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ABSTRACT 

 

Field potential oscillations in the olfactory system of vertebrates and invertebrates are prominent and well-

studied, but their functions remain nevertheless enigmatic. Spatial networks are thought to play a role in 

olfactory discrimination in different species, but their analysis is frequently complicated by behavior, learning 

and respiration (sniffing). Here, we show that in a sniffing-free model (trout), the relevant feature for 

discriminating odorant identity is the information conveyed by the oscillatory activity in a spatially distributed 

network, including the olfactory bulb and the telencephalic regions Vv and Dp. Specifically, information-based 

methods based on spectral decoding, information sharing, and information redundancy distinguished odorant 

identity across spatially distant regions while classical spectral analyses did not. Our study demonstrates that 

olfactory oscillations are carriers of spatially distributed odor information across the teleost olfactory system.  
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INTRODUCTION 

The earliest study of field potential oscillations in the olfactory system was probably performed by Edgar Adrian, 

who recorded this phenomenon from the olfactory system of decapitated fish1. A few years later and in the 

middle of the second World War, he published a seminal and well-cited study describing oscillatory electrical 

activity in the olfactory system of anesthetized earth urchins2. Since then, oscillations have been demonstrated 

in olfactory pathways of many species, with remarkable similarities between vertebrates and3–6. Nevertheless, 

the phenomenon remains surprisingly enigmatic, because unequivocal proof of the coding of olfactory 

information and a role in odorant discrimination by olfactory oscillations remains absent to date. Olfactory 

oscillations are also a complex phenomenon in terms of their origin and structure: There are at least three types 

of oscillations involved in the central processing of olfactory signals in vertebrates, which vary by frequency, 

cause of activation, underlying cellular circuitry, spread across brain areas, and physiological implications. 

However, local bulbar and top-down inhibitory feedback signaling are broadly accepted as physiological roots of 

olfactory oscillatory activity7,8. 

In mammals, the recorded signals can be classified according to their frequencies as: Delta rhythm (0 - 4 Hz), 

theta rhythm (4 - 8 Hz), alpha rhythm (8 - 12 Hz), beta rhythm (12 - 30 Hz) and gamma rhythm (30 - 100 Hz)9. 

Among these, the most studied in the analysis of evoked activity in smell are those belonging to theta, beta and 

gamma rhythms, due to their potential association with olfactory learning and memory processes10,11. 

Theta rhythms, also known as "respiratory oscillations", due to their association with the respiratory cycles of 

mammals, are characterized by the activation of specific glomeruli during inhalation activity9, also showing 

consistency with theta rhythms of the hippocampus under specific learning conditions6,11. Although changes 

dependent on behaviors such as "sniffing" or sleep-wake states are observed in these9,12, their role in olfactory 

processing is not well understood, especially considering that there are animals in which the respiratory system 

is not directly related to the olfactory system. Such is the case among others in teleost fishes13, in which theta 

oscillations related to respiratory activity are absent from the olfactory system, although surprisingly a behavior 

similar to sniffing has been observed in teleost nostrils14. 

 

The gamma rhythm is the most studied of the neural oscillations15. Although its presence is dominant in the 

olfactory system in the absence of odorants, it is also observed in response to olfactory stimulation11, having 

been associated with local processing of odoriferous stimuli15. This rhythm consists of two sub-bands in many 

species, one of high frequency (gamma 1) and one of low frequency (gamma 2), which are modulated by sensory 

input with different functional associations and represent the fastest oscillations described in the olfactory 

system9,15–17. These oscillations have not been observed in the immature olfactory bulb of rats18 and specifically 

the gamma 2 oscillations are absent in anaesthetized animals9. In the LFP of the olfactory bulb of the teleost 

Danio rerio (zebrafish), gamma-type oscillations have been recorded with a frequency of 20 - 30 Hz and an onset 

a few milliseconds after stimulus application17,19,20.  

 

Beta rhythms have been recorded from different structures of the olfactory systems of many mammalian species, 

including mice, rats, cats, rabbits, and moles11, and it has been demonstrated that these oscillations emerge and 

are modulated by olfactory tasks such as olfactory learning and sensitization to odors9,11,15,17. The main difference 

observed between gamma and beta oscillations is that the former occurs locally within the olfactory bulb, while 

the latter require intact bidirectional interconnections between the olfactory regions of the bulb and the 

telencephalon11,21. In addition, beta oscillations have never been observed in the absence of olfactory stimulation 

and may last much longer than gamma oscillations, which decline rapidly after their onset9,11.  
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The popularization of wireless and multiple electrode recording systems mounted on freely moving mammals 

has allowed the recording and analysis of the different types of olfactory oscillations in a more natural context 

and within well-defined behavioral assays7,11,22. However, the complex signals obtained, and the multiple 

parameters affecting them, including movement, sniffing, learning, memory, and individual variation, have 

complicated the analysis and understanding of the physiological functions of olfactory oscillations, in spite of the 

undeniable advance and sophistication of recording techniques in the last decades.  

 

In fish, the olfactory sense plays important roles in social interactions, mating, migration and feeding, among 

others23. The fact that respiration in teleost fish is not related to smell opens the possibility of recording olfactory 

system activity as an isolated variable compared to mammals, reducing the confounding factors previously 

mentioned. Although the teleost olfactory system displays great similarities with that of mammals, there are 

some differences that must be considered for functional odorant analysis. In the teleost olfactory bulb, mitral 

cells are indistinguishable from tufted cells and innervate multiple glomeruli at once, which are surrounded by 

short axon cells and periglomerular cells that are involved in the initial processing of olfactory information17,24–

26. This, added to the existence of another type of projection neurons with an opposite polarity to the mitral cells 

(ruffed cells) that synapse with granule neurons, may be evidence of slightly different olfactory coding strategies 

in teleosts24,26,27.  

      

In the telencephalon, since the brain formation process of teleost fish (eversion) is different from that of most 

other vertebrates (evagination), a very different distribution of brain structures compared with mammals is 

generated as a result23,24. Additionally, the structures that are homologous to the neocortex or pallium of most 

terrestrial vertebrates, lack a six-layer cortex or lamellar structures in teleost fish and, instead, contain areas and 

nuclei neuroanatomically and functionally analogous to the pallial and subpallial structures of other vertebrates, 

which includes areas that process olfactory information24,27–29. Thus, there is evidence that several pallial and 

subpallial regions of the teleost telencephalon receive projections from the olfactory bulb and among these, the 

ventral telencephalon region has characteristics that relate it to mammalian reward systems such as the septum, 

the nucleus accumbens and the substantia innominata, while functions related to the determination of the 

identity of odors are attributed to posterior dorsal areas of the teleost telencephalon, since it is the main 

objective of the secondary olfactory fibers, comparable to the primary olfactory cortex and the piriform cortex 

of higher vertebrates23,24,30–36. 

 

Here, we took a conservative approach and simplified the sensory setting to a maximum, eliminating the effects 

of movement and sniffing by recording from anesthetized teleost fish. To reduce intra- and inter-specimen 

variation, we repeated identical trials many times within and across the specimens and pooled the data for 

advanced analysis of putative information contents. Specifically, we recorded olfactory responses reflected by 

LFP activity in parallel from four sectors of the olfactory system in live anesthetized rainbow trout (Oncorhynchus 

mykiss): Olfactory epithelium, olfactory bulb and the ventral core of the ventral telencephalon (Vv) and its 

posterior dorsal area (Dp). Our data indicate that primary response parameters such as oscillation power, main 

frequency, time course and phase were robust and largely indifferent to several olfactory stimuli, but a more 

nuanced analysis based on connectivity and spectral decoding revealed shared information contents between 

different recording sites, supporting the notion that olfactory oscillations act as carrier waves transmitting subtle 

information traces across olfactory brain centers.  
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MATERIALS AND METHODS 

 

Animals, anesthesia and surgery 

Juvenile rainbow trout, Oncorhynchus mykiss, were obtained from a local hatchery (Piscicultura Río Blanco, Los 

Andes, Chile), and kept at 16°C in aquariums with dechlorinated and filtered water in the animal facility of the 

Faculty of Sciences of the Universidad de Valparaíso, for up to six months, with a light / dark regime of 12:12 

hours. The animals were fed daily with fish meal pellets. For the experiments, specimens of undetermined sex 

and a total length of 20 ± 2 cm were selected. The procedures applied in this study were approved by the 

Bioethics Committee of the Universidad de Valparaíso and are in accordance with the guidelines of the National 

Research and Development Agency (ANID) of Chile. Before the experiments, the fish were anesthetized with 10 

mg/l MS-222 (ethyl 3-aminobenzoate methanesulfonate) and immobilized with an intramuscular injection of 

gallamine triethiodide (Flaxedil; 0.03 mg / 100 g body weight), until balance and responsiveness were lost. 

Immobilized fish were wrapped in moistened tissue and placed in a container of synthetic sponge. The gills were 

irrigated through an oral tube with a constant flow of cooled aerated water (10°C) containing 10 mg/l of MS-222 

(pH 7.4). Before surgery, all dissection material was impregnated with lidocaine hydrochloride (2%), which was 

also applied directly on the surface of the animal's skin. To gain access to the fish's olfactory organ, the skin and 

connective tissue covering the entrance to the nostril was removed. To access the brain, the cranial vault was 

opened under a stereomicroscope with a transverse section through the midline of the head at eye level. Then, 

two cuts were made perpendicular to the first, and the skull was carefully opened until the brain was exposed. 

From this point on, the brain was periodically irrigated with artificial cerebrospinal fluid (in mM: 124 NaCl, 2.69 

KCl, 1.25 KH2PO4, 2.0 MgSO4, 26 NaHCO3, 2.0 CaCl2, 10 glucose, pH 7.4). The vitality of the fish was monitored by 

checking the blood flow in the vessels of the tela coroidea covering the telencephalon. 

 

Odor preparation and stimulation 

The water to which the trout were adapted in the animal facility (TW, trout water) was used as negative odor 

control, and to dilute the odorant mixtures. Four different types of odor stimuli were applied throughout the 

study: (1) A synthetic mixture of five L-amino acids (AA): Serine, cysteine, aspartate, lysine and alanine; a mixture 

of four synthetic bile salts (BS): Deoxycholic acid, sodium taurocholate, lithocholic acid and taurolithocholic acid; 

beta-phenylethyl alcohol (PEA) as single odorant stimulus, and an extract of trout skin (SE). Amino acids represent 

food odors to fish; bile salts are considered to be social odors and PEA is a compound that is used as a fishing 

lure and as synthetic odorant in zebrafish studies26,37,38. Finally, the extract of trout skin is a natural odorant 

mixture containing alarm pheromones26,39–41. The mixture of bile salts (BS), composed of four compounds 

(deoxycholic acid, sodium taurocholate, Lithocholic acid and taurolithocholic acid) and the mixture of five amino 

acids (AA) (Ser, Cys, Asp, Lys and Ala). Skin extract (SE) is a mixture resulting from the homogenization of a 

complex biological tissue, likely composed of hundreds or thousands of compounds42. 

 

The amino acids and bile salts were prepared as stock solutions at a concentration of 100 mM and subsequently 

diluted in TW to the final concentration. Skin extract was prepared from the macerated skin of five juvenile trout 

in 100 ml of TW, filtered and aliquoted as stock solution. The stock was frozen at -80°C and used throughout the 

study. All chemicals were purchased from Sigma-Aldrich (Santiago, Chile). Approximately equipotent odor stimuli 

were defined by diluting BS and SE stocks to concentrations generating the same electroolfactogram amplitude 

as 100 µM of AA, yielding 700 µM for the BS mixture and a dilution of 1: 500 for the SE stock. For PEA, equipotent 

values could not be obtained, since responses remained smaller up to concentrations above 1 mM. The olfactory 
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stimuli were administered automatically using a custom-built computer-controlled picospritzer connected to the 

gravity-fed open perfusion system constantly irrigating the olfactory organ.  

 

Electrophysiological recordings 

We recorded the electroolfactogram (EOG) in parallel with the local field potentials (LFP) in the olfactory bulb 

(OB) and two telencephalic regions, the ventral nucleus of the ventral telencephalon (Vv) and the dorsal posterior 

zone of the telencephalon (Dp) (Figure 1A). All signals were acquired with WinWCP software version 4.3.8 (John 

Dempster, University of Strathclyde, UK) and analyzed using Clampfit 10.3. (Molecular Devices). The EOG was 

recorded from the olfactory rosette with an Ag/AgCl electrode located directly above the central raphe. An 

identical reference electrode was placed on the skin of the head, and a ground electrode connected to a fin. The 

EOG signals were amplified with a differential AC amplifier (Warner DP-301, Warner Instruments, USA) and 

digitized with a PCI-6221 A/D interface (National Instruments, USA) at a sampling rate of 1 kHz. For each recorded 

brain sector, two tungsten electrodes were used (FHC tungsten microelectrode, tip diameter 3 µm, impedance 

11-13 MΩ), one at the recording site and the other as a reference, positioned in the cerebrospinal fluid of the 

exposed cranial cavity. In the olfactory bulb, the electrodes were positioned within the mitral cell layer, about 

150 µm deep with respect to the dorsal surface of the bulb. Given the odotopy of the olfactory bulb, the position 

of the recording electrode was adjusted depending on the stimulus type, based on an odotopy map reported in 

(Bazáes et al., 2013). The electrode used to record Vv was positioned in the anterior third of the animal's 

telencephalon at approximately 500 µm from OB and a depth of 150 µm, entering through the central sulcus 

between the hemispheres. The electrode recording the telencephalic region Dp was positioned in the posterior 

third of the telencephalon, at 500 µm distance from the optic tectum (OT) and a depth of 450 µm. All recordings 

were made in ipsilateral brain structures with respect to the stimulated olfactory organ. Each recording protocol 

had a duration of 50 seconds, which included the application of the olfactory stimulus or control after the first 

10 second with a duration of 1 s. Twenty consecutive trails were performed for each stimulus type. The LFP 

electrodes were connected to the headstages of an AC amplifier (AM Systems Model 1800), band-pass filtered 

between 1 and 100 Hz and digitized at 1 kHz.  

 

Signal processing and frequency analysis 

Signals were low pass filtered at 50 Hz (3 pole Butterworth filter) and downsampled to 200 Hz. Spectral density 

was calculated using Welch's method, with segments of 500 samples and an overlap of 350. For each experiment, 

a frequency spectrum was calculated from the 10 s following each of the stimulus exposures, and the spectra 

were averaged. Similarly, baseline spectra were calculated for the 10 s prior to stimulus application and averaged. 

The average of baseline spectra was subtracted from the post-stimulus. Spectrograms were calculated using a 

continuous wavelet transform (CWT) with the complex Morlet wavelet (σ=5). The CWT is defined as: 

 

𝑊(𝑡, 𝑠) =
1

𝑠
∫ 𝑓(𝑢)𝜓∗ (

𝑢 − 𝑡

𝑠
) 𝑑𝑢

∞

−∞

 

Where 𝑠 is the scale parameter, 𝑡 the position parameter, 𝑓() the signal function, 𝜓() the wavelet function and 

the asterisk represents the complex conjugate. The complex Morlet wavelet is defined as: 

 

𝜓(𝑡) = (1 +𝑒𝑥𝑝 (−𝜎2)  − 2 𝑒𝑥𝑝 (−
3

4
𝜎2) )

−
1
2

𝜋−
1
4 𝑒𝑥𝑝 (−

1

2
𝑡2) (𝑒𝑥𝑝 (𝑖𝜎𝑡)  −𝑒𝑥𝑝 (−

1

2
𝜎2) ) 
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With central frequency ~𝜎. The scaleogram, analog to the spectrogram, is defined as the square of the amplitude 

of the CWT: 

𝑋(𝑡, 𝑠) = 𝑊(𝑡, 𝑠)(𝑊(𝑡, 𝑠))
∗
 

The scale is related to the period (T) and frequency (𝑓) in the following relationship: 

 
1

𝑓
= 𝑇~𝑠/𝜎 

The spectrogram amplitudes were expressed as the z-score by subtracting, at each frequency, the mean of the 

amplitudes of the baseline spectrogram and dividing by its standard deviation.  

 

Coherence analysis 

Coherence 𝐶𝑋𝑌 between signals 𝑋 and 𝑌 was calculated as: 

 

𝐶𝑋𝑌 =
|𝑃𝑋

∗𝑃𝑌|2

(𝑃𝑋𝑃𝑋
∗)(𝑃𝑌𝑃𝑌

∗)
 

being 𝑃𝑋 and 𝑃𝑌 the spectral power density estimators of signals 𝑋 and 𝑌, respectively. The asterisk denotes the 

complex conjugate. The estimation of spectral power was carried on with the Welch’s method, using windows 

of 500 samples and overlap of 350 samples. Like the frequency spectrums, the coherence of the 10 s prior to the 

stimuli was subtracted to the coherence calculated in the 10s after the stimuli. 

 

Spectral and coherence calculations were performed in Python language with the routines provided by the Scipy 

package. Wavelet spectrograms were performed using Python code freely available at 

https://github.com/patoorio/wavelets. 

 

Multivariate Pattern Analysis (MVPA)  

In addition to the univariate approach, multivariate spectral decoding was applied to the time–frequency data. 

This was done because MVPA decoding holds an advantage over most univariate methods as it offers more 

spatially sensitive dependent measures, demonstrating that information is present in activity patterns across 

brain regions 43,44. The ADAM toolbox 43 was used on raw LFP data, which was transformed to time–frequency 

charts with similar settings epochs: 0 to 10 seconds after stimuli presentation, 1–40 Hz.  

 

It is essential to keep a balanced number of trials between conditions when performing a multivariate decoding 

analysis since design imbalances may have unintended effects 43 on the linear discriminant analysis (LDA; the 

classification algorithm used here) and area under the curve accuracy metric (AUC; the accuracy performance 

metric used here). To keep a balanced number of trials across conditions, we randomly selected and discarded 

trials when necessary (‘undersampling’; see Fahrenfort et al., 2018). We quantified classifiers’ accuracy 

performance by measuring the AUC of the receiver operating characteristic (ROC), a measure derived from signal 

detection theory that is insensitive to classifier bias. AUC corresponds to the total area covered when plotting 

the cumulative true positive rates against the cumulative false positive rates for a given classification task. Thus, 

finding above-chance performance indicates that there was information contained in the neural data that the 

classifier decoded based on the stimulus features of interest. 
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LFP epochs time-locked to odorant presentation were classified according to their type (i.e., SE, AA, BS). Next, a 

backward decoding algorithm, using odorant category was applied according to a 10-fold cross-validation 

scheme. An LDA was used to discriminate between odorant classes after which classification accuracy was 

computed as the AUC, a measure derived from signal detection theory. AUC scores were tested per time point 

with double-sided t-tests across participants against a 50% chance level. These t-tests were double-sided and 

corrected for multiple comparisons using cluster-based 1000-iteration permutation tests 45 with a standard cut-

off p-value of 0.05. This procedure yields time clusters of significant above-chance classifier accuracy, indicative 

of information processing.  

 

Measurement of phase synchronization  

We quantified phase locking between pairs of electrodes to measure dynamical interactions among electrode 

signals oscillating in the same frequency range. Phase synchronization analysis proceeds in two steps: the 

estimation of the instantaneous phases, and the quantification of the phase locking. 

 

To obtain the instantaneous phases, φ, of the neural signals, we used the Hilbert transform. The analytic signal 

𝜉(𝑡)  of the univariate measure 𝑥(𝑡) is a complex function of continuous time defined as: 

 

𝜉(𝑡) =  𝑥(𝑡) +  𝑖𝑥ℎ(𝑡) =  𝑎𝜉(𝑡)𝑒𝑖𝜑𝜉(𝑡) 

 

where the function is the Hilbert transform of: 

 

𝑥ℎ(𝑡) =  
1

𝜋
𝑃. 𝑉.  ∫

𝑥(𝑡)

𝑡 − 𝜏

+∞

−∞

𝑑𝜏 

 

P.V. indicates that the integral is taken in the sense of Cauchy principal value. Sequences of digitized values give 

a trajectory of the tip of a vector rotating counterclockwise in the complex plane with elapsed time. The vector 

norm at each digitizing step t is the instantaneous amplitude 𝑎𝜉(𝑡): 

 

𝑎𝜉(𝑡) =  √𝑥(𝑡)2 + 𝑥ℎ(𝑡)2 

 

     Similarly, the complex argument of analytic signal is the instantaneous phase 𝜑𝑥(𝑡). 

 

𝜑𝑥(𝑡) = 𝑎𝑟𝑐𝑡𝑔
𝑖𝑥ℎ(𝑡)

𝑥(𝑡)
 

 

The instantaneous phase, although defined uniquely for any signal to which the Hilbert transform can be applied, 

is challenging to interpret for broadband signals. For this reason, a standard procedure is to consider only narrow-

band phase synchronization by estimating an instantaneous phase for successive frequency bands, which are 

defined by band-pass filtering the time series46. Thus, we band-pass filtered LFP signals in multiple consecutive 1 

Hz-wide frequency bins from 6 to 10 Hz using a zero-phase shift non-causal finite impulse filter.  
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Phase locking quantification: weighted phase lag index (wPLI) 

Phase synchronization can be considered as an LFP/EEG measure of oscillatory coupling between neuronal 

populations47,48. The Phase Lag Index (PLI)49 attempts to minimize the impact of volume conduction and common 

sources inherent in EEG data by averaging the signs of phase differences, thereby ignoring average phase 

differences of 0 or 180 degrees. This is based on the rationale that such phase differences are likely to be 

generated by volume conduction of single dipolar sources. Despite being insensitive to volume conduction, PLI 

has two important limitations: first, there is a strong discontinuity in the measure, which causes it to be maximally 

sensitive to noise; second, when calculated on small samples, PLI is biased toward strong coherences (i.e., it has 

a positive sample-size bias). Formally, the PLI is defined as the absolute value of the sum of the signs of the 

imaginary part of the complex cross-spectral density Sxy of two real-valued signals x(t) and y(t) at time point or 

trial t: 

PLI = |
∑ 𝑠𝑔𝑛(𝑖𝑚𝑎𝑔(𝑆𝑥𝑦,𝑡))𝑛

𝑡=1

𝑛
| 

The Weighted PLI measure (wPLI) 50 addresses the former problem by weighting the signs of the imaginary 

components by their absolute magnitudes: 

wPLI = |
∑ |𝑖𝑚𝑎𝑔(𝑆𝑥𝑦,𝑡)|𝑠𝑔𝑛(𝑖𝑚𝑎𝑔(𝑆𝑥𝑦,𝑡))𝑛

𝑡=1

∑ |𝑖𝑚𝑎𝑔(𝑆𝑥𝑦,𝑡)|𝑛
𝑡=1

| 

The PLI sample size problem can be addressed by considering the same number of trials per condition in the 

phase coherence analysis. Further, wPLI represents a dimensionless measure of connectivity that is not directly 

influenced by differences in spectral or cross-spectral power.  The wPLI index ranges from 0 to 1, with a value of 

1 indicating perfect synchronization (phase difference is perfectly constant throughout the trials) and value 0 

representing the total absence of synchrony (phase differences are random). Temporal evolution of wPLI was 

calculated using a 500 ms sliding window with 2 ms time step, i.e. with a 96% overlap between two adjacent 

windows. wPLI charts are expressed in z-scores (standard deviation units) relative to the pre-stimulus period (1 

s) which was regarded as a baseline.  

 

Information sharing between recording sites  

We quantified the information sharing between electrodes by calculating the weighted symbolic mutual 

information (wSMI). This index estimates to which extent two LFP/EEG signals exhibit non-random joint (i.e., 

correlated) fluctuations. Thus, wSMI has been proposed as a measure of neural information sharing 51 and has 

three main advantages. First, it is a rapid and robust estimate of signals’ entropy (i.e., statistical uncertainty in 

signal patterns), as it reduces the signal’s length (i.e., dimensionality) by looking for qualitative or ‘symbolic’ 

patterns of increase or decrease in the signal. Second, it efficiently detects high non-linear coupling (i.e., non-

proportional relationships between neural signals) between LFP/EEG signals, as it has been shown with simulated 
48 and experimental EEG/LFP data 52. Third, it rejects spurious correlations between signals that share a common 

source, thus prioritizing non-trivial pairs of symbols. 

 

We calculated wSMI between each pair of electrodes, for each trial, after transforming the LFP signal into a 

sequence of discrete symbols defined by ordering of k time samples with a temporal separation between each 
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pair (or τ). The symbolic transformation is determined by a fixed symbol size (k = 3, i.e., 3 samples represent a 

symbol) and the variable τ between samples (temporal distance between samples), thus determining the 

frequency range in which wSMI is estimated 51,53. We chose τ = 32. The frequency specificity f of wSMI is related 

to k and τ as follows: 

𝑓 =
1000

𝜏 ∗ 𝑘
 

This formula, with a kernel size k of 3 and τ values of 32, produced a sensitivity to frequencies in the range ~6 to 

10 Hz in which the peak of oscillatory activity is observed in the Power Spectral Density (PSD) (Figure 2). wSMI 

was estimated for each pair of transformed LFP signals by calculating the joint probability of each pair of symbols. 

The joint probability matrix was multiplied by binary weights to reduce spurious correlations between signals. 

The weights were set to zero for pairs of identical symbols, as these could have been elicited by a unique common 

source, and for opposite symbols (i.e., of in opposite direction), as these could reflect the two sides of a single 

electric dipole. The following formula calculates wSMI (in bits, but shown in arbitrary units or AU, with absolute 

values): 

𝑤𝑆𝑀𝐼(𝑋, 𝑌) =
1

log (𝑘!)
∑  

 

𝑥∈𝑋

∑ 𝑤(𝑥, 𝑦) 𝑝(𝑥, 𝑦)

 

𝑦∈𝑌

log (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
) 

Here, x and y are symbols present in signals X and Y respectively; w(x,y) is the weight matrix and p(x,y) is the joint 

probability of co-occurrence of symbol x in signal X and symbol y in signal Y. Finally, p(x) and p(y) are the 

probabilities of those symbols in each signal and k! is the number of symbols used to normalize the mutual 

information by the signal’s maximal entropy. Temporal evolution of wSMI was calculated using a 500ms sliding 

window with 2-ms time step, i.e., with a 96% overlap between two adjacent windows. 

 

Co-Information between recording sites 

For each trial, after band-pass filtering the LFP signals between 6 to 10 Hz, we computed the time-resolved 

spectral power by computing the square of the instantaneous amplitude 𝑎𝜉(𝑡) using the Hilbert transform 

procedure described above. Using this resulting signal (i.e., the time-resolved spectral power), we then 

computed the co-Information (co-I). The co-information (co-I) 54,55 has been calculated in the following way: 

 

𝑐𝑜𝐼(𝑋; 𝑌; 𝑆) = 𝐼(𝑋; 𝑆) + 𝐼(𝑌; 𝑆) − 𝐼(𝑋, 𝑌; 𝑆) 

For each time point, I(X;S) corresponds to the mutual information (MI) between the signal at recording site X and 

stimuli class S. I(Y;S) corresponds to the MI between the signal at recording site Y and stimuli class S. Finally, 

I(X,Y;S) corresponds to the MI between stimuli class S combining signals from recording sites X and Y.  This way, 

co-information was computed for each pair of odorants between all three pairs of recording sites.  

 

Positive co-information means that signals between recording sites contain redundant, or overlapping, 

information about the stimuli. Negative co-information corresponds to synergy between the two variables. This 

means that the mutual information when considering the two variables jointly is larger than considering the 

variables separately.  
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Statistical Analysis 

Statistical analyses were performed using MATLAB (2016a), Jamovi (Version 0.8.1.6) [Computer Software] 

(Retrieved from https://www.jamovi.org) (open source), and JASP Team (2018; JASP; version 0.8.4 software) 

statistical software.  

 

 

RESULTS 

 

General description of the electrical responses 

To retest the still unanswered hypothesis if odor information is carried by LFP oscillations from the olfactory bulb 

to higher olfactory centers, we recorded olfactory responses as reflected by variations of the LFP to four different 

types of odors: Two synthetic mixtures, amino acids and bile salts, one natural mixture resulting from the 

mechanical maceration of conspecific skin, and the individual synthetic odorant PEA. Recordings were obtained 

simultaneously from the olfactory epithelium, the olfactory bulb and two principal olfactory centers of the 

telencephalon: The subpallial ventral nucleus of the ventral region (Vv) and the pallial posterior dorsal region 

(Dp) (Figure 1A). Odor stimulation, as opposed to trout water (TW, control), always generated a dose-dependent 

negative EOG, and a transient and near-simultaneous increase in LFP oscillation amplitudes in the olfactory bulb 

and the telencephalic olfactory areas, lasting 10 to 15 s (Figure 1B-E). To test if repeated trials affected the LFP 

oscillations through sensory adaptation, sensitization or learning-related mechanisms, we compared the 

responses of 20 consecutive trials, spaced 50s apart, to the same stimuli (Figure 1B'-E'). Interestingly, the 

amplitudes of the oscillatory responses and the response envelopes remained unaltered throughout the trial 

sequence in the OB, and the telencephalic areas Vv and Dp. These findings allowed us to pool the data from 

several consecutive trials for subsequent analyses. 

 

Analysis of LFP oscillations in the OB, and telencephalic areas Vv and Dp 

We characterized the frequency-domain characteristics of the electrophysiological recordings and the responses 

to odorants, using the Welch periodogram method (Figure 2A-B). To improve the signal-to-noise ratio, we 

averaged the spectra across trials of the same experiment. Figure 2A shows the average spectrum calculated 

from a 10s window before (dotted line) and after (continuous line) exposure to the amino acid mixture (AA), 

while recording in Vv. The baseline activity contains prominent low-frequency (<7 Hz) activity, and thus the 

baseline spectrum was subtracted from the odorant response spectrum (Figure 2A, inset). This subtraction was 

performed on all data shown in Figures 2 and 3. Figure 2B shows the average of the spectra for all experiments 

and their recordings in OB, Vv and Dp, while exposed to AA, SE, BS and PEA. Controls with trout water are shown 

in blue. AA, SE and BS evoked strong oscillatory responses in the recorded brain areas in the 5-9 Hz band, albeit 

with different magnitudes. The response to PEA, however, failed to generate a robust oscillation in most 

experiments. We hypothesize that this is due to PEA, a component of floral odors, being a novel odorant for the 

trouts, with no or little biological meaning. Therefore, the responses to PEA were excluded from the following 

frequency-domain analyses.  

 

The frequency of the maximum amplitude for each experiment is displayed in the insets. Notably, the response 

to BS appears to occur at a higher frequency on average than the response to AA and SE. However, only at OB 

and Dp a significant difference in the maximum frequencies was detected (Kruskal-Wallis test: OB H=6.43, 
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p=0.04; Dp H=7.84, p=0.02; Vv H=1.75, p=0.42), and the difference was only found between AA and BS (Dunn’s 

posthoc test: OB AA/SE p=0.52, AA/BS p=0.013, SE/BS p=0.06; Dp AA/SE p=0.21, AA/BS p=0.005, SE/BS p=0.11).  

 
Figure 1. Recording sites and raw simultaneous recordings of the EOG and LFP oscillations from the olfactory bulb (OB), 
the ventral nucleus of the ventral telencephalon (Vv) and the dorsal posterior zone of the telencephalon (Dp). (A) 
Schematic drawing of the rainbow trout forebrain. Olfactory information and LFP oscillations of different frequency bands 
are transmitted in parallel from the olfactory bulb to higher olfactory areas of the telencephalon, notably Vv and Dp. Scale 
bar: 3 mm. (B-E) Responses to an amino acid (AA, 100 μM) and a bile salt (BS, 700 μM) mix, conspecific skin extract (SE, 
diluted 1:500) and beta-phenylethyl alcohol (PEA, 100 μM) were recorded simultaneously from OB, Vv and Dp, showing 
prominent and ostensibly synchronous oscillatory activity during odor stimulation. The sets of traces to the right display 
details on a shorter timescale. (B'-E') Oscillatory response amplitudes remained stable for 20 trial repetitions in each 
olfactory brain area, showing no sign of sensory adaptation. 

 

To analyze the time-dependent frequency components of the response, we analyzed the recordings using a 

continuous Morlet wavelet transform. As previously, the transforms were averaged for all sweeps in every single 

experiment, and the frequency components prior to stimulus exposure were subtracted. In this case, the results 
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are expressed as z-score (see Materials and Methods). Figure 2C shows a spectrogram of the response recorded 

at the OB after exposure to BS, where the maximum frequency of the oscillation suffers a shift towards lower 

frequencies as the response progresses in time.  

 

Although in many recordings the response extended past 5 s (sometimes reaching up to 10 s), the most robust 

and consistent responses were localized in the 1.5 to 4 s window. We calculated the average maximum frequency 

for that time span, shown in Figure 2D. All responses to AA, SE and BS show the same frequency shift, starting at 

a higher frequency and then decreasing in about 2Hz after 2 s. Interestingly, this analysis shows more evidently 

that BS evokes oscillations at a higher frequency than the other odorants. 

 

 
Figure 2. Oscillatory characteristics of neural response to odorants. (A) Average frequency spectrum of the LFP response 
recorded in Vv, upon exposure to the AA mix. Dotted line is the spectrum of the recording prior AA exposure (10 s) and the 
continuous line corresponds to the 10 s after exposure to AA. The spectra of 20 repetitions were averaged. The inset shows 
the net response to the odorants (baseline subtracted). (B) Average of baseline-subtracted spectra of the responses from 
OB, Vv, and Dp when stimulated with AA, trout skin extract (SE), bile salts (BS) and PEA, in addition to trout water control 
(TW; blue line). The average spectra of 11-14 experiments per condition are shown, with the mean as continuous line and 
the standard error as colored shade. The inset shows the peak of the response spectra. (C) Wavelet spectrogram of 
oscillations recorded from the OB upon exposure to SB at time t = 0s. The data are expressed as z-score with respect to the 
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baseline activity at each frequency during the 10 s prior to the stimulus. As in (A), it represents the average of 20 trials 
repeated in the same specimen with the same stimulus. (D) Average (lines) and standard error (shadow) of the maximum 
frequency at each time point, according to the wavelet spectrogram. The average was calculated only at times when more 
than half of the experiments showed a z-score higher than 5 in any frequency within the 5-20 Hz range, thus the different 
durations of the responses. Maxima were obtained from baseline-subtracted spectrograms. 

 

We next employed frequency-domain analysis to assess the degree of synchrony between the oscillations in 

different areas, by calculating the coherence cross-spectra. Figure 3A shows the average coherence spectra of 

the responses recorded in presence of AA, SE and BS, for the three possible pairs between OB, Vv and Dp. All 

responses displayed a strong coherence with a peak around 7-8 Hz, the same frequency of the main oscillation. 

The median frequency of the maximum coherence (insets) was not significantly different between groups 

(Kruskal-Wallis test, OB-Dp H=2.62 p=0.27; OB-Vv H=4.4 p=0.11; Dp-Vv H=5.25 p=0.07). Interestingly, AA and SE 

also generated coherence in the 15Hz range, although this oscillation was not particularly visible in the frequency 

spectra. Most likely, this reflects harmonic components of the main oscillation frequency. 

 

Finally, we analyzed the phase component of the cross-spectra at the frequency of highest coherence between 

areas (Figure 3B). Although there is variability between experiments, on average the oscillation in Dp leads the 

activity in OB by 1/4 of a cycle (~35 ms at 7Hz). Alternatively, OB leads the oscillations in Dp by 3/4 of a cycle or 

~100 ms. This tendency is more marked for the response to AA and SE than to BS. Also, on average the responses 

in OB and Vv are in anti-phase, equivalent to a lag of ~70 ms at 7Hz. Finally, the phase relationship between Dp 

and Vv is the most variable of all, but the tendency is for Vv to lead Dp by 1/4 of a cycle. 
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Figure 3. Coherence in the oscillatory response recorded in different regions. (A) Coherence spectra showing the mean 
(lines) and standard error (shades) of coherence detected at every frequency, in the pairs of regions indicated and after 
exposure to the odorants that evoked the most robust responses. For each experiment, a coherence spectrum was 
calculated and the experiments for each odorant were averaged. Inset shows the frequency where the peak of the 
coherence was detected. (B) Phase of the coherence measured at the frequency of maximum coherence. The gray lines 
denote the amplitude (radius) and phase (angle) of the complex-valued coherence corresponding to the frequency at the 
maximum for each individual experiment. Colored lines and dots represent the average vector across experiments 
performed with the same odorant. 

 

Thus, the basic characteristics of the odor-elicited oscillations allow for little or no discrimination between 

odorants. The only exception seems to be the higher frequency of oscillations elicited by bile salts.  

 

Multivariate spectral decoding of LFP oscillations across OB, Vv and Dp 

Is the spatial information across regions relevant for odorant discrimination? To determine whether a spatially 

extended pattern of oscillatory activity underlies olfactory discrimination, we performed a spectral Multivariate 

Pattern Analysis (MVPA or “spectral decoding”; King and Dehaene, 2014). Spectral decoding allows to obtain a 

measure of odorant discrimination without having to a priori specify at which areas or frequency bands these 

differences emerge, while at the same time extracting subtle trial-by-trial neural differences that are undetected 

by standard averaging procedures (Figure 4A) like those performed in the univariate analyses described in the 

previous section (Fahrenfort et al., 2018). To do so, we trained a classifier to simultaneously distinguish the three 

types of odorants across the three regions (OB, Dp and Vv) (Figure 4B; see Materials and Methods). Above-

chance classification accuracies imply that the relevant information about the decoded odorants is present in 

the oscillatory activity, implying spatially distributed olfactory processing and coding.  

 

Interestingly, and contrary to the univariate spectral analyses performed above, multivariate decoding showed 

that information about the three odorant categories was reliably decoded above chance when the spatial 

variation in neural activity across regions was considered (Figure 4B, right panel). A cluster-based permutation 

test showed a significant cluster of increased classification accuracy spanning several frequencies and time points 

(cluster p < 0.01; peak frequency: 6-10 Hz; time range: 1 to 9 secs). This result suggests that the relevant 

information for odorant discrimination is encoded by the functional interaction between olfactory regions.  
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Figure 4. Spectral decoding across OB, Vv and Dp. (A) Temporal dynamics of spectral power. Time-frequency charts were 
averaged across individuals per odorant and region. (B) Multivariate spectral decoding. Each region is considered as a 
separate dimension, or “feature”, in a N-dimensional space, depicted by the 3-dimensional axes conformed by OB, Vv and 
Dp regions (in grey). Each trial-wise odorant presentation (AA in red, SE in green, and BS in orange) produces a pattern that 
occupies a point in a 3-dimensional neural activation space. A linear classifier (LDA) learns a way to transform this high-
dimensional space into a new one in which the channel patterns associated with each odorant are separable by a decision 
boundary (left panel). LDA assigns an odorant label for the training data based on the position of the activity patterns relative 
to the decision boundary. The performance of the classifier is then a function of the accuracy of its label assignments (e.g., 
percentage correct, middle panel). (C) This procedure is performed at each time point and frequency and a cluster-based 
permutation test (p<0.05; brown boundary) was performed to determine significant decoding above chance (see Materials 
and Methods).  

 

Information sharing between OB-Vv, OB-Dp, and Vv-Dp across odors and control 

Functional connectivity – understood as the coordinated activity across brain areas – is a key element of several 

theories of perception across species (Fries 2005; Saalmann et al. 2012; King et al. 2013; Bastos and Schoffelen 

2016). While classic metrics of functional connectivity such as phase coherence investigate the temporal 

synchronicity between stereotypical patterns observed in the LFPs (i.e., neural oscillations), metrics based on 

information processing capture dynamics that are not necessarily periodic or oscillatory 51. Importantly, non-

oscillatory or ‘aperiodic’ information is critical for establishing distributed functional connectivity when brain 
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signals are highly complex 48. Experimentally, non-oscillatory functional connectivity can be investigated by 

computing the shared information across brain regions, showing its robustness in discriminating perceptual 

representations 52,59 and alertness states 48,51,53. Based on these previous findings and on the spectral decoding 

results (Figure 4), we reasoned that a mechanism based on distributed information sharing across OB, Vv and Dp 

could be appropriate for distinguishing odor composition and intensity. Thus, we applied a method for 

quantifying non-oscillatory functional connectivity based on information theory: weighted symbolic mutual 

information (wSMI) 51.  

For each odorant category used here, we computed information sharing between regions in the frequency range 

of the oscillatory response (~6-10 Hz; Figure 5). We first computed wSMI between OB and Vv (Figure 5A). Kruskal-

Wallis test showed a significant interaction across odors (odors: TW, AA, BS, SE; X2 = 29.9, p<0.001). Post-hoc 

comparisons showed differences between odors and control (AA-TW: W = 5.85; p<0.001, SE-TW: W = 5.97, 

P<0.001, BS-TW: W = 4.80, p<0.001), and between two out of three odors (AA-SE: W = 3.52, p = 0.013; SE-SB: W 

= -3.78, p = 0.007; AA-SB: W = -1.81, p = 0.20). A similar interaction effect across odors was observed in wSMI 

between OB and Dp (Figure 5B; Kruskal-Wallis test: X2 = 28.0, p<0.001), with significant post-hoc effects between 

odors and control (AA-TW: W = 5.92; p<0.001, SE-TW: W = 5.49, P<0.001, BS-TW: W = 4.53, p<0.001), and 

between two odors (AA-SE: W = 3.46, p = 0.014; SE-SB: W = -3.78, p = 0.007; AA-SB: W = -2.29, p = 0.10). 

Interestingly, in the case of the wSMI between Vv and Dp (Figure 5C), we observed a significant interaction and 

simple effects across the three pairs of odors (Kruskal-Wallis test: X2 = 29.2 p<0.001; Post-hoc comparisons: AA-

SE: W = 3.68, p = 0.009; SE-SB: W = -3.84, p = 0.007; AA-SB: W = -2.89, p = 0.032), and between odors and control 

(AA-TW: W = 5.38; p<0.001, SE-TW: W = 5.97, P<0.001, BS-TW: W = 4.90, p<0.001).   

 

Phase synchrony between OB-Vv, OB-Dp, and Vv-Dp across odors and control 

In order to compare our results with a classical functional connectivity metric, we performed a phase 

synchronization analysis using the weighted phase lag index (wPLI) due its robustness to volume conduction, 

common source and muscular artifacts 50. In a similar manner as with wSMI analyses, we computed the phase 

synchronization between pairs of regions for each odorant in the frequency range (6-10 Hz) of the oscillatory 

response (Figure 6).  

 

In the case of wPLI between OB and Vv (Figure 6A), although the Kruskal-Wallis test showed a significant 

interaction across odors (X2 = 11.9, p = 0.008), post-hoc comparisons revealed no differences between odors (AA-

SE: W = 2.13, p = 0.132; SE-SB: W = -2.18, p = 0.122; AA-SB: W = -0.42, p = 0.763), and only two odors were 

different from control (AA-TW: W = 3.67; p = 0.009, SE-TW: W = 4.21, P = 0.003, BS-TW: W = 2.61, p = 0.065). In 

the case of wPLI between OB and Dp (Figure 6B), a Kruskal-Wallis test showed a significant interaction across 

odors (X2 = 22.0 p<0.001) and between odors and control (AA-TW: W = -5.27; p < 0.001, SE-TW: W = -5.49, p 

<0.001, BS-TW: W = -4.05, p = 0.004). However, no differences were observed between odors (AA-SE: W = 2.07, 

p = 0.142; SE-SB: W = -2.13, p = 0.132; AA-SB: W = -0.80, p = 0.572). Similar results were obtained in the case of 

wPLI between Vv and Dp (Figure 6C; Kruskal-Wallis test: X2 = 22.3 p<0.001), with differences between odors and 

control (Post-hoc comparisons: AA-TW: W = 5.11; p <0.001, SE-TW: W = 5.54, p <0.003, BS-TW: W = -4.37, p = 

0.002), but not between odors (Post-hoc comparisons: AA-SE: W = 2.45, p = 0.083; SE-SB: W = -2.66, p = 0.060; 

AA-SB: W = -0.58, p = 0.679). 
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Altogether, these results suggest that the feature of the oscillatory response relevant for odorant discrimination 

is the shared information across regions and not the phase synchronization between them. 

 

 
Figure 5. Mutual information between OB-Vv, OB-Dp and Vv-Dp. (A) Schematic representation of wSMI analysis (i.e., 
mutual information). After the symbolic transformation (see Materials and Methods), entropy of signals S1 (purple oval) and 
S2 (pink oval) are computed separately, and then their mutual information (overlapping purple oval) represents the shared 
odorant information between areas. wSMI dynamics between OB-Vv (B), OB-Dp (C), and Vv-Dp (D) in the ~6-10 Hz range 
for each odorant (left panel), the single-animal distribution of values during the 1-5 sec range (middle panel) and its group 
statistical analysis (right panel; post-hoc differences depicted as gray lines above the corresponding odorants). RANOVA 
revealed a significant interaction effect of wSMI between odorants and control (TW), and between most of the odorants 
after the post-hoc contrasts (see Results section).  
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Figure 6. Phase coherence between OB-Vv, OB-Dp and Vv-Dp. (A) Schematic representation of wPLI analysis (i.e., phase 
coherence). After filtering the signal in a selected frequency range (see Materials and Methods) the instantaneous phase is 
computed for both signals S1 (pink) and S2 (purple), and the phase difference between them (red dashed line). In this 
example, phase difference between signals remains constant across time, representing a highly phase-coherent pair of 
neural signals. wPLI dynamics between OB-Vv (B), OB-Dp (C), and Vv-Dp (D) in the 6-10 Hz range for each odorant (left 
panel), the single-animal distribution of values during the 1-5 sec range (middle panel) and its group statistical analysis (right 
panel; post-hoc differences depicted as gray lines above the corresponding odorants). RANOVA revealed a significant 
interaction effect between in wPLI odorant and control (TW), but no differences between pairs of odorants were observed 
after post-hoc comparisons (see Results section).  
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Information redundancy between Ob, Vv and Dp. 
Robustness, understood as the ability of tolerating perturbations that might affect the system’s functionality, is 

a desirable characteristic for the olfactory system 60, for instance to preserve odorant discriminability in the 

presence of noise, high background or highly variable odor plumes. Although wSMI provides relevant insight into 

the amount of information shared between brain regions to distinguish odorant identity, it does not provide any 

insight into whether the brain regions are processing the same or different information. Thus, in order to 

investigate robustness from an informational point of view, we need a more nuanced analysis capable of 

quantifying the redundant information that is being processed between regions 61. Observing redundancy 

between brain regions would be an indication of the system's robustness, as different brain regions can perform 

the same function (i.e., odor mix decoding).  

 

Odorant information in two brain regions can be schematized in a Venn diagram (Figure 7A). The first quantity 

of interest is the overlap, termed redundancy (left panel, red area). Each inner circle represents the mutual 

information between pairs of odorant categories and their LFP signals (e.g. between AA and EPT) for an individual 

brain region (e.g. Vv). Conceptually, the term redundancy refers to the case in which the information conveyed 

by region A and region B is the same (e.g. Vv and Dp). If the variables are redundant, each brain region alone is 

sufficient to convey all the information about odorant category, and adding observation from the second brain 

region does not contribute additional information. On the other hand, the concept of synergy is related to 

whether region A and B convey extra information about odorant identity only if both regions are considered 

jointly (right panel, blue area).  Redundancy and synergy are reflected by positive and negative values of co-

information, respectively (see Materials and Methods). 

 

Interaction information analysis revealed positive values, signaling information redundancy, between the post-

stimuli and pre-stimuli periods (PSP). This effect was observed for all odorant pairs and between all brain regions 

implicating that the information between olfactory brain areas analyzed here is redundant (Ob-Vv: AA-EPT vs 

PSP, W = 13.86, p<0.001; EPT-SE vs PSP, W = 17.96; p<0.001; AA-SE vs PSP, W = 14.50, p<0.001; Ob-Vv: AA-EPT 

vs PSP, W = 12.78, p<0.001; EPT-SE vs PSP, W = 16.23; p<0.001; AA-SE vs PSP, W = 13.21, p<0.001; Ob-Vv: AA-

EPT vs PSP, W = 17.01, p<0.001; EPT-SE vs PSP, W = 14.20; p<0.001; AA-SE vs PSP, W = 15.39, p<0.001).  

 

Interestingly, the dynamics of redundancy was not the same for different pairs of odorants. For each pair of 

odorants, we computed the interaction information between a pair of brain regions in the frequency range of 

the oscillatory response (~6-10 Hz; Figure 7). Interaction Information was first computed between OB and Vv 

(Figure 7A). Kruskal-Wallis test showed a significant interaction across difference in odor pairs (pairs: AA-EPT, 

EPT-SE, AA-SE; X2 = 13.2, p=0.001). Post-hoc comparisons showed differences between odor pairs (EPT-SE vs AA-

EPT: W = 2.77, p<0.050; AA-SE vs EPT-SE: W = -4.74, p<0.001; AA-SE vs EPT-SE:  W = -3.09, p = 0.029). A similar 

interaction effect across differences in odor pairs was observed between OB and Dp (Figure 7B; Kruskal-Wallis 

test: X2 = 9.81, p=0.007), with significant post-hoc effects between one odor pair of odor differences (EPT-SE vs 

AA-EPT: W = 2.13, P = 0.132; AA-SE vs EPT-SE: W = -4.37, p = 0.002; AA-SE vs EPT-SE:  W = -2.35, p = 0.097). 

Interestingly, in the case of the wSMI between Vv and Dp (Figure 7C), we observed a significant interaction and 

simple effects across the three pairs of odor differences (Kruskal-Wallis test: X2 = 16.8, p <0.001; Post-hoc 

comparisons: EPT-SE vs AA-EPT: W = 3.09, p = 0.029; AA-SE vs EPT-SE: W = -5.49, p < 0.022; AA-SE vs EPT-SE:  W 

= -3.25, p < 0.001).  
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Taken together, these results indicate that the type of interactions observed between recording sites is 

informationally redundant between each other, suggesting that the ability to reliably discriminate different 

odorants is robustly implemented by the different components of the olfactory system.   

 
Figure 7. Redundancy between OB-Vv, OB-Dp and Vv-Dp. (A) Schematic representation of redundancy and synergy 
analyses. Each inner circle represents the mutual information between LFP signals of a pair of odorants for an individual 
brain region, and the overlapping region represents the redundancy (red; left panel). The outer circle represents information 
that is synergistic (blue; right panel). Redundancy dynamics between OB-Vv (B), OB-Dp (C), and Vv-Dp (D) in the ~6-10 Hz 
range for each odorant (left panel), the single-animal distribution of values during the 1-5 sec range (middle panel) and its 
group statistical analysis (right panel; post-hoc differences depicted as gray lines above the corresponding odorants).  
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DISCUSSION 

We have shown that primary response parameters such as oscillatory power, main frequency, time course and 

phase were robust but largely uninformative to vastly different olfactory stimuli when recording sites were 

analyzed separately. Conversely, we were able to reliably establish odor identity when recording sites were 

considered together using advanced decoding techniques, and when the amount and type of information shared 

between the recording sites was established. Our results suggest that distributed information across the 

olfactory system indexes odorant identity.  

 

In the mammalian olfactory bulb, seminal studies conducted on behaving animals have demonstrated that neural 

activity at different spatiotemporal scales is modulated by animal behavior and experience apart from properties 

of the olfactory stimuli. For instance, in rabbits, amplitude-modulated patterns across 64 electrode arrays 

implanted in the OB exhibited highly context-dependent LFP oscillations during sniffing62. Similarly, single-cell 

mitral and tufted cells were strongly influenced by contextual efferent inputs in behaving rats63. These studies 

suggest that LFP patterns in the OB contain a significant amount of non-primary sensory information, likely 

reflecting experience, the behavioral context, and associated information apart from primary characteristics of 

the stimulus.  

 

If these studies account for the effects of context and behavior on olfactory processing, then what are the neural 

markers associated with odorant properties themselves? We sought to answer this question using anesthetized 

trout, allowing us to control for confounding factors such as respiration and sniffing, movement, experience, and 

learning. Interestingly, spectral decoding and information-based connectivity analyses showed that the spatially 

distributed oscillations carry information relevant for odorant discrimination. We interpret the shared 

information conveyed in the LFP activity across OB, Dp and Vv as reflecting the complexity of the odor mixture. 

Arguably, stimuli formed by complex mixtures with diverse molecular structures should elicit a neural response 

containing a higher diversity of information patterns (i.e., higher signal entropy), resulting in an increase in 

information sharing between olfactory brain areas when they are co-activated. 

 

The stimuli used in this study are blends of various odorants displaying different levels of complexity based on 

the quantity and diversity of their components (see Materials and Methods). Thus, the mixture of bile salts (BS) 

is composed of 4 compounds and the mixture of amino acids (AA) is composed of 5 amino acids. On the other 

hand, skin extract (SE), as a mixture resulting from the homogenization of a complete biological tissue, is 

composed of hundreds of compounds, many of them difficult to identify, conveying much greater complexity 

compared to AA and BS42. Although it cannot be directly concluded that the properties of the molecules that 

make up BS and AA determine greater or lesser complexity as both are mixtures of few compounds, the amount 

of their components can be arguably used as a proxy for structural complexity. Supporting this view, in all three 

pairs of regions, the wSMI results showed a correspondence between the quantity of components present in 

each odor, and the amount of information sharing between regions (Figure 5B-C-D). Thus, while SE showed the 

highest wSMI value (green bar; right panel), BS showed the lowest apart from control (yellow bar; right panel), 

and AA showed intermediate values (red bar; right panel). This correspondence between odor complexity – in 

terms of number of components – and the amount of information sharing between OB, Vv and Dp suggest that 

at least some of the information captured by wSMI encodes structural properties of the stimuli across the 

olfactory system.  
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Why does the information-based connectivity metric (wSMI) capture odorant identity while the spectral-based 

connectivity measure (wPLI) does not? As described in the introduction, studies of LFP activity in the olfactory 

system have mainly focused on periodic or ‘rhythmic’ neural oscillations manifested as spectral peaks at different 

frequency bands (e.g. beta and gamma). However, the spectrum of mesoscopic electrophysiological signals (e.g., 

LFP, EEG) also contains aperiodic or ‘arrhythmic’64–66 that have been related to the integration of underlying 

synaptic currents67. Problematically, the standard approach of analyzing periodic power or phase synchronization 

(e.g., wPLI) through band-pass filtering confounds both periodic and aperiodic activity68. If we observed spectral 

changes between two conditions (e.g., between two odorants) due to aperiodic activity, comparing bandpass-

filtered neural oscillations would confound or hide the aperiodic components of these spectra.  

 

Crucially, the aperiodic component of the signal can be investigated using wSMI – an information-theoretic 

connectivity metric48,51. For instance, using realistically simulated EEG signals, we have recently demonstrated 

that wSMI can reliably detect aperiodic, non-linear interaction across brain regions that phase synchronization 

(i.e., wPLI) was unable to detect 48. The olfactory areas investigated in this study are thought to perform different 

roles during olfactory discrimination. While the OB is thought to decode the odorant’s molecular structure, 

higher olfactory centers such as Dp and Vv are thought to process more contextual and behaviorally relevant 

information such as feeding, reproduction, and danger sensing69. We propose that the associations between 

lower (OB) and higher (Dp and Vv) centers are established by a mechanism of information exchange conveyed 

by the aperiodic component of the olfactory oscillation. 

 

Robustness is a functional consequence of degenerate systems, that is, systems conformed by structurally 

different elements capable of performing the same function70–72. Robustness is ubiquitous across many biological 

systems including neural circuits and networks70,72,73. Crucially, robust systems are also capable of preserving 

their functions when exposed to changes in contextual circumstances, making them extremely resilient. From an 

evolutionary point of view, it is reasonable to conceive that selection processes such as those underlying the 

evolution of the olfactory system favor the development of robust systems. Phylogenetically, a mechanism 

preserving the implementation of the same function by different brain regions might serve a crucial evolutionary 

function: making olfactory discrimination quickly adaptable to changes in the environment.  

 

We have used information redundancy analyses to characterize the robustness of the teleost olfactory systems 

in implementing odorant discrimination. There is mounting evidence that redundancy in neural networks may 

provide various computational benefits, for example, enabling stable computations despite unstable neural 

dynamics74–76 and allowing the central nervous system to filter out unwanted noise77. Our finding of increased 

information redundancy across recording sites suggest that although neuroanatomically divergent, the 

underlying neural circuits of OB, Vv and Dp can process the same information about odorant identity, supporting 

the idea that – at least under anesthetized conditions – the olfactory system of teleost is functionally robust.  

 

In conclusion, our results indicate that primary response parameters such as oscillatory power, main frequency, 

time course and phase were robust but largely uninformative to vastly different olfactory stimuli when recording 

sites were analyzed separately. However, a more nuanced analytical approach investigating the information 

relationship between recording sites revealed shared information critical for olfactory discrimination, supporting 

the notion that olfactory oscillations are carriers of information about odorant identity across olfactory brain 

centers. 
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