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Abstract

Oscillatory activity in the human brain is dominated by posterior alpha oscillations (8-14
Hz), which have been shown to be functionally relevant in a wide variety of cognitive
tasks. Although posterior alpha oscillations are commonly considered a single oscillator
anchored at an individual alpha frequency (IAF; ~10 Hz), previous work suggests that IAF
reflects a spatial mixture of different brain rhythms. In this study, we assess whether
Independent Component Analysis (ICA) can disentangle functionally distinct posterior
alpha rhythms in the context of visual short-term memory retention.
Magnetoencephalography (MEG) was recorded in 33 subjects while performing a visual
working memory task. Group analysis at sensor level suggested the existence of a single
posterior alpha oscillator that increases in power and decreases in frequency during
memory retention. Conversely, single-subject analysis of independent components
revealed the existence of two dissociable alpha rhythms: one that increases in power
during memory retention (Alphal) and another one that decreases in power (Alpha2).
Alphal and Alpha2 rhythms were differentially modulated by the presence of visual
distractors (Alphal increased in power while Alpha2 decreased) and had an opposite
relationship with accuracy (positive for Alphal and negative for Alpha2). In addition,
Alphal rhythms showed a lower peak frequency, a narrower peak width, a greater
relative peak amplitude and a more central source than Alpha2 rhythms. Together, our
results demonstrate that modulations in posterior alpha oscillations during short-term
memory retention reflect the dynamics of at least two distinct brain rhythms with

different functions and spatiospectral characteristics.
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Significance statement

Alpha oscillations are the most prominent feature of the human brain’s electrical
activity, and consist of rhythmic neuronal activity in posterior parts of the cortex. Alpha
is usually considered a single brain rhythm that changes in power and frequency to
support cognitive operations. We here show that posterior alpha entails at least two
dissociable rhythms with distinct functions and characteristics. These findings could
solve previous inconsistencies in the literature regarding the direction of task-related
alpha power/frequency modulations and their relation to cognitive performance. In
addition, the existence of two distinct posterior alpha rhythms could have important
consequences for the design of neurostimulation protocols aimed at modulating alpha

oscillations and subsequently cognition.
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Introduction

Working memory entails the storage of information over brief periods of time for its
later manipulation (Baddeley, 2010; Repovs & Baddeley, 2006). Traditionally, working
memory has been linked to the prefrontal cortex, as neurons in this area show increased
spiking when information has to be transiently stored (D’Esposito & Postle, 2015; Fuster
& Alexander, 1971). However, more recent research has shown that the brain
mechanisms supporting working memory are not limited to the activity of individual
neurons in a specific part of the cortex (Miller et al., 2018). Rather, memory traces are
distributed in the brain, involving areas beyond the prefrontal cortex (Christophel et al.,
2017, 2018). Moreover, the transient maintenance of information involves changes at
network level that cannot be well addressed when studying the activity of single neurons
(Miller et al., 2018). Neural oscillations, which reflect the summed activity of neural
populations (Cohen, 2017), are thought to play an important role in the transient

storage of information in the brain (Lundqvist et al., 2016, 2018; Wolinski et al., 2018).

In the human brain, neural oscillations are dominated by alpha rhythms (8-14 Hz)
(Bazanova & Vernon, 2014; Hari et al., 1997). Although alpha rhythms are most
prominent in posterior areas, they are also found in auditory and sensorimotor cortex
(commonly referred to as mu and tau rhythms, respectively) (Bastarrika-lriarte &
Caballero-Gaudes, 2019; Haegens et al., 2011; Lehtela et al., 1997; Pfurtscheller et al.,
2000). Previous work has shown that alpha oscillations desynchronize (decrease in
power) in task-relevant areas and synchronize (increase in power) in task-irrelevant
areas in a wide variety of cognitive tasks (Haegens et al., 2009; Jensen et al., 2002;
Jokisch & Jensen, 2007; Klimesch, 1999). Based on these results, it has been proposed
that alpha’s function is to gate information through the brain via functional inhibition
(Jensen & Mazaheri, 2010; Klimesch et al., 2007). In line with this idea, recent research
in humans demonstrates that the amplitude of alpha oscillations is negatively associated

with neural excitability (Chapeton et al., 2019; Haegens et al., 2021; lemi et al., 2022).

Posterior alpha oscillations are thought to be especially relevant in visual working

memory (de Vries et al., 2020). Although several studies have shown significant power
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modulations of posterior alpha rhythms when visual information has to be transiently
stored, the direction of these power modulations is highly inconsistent (Paviov &
Kotchoubey, 2020). Studies reporting increased alpha power during visual memory
maintenance argue that this increase is aimed to block visual input by inhibiting (task-
irrelevant) occipital and/or parietal areas (Bonnefond & Jensen, 2012; Jensen et al.,
2002; Tuladhar et al.,, 2007). In contrast, studies reporting posterior alpha power
decreases during memory retention argue that these occipitoparietal areas are actually
task-relevant and need to be disinhibited to support the short-term storage of visual

information (De Vries et al., 2018; Erickson et al., 2019; van Ede et al., 2017).

A possible explanation for the inconsistent findings regarding posterior alpha
modulations during visual working memory, is the existence of distinct posterior alpha
rhythms. Klimesch et al. proposed a division of the alpha band in an upper frequency
(~10-12 Hz) and a lower frequency subcomponent (~8-10 Hz), based on their differential
power modulations during memory tasks (Klimesch, 1999; Klimesch et al., 1993).
However, since alpha rhythms were not spatially separated in these studies, we cannot
know whether power modulations in the two alpha sub-bands reflect the activity of two
different oscillators or a change in frequency of a single oscillator (Haegens et al., 2014;
Mierau et al., 2017). The notion of multiple alpha rhythms in posterior areas has been
further supported by studies that used source localization techniques (Barzegaran et al.,
2017; Benwell et al., 2019; Gulbinaite et al., 2017; Sokoliuk et al., 2019). Benwell et al.
(2019) have recently shown that upper and lower alpha rhythms can be spatially
disentangled using Independent Component Analysis (ICA), a blind source separation
method that allows to identify maximally independent sources of brain activity in M/EEG
(Delorme et al.,, 2012). Nonetheless, the dynamics of these two putative alpha

components have not been studied in the context of working memory.

Here, we used ICA to examine whether alpha power modulations in posterior regions
during short-term memory retention reflect the activity of one or several brain rhythms.
We acquired MEG during a visual working-memory task in which participants (N=33) had
to briefly remember one out of four spatial directions, while task difficulty was

modulated by introducing visual distractors. We first assessed alpha dynamics at sensor
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level by comparing alpha power and frequency between fixation and memory retention.
Then, we performed the same comparison focusing on occipitoparietal independent
components that showed an alpha peak in their spectrum. Interestingly, while results at
sensor level suggested a change in power and frequency of a single posterior alpha
rhythm during memory retention, our ICA results demonstrated that posterior alpha
dynamics reflect the activity of at least two alpha rhythms with distinct functions and
spatiospectral characteristics. We believe that these results have important implications
not only for the analysis and interpretation of alpha oscillations in M/EEG but also for

their potential modulation through different neurostimulation techniques.

Materials and Methods

Participants

35 healthy right-handed adult participants (mean age 25.2 years, range 20 to 33; 17
female, 18 male) took part in the experiment. Participants reported normal vision and
no history of neurological or mental illnesses. Prior to the experiment, participants were
informed about the MEG system as well as safety regulations and signed an informed
consent form. The study falls under the general ethics approval (CMO 2014/288
“Imaging Human Cognition”) in accordance with the Declaration of Helsinki. After
participation, the participants received a monetary reward. Two participants were

excluded due to technical problems during data acquisition.

Experimental design

MEG was recorded while participants performed a visual working memory task (Figure
1A). This task was designed to emulate real-life situations in which participants would
navigate in a city using directions that they had to keep in mind for a short period of
time. The goal of the task was to remember one out of four directions. Participants were
first presented with a visual direction cue (0.25 s) pointing to the upper left, upper right,
bottom left, or bottom right. After a delay period (3 s), a second cue was presented (0.25
s). The second cue was either a ‘stay’ cue, meaning that the correct answer was the
direction indicated by the first cue, or a ‘switch’ cue, indicating that the correct answer
was the direction opposite to the first cue. After the second cue, a response mapping

diagram was shown, indicating which button corresponded to which direction. The
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correspondence between each button and direction was randomized between blocks (a
total of eight different response mapping diagrams were shown). Participants were
instructed to answer as quickly and as accurately as possible, with the right hand via a
button press. In 50% of the trials, the delay period contained four distractors (randomly
drawn direction cues) that were presented at a 0.33 s inter-stimulus interval.
Participants were instructed to ignore the distractors and to keep only the first cue in
mind. Participants performed eight blocks of 48 trials (~5 min each), with short breaks
between blocks. Participants were seated upright in the MEG helmet and were
instructed to keep their head position as stable as possible for the duration of the
experiment. Prior to the MEG recording, participants performed a training block (16
trials) to make sure that they understood the task correctly. The experimental stimuli
were programmed and presented with the software Presentation (Version 18.0,

Neurobehavioural Systems, Inc., Berkeley, CA, www.neurobs.com).

Data Acquisition

MEG data was recorded with a 275-channel CTF MEG system with axial gradiometers at
a sampling rate of 1200 Hz (CTF MEG systems, VSM MedTech Ltd.). Six channels were
disabled due to permanent malfunction. In order to monitor the head position of the
participants and to allow for adjustments to the original position in between blocks, the
real-time representation of the participant’s head position was monitored using three
head localization coils at the right and left ear canals as well as the nasion (Stolk et al.,
2013). These points were further used as offline anatomical landmarks to align the MEG
data with structural images of the participant’s brain for source reconstruction. Further,
movement of the left eye was tracked during the experiment using an Eyelink eyetracker
(SR Research Ltd.). After the experiment, the participant’s head shape was digitized
using a Polhemus 3D tracking device (Polhemus, Colchester, Vermont, United States). In
a separate session, an anatomical MRI scan of the participant’s brain was recorded,
unless the participant’s scan could be obtained from the database of the institute. The
MRI data was recorded with the 3T Siemens Magnetom Skyra MR scanner (Erlangen,

Germany).
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MEG analysis

MEG analysis was performed using the Fieldtrip toolbox (Oostenveld et al., 2011),
EEGlab (Delorme & Makeig, 2004), and custom MATLAB scripts.

Preprocessing. The raw continuous data was downsampled to 300 Hz and epoched
relative to the first cue (from -1.5 s to +10 s). A band-stop filter was applied at 50, 100
and 150 Hz to remove line noise and its harmonics. The data was visually inspected to
reject trials with artifacts (e.g., muscle artifacts, SQUID sensor jumps). Next, the data
was bandpass filtered between 3 and 30 Hz (Butterworth IIR filter) and ICA was
computed (i.e., EEGlab implementation of the infomax ICA algorithm of Bell & Sejnowski
(1995)). Finally, the IClabel algorithm (Pion-Tonachini et al., 2019) was used to classify
components in the categories Brain, Muscle, Eye, Heart, Line Noise, Channel Noise and

Other based on their spatial topography.

Sensor-level analysis. First, independent components that were classified as muscle,
eyes, heart or channel noise by the IClabel algorithm with a probability higher than 80%
were discarded. Further analysis was performed at sensor level after back-projecting the
remaining components. We computed the planar representation of the MEG field
distribution from the single-trial data using the nearest-neighbor method. This
transformation facilitates the interpretation of the sensor level data as it makes the
signal amplitude maximal above its source (as implemented in Fieldtrip functions
ft_meg_planar and ft_combine_planar). The power spectrum of each channel between
5 and 25 Hz was obtained using a multitaper frequency transformation (ft_freqanalysis).
This transformation was done separately for the fixation (1 s) and the memory delay
period (1 s window centered in the delay period). The data was zero-padded to 5 s to
obtain a frequency resolution of 0.2 Hz. Alpha band power was estimated as the mean
power values between 8 and 14 Hz across trials. Individual alpha power and frequency
were estimated using the MATLAB findpeaks algorithm (i.e., maximum peak between 8

and 14 Hz).

Component-level analysis. A series of conditions were imposed to select posterior

oscillatory components in the alpha range. First, independent components had to be
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classified as brain components by the IClabel algorithm with a probability higher than
80%. Second, independent components had to show a maximum peak in the alpha range
(as detected with the MATLAB findpeaks function). Third, independent components
needed to project to a single dipole in occipital or parietal cortex. For that purpose, the
whole brain was scanned with a single dipole to find the location where the dipole model
was best able to explain the topography of each independent component
(ft_dipolefitting). The source localization of dipoles was done using individual T1-
weighted anatomical images of the participants’ brains. For that, individual MRIs were
first  normalized in  MNI space (ft_volumenormalise) and segmented
(ft_volumesegment). Then a realistic single-shell headmodel was computed
(ft_prepare_headmodel) based on the surface mesh obtained from the segmented MRI
(ft_prepare_mesh) (Nolte, 2003). Finally, in order to automatically identify dipoles that
were located in occipital and parietal cortices we used the AAL atlas (Tzourio-Mazoyer
et al., 2002) available in the Fieldtrip toolbox (Oostenveld et al., 2011). The frequency
transformation of independent components was identical to the one used for sensor
level analysis. The only difference is that in order to estimate alpha power per condition
in single trials, the individual alpha band was previously defined per component based
on its average power spectrum (across trials; Figure 1B). This approach was adopted to
compensate for the lower signal-to-noise ratio of oscillatory activity when estimated in
single trials. A similar approach was adopted to estimate peak frequency in single trials.
In this case, independent components were first filtered (MATLAB function fir/1) around
their individual alpha band, after which instantaneous frequency was estimated with
the method developed in Cohen (2014). In short, instantaneous frequency was
computed by multiplying the first temporal derivative of the phase angle time series
(extracted through its Hilbert transform) by the sampling rate and dividing it by 2m.
Then, a median filter was applied to the instantaneous frequency time series (10 steps
between 10 and 400 ms) in order to attenuate non-physiological frequency jumps.
Instantaneous frequency was averaged within the fixation period and the memory delay

(1-s windows) to get an estimation of peak frequency in each period.
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Statistical analysis

Behavioral data. Repeated-measures ANOVA was performed with the JASP software
(Love et al., 2019), post-hoc paired samples t-test were performed in MATLAB R2021a.
The effect size was estimated as Eta squared (n?) for the ANOVA and as Cohen’s d for

the t-tests.

MEG data. The comparison of MEG parameters of interest between conditions was
performed using paired samples and independent samples t-tests (MATLAB R2021a
implementation). For the comparison of the parameters of interest in independent
components at single-trial level (i.e., power/frequency during memory retentions vs.
delay), we employed Wilcoxon signed rank test (MATLAB R2021a) to minimize the effect
of possible outliers because they are more likely to occur when analyzing single trials
(Cohen & Cavanagh, 2011). In order to assess a possible relationship between an MEG
parameter and accuracy, a median split approach was adopted. In short, trials were
divided into two groups based on the median of the MEG parameter (i.e., high and low
alpha power) and mean accuracy was compared between ‘high’ and ‘low’ trials at group
level (paired-samples t-tests). We corrected for multiple comparisons using the False
Discovery Rate (FDR) method (Benjamini & Hochberg, 1995). Effect size was estimated

through Cohen’s d estimate.
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Figure 1. Task and main analytical approach. A) Task schematic. Participants were asked
to remember a visual direction cue (i.e., upper left, upper right, bottom left, or bottom
right) for 3 s (memory delay). In 50% of the trials, the delay period contained four visual
distractors. Based on the content of a second cue (i.e., ‘stay’ or ‘switch’), participants
had to report the direction of the first cue or its opposite. B) ICA-based selection in an
exemplary subject. A selection of independent components was performed based on
their topography (top panel), estimated source (middle), and spectrum (bottom). Only
independent components with a brain topography (IClabel algorithm classification >
0.80), an estimated dipole in occipital or parietal cortex and a peak in the alpha range
were selected for analysis (in this example, the component marked in the red rectangle).
The frequency band of each independent component was defined based on the average
spectrum (peak frequency and width; grey area). Condition-related modulations in band
power (i.e., delay vs. fixation, distractor vs. no distractor) were assessed through single-

trial analysis of each independent component.

12


https://doi.org/10.1101/2022.04.15.488484
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488484; this version posted April 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Results

Behavioral performance

Mean accuracy was 87.5% across conditions (SD = 19.4). Repeated-measures ANOVA
revealed a significant main effect of the factor distractor (F(1,32) = 11.54; p = 0.002; n?
= 0.102). Post-hoc paired sample t-tests showed that accuracy was greater for the no
distractor than for the distractor condition (t(32) =-3.39; p = 0.0018; d = 0.59). No main

effect of rule (i.e., stay versus switch) or rule by distractor interaction was found.

Mean reaction time was 698 ms across conditions (SD = 255). Repeated-measures
ANOVA revealed a main effect of rule (F(1,32) = 8.79; p = 0.006; n?> = 0.12). Post-hoc
paired sample t-tests showed that reaction time was shorter for stay versus switch rules
(t(32) = 2.96; p = 0.0057; d = 0.51). No effect of distractor nor rule by distractor

interaction was found.

Posterior individual alpha increases in power and decreases in frequency

during memory retention

No significant differences between conditions in alpha power were found when
estimated using an a priori definition of the alpha band (8-14 Hz; Figure 2A, top plot).
However, individual alpha peak power showed a significant increase during the memory
delay in posterior and right frontocentral sensors (p < 0.05 after FDR correction; Figure
2A, middle plot). In addition, individual alpha frequency decreased significantly in
posterior and frontal sensors (p < 0.05 after FDR correction; Figure 2A, bottom plot).
Hence, some posterior sensors showed a significant modulation in both individual alpha
peak power and frequency (Figure 2B). No significant distractor effect (comparison of
distractor vs. no distractor conditions) or relation to accuracy (median split approach)

were found in either individual alpha power or frequency at sensor level.
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Figure 2. Sensor level analysis. A) Topographic plots depicting the t-values from the
condition comparison (memory delay vs. fixation) in alpha band power (top panel),
individual alpha peak power (middle) and individual alpha peak frequency (bottom).
Significant differences (p < 0.05 after FDR correction) are marked with asterisks. B) Mean
power spectrum for fixation (black graph) and memory delay (orange) of sensors
showing significant changes in individual alpha peak power and frequency (shaded area
depicts standard deviation across subjects; sensors included in spectra indicated in

inset).

ICA reveals two distinct alpha components based on their power

modulations during the memory delay

In order to assess whether the reported changes in posterior alpha power reflect the
activity of one or several brain rhythms, we performed the same condition comparisons
that we performed at sensor level using independent posterior alpha components

(Figure 1B). We found a total of 170 posterior alpha components based on their

14
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topography at sensor level, their spectrum, and their estimated source. The power of
111 components was significantly modulated during the memory delay relative to
fixation (p < 0.05 after FDR correction; mean number of components per subject = 3.3;
SD = 2.9). Unlike sensor-level analysis, the comparison of posterior alpha components
in single subjects revealed both increases and decreases in alpha power during the
memory delay. Specifically, the power of 68 alpha components showed a significant
increase during memory delay relative to fixation (Alphal), while the power of 43 alpha

components showed a significant decrease (Alpha2; Figure 3A).

In addition, we assessed whether the frequencies of Alphal and Alpha2 components
were differentially modulated during memory delay. However, we did not find
significant differences between Alphal and Alpha2 components in frequency
modulations associated with memory retention (t(109) = -1.45; p = 0.14; d = 0.28). Both
Alphal and Alpha2 components significantly decreased in frequency during the memory
delay relative to fixation (t(67) = -8.18, p < 0.001, d = 1.00; t(42) = -6.98, p < 0.001, d =
1.07).

In summary, single-subject analysis of posterior alpha components demonstrates the

existence of at least two distinct rhythms (Alphal and Alpha2) based on their opposite

power modulations during memory retention.
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Figure 3. Power modulations of independent alpha components. A) Power changes
during the memory delay relative to fixation. Z-values (representing the memory
retention effect in each component) are plotted as a function of their peak frequency
(each color codes for a different subject). Components showing a significant increase in
power during the memory delay were denominated Alphal while components showing
a significant decrease were denominated Alpha2. The mean topography of the power
change is plotted separately for Alphal (red) and Alpha2 (blue) components. B)
Differential distractor-related power modulations of Alphal and Alpha2 components. Z-
values represent the distractor effect in individual components. At group level, Alphal
components (red) showed significantly more power in the presence of distractors while

Alpha2 components (blue) showed significantly less. Colored asterisks mark statistical
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significance (p < 0.05) of the Alphal (red) or Alpha2 (blue) distributions against 0 (one-
sample t-test). Black asterisks mark significant differences (p < 0.05) between Alphal
and Alpha2 distributions. C) Effect of power modulations on accuracy in the distractor
condition. Accuracy was compared for high power and low power trials (median split),
showing a significantly greater accuracy for trials with high Alphal power in the
distractor condition. D) Same as C for the no-distractor condition, showing a significantly

lower accuracy for trials with high Alpha2 power in the no-distractor condition.

Alphal and Alpha2 show opposite distractor-related power modulations
In order to assess whether the power of Alphal and Alpha2 components was
differentially modulated in the presence of distractors, we first estimated the distractor
effect in individual components (distractor vs. no distractor) through Wilcoxon signed
rank tests. Then we tested at group level whether the z-values of Alphal and Alpha2
components differed significantly from 0 (one sample t-test) and from each other
(independent samples t-test). We found that alpha components that increased in power
during the memory delay (i.e., Alphal) showed a significant power increase in the
presence of distractors (t(67) = 2.66; p = 0.0097; d = 0.32) while alpha components that
decreased in power during the memory delay (i.e., Alpha2) showed a significant power
decrease in the presence of distractors (t(42) =-5.78; p <0.001; d = 0.88 ). Hence, Alphal
and Alpha2 showed opposite and significantly different (t(109) = 5.42; p < 0.001; d =

1.05) distractor-related power modulations (Figure 3B).

Alphal and Alpha2 power modulations have an opposite relation to

daccuracy

In order to assess the behavioral relevance of Alphal and Alpha2 power modulations,
we compared the accuracy between trials with high and low alpha power during the
delay (% change from fixation). Since the presence of distractors was associated with
lower accuracy, we performed this analysis for distractor and no-distractor conditions
separately. For the distractor condition, accuracy was significantly higher for trials
showing greater Alphal power (t(67) = 2.97; p = 0.0041; d = 0.36), while no differences
were found in Alpha2 power (t(42) = 0.54; p = 0.58; d = 0.08). However, power-related
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differences in accuracy between Alphal and Alpha2 did not reach statistical significance
(t(109) = 1.18; p = 0.24; d = 0.23). For the no-distractor condition, accuracy was
significantly higher for trials with lower Alpha2 power (t(42) = -2.79; p = 0.0078; d =
0.42), while no significant difference was found in Alphal power (t(67) = 1.42; p = 0.15;
d=0.17). In this case, power-related differences in accuracy between Alphal and Alpha2

components did reach statistical significance (t(109) = 2.76; p = 0.0067; d = 0.53).

In summary, in the presence of visual distractors, better accuracy was associated with
higher Alphal power, while in the absence of visual distractors, better accuracy was

associated with lower Alpha2 power.

Alphal and Alpha2 components differ in their spatiospectral

characteristics

In order to assess whether Alphal and Alpha2 rhythms differ in their spatiospectral
characteristics, we compared three different spectral parameters (peak frequency, peak
width, and relative amplitude; Figure 4A) and the location of their estimated main
source through dipole fitting (x, y and z axes; Figure 4B). This analysis revealed that
Alphal components tended to have a lower peak frequency (t(109)= -6.00; p < 0.001;
d = 1.16), a narrower peak width (t(109)=-2.43; p = 0.016; d = 0.47), a greater relative
peak amplitude (t(109)=5.68; p < 0.001; d = 1.10), and a more central source estimation
(t(109)= 2.86; p = 0.005; d = 0.55) than Alpha2 components (Figure 4C). No significant
differences were found between the source estimation of Alphal and Alpha2

components in the other two axes (i.e., ventral to dorsal and posterior to anterior).
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Figure 4. Spatiospectral differences between Alphal and Alpha2 components. A)
Average spectrum of Alphal and Alpha2 components across the complete trial (shaded
area depicts standard deviation). B) Source localization of Alphal (red) and Alpha2 (blue)
components as estimated through dipole fitting. The top panel shows the horizontal
plane while the bottom panel shows the coronal plane. C) Plots depicting significant
differences in four spatiospectral parameters: peak width (top left panel), peak

frequency (top right), relative amplitude (bottom left) and location (bottom right).
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Discussion

In this study we used ICA to examine whether posterior alpha power modulations during
visual working memory reflect the dynamics of one or several brain rhythms. We
recorded MEG while participants (N = 33) performed a visual working-memory task in
which one out of four spatial directions had to be remembered for a short period of
time. Task difficulty was modulated by introducing visual distractors during memory
retention. Group analysis at sensor level suggested that posterior alpha consists of a
single oscillator that increases in power and decreases in frequency during memory
retention. In contrast, the analysis of independent components in single subjects
revealed the existence of an alpha rhythm that increases in power during the memory
delay (Alphal), and an alpha rhythm that decreases in power during the memory delay
(Alpha2). Interestingly, the power of Alphal and Alpha2 rhythms was differentially
modulated by the presence of distractors (Alphal increased in power while Alpha2
decreased), and had an opposite relationship with accuracy (positive for Alphal and
negative for Alpha2). In addition, Alphal and Alpha2 rhythms differed significantly in
their spatiospectral characteristics. Specifically, Alphal rhythms showed a lower peak
frequency, a narrower peak width, a greater relative peak amplitude and a more central
source than Alpha2 rhythms. Thus, our results show that modulations in posterior alpha
oscillations during memory retention reflect the dynamics of at least two distinct brain

rhythms with different functions and spatiospectral characteristics.

Previous literature is highly inconsistent regarding the direction of alpha power
modulations during visual memory retention. A recent systematic review has shown
that from 56 M/EEG studies, 30 report a significant alpha power increase during memory
retention, 21 report a significant decrease and 5 show either mixed or null results
(Pavlov & Kotchoubey, 2020). Based on our results, we speculate that the lack of
consistency in previous literature could be traced to the commonly adopted analytical
approach of computing alpha power by averaging over a predefined frequency band
(e.g., 814 Hz). It has been shown that alpha power modulations can be easily
confounded by frequency changes if peak detection is not performed (Donoghue et al.,

2021). This is important because alpha peak frequency not only varies considerably
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between subjects (Doppelmayr et al., 1998), but also within subjects in a task-
dependent manner (Haegens et al., 2014; Rodriguez-Larios & Alaerts, 2019; Samaha &
Postle, 2015). In line with this, our results showed that the increase in alpha peak power
at sensor level during the memory delay was accompanied by a frequency decrease
(Figure 2). Given this frequency shift, significant alpha power modulations could have
been reported in different directions depending on the a priori definition of the alpha
band (e.g., 8-12 vs. 9-13 Hz). Consequently, we hypothesize that performing peak
frequency detection could solve at least some previous inconsistencies regarding the
direction of alpha power modulations during visual memory retention (Pavlov &

Kotchoubey, 2020).

Although peak detection at sensor level allows disentangling alpha power and frequency
modulations, it cannot determine whether the reported changes reflect the activity of
one or multiple brain rhythms (Schaworonkow & Nikulin, 2019). In line with previous
studies (Barzegaran et al., 2017; Benwell et al., 2019; Gulbinaite et al., 2017; Sokoliuk et
al., 2019), we demonstrate the existence of two different alpha rhythms in posterior
cortex. Specifically, the analysis of independent components in single subjects revealed
that a faster alpha rhythm (Alpha2) decreased in power during memory retention while
a slower alpha rhythm (Alphal) increased in power. In this regard, it is important to
underline that differential power modulation of two alpha rhythms with different peak
frequencies could lead to apparent frequency modulations at sensor level (Donoghue et
al.,, 2021). Therefore, we cannot rule out the possibility that previously reported
frequency changes in posterior alpha during different cognitive tasks (Angelakis et al.,
2004; Babu Henry Samuel et al., 2018; Haegens et al., 2014; Rodriguez-Larios & Alaerts,
2019) are actually reflecting power changes of two (or more) alpha rhythms with

different spatiospectral characteristics.

The existence of alpha rhythms that increase and decrease in power during memory
retention depending on their spatial origin is in line with prevailing theories of alpha
function (Jensen & Mazaheri, 2010; Klimesch et al., 2007). According to these theories,
alpha power reflects local inhibition and therefore should increase in task-irrelevant

areas and decrease in task-relevant areas. In the context of memory retention, it can be
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predicted that brain regions that are relevant to the transient maintenance of visual
information would show alpha decrease (disinhibition). On the other hand, brain regions
that are irrelevant for memory maintenance (and could potentially interfere with the
task) would show alpha increase (inhibition). Although source estimation through dipole
fitting in M/EEG has to be interpreted with caution (Leahy et al., 1998), the spatial
distribution of the two observed types of alpha components suggests that, at least in
occipital cortex, Alphal rhythms mostly originate in early visual areas while Alpha2
rhythms localize to higher-order areas (Figure 4B). This is supported by their spectral
profiles, since higher-order areas are thought to show a more pronounced 1/f trend
(Ibarra Chaoul & Siegel, 2021) and higher peak frequency (Lundqvist et al., 2020), i.e., in
line with what we see in Alpha2 components when compared to Alphal (Figure 4A).
Based on these results and previous evidence (De Vries et al., 2018; Popov et al., 2017,
Tuladhar, Ter Huurne, et al., 2007), we speculate that Alphal power increases reflect
the inhibition of lower-order areas involved in visual processing, whilst Alpha2 power
decreases reflect the disinhibition of higher-order areas supporting the transient

storage of visual information.

If Alphal and Alpha2 rhythms during memory retention reflect the inhibition and
disinhibition of task-irrelevant and task-relevant areas respectively, we would expect
that behavioral performance improves when Alphal power increases and Alpha2 power
decreases. Interestingly, Alphal power increases and Alpha2 power decreases were
associated with better accuracy in different experimental conditions. Specifically,
Alphal power was positively associated with accuracy only in the presence of
distractors, while Alpha2 power was negatively associated with accuracy only in the
absence of distractors. We hypothesize that behavioral performance in distractor and
no-distractor conditions depends on different factors. On the one hand, incorrect
responses in the distractor condition might mostly be due to the interference of visual
distractors. In this scenario, Alphal power increases become predictive of behavior
because it inhibits areas involved in visual processing in order to avoid interference
during memory retention. On the other hand, in the condition without distractors,
incorrect responses might predominantly be caused by lapses of attention due to mind

wandering and/or drowsiness (Andrillon et al., 2019, 2021; Braboszcz & Delorme, 2011;
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Rodriguez-Larios & Alaerts, 2020). Previous literature suggests that lapses of attention
involve reduced cortical processing of external events (Smallwood et al., 2008). If an
external event is not properly processed by the brain during an attentional lapse, its
content cannot be maintained in working memory. Hence, we can expect that the
recruitment of cortical areas supporting short-term memory retention (i.e., Alpha2
desynchronization) is less pronounced (or even absent) during an attentional lapse
because there is little or no information to be retained. Nonetheless, it is important to
note that the reported differences in accuracy depending on Alphal/Alpha2 power
modulations must be interpreted with caution due to the small number of incorrect
trials here (mean accuracy was 87% across conditions). In order to overcome this
limitation in future work, it would be important to assess the here reported effects with

a more difficult task or by adjusting task-difficulty at an inter-individual level.

In line with previous literature, our results show that ICA is a powerful analytical tool
that can be efficiently used to isolate brain rhythms of interest (Benwell et al., 2019;
Debener et al., 2005; Wagner et al., 2018). Unlike other source localization techniques,
ICA does not require a priori definition of the specific spatial location, and ensures that
the analyzed time series are statistically independent (thereby minimizing the possibility
that they reflect the mix of two or more rhythms; Delorme et al., 2012). The spatial
separation of different posterior alpha rhythms through ICA in single subjects could
resolve some of the previous inconsistencies in the literature concerning the role of
alpha phase, power and frequency in cognition (Michail et al., 2021; Paviov &
Kotchoubey, 2020; Samaha et al., 2020; Zazio et al., 2021). Similarly, separating different
posterior alpha rhythms could allow us to understand why some neurofeedback and
neurostimulation protocols do not have the expected effect in some subjects
(Orendacova & Kvasnak, 2021). If we tune the neurofeedback/stimulation parameters
(and/or assess their effects) at sensor level, we cannot know whether we are modulating
the power or frequency of one or several alpha rhythms. As different alpha rhythms
could be more prominent in different subjects due to inter-individual differences in
brain anatomy and functional specialization, this might have a key impact on the effects

of their modulation (Duffau, 2017; Mikkonen et al., 2020).

23


https://doi.org/10.1101/2022.04.15.488484
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488484; this version posted April 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

In conclusion, our results show that posterior alpha dynamics during memory retention
reflect the activity of at least two brain rhythms with distinct functions and
spatiospectral characteristics. Alphal rhythms increased in power during memory
retention and in the presence of visual distractors, while Alpha2 rhythms showed the
opposite power modulations. In addition, Alphal and Alpha2 rhythms had an opposite
relationship with accuracy (positive for Alphal and negative for Alpha2). Lastly, Alphal
and Alpha2 differed significantly in several spectral parameters (peak frequency, peak
width and relative amplitude) and in the location of their estimated main source. In the
light of previous results and theoretical accounts (Haegens et al., 2021; lemi et al., 2022;
Jensen & Mazaheri, 2010; Klimesch et al., 2007), we hypothesize that during memory
retention, Alphal rhythms increase in power to inhibit visual processing while Alpha2
rhythms decrease in power to disinhibit areas supporting the short-term storage of

visual information.
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