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ABSTRACT

Field potential oscillations in the olfactory system of vertebrates and invertebrates are prominent and well-
studied, but their functions remain nevertheless enigmatic. Spatial networks are thought to play a role in
olfactory discrimination in different species, but their analysis is frequently complicated by behavior, learning
and respiration (sniffing). Here, we show that in a sniffing-free model (trout), the relevant feature for
discriminating odorant identity is the information conveyed by the oscillatory activity in a spatially distributed
network, including the olfactory bulb and the telencephalic regions Vv and Dp. Specifically, information-based
methods based on spectral decoding, information sharing, and information redundancy distinguished odorant
identity across spatially distant regions while classical spectral analyses did not. Our study demonstrates that
olfactory oscillations are carriers of spatially distributed odor information across the teleost olfactory system.
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INTRODUCTION

The earliest study of field potential oscillations in the olfactory system was probably performed by Edgar Adrian,
who recorded this phenomenon from the olfactory system of decapitated fish. A few years later and in the
middle of the second World War, he published a seminal and well-cited study describing oscillatory electrical
activity in the olfactory system of anesthetized earth urchins?. Since then, oscillations have been demonstrated
in olfactory pathways of many species, with remarkable similarities between vertebrates and>®. Nevertheless,
the phenomenon remains surprisingly enigmatic, because unequivocal proof of the coding of olfactory
information and a role in odorant discrimination by olfactory oscillations remains absent to date. Olfactory
oscillations are also a complex phenomenon in terms of their origin and structure: There are at least three types
of oscillations involved in the central processing of olfactory signals in vertebrates, which vary by frequency,
cause of activation, underlying cellular circuitry, spread across brain areas, and physiological implications.
However, local bulbar and top-down inhibitory feedback signaling are broadly accepted as physiological roots of
olfactory oscillatory activity”2.

In mammals, the recorded signals can be classified according to their frequencies as: Delta rhythm (0 - 4 Hz),
theta rhythm (4 - 8 Hz), alpha rhythm (8 - 12 Hz), beta rhythm (12 - 30 Hz) and gamma rhythm (30 - 100 Hz)°.
Among these, the most studied in the analysis of evoked activity in smell are those belonging to theta, beta and
gamma rhythms, due to their potential association with olfactory learning and memory processes’®'?,

Theta rhythms, also known as "respiratory oscillations", due to their association with the respiratory cycles of
mammals, are characterized by the activation of specific glomeruli during inhalation activity®, also showing
consistency with theta rhythms of the hippocampus under specific learning conditions®!!. Although changes
dependent on behaviors such as "sniffing" or sleep-wake states are observed in these®'?, their role in olfactory
processing is not well understood, especially considering that there are animals in which the respiratory system
is not directly related to the olfactory system. Such is the case among others in teleost fishes3, in which theta
oscillations related to respiratory activity are absent from the olfactory system, although surprisingly a behavior
similar to sniffing has been observed in teleost nostrils'.

The gamma rhythm is the most studied of the neural oscillations®. Although its presence is dominant in the
olfactory system in the absence of odorants, it is also observed in response to olfactory stimulation!?, having
been associated with local processing of odoriferous stimuli*>. This rhythm consists of two sub-bands in many
species, one of high frequency (gamma 1) and one of low frequency (gamma 2), which are modulated by sensory
input with different functional associations and represent the fastest oscillations described in the olfactory
system®>Y, These oscillations have not been observed in the immature olfactory bulb of rats!® and specifically
the gamma 2 oscillations are absent in anaesthetized animals®. In the LFP of the olfactory bulb of the teleost
Danio rerio (zebrafish), gamma-type oscillations have been recorded with a frequency of 20 - 30 Hz and an onset

a few milliseconds after stimulus application”-1%2,

Beta rhythms have been recorded from different structures of the olfactory systems of many mammalian species,
including mice, rats, cats, rabbits, and moles!, and it has been demonstrated that these oscillations emerge and
are modulated by olfactory tasks such as olfactory learning and sensitization to odors®'*>7, The main difference
observed between gamma and beta oscillations is that the former occurs locally within the olfactory bulb, while
the latter require intact bidirectional interconnections between the olfactory regions of the bulb and the
telencephalon!*?, In addition, beta oscillations have never been observed in the absence of olfactory stimulation
and may last much longer than gamma oscillations, which decline rapidly after their onset®.,
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The popularization of wireless and multiple electrode recording systems mounted on freely moving mammals
has allowed the recording and analysis of the different types of olfactory oscillations in a more natural context

71122 However, the complex signals obtained, and the multiple

and within well-defined behavioral assays
parameters affecting them, including movement, sniffing, learning, memory, and individual variation, have
complicated the analysis and understanding of the physiological functions of olfactory oscillations, in spite of the

undeniable advance and sophistication of recording techniques in the last decades.

In fish, the olfactory sense plays important roles in social interactions, mating, migration and feeding, among
others?, The fact that respiration in teleost fish is not related to smell opens the possibility of recording olfactory
system activity as an isolated variable compared to mammals, reducing the confounding factors previously
mentioned. Although the teleost olfactory system displays great similarities with that of mammals, there are
some differences that must be considered for functional odorant analysis. In the teleost olfactory bulb, mitral
cells are indistinguishable from tufted cells and innervate multiple glomeruli at once, which are surrounded by
short axon cells and periglomerular cells that are involved in the initial processing of olfactory information’-?4
26 This, added to the existence of another type of projection neurons with an opposite polarity to the mitral cells
(ruffed cells) that synapse with granule neurons, may be evidence of slightly different olfactory coding strategies

in teleosts?42527,

In the telencephalon, since the brain formation process of teleost fish (eversion) is different from that of most
other vertebrates (evagination), a very different distribution of brain structures compared with mammals is
generated as a result®2%, Additionally, the structures that are homologous to the neocortex or pallium of most
terrestrial vertebrates, lack a six-layer cortex or lamellar structures in teleost fish and, instead, contain areas and
nuclei neuroanatomically and functionally analogous to the pallial and subpallial structures of other vertebrates,

2421729 Thuys, there is evidence that several pallial and

which includes areas that process olfactory information
subpallial regions of the teleost telencephalon receive projections from the olfactory bulb and among these, the
ventral telencephalon region has characteristics that relate it to mammalian reward systems such as the septum,
the nucleus accumbens and the substantia innominata, while functions related to the determination of the
identity of odors are attributed to posterior dorsal areas of the teleost telencephalon, since it is the main
objective of the secondary olfactory fibers, comparable to the primary olfactory cortex and the piriform cortex

of higher vertebrates?32430-36,

Here, we took a conservative approach and simplified the sensory setting to a maximum, eliminating the effects
of movement and sniffing by recording from anesthetized teleost fish. To reduce intra- and inter-specimen
variation, we repeated identical trials many times within and across the specimens and pooled the data for
advanced analysis of putative information contents. Specifically, we recorded olfactory responses reflected by
LFP activity in parallel from four sectors of the olfactory system in live anesthetized rainbow trout (Oncorhynchus
mykiss): Olfactory epithelium, olfactory bulb and the ventral core of the ventral telencephalon (Vv) and its
posterior dorsal area (Dp). Our data indicate that primary response parameters such as oscillation power, main
frequency, time course and phase were robust and largely indifferent to several olfactory stimuli, but a more
nuanced analysis based on connectivity and spectral decoding revealed shared information contents between
different recording sites, supporting the notion that olfactory oscillations act as carrier waves transmitting subtle
information traces across olfactory brain centers.
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MATERIALS AND METHODS

Animals, anesthesia and surgery

Juvenile rainbow trout, Oncorhynchus mykiss, were obtained from a local hatchery (Piscicultura Rio Blanco, Los
Andes, Chile), and kept at 16°C in aquariums with dechlorinated and filtered water in the animal facility of the
Faculty of Sciences of the Universidad de Valparaiso, for up to six months, with a light / dark regime of 12:12
hours. The animals were fed daily with fish meal pellets. For the experiments, specimens of undetermined sex
and a total length of 20 + 2 cm were selected. The procedures applied in this study were approved by the
Bioethics Committee of the Universidad de Valparaiso and are in accordance with the guidelines of the National
Research and Development Agency (ANID) of Chile. Before the experiments, the fish were anesthetized with 10
mg/l MS-222 (ethyl 3-aminobenzoate methanesulfonate) and immobilized with an intramuscular injection of
gallamine triethiodide (Flaxedil; 0.03 mg / 100 g body weight), until balance and responsiveness were lost.
Immobilized fish were wrapped in moistened tissue and placed in a container of synthetic sponge. The gills were
irrigated through an oral tube with a constant flow of cooled aerated water (10°C) containing 10 mg/I of MS-222
(pH 7.4). Before surgery, all dissection material was impregnated with lidocaine hydrochloride (2%), which was
also applied directly on the surface of the animal's skin. To gain access to the fish's olfactory organ, the skin and
connective tissue covering the entrance to the nostril was removed. To access the brain, the cranial vault was
opened under a stereomicroscope with a transverse section through the midline of the head at eye level. Then,
two cuts were made perpendicular to the first, and the skull was carefully opened until the brain was exposed.
From this point on, the brain was periodically irrigated with artificial cerebrospinal fluid (in mM: 124 NaCl, 2.69
KCI, 1.25 KH,PO4, 2.0 MgS04, 26 NaHCOs3, 2.0 CaCl,, 10 glucose, pH 7.4). The vitality of the fish was monitored by
checking the blood flow in the vessels of the tela coroidea covering the telencephalon.

Odor preparation and stimulation

The water to which the trout were adapted in the animal facility (TW, trout water) was used as negative odor
control, and to dilute the odorant mixtures. Four different types of odor stimuli were applied throughout the
study: (1) A synthetic mixture of five L-amino acids (AA): Serine, cysteine, aspartate, lysine and alanine; a mixture
of four synthetic bile salts (BS): Deoxycholic acid, sodium taurocholate, lithocholic acid and taurolithocholic acid;
beta-phenylethyl alcohol (PEA) as single odorant stimulus, and an extract of trout skin (SE). Amino acids represent
food odors to fish; bile salts are considered to be social odors and PEA is a compound that is used as a fishing
lure and as synthetic odorant in zebrafish studies?®3738, Finally, the extract of trout skin is a natural odorant
mixture containing alarm pheromones?*3%*!, The mixture of bile salts (BS), composed of four compounds
(deoxycholic acid, sodium taurocholate, Lithocholic acid and taurolithocholic acid) and the mixture of five amino
acids (AA) (Ser, Cys, Asp, Lys and Ala). Skin extract (SE) is a mixture resulting from the homogenization of a
complex biological tissue, likely composed of hundreds or thousands of compounds®.

The amino acids and bile salts were prepared as stock solutions at a concentration of 100 mM and subsequently
diluted in TW to the final concentration. Skin extract was prepared from the macerated skin of five juvenile trout
in 100 ml of TW, filtered and aliquoted as stock solution. The stock was frozen at -80°C and used throughout the
study. All chemicals were purchased from Sigma-Aldrich (Santiago, Chile). Approximately equipotent odor stimuli
were defined by diluting BS and SE stocks to concentrations generating the same electroolfactogram amplitude
as 100 uM of AA, yielding 700 uM for the BS mixture and a dilution of 1: 500 for the SE stock. For PEA, equipotent
values could not be obtained, since responses remained smaller up to concentrations above 1 mM. The olfactory
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stimuli were administered automatically using a custom-built computer-controlled picospritzer connected to the
gravity-fed open perfusion system constantly irrigating the olfactory organ.

Electrophysiological recordings

We recorded the electroolfactogram (EOG) in parallel with the local field potentials (LFP) in the olfactory bulb
(OB) and two telencephalic regions, the ventral nucleus of the ventral telencephalon (Vv) and the dorsal posterior
zone of the telencephalon (Dp) (Figure 1A). All signals were acquired with WinWCP software version 4.3.8 (John
Dempster, University of Strathclyde, UK) and analyzed using Clampfit 10.3. (Molecular Devices). The EOG was
recorded from the olfactory rosette with an Ag/AgCl electrode located directly above the central raphe. An
identical reference electrode was placed on the skin of the head, and a ground electrode connected to a fin. The
EOG signals were amplified with a differential AC amplifier (Warner DP-301, Warner Instruments, USA) and
digitized with a PCI-6221 A/D interface (National Instruments, USA) at a sampling rate of 1 kHz. For each recorded
brain sector, two tungsten electrodes were used (FHC tungsten microelectrode, tip diameter 3 um, impedance
11-13 MQ), one at the recording site and the other as a reference, positioned in the cerebrospinal fluid of the
exposed cranial cavity. In the olfactory bulb, the electrodes were positioned within the mitral cell layer, about
150 um deep with respect to the dorsal surface of the bulb. Given the odotopy of the olfactory bulb, the position
of the recording electrode was adjusted depending on the stimulus type, based on an odotopy map reported in
(Bazdes et al., 2013). The electrode used to record Vv was positioned in the anterior third of the animal's
telencephalon at approximately 500 um from OB and a depth of 150 um, entering through the central sulcus
between the hemispheres. The electrode recording the telencephalic region Dp was positioned in the posterior
third of the telencephalon, at 500 um distance from the optic tectum (OT) and a depth of 450 um. All recordings
were made in ipsilateral brain structures with respect to the stimulated olfactory organ. Each recording protocol
had a duration of 50 seconds, which included the application of the olfactory stimulus or control after the first
10 second with a duration of 1 s. Twenty consecutive trails were performed for each stimulus type. The LFP
electrodes were connected to the headstages of an AC amplifier (AM Systems Model 1800), band-pass filtered
between 1 and 100 Hz and digitized at 1 kHz.

Signal processing and frequency analysis

Signals were low pass filtered at 50 Hz (3 pole Butterworth filter) and downsampled to 200 Hz. Spectral density
was calculated using Welch's method, with segments of 500 samples and an overlap of 350. For each experiment,
a frequency spectrum was calculated from the 10 s following each of the stimulus exposures, and the spectra
were averaged. Similarly, baseline spectra were calculated for the 10 s prior to stimulus application and averaged.
The average of baseline spectra was subtracted from the post-stimulus. Spectrograms were calculated using a
continuous wavelet transform (CWT) with the complex Morlet wavelet (6=5). The CWT is defined as:

u-—t

W(t,s) = %f_if(u)zP*( - )du

Where s is the scale parameter, t the position parameter, () the signal function, () the wavelet function and
the asterisk represents the complex conjugate. The complex Morlet wavelet is defined as:

1

Y(t) = (1 +exp (—0?) —2exp (—%02> ) : n_% exp (—%tz) (exp (iot) —exp (—%02> )
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With central frequency ~o. The scaleogram, analog to the spectrogram, is defined as the square of the amplitude
of the CWT:

X(t,s) = W(t,s)(W(ts))

The scale is related to the period (T) and frequency (f) in the following relationship:

1 T~s/
—=T~s/o

f
The spectrogram amplitudes were expressed as the z-score by subtracting, at each frequency, the mean of the
amplitudes of the baseline spectrogram and dividing by its standard deviation.

Coherence analysis
Coherence Cyy between signals X and Y was calculated as:

i 1
PP (P PY)

being Py and Py the spectral power density estimators of signals X and Y, respectively. The asterisk denotes the
complex conjugate. The estimation of spectral power was carried on with the Welch’s method, using windows
of 500 samples and overlap of 350 samples. Like the frequency spectrums, the coherence of the 10 s prior to the
stimuli was subtracted to the coherence calculated in the 10s after the stimuli.

Spectral and coherence calculations were performed in Python language with the routines provided by the Scipy
package. Wavelet spectrograms were performed using Python code freely available at
https://github.com/patoorio/wavelets.

Multivariate Pattern Analysis (MVPA)

In addition to the univariate approach, multivariate spectral decoding was applied to the time—frequency data.
This was done because MVPA decoding holds an advantage over most univariate methods as it offers more
spatially sensitive dependent measures, demonstrating that information is present in activity patterns across
brain regions ***, The ADAM toolbox ** was used on raw LFP data, which was transformed to time—frequency
charts with similar settings epochs: 0 to 10 seconds after stimuli presentation, 1-40 Hz.

It is essential to keep a balanced number of trials between conditions when performing a multivariate decoding
analysis since design imbalances may have unintended effects * on the linear discriminant analysis (LDA; the
classification algorithm used here) and area under the curve accuracy metric (AUC; the accuracy performance
metric used here). To keep a balanced number of trials across conditions, we randomly selected and discarded
trials when necessary (‘undersampling’; see Fahrenfort et al., 2018). We quantified classifiers’ accuracy
performance by measuring the AUC of the receiver operating characteristic (ROC), a measure derived from signal
detection theory that is insensitive to classifier bias. AUC corresponds to the total area covered when plotting
the cumulative true positive rates against the cumulative false positive rates for a given classification task. Thus,
finding above-chance performance indicates that there was information contained in the neural data that the
classifier decoded based on the stimulus features of interest.
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LFP epochs time-locked to odorant presentation were classified according to their type (i.e., SE, AA, BS). Next, a
backward decoding algorithm, using odorant category was applied according to a 10-fold cross-validation
scheme. An LDA was used to discriminate between odorant classes after which classification accuracy was
computed as the AUC, a measure derived from signal detection theory. AUC scores were tested per time point
with double-sided t-tests across participants against a 50% chance level. These t-tests were double-sided and
corrected for multiple comparisons using cluster-based 1000-iteration permutation tests * with a standard cut-
off p-value of 0.05. This procedure yields time clusters of significant above-chance classifier accuracy, indicative
of information processing.

Measurement of phase synchronization
We quantified phase locking between pairs of electrodes to measure dynamical interactions among electrode
signals oscillating in the same frequency range. Phase synchronization analysis proceeds in two steps: the

estimation of the instantaneous phases, and the quantification of the phase locking.

To obtain the instantaneous phases, ¢, of the neural signals, we used the Hilbert transform. The analytic signal
&(t) of the univariate measure x(t) is a complex function of continuous time defined as:

E®) = x(O) + ixy(0) = ag(t)e'?*®
where the function is the Hilbert transform of:

+o00 X(t)

1
W)= ~P.V. f dr

o T
P.V. indicates that the integral is taken in the sense of Cauchy principal value. Sequences of digitized values give
a trajectory of the tip of a vector rotating counterclockwise in the complex plane with elapsed time. The vector
norm at each digitizing step t is the instantaneous amplitude ag(t):

ag(t) = VX(D)? + x5 (8)?

Similarly, the complex argument of analytic signal is the instantaneous phase ¢, (t).

The instantaneous phase, although defined uniquely for any signal to which the Hilbert transform can be applied,
is challenging to interpret for broadband signals. For this reason, a standard procedure is to consider only narrow-
band phase synchronization by estimating an instantaneous phase for successive frequency bands, which are
defined by band-pass filtering the time series®. Thus, we band-pass filtered LFP signals in multiple consecutive 1
Hz-wide frequency bins from 6 to 10 Hz using a zero-phase shift non-causal finite impulse filter.
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Phase locking quantification: weighted phase lag index (wPLI)

Phase synchronization can be considered as an LFP/EEG measure of oscillatory coupling between neuronal
populations*#8, The Phase Lag Index (PLI)* attempts to minimize the impact of volume conduction and common
sources inherent in EEG data by averaging the signs of phase differences, thereby ignoring average phase
differences of 0 or 180 degrees. This is based on the rationale that such phase differences are likely to be
generated by volume conduction of single dipolar sources. Despite being insensitive to volume conduction, PLI
has two important limitations: first, there is a strong discontinuity in the measure, which causes it to be maximally
sensitive to noise; second, when calculated on small samples, PLI is biased toward strong coherences (i.e., it has
a positive sample-size bias). Formally, the PLI is defined as the absolute value of the sum of the signs of the
imaginary part of the complex cross-spectral density Sy, of two real-valued signals x(t) and y(t) at time point or
trial t:

X1 sgn(imag(Syy,c))
n

PLI =

The Weighted PLI measure (wPLI) *° addresses the former problem by weighting the signs of the imaginary

components by their absolute magnitudes:

t=1 | imag (Sxy,t) |sgn(imag (Sxy,t))

wPLI = s
t=1|lma9 (Sxy,t)l

The PLI sample size problem can be addressed by considering the same number of trials per condition in the
phase coherence analysis. Further, wPLI represents a dimensionless measure of connectivity that is not directly
influenced by differences in spectral or cross-spectral power. The wPLI index ranges from 0 to 1, with a value of
1 indicating perfect synchronization (phase difference is perfectly constant throughout the trials) and value 0
representing the total absence of synchrony (phase differences are random). Temporal evolution of wPLI was
calculated using a 500 ms sliding window with 2 ms time step, i.e. with a 96% overlap between two adjacent
windows. wPLI charts are expressed in z-scores (standard deviation units) relative to the pre-stimulus period (1
s) which was regarded as a baseline.

Information sharing between recording sites

We quantified the information sharing between electrodes by calculating the weighted symbolic mutual
information (wSMI). This index estimates to which extent two LFP/EEG signals exhibit non-random joint (i.e.,
correlated) fluctuations. Thus, wSMI has been proposed as a measure of neural information sharing > and has
three main advantages. First, it is a rapid and robust estimate of signals’ entropy (i.e., statistical uncertainty in
signal patterns), as it reduces the signal’s length (i.e., dimensionality) by looking for qualitative or ‘symbolic’
patterns of increase or decrease in the signal. Second, it efficiently detects high non-linear coupling (i.e., non-
proportional relationships between neural signals) between LFP/EEG signals, as it has been shown with simulated
8 and experimental EEG/LFP data °2. Third, it rejects spurious correlations between signals that share a common
source, thus prioritizing non-trivial pairs of symbols.

We calculated wSMI between each pair of electrodes, for each trial, after transforming the LFP signal into a
sequence of discrete symbols defined by ordering of k time samples with a temporal separation between each
8
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pair (or t). The symbolic transformation is determined by a fixed symbol size (k = 3, i.e., 3 samples represent a
symbol) and the variable 1 between samples (temporal distance between samples), thus determining the
frequency range in which wSMI is estimated >3, We chose t = 32. The frequency specificity f of wSMI is related

to k and t as follows:
1000

:T*k

This formula, with a kernel size k of 3 and t values of 32, produced a sensitivity to frequencies in the range ~6 to
10 Hz in which the peak of oscillatory activity is observed in the Power Spectral Density (PSD) (Figure 2). wSMI
was estimated for each pair of transformed LFP signals by calculating the joint probability of each pair of symbols.
The joint probability matrix was multiplied by binary weights to reduce spurious correlations between signals.
The weights were set to zero for pairs of identical symbols, as these could have been elicited by a unique common
source, and for opposite symbols (i.e., of in opposite direction), as these could reflect the two sides of a single
electric dipole. The following formula calculates wSMI (in bits, but shown in arbitrary units or AU, with absolute
values):

wSMI(X,Y) =

(k')z 2 W@ pey)! g@é)p@))

XEX YEY

Here, x and y are symbols present in signals X and Y respectively; w(x,y) is the weight matrix and p(x,y) is the joint
probability of co-occurrence of symbol x in signal X and symbol y in signal Y. Finally, p(x) and p(y) are the
probabilities of those symbols in each signal and k! is the number of symbols used to normalize the mutual
information by the signal’s maximal entropy. Temporal evolution of wSMI was calculated using a 500ms sliding
window with 2-ms time step, i.e., with a 96% overlap between two adjacent windows.

Co-Information between recording sites

For each trial, after band-pass filtering the LFP signals between 6 to 10 Hz, we computed the time-resolved
spectral power by computing the square of the instantaneous amplitude a;(t) using the Hilbert transform
procedure described above. Using this resulting signal (i.e., the time-resolved spectral power), we then
computed the co-Information (co-1). The co-information (co-l) ***° has been calculated in the following way:

col(X;Y;S) = 1(X;S) + I(Y;S) — I(X,Y; S)

For each time point, /(X;S) corresponds to the mutual information (MI) between the signal at recording site X and
stimuli class S. I(Y;S) corresponds to the MI between the signal at recording site Y and stimuli class S. Finally,
I(X,Y;S) corresponds to the Ml between stimuli class S combining signals from recording sites X and Y. This way,
co-information was computed for each pair of odorants between all three pairs of recording sites.

Positive co-information means that signals between recording sites contain redundant, or overlapping,
information about the stimuli. Negative co-information corresponds to synergy between the two variables. This
means that the mutual information when considering the two variables jointly is larger than considering the
variables separately.
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Statistical Analysis
Statistical analyses were performed using MATLAB (2016a), Jamovi (Version 0.8.1.6) [Computer Software]
(Retrieved from https://www.jamovi.org) (open source), and JASP Team (2018; JASP; version 0.8.4 software)
statistical software.

RESULTS

General description of the electrical responses

To retest the still unanswered hypothesis if odor information is carried by LFP oscillations from the olfactory bulb
to higher olfactory centers, we recorded olfactory responses as reflected by variations of the LFP to four different
types of odors: Two synthetic mixtures, amino acids and bile salts, one natural mixture resulting from the
mechanical maceration of conspecific skin, and the individual synthetic odorant PEA. Recordings were obtained
simultaneously from the olfactory epithelium, the olfactory bulb and two principal olfactory centers of the
telencephalon: The subpallial ventral nucleus of the ventral region (Vv) and the pallial posterior dorsal region
(Dp) (Figure 1A). Odor stimulation, as opposed to trout water (TW, control), always generated a dose-dependent
negative EOG, and a transient and near-simultaneous increase in LFP oscillation amplitudes in the olfactory bulb
and the telencephalic olfactory areas, lasting 10 to 15 s (Figure 1B-E). To test if repeated trials affected the LFP
oscillations through sensory adaptation, sensitization or learning-related mechanisms, we compared the
responses of 20 consecutive trials, spaced 50s apart, to the same stimuli (Figure 1B'-E'). Interestingly, the
amplitudes of the oscillatory responses and the response envelopes remained unaltered throughout the trial
sequence in the OB, and the telencephalic areas Vv and Dp. These findings allowed us to pool the data from
several consecutive trials for subsequent analyses.

Analysis of LFP oscillations in the OB, and telencephalic areas Vv and Dp

We characterized the frequency-domain characteristics of the electrophysiological recordings and the responses
to odorants, using the Welch periodogram method (Figure 2A-B). To improve the signal-to-noise ratio, we
averaged the spectra across trials of the same experiment. Figure 2A shows the average spectrum calculated
from a 10s window before (dotted line) and after (continuous line) exposure to the amino acid mixture (AA),
while recording in Vv. The baseline activity contains prominent low-frequency (<7 Hz) activity, and thus the
baseline spectrum was subtracted from the odorant response spectrum (Figure 2A, inset). This subtraction was
performed on all data shown in Figures 2 and 3. Figure 2B shows the average of the spectra for all experiments
and their recordings in OB, Vv and Dp, while exposed to AA, SE, BS and PEA. Controls with trout water are shown
in blue. AA, SE and BS evoked strong oscillatory responses in the recorded brain areas in the 5-9 Hz band, albeit
with different magnitudes. The response to PEA, however, failed to generate a robust oscillation in most
experiments. We hypothesize that this is due to PEA, a component of floral odors, being a novel odorant for the
trouts, with no or little biological meaning. Therefore, the responses to PEA were excluded from the following
frequency-domain analyses.

The frequency of the maximum amplitude for each experiment is displayed in the insets. Notably, the response

to BS appears to occur at a higher frequency on average than the response to AA and SE. However, only at OB
and Dp a significant difference in the maximum frequencies was detected (Kruskal-Wallis test: OB H=6.43,
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p=0.04; Dp H=7.84, p=0.02; Vv H=1.75, p=0.42), and the difference was only found between AA and BS (Dunn’s
posthoc test: OB AA/SE p=0.52, AA/BS p=0.013, SE/BS p=0.06; Dp AA/SE p=0.21, AA/BS p=0.005, SE/BS p=0.11).
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Figure 1. Recording sites and raw simultaneous recordings of the EOG and LFP oscillations from the olfactory bulb (OB),
the ventral nucleus of the ventral telencephalon (Vv) and the dorsal posterior zone of the telencephalon (Dp). (A)
Schematic drawing of the rainbow trout forebrain. Olfactory information and LFP oscillations of different frequency bands
are transmitted in parallel from the olfactory bulb to higher olfactory areas of the telencephalon, notably Vv and Dp. Scale
bar: 3 mm. (B-E) Responses to an amino acid (AA, 100 uM) and a bile salt (BS, 700 uM) mix, conspecific skin extract (SE,
diluted 1:500) and beta-phenylethyl alcohol (PEA, 100 uM) were recorded simultaneously from OB, Vv and Dp, showing
prominent and ostensibly synchronous oscillatory activity during odor stimulation. The sets of traces to the right display

details on a shorter timescale. (B'-E') Oscillatory response amplitudes remained stable for 20 trial repetitions in each
olfactory brain area, showing no sign of sensory adaptation.

To analyze the time-dependent frequency components of the response, we analyzed the recordings using a
continuous Morlet wavelet transform. As previously, the transforms were averaged for all sweeps in every single
experiment, and the frequency components prior to stimulus exposure were subtracted. In this case, the results
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are expressed as z-score (see Materials and Methods). Figure 2C shows a spectrogram of the response recorded
at the OB after exposure to BS, where the maximum frequency of the oscillation suffers a shift towards lower
frequencies as the response progresses in time.

Although in many recordings the response extended past 5 s (sometimes reaching up to 10 s), the most robust
and consistent responses were localized in the 1.5 to 4 s window. We calculated the average maximum frequency
for that time span, shown in Figure 2D. All responses to AA, SE and BS show the same frequency shift, starting at
a higher frequency and then decreasing in about 2Hz after 2 s. Interestingly, this analysis shows more evidently
that BS evokes oscillations at a higher frequency than the other odorants.
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Figure 2. Oscillatory characteristics of neural response to odorants. (A) Average frequency spectrum of the LFP response
recorded in Vv, upon exposure to the AA mix. Dotted line is the spectrum of the recording prior AA exposure (10 s) and the
continuous line corresponds to the 10 s after exposure to AA. The spectra of 20 repetitions were averaged. The inset shows
the net response to the odorants (baseline subtracted). (B) Average of baseline-subtracted spectra of the responses from
OB, Vv, and Dp when stimulated with AA, trout skin extract (SE), bile salts (BS) and PEA, in addition to trout water control
(TW; blue line). The average spectra of 11-14 experiments per condition are shown, with the mean as continuous line and
the standard error as colored shade. The inset shows the peak of the response spectra. (C) Wavelet spectrogram of
oscillations recorded from the OB upon exposure to SB at time t = 0s. The data are expressed as z-score with respect to the
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baseline activity at each frequency during the 10 s prior to the stimulus. As in (A), it represents the average of 20 trials
repeated in the same specimen with the same stimulus. (D) Average (lines) and standard error (shadow) of the maximum
frequency at each time point, according to the wavelet spectrogram. The average was calculated only at times when more
than half of the experiments showed a z-score higher than 5 in any frequency within the 5-20 Hz range, thus the different
durations of the responses. Maxima were obtained from baseline-subtracted spectrograms.

We next employed frequency-domain analysis to assess the degree of synchrony between the oscillations in
different areas, by calculating the coherence cross-spectra. Figure 3A shows the average coherence spectra of
the responses recorded in presence of AA, SE and BS, for the three possible pairs between OB, Vv and Dp. All
responses displayed a strong coherence with a peak around 7-8 Hz, the same frequency of the main oscillation.
The median frequency of the maximum coherence (insets) was not significantly different between groups
(Kruskal-Wallis test, OB-Dp H=2.62 p=0.27; OB-Vv H=4.4 p=0.11; Dp-Vv H=5.25 p=0.07). Interestingly, AA and SE
also generated coherence in the 15Hz range, although this oscillation was not particularly visible in the frequency
spectra. Most likely, this reflects harmonic components of the main oscillation frequency.

Finally, we analyzed the phase component of the cross-spectra at the frequency of highest coherence between
areas (Figure 3B). Although there is variability between experiments, on average the oscillation in Dp leads the
activity in OB by 1/4 of a cycle (~35 ms at 7Hz). Alternatively, OB leads the oscillations in Dp by 3/4 of a cycle or
~100 ms. This tendency is more marked for the response to AA and SE than to BS. Also, on average the responses
in OB and Vv are in anti-phase, equivalent to a lag of ~70 ms at 7Hz. Finally, the phase relationship between Dp
and Vv is the most variable of all, but the tendency is for Vv to lead Dp by 1/4 of a cycle.
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Figure 3. Coherence in the oscillatory response recorded in different regions. (A) Coherence spectra showing the mean
(lines) and standard error (shades) of coherence detected at every frequency, in the pairs of regions indicated and after
exposure to the odorants that evoked the most robust responses. For each experiment, a coherence spectrum was
calculated and the experiments for each odorant were averaged. Inset shows the frequency where the peak of the
coherence was detected. (B) Phase of the coherence measured at the frequency of maximum coherence. The gray lines
denote the amplitude (radius) and phase (angle) of the complex-valued coherence corresponding to the frequency at the
maximum for each individual experiment. Colored lines and dots represent the average vector across experiments
performed with the same odorant.

Thus, the basic characteristics of the odor-elicited oscillations allow for little or no discrimination between
odorants. The only exception seems to be the higher frequency of oscillations elicited by bile salts.

Multivariate spectral decoding of LFP oscillations across OB, Vv and Dp

Is the spatial information across regions relevant for odorant discrimination? To determine whether a spatially
extended pattern of oscillatory activity underlies olfactory discrimination, we performed a spectral Multivariate
Pattern Analysis (MVPA or “spectral decoding”; King and Dehaene, 2014). Spectral decoding allows to obtain a
measure of odorant discrimination without having to a priori specify at which areas or frequency bands these
differences emerge, while at the same time extracting subtle trial-by-trial neural differences that are undetected
by standard averaging procedures (Figure 4A) like those performed in the univariate analyses described in the
previous section (Fahrenfort et al., 2018). To do so, we trained a classifier to simultaneously distinguish the three
types of odorants across the three regions (OB, Dp and Vv) (Figure 4B; see Materials and Methods). Above-
chance classification accuracies imply that the relevant information about the decoded odorants is present in
the oscillatory activity, implying spatially distributed olfactory processing and coding.

Interestingly, and contrary to the univariate spectral analyses performed above, multivariate decoding showed
that information about the three odorant categories was reliably decoded above chance when the spatial
variation in neural activity across regions was considered (Figure 4B, right panel). A cluster-based permutation
test showed a significant cluster of increased classification accuracy spanning several frequencies and time points
(cluster p < 0.01; peak frequency: 6-10 Hz; time range: 1 to 9 secs). This result suggests that the relevant
information for odorant discrimination is encoded by the functional interaction between olfactory regions.
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Figure 4. Spectral decoding across OB, Vv and Dp. (A) Temporal dynamics of spectral power. Time-frequency charts were
averaged across individuals per odorant and region. (B) Multivariate spectral decoding. Each region is considered as a
separate dimension, or “feature”, in a N-dimensional space, depicted by the 3-dimensional axes conformed by OB, Vv and
Dp regions (in grey). Each trial-wise odorant presentation (AA in red, SE in green, and BS in orange) produces a pattern that
occupies a point in a 3-dimensional neural activation space. A linear classifier (LDA) learns a way to transform this high-
dimensional space into a new one in which the channel patterns associated with each odorant are separable by a decision
boundary (left panel). LDA assigns an odorant label for the training data based on the position of the activity patterns relative
to the decision boundary. The performance of the classifier is then a function of the accuracy of its label assignments (e.g.,
percentage correct, middle panel). (C) This procedure is performed at each time point and frequency and a cluster-based
permutation test (p<0.05; brown boundary) was performed to determine significant decoding above chance (see Materials
and Methods).

Information sharing between OB-Vv, OB-Dp, and Vv-Dp across odors and control

Functional connectivity — understood as the coordinated activity across brain areas —is a key element of several
theories of perception across species (Fries 2005; Saalmann et al. 2012; King et al. 2013; Bastos and Schoffelen
2016). While classic metrics of functional connectivity such as phase coherence investigate the temporal
synchronicity between stereotypical patterns observed in the LFPs (i.e., neural oscillations), metrics based on
information processing capture dynamics that are not necessarily periodic or oscillatory 1. Importantly, non-
oscillatory or ‘aperiodic’ information is critical for establishing distributed functional connectivity when brain
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signals are highly complex “8. Experimentally, non-oscillatory functional connectivity can be investigated by
computing the shared information across brain regions, showing its robustness in discriminating perceptual
representations >*°° and alertness states *®°>3, Based on these previous findings and on the spectral decoding
results (Figure 4), we reasoned that a mechanism based on distributed information sharing across OB, Vv and Dp
could be appropriate for distinguishing odor composition and intensity. Thus, we applied a method for
guantifying non-oscillatory functional connectivity based on information theory: weighted symbolic mutual
information (wSMI) >,

For each odorant category used here, we computed information sharing between regions in the frequency range
of the oscillatory response (~6-10 Hz; Figure 5). We first computed wSMI between OB and Vv (Figure 5A). Kruskal-
Wallis test showed a significant interaction across odors (odors: TW, AA, BS, SE; X2 = 29.9, p<0.001). Post-hoc
comparisons showed differences between odors and control (AA-TW: W = 5.85; p<0.001, SE-TW: W = 5.97,
P<0.001, BS-TW: W = 4.80, p<0.001), and between two out of three odors (AA-SE: W = 3.52, p = 0.013; SE-SB: W
=-3.78, p = 0.007; AA-SB: W = -1.81, p = 0.20). A similar interaction effect across odors was observed in wSMI
between OB and Dp (Figure 5B; Kruskal-Wallis test: X* = 28.0, p<0.001), with significant post-hoc effects between
odors and control (AA-TW: W = 5.92; p<0.001, SE-TW: W = 5.49, P<0.001, BS-TW: W = 4.53, p<0.001), and
between two odors (AA-SE: W = 3.46, p = 0.014; SE-SB: W = -3.78, p = 0.007; AA-SB: W = -2.29, p = 0.10).
Interestingly, in the case of the wSMI between Vv and Dp (Figure 5C), we observed a significant interaction and
simple effects across the three pairs of odors (Kruskal-Wallis test: X? = 29.2 p<0.001; Post-hoc comparisons: AA-
SE: W =3.68, p =0.009; SE-SB: W =-3.84, p =0.007; AA-SB: W =-2.89, p =0.032), and between odors and control
(AA-TW: W =5.38; p<0.001, SE-TW: W = 5.97, P<0.001, BS-TW: W = 4.90, p<0.001).

Phase synchrony between OB-Vv, OB-Dp, and Vv-Dp across odors and control

In order to compare our results with a classical functional connectivity metric, we performed a phase
synchronization analysis using the weighted phase lag index (wPLI) due its robustness to volume conduction,
common source and muscular artifacts . In a similar manner as with wSMI analyses, we computed the phase
synchronization between pairs of regions for each odorant in the frequency range (6-10 Hz) of the oscillatory
response (Figure 6).

In the case of wPLI between OB and Vv (Figure 6A), although the Kruskal-Wallis test showed a significant
interaction across odors (X?=11.9, p = 0.008), post-hoc comparisons revealed no differences between odors (AA-
SE: W =2.13, p = 0.132; SE-SB: W = -2.18, p = 0.122; AA-SB: W = -0.42, p = 0.763), and only two odors were
different from control (AA-TW: W = 3.67; p =0.009, SE-TW: W =4.21, P =0.003, BS-TW: W = 2.61, p = 0.065). In
the case of wPLI between OB and Dp (Figure 6B), a Kruskal-Wallis test showed a significant interaction across
odors (X? = 22.0 p<0.001) and between odors and control (AA-TW: W = -5.27; p < 0.001, SE-TW: W = -5.49, p
<0.001, BS-TW: W =-4.05, p = 0.004). However, no differences were observed between odors (AA-SE: W = 2.07,
p =0.142; SE-SB: W =-2.13, p = 0.132; AA-SB: W =-0.80, p = 0.572). Similar results were obtained in the case of
wPLI between Vv and Dp (Figure 6C; Kruskal-Wallis test: X2 = 22.3 p<0.001), with differences between odors and
control (Post-hoc comparisons: AA-TW: W = 5.11; p <0.001, SE-TW: W = 5.54, p <0.003, BS-TW: W =-4.37,p =
0.002), but not between odors (Post-hoc comparisons: AA-SE: W = 2.45, p = 0.083; SE-SB: W = -2.66, p = 0.060;
AA-SB: W =-0.58, p = 0.679).
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Altogether, these results suggest that the feature of the oscillatory response relevant for odorant discrimination
is the shared information across regions and not the phase synchronization between them.

A Information sharing analysis

B Information sharing between OB and Vv
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Figure 5. Mutual information between OB-Vv, OB-Dp and Vv-Dp. (A) Schematic representation of wSMI analysis (i.e.,
mutual information). After the symbolic transformation (see Materials and Methods), entropy of signals S1 (purple oval) and
S2 (pink oval) are computed separately, and then their mutual information (overlapping purple oval) represents the shared
odorant information between areas. wSMI dynamics between OB-Vv (B), OB-Dp (C), and Vv-Dp (D) in the ~6-10 Hz range
for each odorant (left panel), the single-animal distribution of values during the 1-5 sec range (middle panel) and its group
statistical analysis (right panel; post-hoc differences depicted as gray lines above the corresponding odorants). RANOVA
revealed a significant interaction effect of wSMI between odorants and control (TW), and between most of the odorants
after the post-hoc contrasts (see Results section).
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Figure 6. Phase coherence between OB-Vv, OB-Dp and Vv-Dp. (A) Schematic representation of wPLI analysis (i.e., phase
coherence). After filtering the signal in a selected frequency range (see Materials and Methods) the instantaneous phase is
computed for both signals S1 (pink) and Sz (purple), and the phase difference between them (red dashed line). In this
example, phase difference between signals remains constant across time, representing a highly phase-coherent pair of
neural signals. wPLI dynamics between OB-Vv (B), OB-Dp (C), and Vv-Dp (D) in the 6-10 Hz range for each odorant (left
panel), the single-animal distribution of values during the 1-5 sec range (middle panel) and its group statistical analysis (right
panel; post-hoc differences depicted as gray lines above the corresponding odorants). RANOVA revealed a significant
interaction effect between in wPLI odorant and control (TW), but no differences between pairs of odorants were observed
after post-hoc comparisons (see Results section).
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Information redundancy between Ob, Vv and Dp.
Robustness, understood as the ability of tolerating perturbations that might affect the system’s functionality, is

a desirable characteristic for the olfactory system ©, for instance to preserve odorant discriminability in the
presence of noise, high background or highly variable odor plumes. Although wSMI provides relevant insight into
the amount of information shared between brain regions to distinguish odorant identity, it does not provide any
insight into whether the brain regions are processing the same or different information. Thus, in order to
investigate robustness from an informational point of view, we need a more nuanced analysis capable of
quantifying the redundant information that is being processed between regions .. Observing redundancy
between brain regions would be an indication of the system's robustness, as different brain regions can perform
the same function (i.e., odor mix decoding).

Odorant information in two brain regions can be schematized in a Venn diagram (Figure 7A). The first quantity
of interest is the overlap, termed redundancy (left panel, red area). Each inner circle represents the mutual
information between pairs of odorant categories and their LFP signals (e.g. between AA and EPT) for an individual
brain region (e.g. Vv). Conceptually, the term redundancy refers to the case in which the information conveyed
by region A and region B is the same (e.g. Vv and Dp). If the variables are redundant, each brain region alone is
sufficient to convey all the information about odorant category, and adding observation from the second brain
region does not contribute additional information. On the other hand, the concept of synergy is related to
whether region A and B convey extra information about odorant identity only if both regions are considered
jointly (right panel, blue area). Redundancy and synergy are reflected by positive and negative values of co-
information, respectively (see Materials and Methods).

Interaction information analysis revealed positive values, signaling information redundancy, between the post-
stimuli and pre-stimuli periods (PSP). This effect was observed for all odorant pairs and between all brain regions
implicating that the information between olfactory brain areas analyzed here is redundant (Ob-Vv: AA-EPT vs
PSP, W = 13.86, p<0.001; EPT-SE vs PSP, W = 17.96; p<0.001; AA-SE vs PSP, W = 14.50, p<0.001; Ob-Vv: AA-EPT
vs PSP, W = 12.78, p<0.001; EPT-SE vs PSP, W = 16.23; p<0.001; AA-SE vs PSP, W = 13.21, p<0.001; Ob-Vv: AA-
EPT vs PSP, W = 17.01, p<0.001; EPT-SE vs PSP, W = 14.20; p<0.001; AA-SE vs PSP, W = 15.39, p<0.001).

Interestingly, the dynamics of redundancy was not the same for different pairs of odorants. For each pair of
odorants, we computed the interaction information between a pair of brain regions in the frequency range of
the oscillatory response (~6-10 Hz; Figure 7). Interaction Information was first computed between OB and Vv
(Figure 7A). Kruskal-Wallis test showed a significant interaction across difference in odor pairs (pairs: AA-EPT,
EPT-SE, AA-SE; X2 =13.2, p=0.001). Post-hoc comparisons showed differences between odor pairs (EPT-SE vs AA-
EPT: W = 2.77, p<0.050; AA-SE vs EPT-SE: W = -4.74, p<0.001; AA-SE vs EPT-SE: W =-3.09, p = 0.029). A similar
interaction effect across differences in odor pairs was observed between OB and Dp (Figure 7B; Kruskal-Wallis
test: X2 = 9.81, p=0.007), with significant post-hoc effects between one odor pair of odor differences (EPT-SE vs
AA-EPT: W = 2.13, P = 0.132; AA-SE vs EPT-SE: W = -4.37, p = 0.002; AA-SE vs EPT-SE: W = -2.35, p = 0.097).
Interestingly, in the case of the wSMI between Vv and Dp (Figure 7C), we observed a significant interaction and
simple effects across the three pairs of odor differences (Kruskal-Wallis test: X2 = 16.8, p <0.001; Post-hoc
comparisons: EPT-SE vs AA-EPT: W = 3.09, p = 0.029; AA-SE vs EPT-SE: W =-5.49, p < 0.022; AA-SE vs EPT-SE: W
=-3.25, p<0.001).
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Taken together, these results indicate that the type of interactions observed between recording sites is
informationally redundant between each other, suggesting that the ability to reliably discriminate different
odorants is robustly implemented by the different components of the olfactory system.

A Redundancy and Synergy analyses
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Figure 7. Redundancy between OB-Vv, OB-Dp and Vv-Dp. (A) Schematic representation of redundancy and synergy
analyses. Each inner circle represents the mutual information between LFP signals of a pair of odorants for an individual
brain region, and the overlapping region represents the redundancy (red; left panel). The outer circle represents information
that is synergistic (blue; right panel). Redundancy dynamics between OB-Vv (B), OB-Dp (C), and Vv-Dp (D) in the ~6-10 Hz
range for each odorant (left panel), the single-animal distribution of values during the 1-5 sec range (middle panel) and its
group statistical analysis (right panel; post-hoc differences depicted as gray lines above the corresponding odorants).
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DISCUSSION

We have shown that primary response parameters such as oscillatory power, main frequency, time course and
phase were robust but largely uninformative to vastly different olfactory stimuli when recording sites were
analyzed separately. Conversely, we were able to reliably establish odor identity when recording sites were
considered together using advanced decoding techniques, and when the amount and type of information shared
between the recording sites was established. Our results suggest that distributed information across the
olfactory system indexes odorant identity.

In the mammalian olfactory bulb, seminal studies conducted on behaving animals have demonstrated that neural
activity at different spatiotemporal scales is modulated by animal behavior and experience apart from properties
of the olfactory stimuli. For instance, in rabbits, amplitude-modulated patterns across 64 electrode arrays
implanted in the OB exhibited highly context-dependent LFP oscillations during sniffing®2. Similarly, single-cell
mitral and tufted cells were strongly influenced by contextual efferent inputs in behaving rats®. These studies
suggest that LFP patterns in the OB contain a significant amount of non-primary sensory information, likely
reflecting experience, the behavioral context, and associated information apart from primary characteristics of
the stimulus.

If these studies account for the effects of context and behavior on olfactory processing, then what are the neural
markers associated with odorant properties themselves? We sought to answer this question using anesthetized
trout, allowing us to control for confounding factors such as respiration and sniffing, movement, experience, and
learning. Interestingly, spectral decoding and information-based connectivity analyses showed that the spatially
distributed oscillations carry information relevant for odorant discrimination. We interpret the shared
information conveyed in the LFP activity across OB, Dp and Vv as reflecting the complexity of the odor mixture.
Arguably, stimuli formed by complex mixtures with diverse molecular structures should elicit a neural response
containing a higher diversity of information patterns (i.e., higher signal entropy), resulting in an increase in
information sharing between olfactory brain areas when they are co-activated.

The stimuli used in this study are blends of various odorants displaying different levels of complexity based on
the quantity and diversity of their components (see Materials and Methods). Thus, the mixture of bile salts (BS)
is composed of 4 compounds and the mixture of amino acids (AA) is composed of 5 amino acids. On the other
hand, skin extract (SE), as a mixture resulting from the homogenization of a complete biological tissue, is
composed of hundreds of compounds, many of them difficult to identify, conveying much greater complexity
compared to AA and BS*2. Although it cannot be directly concluded that the properties of the molecules that
make up BS and AA determine greater or lesser complexity as both are mixtures of few compounds, the amount
of their components can be arguably used as a proxy for structural complexity. Supporting this view, in all three
pairs of regions, the wSMI results showed a correspondence between the quantity of components present in
each odor, and the amount of information sharing between regions (Figure 5B-C-D). Thus, while SE showed the
highest wSMI value (green bar; right panel), BS showed the lowest apart from control (yellow bar; right panel),
and AA showed intermediate values (red bar; right panel). This correspondence between odor complexity — in
terms of number of components — and the amount of information sharing between OB, Vv and Dp suggest that
at least some of the information captured by wSMI encodes structural properties of the stimuli across the
olfactory system.
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Why does the information-based connectivity metric (wSMI) capture odorant identity while the spectral-based
connectivity measure (wPLI) does not? As described in the introduction, studies of LFP activity in the olfactory
system have mainly focused on periodic or ‘rhythmic’ neural oscillations manifested as spectral peaks at different
frequency bands (e.g. beta and gamma). However, the spectrum of mesoscopic electrophysiological signals (e.g.,
LFP, EEG) also contains aperiodic or ‘arrhythmic’®*® that have been related to the integration of underlying
synaptic currents®’. Problematically, the standard approach of analyzing periodic power or phase synchronization
(e.g., wPLI) through band-pass filtering confounds both periodic and aperiodic activity®®. If we observed spectral
changes between two conditions (e.g., between two odorants) due to aperiodic activity, comparing bandpass-
filtered neural oscillations would confound or hide the aperiodic components of these spectra.

Crucially, the aperiodic component of the signal can be investigated using wSMI — an information-theoretic
connectivity metric®°!. For instance, using realistically simulated EEG signals, we have recently demonstrated
that wSMI can reliably detect aperiodic, non-linear interaction across brain regions that phase synchronization
(i.e., wPLl) was unable to detect ®8. The olfactory areas investigated in this study are thought to perform different
roles during olfactory discrimination. While the OB is thought to decode the odorant’s molecular structure,
higher olfactory centers such as Dp and Vv are thought to process more contextual and behaviorally relevant
information such as feeding, reproduction, and danger sensing®. We propose that the associations between
lower (OB) and higher (Dp and Vv) centers are established by a mechanism of information exchange conveyed
by the aperiodic component of the olfactory oscillation.

Robustness is a functional consequence of degenerate systems, that is, systems conformed by structurally
different elements capable of performing the same function’®72, Robustness is ubiquitous across many biological
systems including neural circuits and networks’’%73, Crucially, robust systems are also capable of preserving
their functions when exposed to changes in contextual circumstances, making them extremely resilient. From an
evolutionary point of view, it is reasonable to conceive that selection processes such as those underlying the
evolution of the olfactory system favor the development of robust systems. Phylogenetically, a mechanism
preserving the implementation of the same function by different brain regions might serve a crucial evolutionary
function: making olfactory discrimination quickly adaptable to changes in the environment.

We have used information redundancy analyses to characterize the robustness of the teleost olfactory systems
in implementing odorant discrimination. There is mounting evidence that redundancy in neural networks may
provide various computational benefits, for example, enabling stable computations despite unstable neural

7476 and allowing the central nervous system to filter out unwanted noise’’. Our finding of increased

dynamics
information redundancy across recording sites suggest that although neuroanatomically divergent, the
underlying neural circuits of OB, Vv and Dp can process the same information about odorant identity, supporting

the idea that — at least under anesthetized conditions — the olfactory system of teleost is functionally robust.

In conclusion, our results indicate that primary response parameters such as oscillatory power, main frequency,
time course and phase were robust but largely uninformative to vastly different olfactory stimuli when recording
sites were analyzed separately. However, a more nuanced analytical approach investigating the information
relationship between recording sites revealed shared information critical for olfactory discrimination, supporting
the notion that olfactory oscillations are carriers of information about odorant identity across olfactory brain
centers.
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