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Abstract 
Motivation: A key problem in systems biology is the discovery of regulatory mechanisms that drive 
phenotypic behavior of complex biological systems in the form of multi-level networks. Modern multi-
omics profiling techniques probe these fundamental regulatory networks but are often hampered by 
experimental restrictions leading to missing data or partially measured omics types for subsets of 
individuals due to cost restrictions. In such scenarios, in which missing data is present, classical 
computational approaches to infer regulatory networks are limited. In recent years, approaches have 
been proposed to infer sparse regression models in the presence of missing information. Nevertheless, 
these methods have not been adopted for regulatory network inference yet.  
Results: In this study, we integrated regression-based methods that can handle missingness into 
KiMONo, a Knowledge guIded Multi-Omics Network inference approach, and benchmark their 
performance on commonly encountered missing data scenarios in single- and multi-omics studies. 
Overall, two-step approaches that explicitly handle missingness performed best for a wide range of 
random- and block-missingness and noise levels, while methods implicitly handling missingness 
performed worst and were generally unstable. Our results show that robust multi-omics network 
inference with KiMONo is feasible and thus allows users to leverage available multi-omics data to its 
full extent. 
Availability: https://github.com/cellmapslab/kimono 
Contact: benjamin.schubert@helmholtz-muenchen.de  
Supplementary information: Supplementary data are available at Bioinformatics online. 

1 Introduction  

Complex biological systems are organized in multi-level, dynamically 

controlled networks that regulate and maintain the phenotypic behavior of 

individual cells and their response to environmental changes (Romero et 

al., 2012). Uncovering these multi-level networks and systemically 

understanding the interplay of their elements is a key problem in 

computational biology. Modern high-throughput multi-omics techniques 

now enable access to each regulatory network level, even at single-cell 

resolution (Lee et al., 2020; Li et al., 2021).  

However, combining multi-omic measurements and reconstructing the 

underlying regulatory network remains challenging (Hawe et al., 2019). 

Generally, sparse interaction networks in the form of directed or 

undirected graphs are constructed from dynamic interventional omics data 

or large observational data using different classes of statistical methods 

(Hawe et al., 2019). Common approaches are either correlation-based 

(Langfelder and Horvath, 2008), use techniques from information theory 

(Song et al., 2012; Margolin et al., 2006; Lachmann et al., 2016), or use 

(regularized) regression and variable selection frameworks to infer 

graphical models (Krumsiek et al., 2011; Schäfer and Strimmer, 2005; 

Petralia et al., 2015). Most recent methods also integrate prior knowledge 

(Sass et al., 2013; Li and Jackson, 2015), such as experimentally 
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determined protein-protein interaction networks, known metabolic 

pathways, or even predicted miRNA-mRNA interactions (List et al., 

2019). One such recent approach is KiMONo, Knowledge guIded Multi-

Omics Network inference approach (Ogris et al., 2021). KiMONo is a 

two-step prior knowledge-based approach for multi-omic regulatory 

network inference. In the first step, the framework uses the whole dataset 

to model each omic element individually, detecting statistical effects 

between them. Here, the inference complexity is decreased by pre-

selecting feature dependencies based on existing prior knowledge of 

biological mechanisms. The framework combines all models in a second 

step, assembling a multi-omic graph with the input features as nodes 

linked via edges representing the detected effects.  

A major drawback of most network inference methods is their inability 

to handle missing data. It is often necessary to combine multiple studies 

that only partially measure the same omics levels to reach sample sizes 

adequate for network inference, creating patterns of block-wise 

missingness. Many classical regulatory network inference methods ignore 

missing data and focus only on analyzing complete cases, thus 

underutilizing the collected data set and severely limiting the amount of 

information used. Removing samples with missing features can also lead 

to biased estimates if the missingness is not completely random (Rubin, 

2004), potentially affecting the extracted regulatory network. Multiple 

imputation (Donders et al., 2006) is another popular approach to deal with 

missingness, followed by applying any classical network inference 

method using ad hoc rules to harmonize variable selection across 

multiply-imputed datasets (Wood et al., 2008). However, Ganti and Willet 

demonstrated that such two-step approaches can be sub-optimal (Ganti 

and Willett, 2015) and instead require integrated or more general 

frameworks to handle missing data and variable selection jointly. 

In recent years, advances have been made in using sparse graphical 

models for data with missing information. These approaches can be 

roughly categorized in Bayesian methods using data augmentation 

strategies (Ibrahim et al., 2008), methods using pooled posterior (Yang et 

al., 2005), or bootstrapped inclusion probabilities (Heymans et al., 2007; 

Liu et al., 2016), methods performing variable selection through stacked 

(Wan et al., 2015; Wood et al., 2008) or group Lasso integrated multiple 

imputation methods (Chen and Wang, 2013; Geronimi and Saporta, 2017; 

Marino et al., 2017; Du et al., 2022), low-rank matrix completion (Choi 

and Tibshirani, 2013; Ganti and Willett, 2015), inverse probability 

weighting (Johnson et al., 2008), Lasso regularized inverse covariance 

estimation (Loh and Wainwright, 2011; Städler and Bühlmann, 2012; 

Takada et al., 2018; Datta and Zou, 2017), and Expectation-

Maximization-based approaches (Shen and Chen, 2012; Sabbe et al., 

2013). While most methods address the missingness of individual 

features, some methods exist that explicitly model block-missingness (Yu 

et al., 2020; Xue and Qu, 2021; Du et al., 2022; Gentry et al., 2021). 

Incorporating such approaches in multi-omics network inference is 

attractive. It extends the application of tools such as KiMONo to omic 

types such as metabolomics and proteomics, where missing features occur 

frequently, or to single-cell RNA sequencing data where missingness is 

inevitable due to stochastic gene expression and low capture efficiency. 

However, a comprehensive benchmark of existing methods that can 

handle missing data is lacking. We, therefore, extended the KiMONo 

framework with various regression-based approaches that integrate and 

combine prior imputed data (Du et al., 2022) and Lasso regularized 

inverse covariance estimation methods (Takada et al., 2018; Datta and 

Zou, 2017). We systematically evaluated how these methods can handle 

gradually increasing levels of artificial noise and missing and block-

missing information for regulatory network inference on single- and 

multi-omics data. We evaluate the method robustness per regression 

model via the root mean squared error (RMSE) and R2 and compare each 

method against method-specific baseline networks inferred without 

missing information or noise with precision, recall, and the F1 measure. 

In addition, we compare each perturbation-based network against an 

original KiMONo inferred network to assess how robust these networks 

are across methods. Finally, we also compare against networks inferred 

with the original KiMONo method after k-nearest neighbor imputation to 

assess the performance gain of methods that handle missingness 

implicitly. 

We observed that approaches explicitly handling missingness in a two-

step manner performed best over a wide range of random, block-

missingness, and noise levels while implicit methods performed worst and 

were generally unstable.  
 

2 Methods 

2.1 Regression-based Methods for Network Inference and 
Imputation.  

We focused on methods with a working R implementation and consistent 

documentation. These requirements left us with five advanced statistical 

approaches of three categories (1) stacked and (2) grouped multiple-

imputation, as well as (3) Lasso-based inverse covariance estimation 

approaches (Table 1, detailed description see Supplementary Information 

S1). All mentioned methods have been integrated into the KiMONo 

framework. Source code of KiMONo can be found on GitHub 

(https://github.com/cellmapslab/kimono), while detailed benchmarking 

results and code can be found at Zenodo (Henao et al., 2022) 

(https://doi.org/10.5281/zenodo.6450228).  
 

Table 1: Inference models included in this benchmark and capable of 

dealing with missing data. 

Method Category Citation 

knnKiMONo 
single imputation + 

KiMONo 

(Troyanskaya et al., 

2001); (Ogris et al., 

2021) 

SALasso 
stacked multiple 

imputation 
(Du et al., 2022) 

GALasso 
grouped multiple 

imputation 
(Du et al., 2022) 

HMLasso 
inverse covariance 

estimation 
(Takada et al., 2018) 

CoCoLasso 
inverse covariance 

estimation 

(Datta and Zou, 2017); 

(Takada et al., 2018) 

BDCoCoLasso 
inverse covariance 

estimation 
(Escribe et al., 2021) 

 

kNN-imputation & KiMONo (knnKiMONo): We implemented a two-

step approach that firstly imputes missing information using nearest 

neighbor averaging followed by applying the classical KiMONo. The 

kNN-based imputation method (Troyanskaya et al., 2001) implemented in 

the R package impute v1.46.0 was applied separately to individual omics 

layers and other covariates. Originally designed for the imputation of gene 

expression data, the method replaces missing values by averaging non-

missing values of its nearest neighbors. If the percentage of missing data 

allowed for every variable, e.g., a single gene exceeds 50% (default), the 

missing values are imputed using the overall mean per sample. Only 

samples with missingness less than 80% (default) were considered for the 

imputation. Further, algorithm9s parameters were set to default values: the 

number of neighbors used in the imputation was set to k=10, and the 

largest block of variables imputed using the kNN algorithm before 

recursively dividing the feature into smaller chunks was set to max = 1500.   
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Stacked Adaptive Lasso (SALasso): Stacked approaches combine prior 

D-times multiply imputed datasets by averaging over them during 

inference, making such approaches applicable to existing sparse 

regression framework. We use the SALasso implementation released in 

the R package miselect 0.9.0 (Du et al., 2022). We tested 50 values with 

a lambda.min.ratio of 1e-4 in a 5-fold cross-validation with and without 

adaptive weights, while sample weights were set to be uniformly 

distributed. 

 

Grouped Adaptive Lasso (GALasso): Similar to SALasso, GALasso 

pools prior imputed datasets by adding a group LASSO penalty term 

enforcing consistent variable selection across multiply imputed datasets. 

We use the GALasso implementation released in the R package miselect 

0.9.0 (Du et al., 2022). We tested 50 lambda values with a 

lambda.min.ratio of 1e-4 in a 5-fold cross-validation with and without 

adaptive weights, while the sample weights were set to be uniformly 

distributed. 

 

Convex Conditioned Lasso (CoCoLasso): CoCoLasso is an inverse 

covariance estimation method for high-dimensional data with missing 

values. The main idea is to reformulate the Lasso regression by working 

with the sample covariance matrix of �, � = !

"
�!�, and the sample 

covariance vector of X and y, � = !

"
�!�. With this reformulation, � is 

estimated via � and � instead of � and �. We use the CoCoLasso 

implementation released in the R package HMLasso 0.0.1 (Takada, M., 

Fujisawa, H., & Nishikawa, T., 2019) with the following selection of 

hyperparameters: For lambda, we tested 50 values with a lambda.min.ratio 

of 1e-1 in a 5-fold cross-validation. 

 

Lasso with High Missing rate (HMLasso): HMLasso can be seen as an 

optimally weighted modification of CoCoLasso according to the missing 

ratio. HMLasso uses the mean imputation method. Instead of � the mean 

imputed data variable, � is used, where �"# = �"# for an observed element 

and �"# = 0 otherwise. We use the HMLasso implementation released in 

the R package HMLasso 0.0.1 (Takada, M., Fujisawa, H., & Nishikawa, 

T., 2019) with the following selection of hyperparameters: For �, we 

tested values between 0.5 and 2 with an interval of 0.5. For lambda, we 

tested 50 values with a lambda.min.ratio of 1e-1 in a 5-fold cross-

validation. 
 

Block-descent-CoCoLasso (BDCoCoLasso): To improve the 

computational efficiency of CoCoLasso, BDCoCoLasso implements a 

block coordinate descent strategy (Escribe et al., 2021), where it projects 

the covariance matrix onto a positive semidefinite subspace on the 

corrupted subblocks. Unlike uncorrupted covariates that are measured 

without any error, corrupted covariates are measured with an error or are 

missing, leading to inconsistent estimates. The covariance matrix  �$%& is 

separated into [�'"#$%
, �("#$%

] where �$%&!and �("#$%
 corresponds to the 

uncorrupted and corrupted covariates, respectively. Then, � is defined as 

� = (�', 	�() where �' and �( correspond to the coefficient vector for the 

uncorrupted and corrupted covariates, respectively. We use the BDCoCo 

implementation released in the R package BDCoCoLasso v0.0.0.9000 

(https://github.com/celiaescribe/BDCoCoLasso) with the following 

selection of hyperparameters: For lambda, we tested 50 values within a 

range between 0 and 1e-2 with an adaptive cross-validation schema. 

 

2.2 Datasets 

We collected triple-omics data (transcriptome, copy number variation 

(CNV), and methylation data) as well as clinical data from the breast 

invasive carcinoma atlas, which is one of the most comprehensive multi-

omic data resources to date with 871 matched samples, from the 

PanCancer Projects (Weinstein et al., 2013) using The Cancer Genome 

Atlas (TCGA) data portal and the cBioPortal (Gao et al., 2016) (retrieved 

on 03/07/2022). All samples containing missing information were 

removed to construct a complete data set as the baseline, thus restricting 

the data sets to 604 patients. Similarly, features with low variance were 

removed, resulting in 11,530 transcriptomics features, 1,366 methylation 

features, and 84 copy number variation (CNV) features. 
 

2.3 Prior network generation 

We extracted protein-protein interactions from the BioGrid interactome 

(Release 3.5.188) (Oughtred et al., 2021), associated these interactions 

with the extracted gene expression information, and linked each CNV and 

methylation site to its associated gene since both omics layers were 

already annotated to gene identifiers. The final prior network contained 

11,645 nodes (10,848 genes, 84 CNVs, and 713 methylation sites). 
 

2.4 Network-based multiple imputation 

Stacked and grouped adaptive Lasso approaches require multiple imputed 

data as input. Nevertheless, multiple imputation methods do not scale well 

to high dimensional data with high missingness, and standard 

implementations such as those offered in the R package MICE, take 

multiple hours to days to finish. Thus, we developed a novel network-

guided multiple imputation by chained equation approach (ngMICE) by 

utilizing KiMONo9s prior network. Instead of considering all covariates 

for imputation, we restrict each imputation attempt to the covariates that 

are directly linked to the missing covariate in a prior network as other 

covariates will be removed during network inference by KiMONo and 

therefore can be neglected. The number of covariates can be further 

reduced by correlation-based filtering. For missing elements retaining less 

than k covariates for imputation, the top k correlated covariates are used. 

Once the covariate matrix has been constructed as described, the standard 

MICE procedure is run. We used the R package MICE 3.14.0 (van Buuren 

and Groothuis-Oudshoorn, 2011), with Bayesian linear regression as a 

multiple imputation approach and an absolute Pearson correlation 

coefficient of 0.1 as the threshold. 

ngMICE performed similarly to kNN-based imputation in terms of 

RMSE across omics types and missingness with slightly worse average 

performance (Supplementary Figure 1). 
  
2.5 Benchmark 

Figure 1: Benchmark schematic. A) Three common missingness scenarios in regulatory 

network inferences are tested: 1) single-omics, 2) multi-omics random missingness of 

individual elements, and 3) block-wise missingness in which entire omics layers are missing 

for an individual. B) We tested five approaches of two categories: 1) Two-step approaches 

that first impute and then aggregate imputation through, and 2) Inverse covariance 

estimation approaches that implicitly handle missingness during inference. We inferred 

regulatory networks from full data and data missing for each method and compared the 

resulting networks with multiple performance metrics. 
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We assess the performance of the selected inference methods in the 

presence of missing data via simulating two typical scenarios - (1) random 

missing information in a single omic level and across multiple levels, as 

well as (2) a block-wise missing structure, i.e., data in one or more omic 

levels may be unobserved (Figure 1a). To stress the method's capabilities 

even further, we decreased the signal-to-noise ratio by systematically 

adding covariate-specific white noise to the input data. Each experiment 

was repeated 5 times for robust performance estimation and corrected for 

confounding age and sex effects. 

 

Single-Omics missing: We selected the transcriptomics level as a single-

omic layer to test the different models' capabilities to infer gene regulatory 

networks with less directly informative co-correlation structures that could 

be used to impute the missing gene expression information. We then 

removed � * {0%, 10%, 20%, 30%, 40%, 50%} randomly selected 

entries from the input data. Additionally, we added white noise with 

increasing intensity to the data by drawing from a normal distribution 

� > �(0, ���
2
) per gene with a gene-specific variance term estimated 

from the real data and � * {0, 0.5, 1.5}. 

 

Multi-Omics missing: To test the models' capabilities to handle more 

complex co-correlation structures that could potentially be exploited for 

better imputation, we expanded the single-omics experiment to jointly 

consider the three available omics types. As before, we randomly removed 

�	 * {0%, 10%, 20%, 30%, 40%, 50%} of entries independently per 

omics layer and added feature-dependent white noise to the data as 

described before while ensuring to bound the beta values of the 

methylation data to the range between 0 and 1.  

 

Multi-Omics Block-Missing: To test the capabilities of the method to 

handle block-wise missing information, in which an entire omics layer is 

missing for a random selection of patients, we removed �	 *

{0%, 10%, 20%, 30%, 40%, 50%} patients per omics layer such that at 

least two omics-layers still remained per individual. Additionally, we 

added white noise to the remaining samples as described before. 

 

Downsampling: Similarly, to identify the minimal number of samples 

required to infer reliably the regulatory network, we downsampled the 

dataset to �	 * {90%, 80%, 70%, 60%, 50%} of samples. 

 

Figure2: Benchmark results across all experimental setups. Transparent lines denote individual runs, while bold lines refer to the average performance. A) Performance under Single-Omic, 

Multi-Omic, and Block-missingness were evaluated using network size (number of nodes), transitivity (global clustering coefficient), median R2, and F1 scores compared to a reference (i.e., 

the same method applied on the full data and stability selected networks generated with KiMONo). B) Illustrating the topological change with increased missingness based on the 200 

network nodes with the highest betweenness centrality. C) Comparison of computing time. 
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Runtime: We tested the runtime of each method on a dedicated machine 

with an AMD EPYC 7502P 32-Core Processor with 2.5GHz base clock 

speed and 859.4 RAM using the multi-omics missingness experiment with 

the same configurations as before. We ran all experiments with ncores=60 

(with hyperthreading enabled). 
 
2.4 Evaluation Metrics 

To construct the final network from the individual regressions, we applied 

a strict filter connecting independent to dependent variables if their beta 

coefficient was non-zero and their R2 > 0.1. 
 

Prediction Metrics: To measure the prediction qualities of each 

regression model, we recorded the root means squared error (RMSE) and 

R2 respectively, and compared their distribution based on a Wilcoxon 

rank-sum test. 
 

Network Reconstruction Metrics: To measure the methods9 abilities to 

handle missing data well, we compared the inferred regulatory networks 

from missing data to their counterpart inferred on full data, respectively, 

and calculated precision, recall, and F1 of the recovered network edges. 

Similarly, we inferred a ground truth network with KiMONo using 

stability selection by repeating network inference k times on different data 

splits and averaging over the resulting coefficients and R2 values before 

constructing the network, improving the robustness of the graph. The final 

stability-selected and conservatively filtered network consisted of 2,458 

nodes (2,182 genes, 63 CNV, 211 methylations) and 6,554 edges. We 

compared the stability-selected reference network to all inferred networks 

on missing data to determine performance differences across the 

individual methods.  
 

Topological Metrics: The interpretation of complex heterogeneous 

networks and identifying key modules and important network nodes relies 

on the topological network features. Hence, it is also vital to evaluate if 

the methods can robustly infer topological structures. Therefore, we use 

multiple network-based metrics such as node-degree distribution, 

betweenness centrality, and clustering coefficient to quantify and compare 

the topological changes of the networks inferred from missing data. Node 

degree indicates the sparseness of the network, while betweenness 

centrality indicates how interconnected the network is, and the global 

clustering coefficient (transitivity) indicates how densely connected 

neighboring nodes are. 

3 Results 

For BDCoCoLasso, we could not use the inferred model on incomplete 

samples and could not calculate RMSE and R² metrics for a significant 

proportion of edges. Due to this reason, we could not infer complete 

networks on data with missing values (Supplementary Information S1). 

We, therefore, refrain from discussing the performance of BDCoCoLasso 

in the following discussion.  

 

3.1 Most topological features can be conserved in data with 

missingness 

One aspect of robustness in presence of noise or missingness is that the 

network topology should remain largely unchanged. To investigate this, 

we computed multiple network properties across all benchmarking 

scenarios (Figure 2A&B).  

Our benchmark showed that induced missingness increases the 

transitivity while decreasing the number of nodes and edges regarding the 

full and uncorrupted data topological network properties. The largest 

heterogeneous networks were produced by knnKiMONo (~2400 nodes) 

on the full dataset (Figure 2A). This was followed by GALasso and 

SALasso modeling on average over 2,200 nodes, CoCoLasso (~950 

nodes), and HMLasso (~900 nodes) (Supplementary Figure 2). While all 

methods suffered under high missingness resulting in smaller networks, 

knnKiMONo appeared to be robust in low to medium missingness 

conditions. As the networks fell apart into unconnected modules, the top 

200 nodes9 average betweenness of centrality decreased while the global 

transitivity increased (Figure 2A&B). Similar patterns could be observed 

through the number of inter and intra omic edges. Here, the constant loss 

of edges showed a stable ratio indicating no bias towards a specific omic 

layer. Briefly, across all benchmark settings, the methods showed a 

decreasing network size with increased missingness. GALasso and 

SALasso were less affected in terms of noise, while knnKiMONo 

produces the most robust results in terms of missingness (Supplementary 

Figure 2). 

 

3.2 kNN imputation-based models perform best for single- 

and multi-omics data with random missingness 

In both the single- and multi-omics setting, where we randomly perturbed 

omics layers independently, knnKiMONo was the best performing 

method reaching F1 scores of 0.921±0.005 on in the single omics and 

0.923±0.002 on the multi-omics data at 10% missingness followed by 

SALasso (single-omics: 0.880±0.005, multi-omics: 0.882±0.004) and 

GALasso (single-omics: 0.836±0.009, multi-omics: 0.837±0.003) when 

compared to a reference network inferred on full data (Figure 2A; 

Supplementary Figure 3&4). The performance gradually decreased with 

increasing missingness and noise levels to a similar degree for all three 

methods dropping to 0.348±0.018 and 0.315±0.011 for knnKiMONo, 

0.381±0.009 and 0.339±0.013 for SALasso, as well as 0.318±0.015 and 

0.272±0.008 for GALasso, for single- and multi-omics data, respectively, 

at 50% missingness and a medium noise (a=0.5). At higher noise levels, 

the performance of all three methods declined dramatically reaching only 

F1 scores below 0.1. HMLasso and CoCoLasso came in last, reaching F1 

scores below 0.1 both on single- and multi-omics data even for samples 

with only 10% missingness and no noise (Supplementary Figure 4). Both 

methods even failed to infer networks in 11/15 and 11/15 single-cell 

experiments at 30% and 40% missingness, as well as in 9/11 and 8/11 

multi-omics experiments, at 40% and 50% missingness, respectively.  

Similar behavior could be observed when comparing the inferred 

networks to the stability selection-based reference network: knnKiMONo 

performed best with an F1 score of 0.873±0.005 and 0.820±0.004 at 10% 

missingness and no noise on single- and multi-omics data respectively, 

followed by SALasso (single-omcis: 0.841±0.007, multi-omics: 

0.772±0.003) and GALasso (single-omics: 0.840±0.005, multi-omics: 

0.772±0.001) (Figure 2A; Supplementary Figure 5). SALasso did 

marginally outperform knnKiMONo in samples with high noise and/or 

high missingness. At high noise levels (a=1.5), even in the absence of 

missingness, none of the methods exceeded F1 scores of 0.1 for both 

single- and multi-omics data, with the exception of SALasso with 

0.113±0.013 for single-omics, and 0.121±0.002 for multi-omics 

(Supplementary Figure 5). 

For both SALasso and GALasso adaptive weights had a marginal 

impact on performance with a slight negative effect. Only at high noise 

levels did adaptive weights stabilize performance (Supplementary Figure 

4&5). 

 

3.4 SALasso performs best for data with block-missingness  

When investigating block-missingness, i.e., where entire omics layers are 

missing for a subset of patients, SALasso performed overall best, 

outperforming knnKiMONo and GALasso (Figure 2A; Supplementary 
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Figure 3). The SALasso inferred networks were consistent with the 

networks inferred on full data across different block missingness levels, 

with SALasso reaching F1 scores between 0.945±0.004 at 10% 

missingness (a=0) and 0.688±0.002 at 50% missingness (a=0.5). With 

higher noise, the performance dropped below an F1 score of 0.1 

(Supplementary Figure 4). This behavior could be observed for GALasso 

and knnKiMONo, although with generally lower F1 scores. Notably, 

knnKiMONos networks almost exclusively consisted of gene nodes, while 

all other methods had a proportional representation of all omics types. The 

implementation of kNN-imputation used here is not able to handle entire 

block-missing samples and, consequently, knnKiMONo removes a 

substantial amount of the features. The explanation is the sample missing 

removal takes the dependent vector as reference. However, the sample 

missing in this vector differs from the remain omics layers provoking the 

deletion of those missing sample from the same omic layer this vector was 

extracted, but conserving the sample missingness from the rest of omics 

matrices. 

Similar behavior could be observed when comparing the inferred 

networks to the stability selection inferred network. Both SALasso and 

GALasso outperformed knnKiMONo with SALasso overall reaching the 

highest F1 scores of 0.763±0.003 (10% missingness, a=0) to 0.655±0.007 

(50% missingness, a=0.5), while knnKiMONo reached F1 scores of 

0.663±0.003 (10% missingness, a=0) to 0.472±0.011 (50% missingness, 

a=0.5). High noise reduced the F1 scores below 0.1. Adaptive weights had 

negligible effects and only improved performance markedly at high noise 

levels (a=1.5) (Supplementary Figure 5). 

HMLasso and CoCoLasso performed worst, reaching average F1 

scores of 0.212±0.022, and 0.246±0.039 at 10% block-missingness, 

dropping to 0.063±0.033 and 0.073±0.031 respectively with 50% block-

missingness and medium noise (a=0.5) (Supplementary Figure 4). 

Comparing those methods to the stability-selection-based reference 

depicted a similar picture. Average F1 scores of 0.264±0.027 and 

0.283±0.035 could only be reached at 10% block-missingness, 

respectively, while higher missingness and noise levels led to F1 scores 

below 0.05 (Supplementary Figure 5). 

 

3.5 knnKiMONo and SALasso are least affected by sample 

size reduction 

All methods showed a decrease in concordance already at 90% of the total 

sample size (Supplementary Figure 6&7). HMLasso and CoCoLasso were 

most severely affected, with F1 scores at 0.222±0.015 and 0.205±0.021, 

albeit remaining at this performance level for larger sample size reductions 

(Figure 2A; Supplementary Figure 6). knnKiMONo reached an F1 score 

of 0.918±0.020 and slowly decreased in performance with increasing 

sample size reduction to 0.820±0.020 at 50% sample size. SALasso and 

GALasso behaved similarly, reaching F1 scores of 0.908±0.004 and 

0.824±0.009 respectively at 90% sample size, and GALasso gradually 

decreased with smaller sizes, reaching 0.864±0.003 and 0.793±0.009 at 

50% sample size. At these high sample reductions (40 and 50%), SALasso 

is even more stable than knnKiMONo. Adaptive weights, as before, 

reduced performance marginally (Supplementary Figure 6&7). 

 

3.6 HMLasso is the fastest approach in datasets with no to 

medium missingness 

knnKiMONo, HMLasso, and CoCoLasso had a similar runtime of 82 - 85 

sec on the full dataset without missing information and gradually 

increased in runtime with rising missingness (Figure 2C). HMLasso was 

the fastest approach with an average runtime of 81.843±0.375 sec at low 

to medium missingness levels. Only in scenarios with high missingness 

HMLasso was outperformed by knnKiMONo, reaching an average 

runtime of 97.089±1.327 sec. knnKiMONo demonstrated a very 

consistent runtime across all missingness levels with an average runtime 

of 97.725±7.995 sec. CoCoLasso behaved similarly but was affected by 

the degree of missingness, reaching maximum average runtimes of 

449.6±225.2 sec. GALasso and SALasso were the slowest, with average 

runtimes of 739±15.532 sec and 919.785±11.833 sec on the complete 

dataset, respectively, of which 241.191±2.975 sec were dedicated to 

imputation. Overall runtime gradually increased for both methods 

reaching an overall average runtime of 1148.871±245.077 sec and 

1184.688±157.794, respectively of which on average 507.674±58.126 

sec was spent in imputation. For GALasso, adaptive weights calculations 

added another 275.363±54.180 sec on average to the overall runtime. 

4 Conclusion 

Due to economic or technical restrictions, missingness of individual 

values or block-missingness of entire omics layers in a subset of samples 

is typical for high-throughput multi-omics experiments, rendering multi-

omics network inference challenging. In particular, single-cell 

experiments, which have become increasingly prevalent and offer 

unprecedented insights into the molecular landscape, are affected by 

sparsity and missingness. In this study, we benchmarked novel regression 

approaches that can handle missing information across common 

missingness scenarios in single and multi-omics experiments and 

integrated these approaches into KiMONo, a recent approach for network-

guided multi-omics network inference. 

Generally, we observed that approaches explicitly handling missing 

information through prior imputation overwhelmingly outperform 

methods that implicitly handle missingness. Specifically, kNN-imputation 

combined with the standard KiMONo approach performed best, closely 

followed by SALasso and GALasso approaches that combine multiple-

imputation results. Both SALasso and GALasso probably suffered from 

the lower imputation quality of the network-based multiple-imputation 

approach (ngMICE) we applied, propagating the imputation uncertainty 

into network inference. Multiple-imputation in high-dimensional data is 

generally a challenge since existing approaches do not scale to the number 

of covariates typically encountered in multi-omics studies. Here, 

dimensionality reduction methods for multiple imputation (Hodge et al., 

2019), latent factor models (Argelaguet et al., 2020), or deep-learning-

based approaches (Qiu et al., 2020; Gayoso et al., 2021; Lotfollahi et al., 

2022) might improve multiple imputation and therfore network inference 

quality even over the simple kNN-imputation-based approach. The 

potential superior performance of multiple-imputation-based approaches 

was indicated by SALasso already outperforming knnKiMONo in block-

missingness cases and in high missingness-high noise multi-omics cases. 

A benefit of such explicit approaches is their ability to use and adequately 

address prior imputed datasets often provided by larger consortia. 

Surprisingly, implicit methods relying on inverse covariance matrix 

estimation performed poorly, indicating that more research is needed to 

make these approaches robust.  

We note that a true gold standard for evaluating the performance of 

network inference methods is missing. In its absence, we rely on a network 

inferred from complete, unperturbed data that nevertheless is likely to 

contain both false positive and false negative interactions which may 

affect the results. Hence, our reference network is not suited for evaluating 

methods following different principles for inference as GENIE3 (Huynh-

Thu et al., 2010), or other non-linear approaches. However, a comparison 

with derivatives of the Lasso method is reasonable, as differences in the 

results can be attributed to each method9s ability to handle missingness or 

noise.  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.14.488153doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.14.488153
http://creativecommons.org/licenses/by-nd/4.0/


GRN inference with missing data 

7 

In summary, we found explicit methods to be more robust than methods 

implicitly handling missingness. While most methods were tolerant to 

high levels of missingness, they were strongly affected by noise. While 

HMLasso was the fastest tested method, knnKiMONo showed the best 

tradeoff between performance and runtime and is thus our recommended 

approach for handling missingness in KiMONo. While we see room for 

further method improvements, particularly with respect to multiple 

imputations of high-dimensional data and the robustness of inverse 

covariance methods, our results show that robust multi-omics network 

inference with KiMONo is feasible and thus allows users to leverage 

available multi-omics data to its full extent.  
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