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Abstract

Motivation: A key problem in systems biology is the discovery of regulatory mechanisms that drive
phenotypic behavior of complex biological systems in the form of multi-level networks. Modern multi-
omics profiling techniques probe these fundamental regulatory networks but are often hampered by
experimental restrictions leading to missing data or partially measured omics types for subsets of
individuals due to cost restrictions. In such scenarios, in which missing data is present, classical
computational approaches to infer regulatory networks are limited. In recent years, approaches have
been proposed to infer sparse regression models in the presence of missing information. Nevertheless,
these methods have not been adopted for regulatory network inference yet.

Results: In this study, we integrated regression-based methods that can handle missingness into
KiMONo, a Knowledge gulded Multi-Omics Network inference approach, and benchmark their
performance on commonly encountered missing data scenarios in single- and multi-omics studies.
Overall, two-step approaches that explicitly handle missingness performed best for a wide range of
random- and block-missingness and noise levels, while methods implicitly handling missingness
performed worst and were generally unstable. Our results show that robust multi-omics network
inference with KiMONo is feasible and thus allows users to leverage available multi-omics data to its
full extent.

Availability: https:/github.com/cellmapslab/kimono

Contact: benjamin.schubert@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

However, combining multi-omic measurements and reconstructing the

1 Introduction

Complex biological systems are organized in multi-level, dynamically
controlled networks that regulate and maintain the phenotypic behavior of
individual cells and their response to environmental changes (Romero et
al., 2012). Uncovering these multi-level networks and systemically
understanding the interplay of their elements is a key problem in
computational biology. Modern high-throughput multi-omics techniques
now enable access to each regulatory network level, even at single-cell
resolution (Lee et al., 2020; Li et al., 2021).

underlying regulatory network remains challenging (Hawe et al., 2019).
Generally, sparse interaction networks in the form of directed or
undirected graphs are constructed from dynamic interventional omics data
or large observational data using different classes of statistical methods
(Hawe et al., 2019). Common approaches are either correlation-based
(Langfelder and Horvath, 2008), use techniques from information theory
(Song et al., 2012; Margolin et al., 2006; Lachmann et al., 2016), or use
(regularized) regression and variable selection frameworks to infer
graphical models (Krumsiek et al., 2011; Schéfer and Strimmer, 2005;
Petralia et al., 2015). Most recent methods also integrate prior knowledge
(Sass et al, 2013; Li and Jackson, 2015), such as experimentally
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determined protein-protein interaction networks, known metabolic
pathways, or even predicted miRNA-mRNA interactions (List et al.,
2019). One such recent approach is KiMONo, Knowledge gulded Multi-
Omics Network inference approach (Ogris ef al., 2021). KiMONo is a
two-step prior knowledge-based approach for multi-omic regulatory
network inference. In the first step, the framework uses the whole dataset
to model each omic element individually, detecting statistical effects
between them. Here, the inference complexity is decreased by pre-
selecting feature dependencies based on existing prior knowledge of
biological mechanisms. The framework combines all models in a second
step, assembling a multi-omic graph with the input features as nodes
linked via edges representing the detected effects.

A major drawback of most network inference methods is their inability
to handle missing data. It is often necessary to combine multiple studies
that only partially measure the same omics levels to reach sample sizes
adequate for network inference, creating patterns of block-wise
missingness. Many classical regulatory network inference methods ignore
missing data and focus only on analyzing complete cases, thus
underutilizing the collected data set and severely limiting the amount of
information used. Removing samples with missing features can also lead
to biased estimates if the missingness is not completely random (Rubin,
2004), potentially affecting the extracted regulatory network. Multiple
imputation (Donders ef al., 2006) is another popular approach to deal with
missingness, followed by applying any classical network inference
method using ad hoc rules to harmonize variable selection across
multiply-imputed datasets (Wood et al., 2008). However, Ganti and Willet
demonstrated that such two-step approaches can be sub-optimal (Ganti
and Willett, 2015) and instead require integrated or more general
frameworks to handle missing data and variable selection jointly.

In recent years, advances have been made in using sparse graphical
models for data with missing information. These approaches can be
roughly categorized in Bayesian methods using data augmentation
strategies (Ibrahim et al., 2008), methods using pooled posterior (Yang et
al., 2005), or bootstrapped inclusion probabilities (Heymans et al., 2007,
Liu et al., 2016), methods performing variable selection through stacked
(Wan et al., 2015; Wood et al., 2008) or group Lasso integrated multiple
imputation methods (Chen and Wang, 2013; Geronimi and Saporta, 2017;
Marino et al., 2017; Du et al., 2022), low-rank matrix completion (Choi
and Tibshirani, 2013; Ganti and Willett, 2015), inverse probability
weighting (Johnson et al., 2008), Lasso regularized inverse covariance
estimation (Loh and Wainwright, 2011; Stiddler and Biihlmann, 2012;
Takada et al, 2018; Datta and Zou, 2017), and Expectation-
Maximization-based approaches (Shen and Chen, 2012; Sabbe et al.,
2013). While most methods address the missingness of individual
features, some methods exist that explicitly model block-missingness (Yu
et al., 2020; Xue and Qu, 2021; Du et al., 2022; Gentry et al., 2021).

Incorporating such approaches in multi-omics network inference is
attractive. It extends the application of tools such as KiMONo to omic
types such as metabolomics and proteomics, where missing features occur
frequently, or to single-cell RNA sequencing data where missingness is
inevitable due to stochastic gene expression and low capture efficiency.
However, a comprehensive benchmark of existing methods that can
handle missing data is lacking. We, therefore, extended the KiMONo
framework with various regression-based approaches that integrate and
combine prior imputed data (Du et al, 2022) and Lasso regularized
inverse covariance estimation methods (Takada et al., 2018; Datta and
Zou, 2017). We systematically evaluated how these methods can handle
gradually increasing levels of artificial noise and missing and block-
missing information for regulatory network inference on single- and
multi-omics data. We evaluate the method robustness per regression

model via the root mean squared error (RMSE) and R? and compare each
method against method-specific baseline networks inferred without
missing information or noise with precision, recall, and the F1 measure.
In addition, we compare each perturbation-based network against an
original KiMONo inferred network to assess how robust these networks
are across methods. Finally, we also compare against networks inferred
with the original KiMONo method after k-nearest neighbor imputation to
assess the performance gain of methods that handle missingness
implicitly.

We observed that approaches explicitly handling missingness in a two-
step manner performed best over a wide range of random, block-
missingness, and noise levels while implicit methods performed worst and
were generally unstable.

2 Methods

2.1 Regression-based Methods for Network Inference and
Imputation.

We focused on methods with a working R implementation and consistent
documentation. These requirements left us with five advanced statistical
approaches of three categories (1) stacked and (2) grouped multiple-
imputation, as well as (3) Lasso-based inverse covariance estimation
approaches (Table 1, detailed description see Supplementary Information
S1). All mentioned methods have been integrated into the KiMONo
framework. Source code of KiMONo can be found on GitHub
(https://github.com/cellmapslab/kimono), while detailed benchmarking

results and code can be found at Zenodo (Henao et al, 2022)
(https://doi.org/10.5281/zenodo.6450228).

Table 1: Inference models included in this benchmark and capable of
dealing with missing data.

Method Category Citation
. . . (Troyanskaya et al.,
+

knnKiMONo single imputation 2001); (Ogris et al.,

KiMONo
2021)

SALasso stacked multiple (Du et al., 2022)
1mputation

GALasso groupeq multiple (Du et al., 2022)
1mputation

HMLasso 1nVErse covariance (Takada et al., 2018)
estimation

CoCoLasso inverse covariance (Datta and Zou, 2017);
estimation (Takada et al., 2018)

BDCoCoLasso 1nVerse covariance (Escribe et al., 2021)
estimation

kNN-imputation & KiMONo (knnKiMONo): We implemented a two-
step approach that firstly imputes missing information using nearest
neighbor averaging followed by applying the classical KiMONo. The
kNN-based imputation method (Troyanskaya et al., 2001) implemented in
the R package impute v1.46.0 was applied separately to individual omics
layers and other covariates. Originally designed for the imputation of gene
expression data, the method replaces missing values by averaging non-
missing values of its nearest neighbors. If the percentage of missing data
allowed for every variable, e.g., a single gene exceeds 50% (default), the
missing values are imputed using the overall mean per sample. Only
samples with missingness less than 80% (default) were considered for the
imputation. Further, algorithm’s parameters were set to default values: the
number of neighbors used in the imputation was set to k=10, and the
largest block of variables imputed using the kNN algorithm before
recursively dividing the feature into smaller chunks was set to max = 1500.
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Figure 1: Benchmark schematic. A) Three common missingness scenarios in regulatory
network inferences are tested: 1) single-omics, 2) multi-omics random missingness of
individual elements, and 3) block-wise missingness in which entire omics layers are missing
for an individual. B) We tested five approaches of two categories: 1) Two-step approaches
that first impute and then aggregate imputation through, and 2) Inverse covariance
estimation approaches that implicitly handle missingness during inference. We inferred
regulatory networks from full data and data missing for each method and compared the
resulting networks with multiple performance metrics.

Stacked Adaptive Lasso (SALasso): Stacked approaches combine prior
D-times multiply imputed datasets by averaging over them during
inference, making such approaches applicable to existing sparse
regression framework. We use the SALasso implementation released in
the R package miselect 0.9.0 (Du et al., 2022). We tested 50 values with
a lambda.min.ratio of le-4 in a 5-fold cross-validation with and without
adaptive weights, while sample weights were set to be uniformly
distributed.

Grouped Adaptive Lasso (GALasso): Similar to SALasso, GALasso
pools prior imputed datasets by adding a group LASSO penalty term
enforcing consistent variable selection across multiply imputed datasets.
We use the GALasso implementation released in the R package miselect
09.0 (Du et al, 2022). We tested 50 lambda values with a
lambda.min.ratio of le-4 in a 5-fold cross-validation with and without
adaptive weights, while the sample weights were set to be uniformly
distributed.

Convex Conditioned Lasso (CoCoLasso): CoCoLasso is an inverse
covariance estimation method for high-dimensional data with missing
values. The main idea is to reformulate the Lasso regression by working
with the sample covariance matrix of X, S =2X'X, and the sample
covariance vector of X and y, p = 1X'y. With this reformulation, g is
estimated via S and p instead of X and y. We use the CoCoLasso
implementation released in the R package HMLasso 0.0.1 (Takada, M.,
Fujisawa, H., & Nishikawa, T., 2019) with the following selection of
hyperparameters: For lambda, we tested 50 values with a lambda.min.ratio
of le-1 in a 5-fold cross-validation.

Lasso with High Missing rate (HMLasso): HMLasso can be seen as an
optimally weighted modification of CoCoLasso according to the missing
ratio. HMLasso uses the mean imputation method. Instead of X the mean
imputed data variable, Z is used, where Zj, = X for an observed element
and Zj; = 0 otherwise. We use the HMLasso implementation released in
the R package HMLasso 0.0.1 (Takada, M., Fujisawa, H., & Nishikawa,
T., 2019) with the following selection of hyperparameters: For a, we
tested values between 0.5 and 2 with an interval of 0.5. For lambda, we
tested 50 values with a lambda.min.ratio of le-1 in a 5-fold cross-
validation.

Block-descent-CoCoLasso  (BDCoCoLasso): To
computational efficiency of CoCoLasso, BDCoCoLasso implements a

improve  the

block coordinate descent strategy (Escribe et al., 2021), where it projects
the covariance matrix onto a positive semidefinite subspace on the
corrupted subblocks. Unlike uncorrupted covariates that are measured
without any error, corrupted covariates are measured with an error or are
missing, leading to inconsistent estimates. The covariance matrix X, is
separated into [Xlnxpz’ Zanpz] where X, and szm2 corresponds to the
uncorrupted and corrupted covariates, respectively. Then, £ is defined as
B = (By, B,) where 5, and B3, correspond to the coefficient vector for the
uncorrupted and corrupted covariates, respectively. We use the BDCoCo
implementation released in the R package BDCoCoLasso v0.0.0.9000
(https://github.com/celiaescribe/BDCoCoLasso) with the
selection of hyperparameters: For lambda, we tested 50 values within a

following

range between 0 and le-2 with an adaptive cross-validation schema.

2.2 Datasets

We collected triple-omics data (transcriptome, copy number variation
(CNV), and methylation data) as well as clinical data from the breast
invasive carcinoma atlas, which is one of the most comprehensive multi-
omic data resources to date with 871 matched samples, from the
PanCancer Projects (Weinstein et al., 2013) using The Cancer Genome
Atlas (TCGA) data portal and the cBioPortal (Gao et al., 2016) (retrieved
on 03/07/2022). All samples containing missing information were
removed to construct a complete data set as the baseline, thus restricting
the data sets to 604 patients. Similarly, features with low variance were
removed, resulting in 11,530 transcriptomics features, 1,366 methylation
features, and 84 copy number variation (CNV) features.

2.3 Prior network generation

We extracted protein-protein interactions from the BioGrid interactome
(Release 3.5.188) (Oughtred et al., 2021), associated these interactions
with the extracted gene expression information, and linked each CNV and
methylation site to its associated gene since both omics layers were
already annotated to gene identifiers. The final prior network contained
11,645 nodes (10,848 genes, 84 CNVs, and 713 methylation sites).

2.4 Network-based multiple imputation
Stacked and grouped adaptive Lasso approaches require multiple imputed
data as input. Nevertheless, multiple imputation methods do not scale well
to high dimensional data with high missingness, and standard
implementations such as those offered in the R package MICE, take
multiple hours to days to finish. Thus, we developed a novel network-
guided multiple imputation by chained equation approach (ngMICE) by
utilizing KiMONo’s prior network. Instead of considering all covariates
for imputation, we restrict each imputation attempt to the covariates that
are directly linked to the missing covariate in a prior network as other
covariates will be removed during network inference by KiMONo and
therefore can be neglected. The number of covariates can be further
reduced by correlation-based filtering. For missing elements retaining less
than k covariates for imputation, the top k correlated covariates are used.
Once the covariate matrix has been constructed as described, the standard
MICE procedure is run. We used the R package MICE 3.14.0 (van Buuren
and Groothuis-Oudshoorn, 2011), with Bayesian linear regression as a
multiple imputation approach and an absolute Pearson correlation
coefficient of 0.1 as the threshold.

ngMICE performed similarly to kNN-based imputation in terms of
RMSE across omics types and missingness with slightly worse average
performance (Supplementary Figure 1).

2.5 Benchmark
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Figure2: Benchmark results across all experimental setups. Transparent lines denote individual runs, while bold lines refer to the average performance. A) Performance under Single-Omic,
Multi-Omic, and Block-missingness were evaluated using network size (number of nodes), transitivity (global clustering coefficient), median R?, and F1 scores compared to a reference (i.e.,
the same method applied on the full data and stability selected networks generated with KiMONo). B) Illustrating the topological change with increased missingness based on the 200

network nodes with the highest betweenness centrality. C) Comparison of computing time.

We assess the performance of the selected inference methods in the
presence of missing data via simulating two typical scenarios - (1) random
missing information in a single omic level and across multiple levels, as
well as (2) a block-wise missing structure, i.e., data in one or more omic
levels may be unobserved (Figure 1a). To stress the method's capabilities
even further, we decreased the signal-to-noise ratio by systematically
adding covariate-specific white noise to the input data. Each experiment
was repeated 5 times for robust performance estimation and corrected for
confounding age and sex effects.

Single-Omics missing: We selected the transcriptomics level as a single-
omic layer to test the different models' capabilities to infer gene regulatory
networks with less directly informative co-correlation structures that could
be used to impute the missing gene expression information. We then
removed m € {0%, 10%, 20%, 30%, 40%, 50%} randomly selected
entries from the input data. Additionally, we added white noise with
increasing intensity to the data by drawing from a normal distribution
€ ~ N(0, a(f;) per gene with a gene-specific variance term estimated
from the real data and a € {0,0.5,1.5}.

Multi-Omics missing: To test the models' capabilities to handle more
complex co-correlation structures that could potentially be exploited for
better imputation, we expanded the single-omics experiment to jointly
consider the three available omics types. As before, we randomly removed
m € {0%, 10%, 20%, 30%, 40%, 50%} of entries independently per
omics layer and added feature-dependent white noise to the data as
described before while ensuring to bound the beta values of the
methylation data to the range between 0 and 1.

Multi-Omics Block-Missing: To test the capabilities of the method to
handle block-wise missing information, in which an entire omics layer is
missing for a random selection of patients, we removed m €
{0%, 10%, 20%, 30%, 40%, 50%} patients per omics layer such that at
least two omics-layers still remained per individual. Additionally, we
added white noise to the remaining samples as described before.

Downsampling: Similarly, to identify the minimal number of samples
required to infer reliably the regulatory network, we downsampled the
dataset to k € {90%, 80%, 70%, 60%, 50%} of samples.
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Runtime: We tested the runtime of each method on a dedicated machine
with an AMD EPYC 7502P 32-Core Processor with 2.5GHz base clock
speed and 859.4 RAM using the multi-omics missingness experiment with
the same configurations as before. We ran all experiments with ncores=60
(with hyperthreading enabled).

2.4 Evaluation Metrics

To construct the final network from the individual regressions, we applied
a strict filter connecting independent to dependent variables if their beta
coefficient was non-zero and their R? > 0.1.

Prediction Metrics: To measure the prediction qualities of each
regression model, we recorded the root means squared error (RMSE) and
R? respectively, and compared their distribution based on a Wilcoxon
rank-sum test.

Network Reconstruction Metrics: To measure the methods’ abilities to
handle missing data well, we compared the inferred regulatory networks
from missing data to their counterpart inferred on full data, respectively,
and calculated precision, recall, and F1 of the recovered network edges.
Similarly, we inferred a ground truth network with KiMONo using
stability selection by repeating network inference & times on different data
splits and averaging over the resulting coefficients and R? values before
constructing the network, improving the robustness of the graph. The final
stability-selected and conservatively filtered network consisted of 2,458
nodes (2,182 genes, 63 CNV, 211 methylations) and 6,554 edges. We
compared the stability-selected reference network to all inferred networks
on missing data to determine performance differences across the
individual methods.

Topological Metrics: The interpretation of complex heterogeneous
networks and identifying key modules and important network nodes relies
on the topological network features. Hence, it is also vital to evaluate if
the methods can robustly infer topological structures. Therefore, we use
multiple network-based metrics such as node-degree distribution,
betweenness centrality, and clustering coefficient to quantify and compare
the topological changes of the networks inferred from missing data. Node
degree indicates the sparseness of the network, while betweenness
centrality indicates how interconnected the network is, and the global
clustering coefficient (transitivity) indicates how densely connected
neighboring nodes are.

3 Results

For BDCoCoLasso, we could not use the inferred model on incomplete
samples and could not calculate RMSE and R? metrics for a significant
proportion of edges. Due to this reason, we could not infer complete
networks on data with missing values (Supplementary Information S1).
We, therefore, refrain from discussing the performance of BDCoCoLasso
in the following discussion.

3.1 Most topological features can be conserved in data with
missingness

One aspect of robustness in presence of noise or missingness is that the
network topology should remain largely unchanged. To investigate this,
we computed multiple network properties across all benchmarking
scenarios (Figure 2A&B).

Our benchmark showed that induced missingness increases the
transitivity while decreasing the number of nodes and edges regarding the
full and uncorrupted data topological network properties. The largest
heterogeneous networks were produced by knnKiMONo (~2400 nodes)

on the full dataset (Figure 2A). This was followed by GALasso and
SALasso modeling on average over 2,200 nodes, CoCoLasso (~950
nodes), and HMLasso (~900 nodes) (Supplementary Figure 2). While all
methods suffered under high missingness resulting in smaller networks,
knnKiMONo appeared to be robust in low to medium missingness
conditions. As the networks fell apart into unconnected modules, the top
200 nodes’ average betweenness of centrality decreased while the global
transitivity increased (Figure 2A&B). Similar patterns could be observed
through the number of inter and intra omic edges. Here, the constant loss
of edges showed a stable ratio indicating no bias towards a specific omic
layer. Briefly, across all benchmark settings, the methods showed a
decreasing network size with increased missingness. GALasso and
SALasso were less affected in terms of noise, while knnKiMONo
produces the most robust results in terms of missingness (Supplementary
Figure 2).

3.2 kNN imputation-based models perform best for single-
and multi-omics data with random missingness

In both the single- and multi-omics setting, where we randomly perturbed
omics layers independently, knnKiMONo was the best performing
method reaching F1 scores of 0.92140.005 on in the single omics and
0.92340.002 on the multi-omics data at 10% missingness followed by
SALasso (single-omics: 0.880+0.005, multi-omics: 0.8824+0.004) and
GALasso (single-omics: 0.836+0.009, multi-omics: 0.837+0.003) when
compared to a reference network inferred on full data (Figure 2A;
Supplementary Figure 3&4). The performance gradually decreased with
increasing missingness and noise levels to a similar degree for all three
methods dropping to 0.348+0.018 and 0.315+0.011 for knnKiMONo,
0.38140.009 and 0.339+0.013 for SALasso, as well as 0.318+0.015 and
0.27240.008 for GALasso, for single- and multi-omics data, respectively,
at 50% missingness and a medium noise (a=0.5). At higher noise levels,
the performance of all three methods declined dramatically reaching only
F1 scores below 0.1. HMLasso and CoCoLasso came in last, reaching F1
scores below 0.1 both on single- and multi-omics data even for samples
with only 10% missingness and no noise (Supplementary Figure 4). Both
methods even failed to infer networks in 11/15 and 11/15 single-cell
experiments at 30% and 40% missingness, as well as in 9/11 and 8/11
multi-omics experiments, at 40% and 50% missingness, respectively.

Similar behavior could be observed when comparing the inferred
networks to the stability selection-based reference network: knnKiMONo
performed best with an F1 score of 0.87340.005 and 0.8204+0.004 at 10%
missingness and no noise on single- and multi-omics data respectively,
followed by SALasso (single-omcis: 0.841+0.007, multi-omics:
0.77240.003) and GALasso (single-omics: 0.84040.005, multi-omics:
0.77240.001) (Figure 2A; Supplementary Figure 5). SALasso did
marginally outperform knnKiMONo in samples with high noise and/or
high missingness. At high noise levels (a=1.5), even in the absence of
missingness, none of the methods exceeded F1 scores of 0.1 for both
single- and multi-omics data, with the exception of SALasso with
0.113+0.013 for single-omics, and 0.12140.002 for multi-omics
(Supplementary Figure 5).

For both SALasso and GALasso adaptive weights had a marginal
impact on performance with a slight negative effect. Only at high noise
levels did adaptive weights stabilize performance (Supplementary Figure
4&5).

3.4 SALasso performs best for data with block-missingness

When investigating block-missingness, i.e., where entire omics layers are
missing for a subset of patients, SALasso performed overall best,
outperforming knnKiMONo and GALasso (Figure 2A; Supplementary
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Figure 3). The SALasso inferred networks were consistent with the
networks inferred on full data across different block missingness levels,
with SALasso reaching F1 scores between 0.945+0.004 at 10%
missingness (a=0) and 0.688+0.002 at 50% missingness (a=0.5). With
higher noise, the performance dropped below an F1 score of 0.1
(Supplementary Figure 4). This behavior could be observed for GALasso
and knnKiMONo, although with generally lower F1 scores. Notably,
knnKiMONos networks almost exclusively consisted of gene nodes, while
all other methods had a proportional representation of all omics types. The
implementation of kKNN-imputation used here is not able to handle entire
block-missing samples and, consequently, knnKiMONo removes a
substantial amount of the features. The explanation is the sample missing
removal takes the dependent vector as reference. However, the sample
missing in this vector differs from the remain omics layers provoking the
deletion of those missing sample from the same omic layer this vector was
extracted, but conserving the sample missingness from the rest of omics
matrices.

Similar behavior could be observed when comparing the inferred
networks to the stability selection inferred network. Both SALasso and
GALasso outperformed knnKiMONo with SALasso overall reaching the
highest F1 scores 0f 0.763+0.003 (10% missingness, a=0) to 0.655+0.007
(50% missingness, a=0.5), while knnKiMONo reached F1 scores of
0.66340.003 (10% missingness, a=0) to 0.4724+0.011 (50% missingness,
a=0.5). High noise reduced the F1 scores below 0.1. Adaptive weights had
negligible effects and only improved performance markedly at high noise
levels (a=1.5) (Supplementary Figure 5).

HMLasso and CoCoLasso performed worst, reaching average F1
scores of 0.21240.022, and 0.246+0.039 at 10% block-missingness,
dropping to 0.06340.033 and 0.07340.031 respectively with 50% block-
missingness and medium noise (a=0.5) (Supplementary Figure 4).
Comparing those methods to the stability-selection-based reference
depicted a similar picture. Average F1 scores of 0.264+0.027 and
0.28340.035 could only be reached at 10% block-missingness,
respectively, while higher missingness and noise levels led to F1 scores
below 0.05 (Supplementary Figure 5).

3.5 knnKiMONo and SALasso are least affected by sample
size reduction

All methods showed a decrease in concordance already at 90% of the total
sample size (Supplementary Figure 6&7). HMLasso and CoCoLasso were
most severely affected, with F1 scores at 0.2224+0.015 and 0.20540.021,
albeit remaining at this performance level for larger sample size reductions
(Figure 2A; Supplementary Figure 6). knnKiMONo reached an F1 score
of 0.91840.020 and slowly decreased in performance with increasing
sample size reduction to 0.820+0.020 at 50% sample size. SALasso and
GALasso behaved similarly, reaching F1 scores of 0.908+0.004 and
0.82440.009 respectively at 90% sample size, and GALasso gradually
decreased with smaller sizes, reaching 0.864+0.003 and 0.79340.009 at
50% sample size. At these high sample reductions (40 and 50%), SALasso
is even more stable than knnKiMONo. Adaptive weights, as before,
reduced performance marginally (Supplementary Figure 6&7).

3.6 HMLasso is the fastest approach in datasets with no to
medium missingness

knnKiMONo, HMLasso, and CoCoLasso had a similar runtime of 82 - 85
sec on the full dataset without missing information and gradually
increased in runtime with rising missingness (Figure 2C). HMLasso was
the fastest approach with an average runtime of 81.843+0.375 sec at low
to medium missingness levels. Only in scenarios with high missingness
HMLasso was outperformed by knnKiMONo, reaching an average

runtime of 97.0894+1.327 sec. knnKiMONo demonstrated a very
consistent runtime across all missingness levels with an average runtime
of 97.725+7.995 sec. CoCoLasso behaved similarly but was affected by
the degree of missingness, reaching maximum average runtimes of
449.6+225.2 sec. GALasso and SALasso were the slowest, with average
runtimes of 739+15.532 sec and 919.785+11.833 sec on the complete
dataset, respectively, of which 241.1914+2.975 sec were dedicated to
imputation. Overall runtime gradually increased for both methods
reaching an overall average runtime of 1148.871+245.077 sec and
1184.688+157.794, respectively of which on average 507.674+58.126
sec was spent in imputation. For GALasso, adaptive weights calculations
added another 275.363+54.180 sec on average to the overall runtime.

4 Conclusion

Due to economic or technical restrictions, missingness of individual
values or block-missingness of entire omics layers in a subset of samples
is typical for high-throughput multi-omics experiments, rendering multi-
omics network inference challenging. In particular, single-cell
experiments, which have become increasingly prevalent and offer
unprecedented insights into the molecular landscape, are affected by
sparsity and missingness. In this study, we benchmarked novel regression
approaches that can handle missing information across common
missingness scenarios in single and multi-omics experiments and
integrated these approaches into KiMONo, a recent approach for network-
guided multi-omics network inference.

Generally, we observed that approaches explicitly handling missing
information through prior imputation overwhelmingly outperform
methods that implicitly handle missingness. Specifically, kKNN-imputation
combined with the standard KiMONo approach performed best, closely
followed by SALasso and GALasso approaches that combine multiple-
imputation results. Both SALasso and GALasso probably suffered from
the lower imputation quality of the network-based multiple-imputation
approach (ngMICE) we applied, propagating the imputation uncertainty
into network inference. Multiple-imputation in high-dimensional data is
generally a challenge since existing approaches do not scale to the number
of covariates typically encountered in multi-omics studies. Here,
dimensionality reduction methods for multiple imputation (Hodge et al.,
2019), latent factor models (Argelaguet et al., 2020), or deep-learning-
based approaches (Qiu ef al., 2020; Gayoso et al., 2021; Lotfollahi et al.,
2022) might improve multiple imputation and therfore network inference
quality even over the simple kNN-imputation-based approach. The
potential superior performance of multiple-imputation-based approaches
was indicated by SALasso already outperforming knnKiMONo in block-
missingness cases and in high missingness-high noise multi-omics cases.
A benefit of such explicit approaches is their ability to use and adequately
address prior imputed datasets often provided by larger consortia.

Surprisingly, implicit methods relying on inverse covariance matrix
estimation performed poorly, indicating that more research is needed to
make these approaches robust.

We note that a true gold standard for evaluating the performance of
network inference methods is missing. In its absence, we rely on a network
inferred from complete, unperturbed data that nevertheless is likely to
contain both false positive and false negative interactions which may
affect the results. Hence, our reference network is not suited for evaluating
methods following different principles for inference as GENIE3 (Huynh-
Thu et al., 2010), or other non-linear approaches. However, a comparison
with derivatives of the Lasso method is reasonable, as differences in the
results can be attributed to each method’s ability to handle missingness or

noise.
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GRN inference with missing data

In summary, we found explicit methods to be more robust than methods
implicitly handling missingness. While most methods were tolerant to
high levels of missingness, they were strongly affected by noise. While
HMLasso was the fastest tested method, knnKiMONo showed the best
tradeoff between performance and runtime and is thus our recommended
approach for handling missingness in KiMONo. While we see room for
further method improvements, particularly with respect to multiple
imputations of high-dimensional data and the robustness of inverse
covariance methods, our results show that robust multi-omics network
inference with KiMONo is feasible and thus allows users to leverage
available multi-omics data to its full extent.
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