may search for a gene of interest in this module. Users could browse SOAR’s curated
datasets using the “Data Browser” module to pinpoint their sample of interest and visualize
spatial gene expressions. Upon searching for a gene on the homepage, users will land in the
“Explore Gene” module, which enables users to evaluate the spatial variability of genes in
different tissues and assess possible cell type interactions. All the results and visualizations
from user-performed analyses are downloadable. In the “Download” module, users could

download phenotypic metadata, standardized gene expression, and coordinate data of all the


https://doi.org/10.1101/2022.04.17.488596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.17.488596; this version posted April 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

samples in SOAR. The “Help” page documents the website and includes a tutorial with step-

by-step instructions for using the database. SOAR is free and open to all users at

https://soar.fsm.northwestern.edu/ and there is no login requirement.

RESULTS

Data summary

SOAR includes 1,633 spatial transcriptomics samples of six different species (human, mouse,

chicken, pig, thale cress, and aspen) from 132 datasets utilizing eight different spatial

transcriptomics technologies (Figures 1B and 1C). The human and mouse samples come from

different organs (brain, heart, intestine, joints, kidney, liver, lymph node, muscle, prostate,

skin, spinal cord, testis) and other specific tissues including body fat, cancer, and embryonic

tissues (Figure 1C). All the curated gene expression data, coordinate data, metadata, and

analysis results can be downloaded from the “Download” module in SOAR.
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Figure 1. Overview of SOAR. (A) Datasets hosted on SOAR were curated from public

domains. The samples were processed using a standardized workflow, including quality
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control, normalization, transformation, dimensionality reduction, and cell type annotation.
SOAR also provides interactive interfaces for users to evaluate the spatial variability of genes
in a cell type of interest, assess cell-cell interactions, and visualize spatial gene expressions.
The expression profiles and coordinate data for all samples can be downloaded from SOAR.
(B) Statistics of data from different spatial transcriptomics technologies in SOAR. The 95%
confidence intervals for the means are plotted as error bars. (C) In total, SOAR contains

1,633 spatial transcriptomics samples from 6 different species across 22 tissue types.

Data browser module

To aid user conducted analysis, we constructed a comprehensive data browser that is hosted
on SOAR and contains the meta-data for all included spatial transcriptomics datasets. For
each dataset, detailed information includes the hyperlink to the corresponding publication, the
spatial transcriptomics technology used, and sample information including the number of
samples, the species, organ, tissue, and the disease state of the sample. Furthermore, we
document the average number of capture locations and genes per dataset, and in each sample
after QC. Our data browser allows users to quickly select samples of interest to further
explore and analyze via interactive figures and tables. All the generated figures and tables are

easily downloadable to support personal and large-scale research projects.

Explore gene module

Spatial transcriptomics makes it possible to analyze a gene’s spatial variability within
different cell types. It also enables us to study cell type interactions by investigating whether
a gene’s expression appears to be promoted or inhibited when in proximity to another cell
type. The gene search bar on the homepage of SOAR allows users to query the results of
these analyses for a specific gene of interest. Upon searching for a gene, SOAR directs the

user to the “Explore Gene” tab, which subsequently prompts the user to narrow down the list
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of datasets by tissue type, species, and, for users conducting cancer studies, the type of
cancer. SOAR allows users to perform three types of analyses — spatial variability, adjacency-

based cell type interaction, and distance-based cell type interaction.

Spatial variability. The spatial patterns of gene expression variation may inform us about
cell-cell interactions or the migration of cells to different tissue locations *!. In the “Explore
Gene” Module, the “Spatial variability” function allows users to evaluate the statistical
significance of gene’s spatial variability across the whole tissue or in specific cell types.
When the user selects a gene, SOAR generates a heatmap to summarize the significance of
the gene’s spatial variability (Figure 2A). This heatmap allows users to explore whether the
given gene has a distinct spatial expression pattern in the whole tissue or in a specific cell
type. CXCL9 and CXCL13 are known to be associated with the degree and prognosis of

cancer >3

, and their spatial expressions were also found to have a significant pattern
variation in previous studies >*. As an illustration, we visualized the spatial variability of
these genes across the whole tissue and in different cell types in breast cancer samples
(Figure 2A). As shown in the figure, CXCL9 and CXCL13 often had significant spatial
expression variations in malignant capture locations.

To improve the accessibility of this visualization function, SOAR also allows users to
visualize the spatial expression patterns of a gene in the “Data Browser” module. For
example, in a specific breast cancer sample, SOAR identified 6,757 spatially variable genes
(FDR < 0.05), and they included cytokines like CXCL9 (adjusted p-value = 5.76 x 10*°) and
CXCL13 (adjusted p-value = 1.00 x 107?). These genes were found to be expressed in a
visually distinct region (Figure 2B), along with the interleukin 2 receptor subunit gene IL2RB
(adjusted p-value = 3.13 x 107!8), indicating a potential acute local inflammatory response °.

Taken together, these demonstrated that SOAR could provide useful insights for identifying

biologically relevant biomarkers in tissue samples without histological annotation.
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Figure 2. Examples of SOAR features exploring the spatial variability of genes in breast
cancer spatial transcriptomics datasets. (A) In the “Explore Gene” module, users can
visualize whether a gene is significantly spatially variable in different cell types in a heatmap.
The result file can be downloaded as a tab-delimited file, and the generated figure can be
downloaded in JPG and PDF formats. (B) In the “Data Browser”” module, users can view a
sample and visualize the spatial expression of a gene of interest. Black arrows indicate
distinct regions of high expression of CXCL9, CXCL13, and IL2RB. q, false-discovery-rate-

adjusted p-values.

Adjacency-based cell type interaction. Gene expression variation at the border between
different cell types may reflect cell-cell interactions *°. In the “Adjacency-based cell type
interaction” tab, after the user selects a gene and a query cell type, the gene’s differential

expression between the query cell type capture locations adjacent or nonadjacent to
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interacting cell types will be visualized in a heatmap. Each tile in the heatmap is coloured by
the log-fold changes and sized according to their statistical significance. This allows users to
explore whether the gene is involved in cell-cell interactions between the given cell type and
others. Complement component 3 (C3) plays a central role in complement activation, which
may aid immune surveillance against tumour cells °*7. In tumour microenvironments,

58,59

cancer-associated fibroblasts are often the most prominent cell type and known to

express C3 46

. As an example, we used SOAR to investigate how adjacent cell types
influence C3 gene expression in cancer tissue fibroblasts. Our analysis results revealed that in
cancer tissues, fibroblasts adjacent to CD4 cells have higher C3 expression levels (Figure
3A). This finding corroborates existing knowledge of the positive relationship between C3
activation and T cell infiltration in tumour tissues . In contrast, cancer tissue fibroblasts

adjacent to malignant cells have lower C3 levels. Previous studies have shown that cancer

cells may limit C3 activation ', which is supported by our results.

Distance-based cell type interaction. Interactions between cell types can occur beyond
simple adjacency *°. This type of long-distance communication can be characterized by
regressing the gene expression levels in capture locations of a certain cell type on their
Euclidean distances from other cell types. Under the “Distance-based cell type interaction”
tab, users can select a gene and a query cell type, and a heatmap of the regression coefficients
will be shown. The heatmap visualizes the associations between the gene’s expression in
capture locations of the query cell type and their distances from potential interacting cell
types, as well as whether the associations are significant. This allows users to evaluate any
possible far-reaching cell-cell interactions that might not have been captured in the
adjacency-based analysis. As an illustration, we studied whether the expression levels of
RPLP1 in malignant capture locations were influenced by their distances from other cell

types. In our analysis results, RPLP1 often had lower expression levels in malignant capture
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locations when they were closer to M1 macrophages (Figure 3B). RPLP1 is a ribosomal

62,63

protein gene found to be upregulated in tumour tissues and promote cancer cell invasion

% On the other hand, M1 macrophages secrete proinflammatory cytokines and contribute to
inflammation response against migrating tumour cells . The inhibitory effect of M1
64 :

macrophages on the expression of RPLP1 in tumour cells, and in turn, on cell invasion *7, is

supported by our results.
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Figure 3. Examples of SOAR features exploring cell type interactions in cancer spatial
transcriptomics datasets. In the “Explore Gene” module, users can interactively input a
tissue type, species, gene, and query cell type and explore (A) adjacency-based and (B)
distance-based cell type interactions. The results can be downloaded as a tab-delimited file,

and the generated figure can be downloaded in JPG and PDF formats. (A) Adjacency is
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defined according to the spatial coordinates of tissue capture locations, and Wilcoxon rank
sum tests were used to evaluate the gene's differential expression between the query cell type
capture locations adjacent or nonadjacent to interacting cell types. The log-fold changes and
their significance are displayed in the heatmap. (B) The expression of a gene in capture
locations of a query cell type is regressed on their median Euclidean distance to interacting
cell types. Positive (blue) regression coefficients indicate inhibitory gene regulatory effects,
and negative (red) regression coefficients suggest promotional effects. The significance levels
of regression coefficients are shown in the heatmap. BC, breast cancer; CRC, colorectal
cancer; Log2FC, log-fold changes; MM, melanoma; OC, ovarian cancer; PC, prostate cancer;
PDAC, pancreatic ductal adenocarcinoma; q, false-discovery-rate-adjusted p-values; SCC,

squamous cell carcinoma.

DISCUSSION

Spatial transcriptomics enables researchers to study gene expressions in a spatially
contextualized way and hence offers rich and powerful data for a wide array of research
pursuits, including biological mechanism elucidation and clinical biomarker discovery.
However, due to the novel nature of this technology, accessing and utilizing published spatial
transcriptomics data via existing data repositories can be quite challenging, impeding the full
potential of this new and exciting technology. To facilitate future spatial transcriptomics
research, we developed SOAR, a Spatial transcriptOmics Analysis Resource hosting a large
number of downloadable spatial transcriptomics datasets in standardized data format. SOAR
also provides a user-friendly analytic and visualization framework for visualizing spatial gene
expressions, evaluating the spatial variability of genes in different tissues, and assessing
possible cell type interactions. Our case studies show that users may derive biologically
meaningful insights from these analysis and visualization tools. Over the coming years, we

anticipate the spatial transcriptomics research community to only grow larger. SOAR will
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continue to grow alongside this trend and be maintained to continuously offer useful analysis

and meta-analysis tools for future researchers.

AVAILABILITY

SOAR is available at https://soar.fsm.northwestern.edu free and open to all users with no

login requirement. All spatial transcriptomics datasets and analysis results can be downloaded

from the data download page.

FUNDING

This work was supported by the National Institutes of Health RO1ILM013337,

SUL1TR001422.

CONFLICT OF INTEREST

The authors declare no conflict of interest.


https://soar.fsm.northwestern.edu/
https://doi.org/10.1101/2022.04.17.488596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.17.488596; this version posted April 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

REFERENCES

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

Zeng, 7., Li, Y., Li, Y. & Luo, Y. Statistical and machine learning methods for spatially resolved
transcriptomics data analysis. Genome Biol. 23, 1-23 (2022).

Stahl, P. L. ef al. Visualization and analysis of gene expression in tissue sections by spatial
transcriptomics. Science 353, 78-82 (2016).

Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq
reveals tissue architecture in pancreatic ductal adenocarcinomas. Nature biotechnology 38, 333-
342 (2020).

He, B. et al. Integrating spatial gene expression and breast tumour morphology via deep learning.
Nature biomedical engineering 4, 827-834 (2020).

Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nature genetics
53, 1334-1347 (2021).

Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous
cell carcinoma. Cell 182, 497-514. €422 (2020).

Thrane, K., Eriksson, H., Maaskola, J., Hansson, J. & Lundeberg, J. Spatially resolved
transcriptomics enables dissection of genetic heterogeneity in stage III cutaneous malignant
melanoma. Cancer research 78, 5970-5979 (2018).

Berglund, E. et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape
of heterogeneity. Nature communications 9, 1-13 (2018).

Andersson, A. et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-
associated cell type interactions. Nature communications 12, 1-14 (2021).

Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at
high spatial resolution. Science 363, 1463-1467 (2019).

Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals
spatial organization of cells in the mouse hippocampus. Neuron 92, 342-357 (2016).

Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral
prefrontal cortex. Nature neuroscience 24, 425-436 (2021).

Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH.
Nature methods 15, 932-935 (2018).

Zhu, Q., Shah, S., Dries, R., Cai, L. & Yuan, G.-C. Identification of spatially associated
subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data.
Nature biotechnology 36, 1183-1190 (2018).

Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal
formation. Cell 184, 3222-3241. €3226 (2021).

Ratz, M. et al. Clonal relations in the mouse brain revealed by single-cell and spatial
transcriptomics. Nature neuroscience, 1-10 (2022).

Ortiz, C. et al. Molecular atlas of the adult mouse brain. Science advances 6, eabb3446 (2020).
Navarro, J. F. et al. Spatial transcriptomics reveals genes associated with dysregulated
mitochondrial functions and stress signaling in Alzheimer disease. Iscience 23, 101556 (2020).
Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic
preoptic region. Science 362, eaau5324 (2018).

Joglekar, A. et al. A spatially resolved brain region-and cell type-specific isoform atlas of the
postnatal mouse brain. Nature Communications 12, 1-16 (2021).

Hasel, P., Rose, 1. V., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory astrocyte
subtypes in the mouse brain. Nature neuroscience 24, 1475-1487 (2021).

Chen, R. et al. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens.
Nature Neuroscience 24, 1757-1771 (2021).

Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease.
Cell 182, 976-991. €919 (2020).

Stickels, R. R. ef al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-
seqV2. Nature biotechnology 39, 313-319 (2021).

Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell
resolution. Cell 184, 810-826. €823 (2021).


https://doi.org/10.1101/2022.04.17.488596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.17.488596; this version posted April 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40

41

42

43
44

45

46

47

48

49

50

51

made available under aCC-BY-NC-ND 4.0 International license.

Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in
tissue. Cell 183, 1665-1681. e1618 (2020).

Lohoff, T. et al. Integration of spatial and single-cell transcriptomic data elucidates mouse
organogenesis. Nature biotechnology 40, 74-85 (2022).

Sanchez-Ferras, O. ef al. A coordinated progression of progenitor cell states initiates urinary tract
development. Nature communications 12, 1-16 (2021).

D’Adamo, G. L., Widdop, J. T. & Giles, E. M. The future is now? Clinical and translational
aspects of “Omics” technologies. Immunol. Cell Biol. 99, 168-176 (2021).

Luo, Y. et al. A multidimensional precision medicine approach identifies an autism subtype
characterized by dyslipidemia. Nat. Med. 26, 1375-1379, doi:10.1038/s41591-020-1007-0 (2020).
Kline, A. et al. Multimodal Machine Learning in Precision Health. arXiv preprint
arXiv:2204.04777 (2022).

Luo, Y. et al. Integrating Hypertension Phenotype and Genotype with Hybrid Non-negative
Matrix Factorization. Bioinformatics 35, 1395-1403, doi:10.1093/bioinformatics/bty804 (2019).
Canuel, V., Rance, B., Avillach, P., Degoulet, P. & Burgun, A. Translational research platforms
integrating clinical and omics data: a review of publicly available solutions. Briefings in
bioinformatics 16, 280-290 (2015).

Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly
multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

Moffitt, J. R. et al. High-performance multiplexed fluorescence in situ hybridization in culture
and tissue with matrix imprinting and clearing. Proceedings of the National Academy of Sciences
113, 14456-14461 (2016).

Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA
profiling by sequential hybridization. Nature methods 11, 360-361 (2014).

Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+.
Nature 568, 235-239 (2019).

Fan, Z., Chen, R. & Chen, X. SpatialDB: a database for spatially resolved transcriptomes. Nucleic
Acids Research 48, D233-D237 (2020).

Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nature Methods, 1-13 (2022).
Maniatis, S. et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral
sclerosis. Science 364, 89-93 (2019).

Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by
single-cell profiling. Cell research 30, 745-762 (2020).

Ren, X. et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome
atlas. Cell 184, 1895-1913. e1819 (2021).

Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888-1902. e1821 (2019).
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data
using regularized negative binomial regression. Genome biology 20, 1-15 (2019).

Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional
profibrotic macrophage. Nature immunology 20, 163-172 (2019).

Sun, D. et al. TISCH: a comprehensive web resource enabling interactive single-cell
transcriptome visualization of tumor microenvironment. Nucleic acids research 49, D1420-
D1430 (2021).

Miller, J. A. et al. Common cell type nomenclature for the mammalian brain. Elife 9, €59928
(2020).

Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nature methods
14, 1083-1086 (2017).

Zhu, J., Sun, S. & Zhou, X. SPARK-X: non-parametric modeling enables scalable and robust
detection of spatial expression patterns for large spatial transcriptomic studies. Genome Biology
22, 1-25 (2021).

Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell—cell interactions and
communication from gene expression. Nature Reviews Genetics 22, 71-88 (2021).

Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially variable genes.
Nature methods 15, 343-346 (2018).


https://doi.org/10.1101/2022.04.17.488596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.17.488596; this version posted April 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

52

53

54

55

56

57

58

59

60

61

62

63

64

65

made available under aCC-BY-NC-ND 4.0 International license.

Bronger, H. et al. CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase
inhibition in advanced serous ovarian cancer. British journal of cancer 115, 553-563 (2016).
Fukuda, Y. et al. Endogenous CXCL9 affects prognosis by regulating tumor - infiltrating natural
killer cells in intrahepatic cholangiocarcinoma. Cancer science 111, 323-333 (2020).

Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell
184, 4734-4752. e4720 (2021).

Setrerrahmane, S. & Xu, H. Tumor-related interleukins: old validated targets for new anti-cancer
drug development. Molecular cancer 16, 1-17 (2017).

Afshar-Kharghan, V. The role of the complement system in cancer. The Journal of clinical
investigation 127, 780-789 (2017).

Shu, C. et al. C3a-C3aR signaling promotes breast cancer lung metastasis via modulating
carcinoma associated fibroblasts. Journal of Experimental & Clinical Cancer Research 39, 1-14
(2020).

Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis.
Nature medicine 19, 1423-1437 (2013).

Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts.
Nature Reviews Cancer 20, 174-186 (2020).

Lin, K. et al. Complement component 3 is a prognostic factor of non-small cell lung cancer.
Molecular medicine reports 10, 811-817 (2014).

Kleczko, E. K., Kwak, J. W., Schenk, E. L. & Nemenoff, R. A. Targeting the complement
pathway as a therapeutic strategy in lung cancer. Frontiers in immunology 10, 954 (2019).
Artero-Castro, A. et al. Rplpl bypasses replicative senescence and contributes to transformation.
Experimental cell research 315, 1372-1383 (20009).

Artero-Castro, A. et al. Expression of the ribosomal proteins Rplp0, Rplp1, and Rplp2 in
gynecologic tumors. Human pathology 42, 194-203 (2011).

He, Z. et al. RPLP1 promotes tumor metastasis and is associated with a poor prognosis in triple-
negative breast cancer patients. Cancer cell international 18, 1-10 (2018).

Lin, Y., Xu, J. & Lan, H. Tumor-associated macrophages in tumor metastasis: biological roles
and clinical therapeutic applications. Journal of hematology & oncology 12, 1-16 (2019).


https://doi.org/10.1101/2022.04.17.488596
http://creativecommons.org/licenses/by-nc-nd/4.0/

