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Abstract 

Oscillatory activity in the human brain is dominated by posterior alpha oscillations (8-14 

Hz), which have been shown to be functionally relevant in a wide variety of cognitive 

tasks. Although posterior alpha oscillations are commonly considered a single oscillator 

anchored at an individual alpha frequency (IAF; ~10 Hz), previous work suggests that IAF 

reflects a spatial mixture of different brain rhythms. In this study, we assess whether 

Independent Component Analysis (ICA) can disentangle functionally distinct posterior 

alpha rhythms in the context of visual short-term memory retention. 

Magnetoencephalography (MEG) was recorded in 33 subjects while performing a visual 

working memory task. Group analysis at sensor level suggested the existence of a single 

posterior alpha oscillator that increases in power and decreases in frequency during 

memory retention. Conversely, single-subject analysis of independent components 

revealed the existence of two dissociable alpha rhythms: one that increases in power 

during memory retention (Alpha1) and another one that decreases in power (Alpha2). 

Alpha1 and Alpha2 rhythms were differentially modulated by the presence of visual 

distractors (Alpha1 increased in power while Alpha2 decreased) and had an opposite 

relationship with accuracy (positive for Alpha1 and negative for Alpha2). In addition, 

Alpha1 rhythms showed a lower peak frequency, a narrower peak width, a greater 

relative peak amplitude and a more central source than Alpha2 rhythms. Together, our 

results demonstrate that modulations in posterior alpha oscillations during short-term 

memory retention reflect the dynamics of at least two distinct brain rhythms with 

different functions and spatiospectral characteristics.  
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Significance statement 

Alpha oscillations are the most prominent feature of the human brain9s electrical 

activity, and consist of rhythmic neuronal activity in posterior parts of the cortex.  Alpha 

is usually considered a single brain rhythm that changes in power and frequency to 

support cognitive operations. We here show that posterior alpha entails at least two 

dissociable rhythms with distinct functions and characteristics. These findings could 

solve previous inconsistencies in the literature regarding the direction of task-related 

alpha power/frequency modulations and their relation to cognitive performance. In 

addition, the existence of two distinct posterior alpha rhythms could have important 

consequences for the design of neurostimulation protocols aimed at modulating alpha 

oscillations and subsequently cognition.   
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Introduction 

Working memory entails the storage of information over brief periods of time for its 

later manipulation (Baddeley, 2010; Repova & Baddeley, 2006). Traditionally, working 

memory has been linked to the prefrontal cortex, as neurons in this area show increased 

spiking when information has to be transiently stored (D9Esposito & Postle, 2015; Fuster 

& Alexander, 1971). However, more recent research has shown that the brain 

mechanisms supporting working memory are not limited to the activity of individual 

neurons in a specific part of the cortex (Miller et al., 2018). Rather, memory traces are 

distributed in the brain, involving areas beyond the prefrontal cortex (Christophel et al., 

2017, 2018). Moreover, the transient maintenance of information involves changes at 

network level that cannot be well addressed when studying the activity of single neurons 

(Miller et al., 2018). Neural oscillations, which reflect the summed activity of neural 

populations (Cohen, 2017), are thought to play an important role in the transient 

storage of information in the brain (Lundqvist et al., 2016, 2018; Wolinski et al., 2018).   

 

In the human brain, neural oscillations are dominated by alpha rhythms (8314 Hz) 

(Bazanova & Vernon, 2014; Hari et al., 1997). Although alpha rhythms are most 

prominent in posterior areas, they are also found in auditory and sensorimotor cortex 

(commonly referred to as mu and tau rhythms, respectively) (Bastarrika-Iriarte & 

Caballero-Gaudes, 2019; Haegens et al., 2011; Lehtelä et al., 1997; Pfurtscheller et al., 

2000). Previous work has shown that alpha oscillations desynchronize (decrease in 

power) in task-relevant areas and synchronize (increase in power) in task-irrelevant 

areas in a wide variety of cognitive tasks (Haegens et al., 2009; Jensen et al., 2002; 

Jokisch & Jensen, 2007; Klimesch, 1999). Based on these results, it has been proposed 

that alpha9s function is to gate information through the brain via functional inhibition 

(Jensen & Mazaheri, 2010; Klimesch et al., 2007). In line with this idea, recent research 

in humans demonstrates that the amplitude of alpha oscillations is negatively associated 

with neural excitability (Chapeton et al., 2019; Haegens et al., 2021; Iemi et al., 2022). 

 

Posterior alpha oscillations are thought to be especially relevant in visual working 

memory (de Vries et al., 2020). Although several studies have shown significant power 
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modulations of posterior alpha rhythms when visual information has to be transiently 

stored, the direction of these power modulations is highly inconsistent (Pavlov & 

Kotchoubey, 2020). Studies reporting increased alpha power during visual memory 

maintenance argue that this increase is aimed to block visual input by inhibiting (task-

irrelevant) occipital and/or parietal areas (Bonnefond & Jensen, 2012; Jensen et al., 

2002; Tuladhar et al., 2007). In contrast, studies reporting posterior alpha power 

decreases during memory retention argue that these occipitoparietal areas are actually 

task-relevant and need to be disinhibited to support the short-term storage of visual 

information (De Vries et al., 2018; Erickson et al., 2019; van Ede et al., 2017).  

 

A possible explanation for the inconsistent findings regarding posterior alpha 

modulations during visual working memory, is the existence of distinct posterior alpha 

rhythms. Klimesch et al. proposed a division of the alpha band in an upper frequency 

(~10-12 Hz) and a lower frequency subcomponent (~8-10 Hz), based on their differential 

power modulations during memory tasks (Klimesch, 1999; Klimesch et al., 1993). 

However, since alpha rhythms were not spatially separated in these studies, we cannot 

know whether power modulations in the two alpha sub-bands reflect the activity of two 

different oscillators or a change in frequency of a single oscillator (Haegens et al., 2014; 

Mierau et al., 2017). The notion of multiple alpha rhythms in posterior areas has been 

further supported by studies that used source localization techniques (Barzegaran et al., 

2017; Benwell et al., 2019; Gulbinaite et al., 2017; Sokoliuk et al., 2019). Benwell et al. 

(2019) have recently shown that upper and lower alpha rhythms can be spatially 

disentangled using Independent Component Analysis (ICA), a blind source separation 

method that allows to identify maximally independent sources of brain activity in M/EEG 

(Delorme et al., 2012). Nonetheless, the dynamics of these two putative alpha 

components have not been studied in the context of working memory.  

 

Here, we used ICA to examine whether alpha power modulations in posterior regions 

during short-term memory retention reflect the activity of one or several brain rhythms. 

We acquired MEG during a visual working-memory task in which participants (N=33) had 

to briefly remember one out of four spatial directions, while task difficulty was 

modulated by introducing visual distractors. We first assessed alpha dynamics at sensor 
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level by comparing alpha power and frequency between fixation and memory retention. 

Then, we performed the same comparison focusing on occipitoparietal independent 

components that showed an alpha peak in their spectrum. Interestingly, while results at 

sensor level suggested a change in power and frequency of a single posterior alpha 

rhythm during memory retention, our ICA results demonstrated that posterior alpha 

dynamics reflect the activity of at least two alpha rhythms with distinct functions and 

spatiospectral characteristics. We believe that these results have important implications 

not only for the analysis and interpretation of alpha oscillations in M/EEG but also for 

their potential modulation through different neurostimulation techniques.  

Materials and Methods 

Participants  

35 healthy right-handed adult participants (mean age 25.2 years, range 20 to 33; 17 

female, 18 male) took part in the experiment. Participants reported normal vision and 

no history of neurological or mental illnesses. Prior to the experiment, participants were 

informed about the MEG system as well as safety regulations and signed an informed 

consent form. The study falls under the general ethics approval (CMO 2014/288 

<Imaging Human Cognition=) in accordance with the Declaration of Helsinki. After 

participation, the participants received a monetary reward. Two participants were 

excluded due to technical problems during data acquisition.  

Experimental design  

MEG was recorded while participants performed a visual working memory task (Figure 

1A). This task was designed to emulate real-life situations in which participants would 

navigate in a city using directions that they had to keep in mind for a short period of 

time. The goal of the task was to remember one out of four directions. Participants were 

first presented with a visual direction cue (0.25 s) pointing to the upper left, upper right, 

bottom left, or bottom right. After a delay period (3 s), a second cue was presented (0.25 

s). The second cue was either a 8stay9 cue, meaning that the correct answer was the 

direction indicated by the first cue, or a 8switch9 cue, indicating that the correct answer 

was the direction opposite to the first cue. After the second cue, a response mapping 

diagram was shown, indicating which button corresponded to which direction. The 
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correspondence between each button and direction was randomized between blocks (a 

total of eight different response mapping diagrams were shown). Participants were 

instructed to answer as quickly and as accurately as possible, with the right hand via a 

button press. In 50% of the trials, the delay period contained four distractors (randomly 

drawn direction cues) that were presented at a 0.33 s inter-stimulus interval. 

Participants were instructed to ignore the distractors and to keep only the first cue in 

mind. Participants performed eight blocks of 48 trials (~5 min each), with short breaks 

between blocks. Participants were seated upright in the MEG helmet and were 

instructed to keep their head position as stable as possible for the duration of the 

experiment. Prior to the MEG recording, participants performed a training block (16 

trials) to make sure that they understood the task correctly. The experimental stimuli 

were programmed and presented with the software Presentation (Version 18.0, 

Neurobehavioural Systems, Inc., Berkeley, CA, www.neurobs.com). 

 

Data Acquisition 

MEG data was recorded with a 275-channel CTF MEG system with axial gradiometers at 

a sampling rate of 1200 Hz (CTF MEG systems, VSM MedTech Ltd.). Six channels were 

disabled due to permanent malfunction. In order to monitor the head position of the 

participants and to allow for adjustments to the original position in between blocks, the 

real-time representation of the participant9s head position was monitored using three 

head localization coils at the right and left ear canals as well as the nasion (Stolk et al., 

2013). These points were further used as offline anatomical landmarks to align the MEG 

data with structural images of the participant9s brain for source reconstruction. Further, 

movement of the left eye was tracked during the experiment using an Eyelink eyetracker 

(SR Research Ltd.). After the experiment, the participant9s head shape was digitized 

using a Polhemus 3D tracking device (Polhemus, Colchester, Vermont, United States). In 

a separate session, an anatomical MRI scan of the participant9s brain was recorded, 

unless the participant9s scan could be obtained from the database of the institute. The 

MRI data was recorded with the 3T Siemens Magnetom Skyra MR scanner (Erlangen, 

Germany).  
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MEG analysis 

MEG analysis was performed using the Fieldtrip toolbox (Oostenveld et al., 2011), 

EEGlab (Delorme & Makeig, 2004), and custom MATLAB scripts. 

  

Preprocessing. The raw continuous data was downsampled to 300 Hz and epoched 

relative to the first cue (from -1.5 s to +10 s). A band-stop filter was applied at 50, 100 

and 150 Hz to remove line noise and its harmonics. The data was visually inspected to 

reject trials with artifacts (e.g., muscle artifacts, SQUID sensor jumps). Next, the data 

was bandpass filtered between 3 and 30 Hz (Butterworth IIR filter) and ICA was 

computed (i.e., EEGlab implementation of the infomax ICA algorithm of Bell & Sejnowski 

(1995)). Finally, the IClabel algorithm (Pion-Tonachini et al., 2019) was used to classify 

components in the categories Brain, Muscle, Eye, Heart, Line Noise, Channel Noise and 

Other based on their spatial topography.  

 

Sensor-level analysis. First, independent components that were classified as muscle, 

eyes, heart or channel noise by the IClabel algorithm with a probability higher than 80% 

were discarded. Further analysis was performed at sensor level after back-projecting the 

remaining components. We computed the planar representation of the MEG field 

distribution from the single-trial data using the nearest-neighbor method. This 

transformation facilitates the interpretation of the sensor level data as it makes the 

signal amplitude maximal above its source (as implemented in Fieldtrip functions 

ft_meg_planar and ft_combine_planar). The power spectrum of each channel between 

5 and 25 Hz was obtained using a multitaper frequency transformation (ft_freqanalysis). 

This transformation was done separately for the fixation (1 s) and the memory delay 

period (1 s window centered in the delay period). The data was zero-padded to 5 s to 

obtain a frequency resolution of 0.2 Hz. Alpha band power was estimated as the mean 

power values between 8 and 14 Hz across trials. Individual alpha power and frequency 

were estimated using the MATLAB findpeaks algorithm (i.e., maximum peak between 8 

and 14 Hz).  

 

Component-level analysis. A series of conditions were imposed to select posterior 

oscillatory components in the alpha range. First, independent components had to be 
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classified as brain components by the IClabel algorithm with a probability higher than 

80%. Second, independent components had to show a maximum peak in the alpha range 

(as detected with the MATLAB findpeaks function). Third, independent components 

needed to project to a single dipole in occipital or parietal cortex. For that purpose, the 

whole brain was scanned with a single dipole to find the location where the dipole model 

was best able to explain the topography of each independent component 

(ft_dipolefitting). The source localization of dipoles was done using individual T1-

weighted anatomical images of the participants9 brains. For that, individual MRIs were 

first normalized in MNI space (ft_volumenormalise) and segmented 

(ft_volumesegment). Then a realistic single-shell headmodel was computed 

(ft_prepare_headmodel) based on the surface mesh obtained from the segmented MRI 

(ft_prepare_mesh) (Nolte, 2003). Finally, in order to automatically identify dipoles that 

were located in occipital and parietal cortices we used the AAL atlas (Tzourio-Mazoyer 

et al., 2002) available in the Fieldtrip toolbox (Oostenveld et al., 2011). The frequency 

transformation of independent components was identical to the one used for sensor 

level analysis. The only difference is that in order to estimate alpha power per condition 

in single trials, the individual alpha band was previously defined per component based 

on its average power spectrum (across trials; Figure 1B). This approach was adopted to 

compensate for the lower signal-to-noise ratio of oscillatory activity when estimated in 

single trials. A similar approach was adopted to estimate peak frequency in single trials. 

In this case, independent components were first filtered (MATLAB function firl1) around 

their individual alpha band, after which instantaneous frequency was estimated with 

the method developed in Cohen (2014). In short, instantaneous frequency was 

computed by multiplying the first temporal derivative of the phase angle time series 

(extracted through its Hilbert transform) by the sampling rate and dividing it by 2Ã. 

Then, a median filter was applied to the instantaneous frequency time series (10 steps 

between 10 and 400 ms) in order to attenuate non-physiological frequency jumps. 

Instantaneous frequency was averaged within the fixation period and the memory delay 

(1-s windows) to get an estimation of peak frequency in each period.  
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Statistical analysis 

Behavioral data. Repeated-measures ANOVA was performed with the JASP software 

(Love et al., 2019), post-hoc paired samples t-test were performed in MATLAB R2021a. 

The effect size was estimated as Eta squared (n2) for the ANOVA and as Cohen9s d for 

the t-tests.  

 

MEG data. The comparison of MEG parameters of interest between conditions was 

performed using paired samples and independent samples t-tests (MATLAB R2021a 

implementation). For the comparison of the parameters of interest in independent 

components at single-trial level (i.e., power/frequency during memory retentions vs. 

delay), we employed Wilcoxon signed rank test (MATLAB R2021a) to minimize the effect 

of possible outliers because they are more likely to occur when analyzing single trials 

(Cohen & Cavanagh, 2011). In order to assess a possible relationship between an MEG 

parameter and accuracy, a median split approach was adopted. In short, trials were 

divided into two groups based on the median of the MEG parameter (i.e., high and low 

alpha power) and mean accuracy was compared between 8high9 and 8low9 trials at group 

level (paired-samples t-tests). We corrected for multiple comparisons using the False 

Discovery Rate (FDR) method (Benjamini & Hochberg, 1995). Effect size was estimated 

through Cohen9s d estimate.   
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Figure 1. Task and main analytical approach. A) Task schematic. Participants were asked 

to remember a visual direction cue (i.e., upper left, upper right, bottom left, or bottom 

right) for 3 s (memory delay). In 50% of the trials, the delay period contained four visual 

distractors. Based on the content of a second cue (i.e., 8stay9 or 8switch9), participants 

had to report the direction of the first cue or its opposite. B) ICA-based selection in an 

exemplary subject. A selection of independent components was performed based on 

their topography (top panel), estimated source (middle), and spectrum (bottom). Only 

independent components with a brain topography (IClabel algorithm classification > 

0.80), an estimated dipole in occipital or parietal cortex and a peak in the alpha range 

were selected for analysis (in this example, the component marked in the red rectangle). 

The frequency band of each independent component was defined based on the average 

spectrum (peak frequency and width; grey area). Condition-related modulations in band 

power (i.e., delay vs. fixation, distractor vs. no distractor) were assessed through single-

trial analysis of each independent component.  
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Results 

Behavioral performance 

Mean accuracy was 87.5% across conditions (SD = 19.4). Repeated-measures ANOVA 

revealed a significant main effect of the factor distractor (F(1,32) = 11.54; p = 0.002; n2 

= 0.102). Post-hoc paired sample t-tests showed that accuracy was greater for the no 

distractor than for the distractor condition (t(32) = -3.39; p = 0.0018; d = 0.59). No main 

effect of rule (i.e., stay versus switch) or rule by distractor interaction was found. 

 

Mean reaction time was 698 ms across conditions (SD = 255). Repeated-measures 

ANOVA revealed a main effect of rule (F(1,32) = 8.79; p = 0.006; n2 = 0.12). Post-hoc 

paired sample t-tests showed that reaction time was shorter for stay versus switch rules 

(t(32) = 2.96; p = 0.0057; d = 0.51). No effect of distractor nor rule by distractor 

interaction was found. 

 

Posterior individual alpha increases in power and decreases in frequency 

during memory retention  

No significant differences between conditions in alpha power were found when 

estimated using an a priori definition of the alpha band (8314 Hz; Figure 2A, top plot). 

However, individual alpha peak power showed a significant increase during the memory 

delay in posterior and right frontocentral sensors (p < 0.05 after FDR correction; Figure 

2A, middle plot). In addition, individual alpha frequency decreased significantly in 

posterior and frontal sensors (p < 0.05 after FDR correction; Figure 2A, bottom plot). 

Hence, some posterior sensors showed a significant modulation in both individual alpha 

peak power and frequency (Figure 2B). No significant distractor effect (comparison of 

distractor vs. no distractor conditions) or relation to accuracy (median split approach) 

were found in either individual alpha power or frequency at sensor level. 
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Figure 2. Sensor level analysis. A) Topographic plots depicting the t-values from the 

condition comparison (memory delay vs. fixation) in alpha band power (top panel), 

individual alpha peak power (middle) and individual alpha peak frequency (bottom). 

Significant differences (p < 0.05 after FDR correction) are marked with asterisks. B) Mean 

power spectrum for fixation (black graph) and memory delay (orange) of sensors 

showing significant changes in individual alpha peak power and frequency (shaded area 

depicts standard deviation across subjects; sensors included in spectra indicated in 

inset).  

 

ICA reveals two distinct alpha components based on their power 

modulations during the memory delay 

In order to assess whether the reported changes in posterior alpha power reflect the 

activity of one or several brain rhythms, we performed the same condition comparisons 

that we performed at sensor level using independent posterior alpha components 

(Figure 1B). We found a total of 170 posterior alpha components based on their 
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topography at sensor level, their spectrum, and their estimated source. The power of 

111 components was significantly modulated during the memory delay relative to 

fixation (p < 0.05 after FDR correction; mean number of components per subject = 3.3; 

SD = 2.9). Unlike sensor-level analysis, the comparison of posterior alpha components 

in single subjects revealed both increases and decreases in alpha power during the 

memory delay. Specifically, the power of 68 alpha components showed a significant 

increase during memory delay relative to fixation (Alpha1), while the power of 43 alpha 

components showed a significant decrease (Alpha2; Figure 3A).  

 

In addition, we assessed whether the frequencies of Alpha1 and Alpha2 components 

were differentially modulated during memory delay. However, we did not find 

significant differences between Alpha1 and Alpha2 components in frequency 

modulations associated with memory retention (t(109) = -1.45; p = 0.14; d = 0.28). Both 

Alpha1 and Alpha2 components significantly decreased in frequency during the memory 

delay relative to fixation (t(67) = -8.18, p < 0.001, d = 1.00; t(42) = -6.98, p < 0.001, d = 

1.07).  

 

In summary, single-subject analysis of posterior alpha components demonstrates the 

existence of at least two distinct rhythms (Alpha1 and Alpha2) based on their opposite 

power modulations during memory retention. 
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Figure 3. Power modulations of independent alpha components. A) Power changes 

during the memory delay relative to fixation. Z-values (representing the memory 

retention effect in each component) are plotted as a function of their peak frequency 

(each color codes for a different subject). Components showing a significant increase in 

power during the memory delay were denominated Alpha1 while components showing 

a significant decrease were denominated Alpha2. The mean topography of the power 

change is plotted separately for Alpha1 (red) and Alpha2 (blue) components. B) 

Differential distractor-related power modulations of Alpha1 and Alpha2 components. Z-

values represent the distractor effect in individual components. At group level, Alpha1 

components (red) showed significantly more power in the presence of distractors while 

Alpha2 components (blue) showed significantly less. Colored asterisks mark statistical 
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significance (p < 0.05) of the Alpha1 (red) or Alpha2 (blue) distributions against 0 (one-

sample t-test). Black asterisks mark significant differences (p < 0.05) between Alpha1 

and Alpha2 distributions. C) Effect of power modulations on accuracy in the distractor 

condition. Accuracy was compared for high power and low power trials (median split), 

showing a significantly greater accuracy for trials with high Alpha1 power in the 

distractor condition. D) Same as C for the no-distractor condition, showing a significantly 

lower accuracy for trials with high Alpha2 power in the no-distractor condition.  

 

Alpha1 and Alpha2 show opposite distractor-related power modulations 

In order to assess whether the power of Alpha1 and Alpha2 components was 

differentially modulated in the presence of distractors, we first estimated the distractor 

effect in individual components (distractor vs. no distractor) through Wilcoxon signed 

rank tests. Then we tested at group level whether the z-values of Alpha1 and Alpha2 

components differed significantly from 0 (one sample t-test) and from each other 

(independent samples t-test). We found that alpha components that increased in power 

during the memory delay (i.e., Alpha1) showed a significant power increase in the 

presence of distractors (t(67) = 2.66; p = 0.0097; d = 0.32) while alpha components that 

decreased in power during the memory delay (i.e., Alpha2) showed a significant power 

decrease in the presence of distractors (t(42) = -5.78; p < 0.001; d = 0.88 ). Hence, Alpha1 

and Alpha2 showed opposite and significantly different (t(109) = 5.42; p < 0.001; d = 

1.05) distractor-related power modulations (Figure 3B). 

 

Alpha1 and Alpha2 power modulations have an opposite relation to 

accuracy 

In order to assess the behavioral relevance of Alpha1 and Alpha2 power modulations, 

we compared the accuracy between trials with high and low alpha power during the 

delay (% change from fixation). Since the presence of distractors was associated with 

lower accuracy, we performed this analysis for distractor and no-distractor conditions 

separately. For the distractor condition, accuracy was significantly higher for trials 

showing greater Alpha1 power (t(67) = 2.97; p = 0.0041; d = 0.36), while no differences 

were found in Alpha2 power (t(42) = 0.54; p = 0.58; d = 0.08). However, power-related 
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differences in accuracy between Alpha1 and Alpha2 did not reach statistical significance 

(t(109) = 1.18; p = 0.24; d = 0.23). For the no-distractor condition, accuracy was 

significantly higher for trials with lower Alpha2 power (t(42) = -2.79; p = 0.0078; d = 

0.42), while no significant difference was found in Alpha1 power (t(67) = 1.42; p = 0.15; 

d = 0.17). In this case, power-related differences in accuracy between Alpha1 and Alpha2 

components did reach statistical significance (t(109) = 2.76; p = 0.0067; d = 0.53). 

 

In summary, in the presence of visual distractors, better accuracy was associated with 

higher Alpha1 power, while in the absence of visual distractors, better accuracy was 

associated with lower Alpha2 power.  

 

Alpha1 and Alpha2 components differ in their spatiospectral 

characteristics 

In order to assess whether Alpha1 and Alpha2 rhythms differ in their spatiospectral 

characteristics, we compared three different spectral parameters (peak frequency, peak 

width, and relative amplitude; Figure 4A) and the location of their estimated main 

source through dipole fitting (x, y and z axes; Figure 4B). This analysis revealed that 

Alpha1 components tended to have a lower peak frequency (t(109)= -6.00; p   < 0.001; 

d = 1.16), a narrower peak width (t(109)= -2.43; p = 0.016; d = 0.47), a greater relative 

peak amplitude (t(109)= 5.68; p < 0.001; d = 1.10), and a more central source estimation 

(t(109)= 2.86; p = 0.005; d = 0.55) than Alpha2 components (Figure 4C). No significant 

differences were found between the source estimation of Alpha1 and Alpha2 

components in the other two axes (i.e., ventral to dorsal and posterior to anterior). 
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Figure 4. Spatiospectral differences between Alpha1 and Alpha2 components. A) 

Average spectrum of Alpha1 and Alpha2 components across the complete trial (shaded 

area depicts standard deviation). B) Source localization of Alpha1 (red) and Alpha2 (blue) 

components as estimated through dipole fitting. The top panel shows the horizontal 

plane while the bottom panel shows the coronal plane. C) Plots depicting significant 

differences in four spatiospectral parameters: peak width (top left panel), peak 

frequency (top right), relative amplitude (bottom left) and location (bottom right).  
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Discussion 

In this study we used ICA to examine whether posterior alpha power modulations during 

visual working memory reflect the dynamics of one or several brain rhythms. We 

recorded MEG while participants (N = 33) performed a visual working-memory task in 

which one out of four spatial directions had to be remembered for a short period of 

time. Task difficulty was modulated by introducing visual distractors during memory 

retention. Group analysis at sensor level suggested that posterior alpha consists of a 

single oscillator that increases in power and decreases in frequency during memory 

retention. In contrast, the analysis of independent components in single subjects 

revealed the existence of an alpha rhythm that increases in power during the memory 

delay (Alpha1), and an alpha rhythm that decreases in power during the memory delay 

(Alpha2). Interestingly, the power of Alpha1 and Alpha2 rhythms was differentially 

modulated by the presence of distractors (Alpha1 increased in power while Alpha2 

decreased), and had an opposite relationship with accuracy (positive for Alpha1 and 

negative for Alpha2). In addition, Alpha1 and Alpha2 rhythms differed significantly in 

their spatiospectral characteristics. Specifically, Alpha1 rhythms showed a lower peak 

frequency, a narrower peak width, a greater relative peak amplitude and a more central 

source than Alpha2 rhythms. Thus, our results show that modulations in posterior alpha 

oscillations during memory retention reflect the dynamics of at least two distinct brain 

rhythms with different functions and spatiospectral characteristics. 

 

Previous literature is highly inconsistent regarding the direction of alpha power 

modulations during visual memory retention. A recent systematic review has shown 

that from 56 M/EEG studies, 30 report a significant alpha power increase during memory 

retention, 21 report a significant decrease and 5 show either mixed or null results 

(Pavlov & Kotchoubey, 2020). Based on our results, we speculate that the lack of 

consistency in previous literature could be traced to the commonly adopted analytical 

approach of computing alpha power by averaging over a predefined frequency band 

(e.g., 8314 Hz). It has been shown that alpha power modulations can be easily 

confounded by frequency changes if peak detection is not performed (Donoghue et al., 

2021). This is important because alpha peak frequency not only varies considerably 
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between subjects (Doppelmayr et al., 1998), but also within subjects in a task-

dependent manner (Haegens et al., 2014; Rodriguez-Larios & Alaerts, 2019; Samaha & 

Postle, 2015). In line with this, our results showed that the increase in alpha peak power 

at sensor level during the memory delay was accompanied by a frequency decrease 

(Figure 2). Given this frequency shift, significant alpha power modulations could have 

been reported in different directions depending on the a priori definition of the alpha 

band (e.g., 8312 vs. 9313 Hz). Consequently, we hypothesize that performing peak 

frequency detection could solve at least some previous inconsistencies regarding the 

direction of alpha power modulations during visual memory retention (Pavlov & 

Kotchoubey, 2020). 

 

Although peak detection at sensor level allows disentangling alpha power and frequency 

modulations, it cannot determine whether the reported changes reflect the activity of 

one or multiple brain rhythms (Schaworonkow & Nikulin, 2019). In line with previous 

studies (Barzegaran et al., 2017; Benwell et al., 2019; Gulbinaite et al., 2017; Sokoliuk et 

al., 2019), we demonstrate the existence of two different alpha rhythms in posterior 

cortex. Specifically, the analysis of independent components in single subjects revealed 

that a faster alpha rhythm (Alpha2) decreased in power during memory retention while 

a slower alpha rhythm (Alpha1) increased in power. In this regard, it is important to 

underline that differential power modulation of two alpha rhythms with different peak 

frequencies could lead to apparent frequency modulations at sensor level (Donoghue et 

al., 2021). Therefore, we cannot rule out the possibility that previously reported 

frequency changes in posterior alpha during different cognitive tasks (Angelakis et al., 

2004; Babu Henry Samuel et al., 2018; Haegens et al., 2014; Rodriguez-Larios & Alaerts, 

2019) are actually reflecting power changes of two (or more) alpha rhythms with 

different spatiospectral characteristics.  

 

The existence of alpha rhythms that increase and decrease in power during memory 

retention depending on their spatial origin is in line with prevailing theories of alpha 

function (Jensen & Mazaheri, 2010; Klimesch et al., 2007). According to these theories, 

alpha power reflects local inhibition and therefore should increase in task-irrelevant 

areas and decrease in task-relevant areas. In the context of memory retention, it can be 
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predicted that brain regions that are relevant to the transient maintenance of visual 

information would show alpha decrease (disinhibition). On the other hand, brain regions 

that are irrelevant for memory maintenance (and could potentially interfere with the 

task) would show alpha increase (inhibition). Although source estimation through dipole 

fitting in M/EEG has to be interpreted with caution (Leahy et al., 1998), the spatial 

distribution of the two observed types of alpha components suggests that, at least in 

occipital cortex, Alpha1 rhythms mostly originate in early visual areas while Alpha2 

rhythms localize to higher-order areas (Figure 4B). This is supported by their spectral 

profiles, since higher-order areas are thought to show a more pronounced 1/f trend 

(Ibarra Chaoul & Siegel, 2021) and higher peak frequency (Lundqvist et al., 2020), i.e., in 

line with what we see in Alpha2 components when compared to Alpha1 (Figure 4A). 

Based on these results and previous evidence (De Vries et al., 2018; Popov et al., 2017; 

Tuladhar, Ter Huurne, et al., 2007), we speculate that Alpha1 power increases reflect 

the inhibition of lower-order areas involved in visual processing, whilst Alpha2 power 

decreases reflect the disinhibition of higher-order areas supporting the transient 

storage of visual information. 

 

If Alpha1 and Alpha2 rhythms during memory retention reflect the inhibition and 

disinhibition of task-irrelevant and task-relevant areas respectively, we would expect 

that behavioral performance improves when Alpha1 power increases and Alpha2 power 

decreases. Interestingly, Alpha1 power increases and Alpha2 power decreases were 

associated with better accuracy in different experimental conditions. Specifically, 

Alpha1 power was positively associated with accuracy only in the presence of 

distractors, while Alpha2 power was negatively associated with accuracy only in the 

absence of distractors. We hypothesize that behavioral performance in distractor and 

no-distractor conditions depends on different factors. On the one hand, incorrect 

responses in the distractor condition might mostly be due to the interference of visual 

distractors. In this scenario, Alpha1 power increases become predictive of behavior 

because it inhibits areas involved in visual processing in order to avoid interference 

during memory retention. On the other hand, in the condition without distractors, 

incorrect responses might predominantly be caused by lapses of attention due to mind 

wandering and/or drowsiness (Andrillon et al., 2019, 2021; Braboszcz & Delorme, 2011; 
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Rodriguez-Larios & Alaerts, 2020). Previous literature suggests that lapses of attention 

involve reduced cortical processing of external events (Smallwood et al., 2008). If an 

external event is not properly processed by the brain during an attentional lapse, its 

content cannot be maintained in working memory. Hence, we can expect that the 

recruitment of cortical areas supporting short-term memory retention (i.e., Alpha2 

desynchronization) is less pronounced (or even absent) during an attentional lapse 

because there is little or no information to be retained. Nonetheless, it is important to 

note that the reported differences in accuracy depending on Alpha1/Alpha2 power 

modulations must be interpreted with caution due to the small number of incorrect 

trials here (mean accuracy was 87% across conditions). In order to overcome this 

limitation in future work, it would be important to assess the here reported effects with 

a more difficult task or by adjusting task-difficulty at an inter-individual level.  

 

In line with previous literature, our results show that ICA is a powerful analytical tool 

that can be efficiently used to isolate brain rhythms of interest (Benwell et al., 2019; 

Debener et al., 2005; Wagner et al., 2018). Unlike other source localization techniques, 

ICA does not require a priori definition of the specific spatial location, and ensures that 

the analyzed time series are statistically independent (thereby minimizing the possibility 

that they reflect the mix of two or more rhythms; Delorme et al., 2012). The spatial 

separation of different posterior alpha rhythms through ICA in single subjects could 

resolve some of the previous inconsistencies in the literature concerning the role of 

alpha phase, power and frequency in cognition (Michail et al., 2021; Pavlov & 

Kotchoubey, 2020; Samaha et al., 2020; Zazio et al., 2021). Similarly, separating different 

posterior alpha rhythms could allow us to understand why some neurofeedback and 

neurostimulation protocols do not have the expected effect in some subjects 

(Orendá
ová & KvaaIák, 2021). If we tune the neurofeedback/stimulation parameters 

(and/or assess their effects) at sensor level, we cannot know whether we are modulating 

the power or frequency of one or several alpha rhythms. As different alpha rhythms 

could be more prominent in different subjects due to inter-individual differences in 

brain anatomy and functional specialization, this might have a key impact on the effects 

of their modulation (Duffau, 2017; Mikkonen et al., 2020).  
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In conclusion, our results show that posterior alpha dynamics during memory retention 

reflect the activity of at least two brain rhythms with distinct functions and 

spatiospectral characteristics. Alpha1 rhythms increased in power during memory 

retention and in the presence of visual distractors, while Alpha2 rhythms showed the 

opposite power modulations. In addition, Alpha1 and Alpha2 rhythms had an opposite 

relationship with accuracy (positive for Alpha1 and negative for Alpha2). Lastly, Alpha1 

and Alpha2 differed significantly in several spectral parameters (peak frequency, peak 

width and relative amplitude) and in the location of their estimated main source. In the 

light of previous results and theoretical accounts (Haegens et al., 2021; Iemi et al., 2022; 

Jensen & Mazaheri, 2010; Klimesch et al., 2007), we hypothesize that during memory 

retention, Alpha1 rhythms increase in power to inhibit visual processing while Alpha2 

rhythms decrease in power to disinhibit areas supporting the short-term storage of 

visual information.  
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