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Abstract

Cells and tissues respond to perturbations in multiple ways that can be sensitively reflected in
alterations of gene expression. Current approaches to finding and quantifying the effects of
perturbations on cell-level responses over time disregard the temporal consistency of
identifiable gene programs. To leverage the occurrence of these patterns for perturbation
analyses, we developed CellDrift (https://github.com/KANG-BIOINFO/CellDrift), a generalized
linear model-based functional data analysis method capable of identifying covarying temporal
patterns of various cell types in response to perturbations. As compared to several other
approaches, CellDrift demonstrated superior performance in the identification of temporally
varied perturbation patterns and the ability to impute missing time points. We applied CellDrift to
multiple longitudinal datasets, including COVID-19 disease progression and gastrointestinal
tract development, and demonstrated its ability to identify specific gene programs associated
with sequential biological processes, trajectories, and outcomes.
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Introduction

Single-cell transcriptomics sequencing (ScCRNA-seq) has revolutionized discoveries in complex
biological systems by identifying a wide variety of cell populations in a high resolution [1-3].
Researchers have applied the technology in experiments with perturbation settings such as
diseases [4,5], treatments [6,7], genetic mutations [7,8], organ differentiation [9,10] and more to
explore transcriptional profiles across control and various biochemical states. Additionally, large-
scale experimental methods, such as CROP-seq [11] and Perturb-seq [12], have been
developed for perturbation screening, which provides an abundance of information about
biological states.
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However, the response to perturbation can vary over time, which is overlooked in many single
cell studies. Nowadays, researchers are increasingly considering the impact of time when
designing experiments. For example, the genetic effects of autism risk genes have been studied
during the development of the nervous system using brain organoids [13,14]. Additionally,
influenza vaccination effects have been evaluated by monitoring immune responses over
multiple follow-up periods [15]. Moreover, the impact of infections, such as COVID-19 and HIV,
has been studied for patients at varying stages of their illness [16,17]. By having access to
single cell profiles over time, researchers can accurately report perturbation effects during
treatment procedures, disease progression, and organ development.

There have been both conventional and novel approaches introduced to quantify and
disentangle transcriptional changes in scRNA-seq data from perturbation experiments [18]
(Table 1). Although traditional methods, such as the Wilcoxon test or t-test, are commonly used
in single-cell differential expression analysis, they are not sufficient to resolve batch effect and
data sparsity issues [19]. More advanced algorithms, such as MAST [20] and muscat [21], have
been developed. However, their flexibility in measuring perturbation effects is still limited, such
as the identification of common and cell type specific perturbed genes. In the meanwhile,
machine learning approaches and generative models have been developed to solve
complicated perturbation data. For example, Augur used cross-validation scores of random
forest to prioritize perturbation effects across cell types [22]. scGen and CPA applied
autoencoder models to learn perturbation responses in the latent space and predict unseen
scenarios [23,24]. Although machine learning approaches are powerful in analyzing high-
dimensional data, interpretability in latent spaces remains a significant challenge and more so in
temporal variation settings.

In addition to the lack of interpretability of the current methods, another defect is that they were
not originally designed to measure perturbation effects in a temporal context. Some temporal
approaches, such as MEFISTO [25], introduced a regularized factor analysis-based approach to
evaluate temporal patterns in single-cell data. These approaches, however, take a
transcriptional profile rather than perturbation effects into account. Other methods, such as
compositional perturbation autoencoder (CPA) [26], utilized the combination of linear models
and deep-learning approaches to interpreting time impact by adding it as a covariate. However,
the autoencoder neural network framework and predicted perturbation effects on latent space
prevent users from interpreting gene-level impacts simply. Furthermore, CellBox analyzes the
perturbation effects over time using Ordinary Differential Equations (ODE) [27]. However, the
performance of the method is limited by computational challenges, such as training efficiency on
large-scale data, as well as the sparsity and stochasticity issues in single-cell data.

Generalized linear models (GLM) have been widely used in modeling single-cell transcriptomics
data, outperforming linear regression by more accurately and efficiently capturing non-linear
relations in the count data through non-Gaussian distributional families formed by link functions
[28]. Furthermore, it is more flexible in the modeling of the mean-variance relationship of the
count data. Sctransform successfully removed technical effects by introducing cellular
sequencing depth as a covariate [29]. Milo captured differential abundance in single-cell
perturbation data by adding cell counts as the covariate in a GLM on k-nearest neighbor (KNN)
graphs [30].
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Functional Data Analysis (FDA) has been widely used in longitudinal data analysis [31,32]. A
general form of FDA is the analysis of multiple curves varying over time, where each curve is a
sample tracing with a series of time points, which can be characterized as a function. Such data
is called functional data. One of the most popular tools in FDA is Functional Principal
Component Analysis (FPCA), which identifies the dominant modes of variation of functional data
[33]. It has been widely used in disease progression profiling and predictions. For example,
FPCA has been used in the trajectory evaluation of cystic fibrosis progression [34] and
monitoring of glucose levels in hyperglycemic patients [35]. We utilized the flexibility of the FDA
to identify temporal perturbation patterns.

To address the aforementioned issues, we developed CellDrift, a generalized linear model-
based functional data analysis model to disentangle temporal patterns in perturbation responses
in single-cell RNA-seq data. CellDrift first captures cell type specific perturbation effects by
adding an interaction term in the GLM and then utilizes predicted coefficients to calculate
contrast coefficients, which represent perturbation effects in our study. Concatenated contrast
coefficients over time are defined as functions and Fuzzy C-mean clustering is used to identify
temporal patterns, accompanied by FPCA to find major components that account for the most
temporal variance. We benchmarked CellDrift with multiple functional clustering methods with
statistical results from differential expression approaches, such as Wilcoxon and t-test, and
CellDrift achieved superior performance in the identification of temporal patterns and imputation
of perturbation effects. We applied CellDrift in COVID-19 single cell data and gut development
atlas and identified temporal patterns and functional principal components associated with
varying immune responses and gut organ morphogenesis. The CellDrift package is available on
https://github.com/KANG-BIOINFO/CellDrift.

Table 1. Comparisons of perturbation or temporal evaluation methods in single-cell analysis.

Method Algorithm Feature Space Temporal Evaluation Reference
CPA Autoencoder + linear model Neural network latent space Linear model covariate [24]
MEFISTO Factor analysis Factors Gaussian Process [25]

Ordinary differential equation

CellBox (ODE) Protein and phenotypes ODE [27]

scGen Autoencoder Neural network latent space N/A [23]

MAST Generalized Linear Model Genes Manual Comparison [20]
CellDrift Generalized Linear Model Genes Functional Data Analysis This paper
Methods

CellDrift takes the input of multiple single-cell RNA-Seq UMI count matrices across diverse
captures (batches, b), conditions (perturbations, p) and time points (t). As the main goal of the
algorithm aims to disentangle the major effects of different cell types (c) and perturbations (p),
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we utilized the Generalized Linear Model (GLM) due to its superior flexibility and interpretability
to model the raw count data in a probabilistic manner. The derived contrast coefficients
associated with each gene, cell type and condition after implementing the GLM model across
time points are used for functional data analysis to identify temporal patterns of perturbation
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Figure 1. Workflow of CellDrift. (A) An example of a perturbational single cell experiment with multiple time points. (B)
Real scenarios of single cell experiments with varying perturbation effects over time. (C) Generalized linear model
(GLM) with the interaction of cell-type-perturbation applied separately at each time point and contrast coefficients are
derived as the representation of perturbation responses. For simplicity, we omit the library size and batch effect in the
linear function. More details can be found in the Methods. (D) Contrast coefficients are used as input for various
applications in functional data analysis, including temporal pattern identification, functional PCA and one-way
functional ANOVA.

Perturbation coefficient model.

To begin, we introduce a model and notation for a single time point. We model the raw count of
single-cell data y,, for cell n and gene g using a generalized linear model with a negative
binomial (NB) distribution. z,, and x,, represent cell type and perturbation group of cell n, which
are ¢ and p here:

Vngl (zZn=c¢x, =p) ~ NB(#ngcp' ¢ngcp) ey

where (i, 4c, and ¢4, represent the mean and inverse dispersion of the NB distribution for cell
n and gene g. In real cases, z,, and x,, are user-defined cell type and perturbation group for cell
n, such as CD4+ T cell and Drug A treatment.

We use a log link function (In) for u,,, to disentangle 7, 4.,with a linear model with cell type
coefficients B,.and perturbation coefficient g, for each gene g:
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log”ngcp = Nngep (2)

Mngep = logs, + ﬁgo + lggcpnc + ﬁgppnp + Zg= 1 ngpnb (3)
where p,. and p,, represent whether cell n belongs to cell type ¢ and perturbation group p, as
represented by one-hot matrices. The intercept S, represents the base expression level of
gene g. In addition, we account for library size s, and batch effects f;, in the model, and py,, is
the one-hot matrix for cell n and batch b (e.g., donor, sequencing platform). B is the total
number of batch types. Batch types are incorporated into the model as fixed effects. For
simplicity, we omit the b (batch) subscript in the mean count (¢, 4.,) and linear predictor
symbols (7,,g¢p)-
In equation (3), cell type effect and perturbation effect are independent covariates. In real cases,
however, different cell types usually have distinct responses towards the same perturbation.
Thus, we add an interaction term S, for cell type and perturbation covariates, representing cell
type-specific perturbation effects. In contrast, ,, represent common perturbation effects
across cell types:

nngcp = logsn + .BgO + lggcpnc + ,ngpnp + ,Bgcppncp + Z?: 1 lggbpnb (4)
where p,, is a one-hot matrix of cell type and perturbation group, indicating whether cell n
belongs to cell type ¢ and perturbation group p at the same time.

By adding the interaction term B,.,,, we create a contrast model to determine whether or not
perturbation effects vary across cell types. To justify the performance improvement of models
for some genes by adding the interaction term, we applied the likelihood ratio test (LRT) for the
reference and contrast models with the null hypothesis (H,) that the contrast model doesn't
significantly perform better than the reference model (Figure S1). Using a cutoff (FDR-adjusted
p values < 0.05) for LRT tests, we then identify genes with cell-type-specific perturbation effects.

Contrast coefficients

Both major effects (B, and f,,,) and interaction coefficients (84.,) are predicted using GLM
after fitting the single cell data. Then we use Estimated Marginal Means (EMM) [36] to retrieve
pairwise contrast coefficients 4., based on predicted g,, and B,.,, which are used to
measure the difference between the perturbed state and baseline in specific cell types. Briefly,
they represent the coefficients of cell type ¢ (perturbation group p) minus cell type ¢ (control).
Contrast coefficients are the basic representation of perturbation effects in this study. They are
also the input data for FDA (Figure 1).

In line with the standard strategy implemented in R package emmeans [36], we first get pooled
standard errors for pairwise tests of estimates from the generalized linear model. Z-scores are
derived by dividing means by the standard errors. Using these scores, we calculate p values
using normal approximation, which for a two-tailed test is 2 xthe probability of z-scores on the
negative scale. In CellDrift, Z-scores are used as the final values of contrast coefficients.

Representation of functional data using contrast coefficients
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Functional data analysis (FDA) is a popular framework for longitudinal data analysis, whose
general form is the analysis of multiple curves over time. Each curve is a sample with a series of
time points, which is commonly referred to as a function. As an example, varying glucose levels
over time for a patient can be described as a function.

In our study, in addition to cell types and perturbation groups in single-cell perturbation data, we
added another dimension of complexity, time covariate t, into our model, which is continuous
and usually sparse covariate in single-cell experiments. Real-life examples of time covariates
include the elapsed time since disease onset, drug treatment, genetic knockouts, and other
cases.

In our model, we estimate contrast coefficients 48,,, for genes across cell types and
perturbation groups at each time point ¢ from the time series {1,2,...,T}. Then for each
combination of cell type ¢ and perturbation group p, we get a series of 45,,, across available

time points, represented as {4f,.,, } Each series {4Bycp. } denotes perturbation

te[o,1,..,T] t€fo0,1,..,T]
coefficients of gene g across time points for the selected cell type and perturbation group, which
is the representation of a function or a sample in the following functional data analysis
framework.

Temporal Pattern Identification
There are two general input formats for FDA in our context:
(1) Functional data of various genes in a fixed cell type and perturbation group:

Fe = {{AﬁQOCpt}tE[O,I,...,T]’ {A'Bglcpt}te[o,l,...,T]'{AﬁQZCPt}tE[O,l,...,T]' {Aﬁ93CPt}te[0,1,...,T]’ }

(2) Functional data of various cell types and perturbation combinations for a specific gene:

FCP = {{Aﬁgcopot}te[0’1'."'7']’ {Aﬁgcoplt}te[o’l'm’]‘]’ B {Aﬁgclpot}te[o’l’m"[’]’ {Aﬁgclplt}te[o'l’m"[’]' "t }

where functional data are denoted as a set of functions.

Our goal is to identify genes (or cell type-perturbation combinations) that show similar dynamic
changes in perturbation responses over time, which we refer to as temporal patterns. To find
such patterns, we used functional clustering algorithms such as KMeans, Fuzzy C-means, and
EMCluster [37,38]. Based on benchmark results, we utilized the Fuzzy C-means functional
clustering algorithm to identify temporal patterns of perturbation effects [39]. For example, when
clustering on F; , the resultant cluster can be interpreted as a group of genes with a similar
pattern of perturbation response over time. L2 distance of functional data was used to iteratively
update clustering results. Different from classical K-Means clustering, Fuzzy C-means clustering
uses weighted square errors in the objective function, where the algorithm iteratively updates
the probability of a sample being a member of a cluster (supplementary materials).

Decomposing temporal complexity with FPCA

In real cases, it is easy to see thousands or even more samples (genes or cell type-perturbation
combinations) in the input data. To decompose the complexity of the data on the time scale, we
implemented Functional Principal Component Analysis (FPCA) and extracted top functional
principal components (PCs) that explained most temporal variance. To resolve the sparsity
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issue of functional data due to the lack of time points, we used Principal Analysis by Conditional
Estimation (PACE), which yields covariance and mean functions, eigenfunctions and principal
component scores for both functional data and its derivatives with respect to time [40,41].
Notably, the covariance of curves in PACE is smoothed, resulting in smoothed temporal curves
in the output (supplementary materials). In conclusion, PACE can not only reduce temporal
complexity but also generate smooth curves.

ANOVA Test for Differential Temporal Perturbation Effects
We implemented a one-way functional ANOVA to identify genes with differential patterns across
perturbation groups [42]. Let P, P,, ..., be functions from different lists of perturbation groups.
We define E(F¢p,) = my(t), E(F¢cp,) = my(t).... The null hypothesis is:

Ho:my(t) = my(t) =...= my(t)
More details can be found in the supplementary materials.

Time Warping

In some situations, the sampling time points can be variable for different perturbations. For
example, single cell data of COVID-19 and sepsis patients were retrieved from different time
scales in the same study [43]. We used the dynamic time warping (DTW) algorithm to align
different time series. It aligns two time series with different lengths by comparing the similarity or
calculating the distance between them [44]. It is necessary when samples in different
perturbation groups are collected from unaligned time points. Application of DTW could make
temporal curves comparable. We first choose a reference curve and then find the matching
indices between query and reference curves. Values of time points on query curves are
projected onto the matched time points in the reference curve, making temporal data from
different curves comparable.

Perturbation Data Simulation

Simulation data with varying batch effects and differential expression sizes were generated from
Splatter [45]. To mimic real single-cell data, we extracted initialization parameters from a CD14+
Monocytes of an interferon-stimulated PBMC dataset [46]. We define 3000 features and 1000
cells with 2 cell groups (Group 1,2) and 3 batches (Batch 1,2,3). To investigate the influence of
batch effects, we selected varying batch effect sizes (batch. facLoc) from [0.02, 0.1, 0.4, 0.7]
for 3 batches.batch. facScale is controlled as 0.1. The proportion of differential expression (DE)
genes compared with baseline (de. prob) is controlled as 50% for all three batches with shared
DE genes, among which 50% are downregulated genes. To simulate prominent batch effects for
benchmark tasks, we intentionally introduced imbalance in the largest batch, with 600 cells in
Batch 1 and 200 cells in Batch 2 and 3 (Figure 2).

Additionally, to interrogate the influence of differential expression size, the differential
expression parameter de. prob was defined with a series of values ranging in [0.05, 0.2, 0.5,
0.8], representing the proportion of DE genes compared with the baseline expression in the
simulated data. To clarify, this parameter doesn’t denote the DE gene proportion between
Groupl and Group2. In this benchmark experiment, simulated data contains 600 cells and only
one batch.
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To define the ground truth of DE genes between Group 1 and Group 2, we divided genes from
simulated data into two categories: (i) unperturbed (negative)s genes with differential expression

factors in both Groupl and Group2 as 1; (ii) perturbed (positive) genes with absolute
difference of between Group 1 and Group 2 in the top 75 percentile.
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Figure 2. Splatter simulated data for the benchmark of CellDrift generalized linear model. (A-B) UMAPs of simulated
data with different batch effect sizes range from 0.02 to 0.7. Batch (A) and biological cell group (B) annotations are
shown.

Temporal Data Simulation

Inspired by MEFISTO [25], simulation data were derived from a generative model by varying the
number of time points per group in a [0, 1] interval, the rate of missing time points, the noise
levels and sequencing depth (Figure 3). The default base mean of simulated genes is 2. Default
coefficient parameters for cell type, perturbation and the interaction effects are 0, 0.3 and 2, and
corresponding scale parameters are 0.2, 0.2, 0.2, respectively. We defined 3 linear temporal
patterns in our study and cell type-perturbation interaction coefficient is a time-dependent

parameter . By default, are -1, 0, 1 for negative-correlated, time-insensitive
and positive-correlated temporal patterns. Corresponding intercepts are 1, 1, 0. We also
defined 3 non-linear temporal patterns where (Figure 3E), and default

are -4, 0, 4, representing various shapes of non-linear temporal patterns. We also defined as
[-8, 0, 8] and [-2, 0, 2] to represent different temporal curve shapes in the benchmark. In each
parameter setting, 100 cells in each cell type and perturbation group per time point, and 20
genes were simulated for each temporal pattern. 12 replicates were generated for each
parameter setting.
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Figure 3. Simulated data for the temporal pattern identification. (A-E) Simulated data with 3 temporal patterns of
contrast coefficients, including negatively-correlated temporal pattern (blue), time-insensitive pattern (gray) and
positively-correlated time pattern (red). Varying parameters were applied in the simulation algorithm, including the
number of time points (A), ratio of missing time points (B), noise level (C), coefficient gaps between time patterns (D)
and non-linear time patterns (E). Three random genes in each temporal pattern are shown on the plot.

Benchmark Criteria

In this study, we benchmarked two parts of the algorithm, including perturbed gene prediction
using the generalized linear model and temporal pattern identification using functional data
analysis.

As we mentioned previously, true perturbed genes and unperturbed genes were defined in the
Splatter simulation data as positive and negative data. We used the true positive rate (TPR or
sensitivity) and the false discovery rate (FDR) as metrics to evaluate the sensitivity and false
discoveries of GLM in identifying perturbed genes.
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In the benchmark experiment of temporal pattern identification, three temporal patterns were
defined in the simulation data. Then we used the adjusted rand index (ARI) to measure the
similarity between estimated functional clusters C; with true temporal patterns C;:

Zer (5) ~ 3 (5)2:(5) | /()
22 () +2(3) |- [2(5)2(3) 1/ (0)

where n is the total number of genes; n, and n, are the number of genes in each estimated
cluster e and in the true cluster t, respectively; and n,, is the number of genes shared by
estimated cluster e and true cluster t. ARI ranges from 0 to 1, where a larger value indicates
more similarity between estimated clusters and true clusters.

Additionally, we utilized FPCA to retrieve smoothed curves of functional data, where we have
imputed contrast coefficients for missing time points. To compare imputation performance with
real simulated contrast coefficients, we used Pearson correlation to measure the consistency
between simulated and estimated contrast coefficients for missing time points in linear temporal
patterns.

ARI (Cg, Cr) =

Results

CellDrift Generalized Linear Model improves perturbed gene detection

As a simple application of the GLM model of CellDrift, we first applied it in a interferon-
stimulated peripheral blood mononuclear cells (PBMC) single-cell data with a single time
point.As expected, genes with the highest positive and negative contrast coefficients are closely
linked to inflammatory pathways (Figure 4A, B, Supplementary Table S1) [46].

Furthermore, we demonstrated the performance of CellDrift in the simulation data. We defined
significantly perturbed genes in CellDrift and each benchmarked method as those with FDR-
adjusted p values less than 0.05. True positive rates (TPR or sensitivity) and false discovery
rates (FDR) were derived by comparing the ground truth (see methods) and estimated results.
These evaluation criteria have been widely used in established methods [30]. Compared with
other commonly-used differential expression methods, including t-test, wilcoxon test and MAST
(supplementary materials), CellDrift achieved improved sensitivity in diverse levels of batch
effect sizes and differential expression sizes (Figure 4C,D), which indicates stronger detection
power for perturbed genes using CellDrift.

We observed that CellDrift has a higher FDR in experiments with small batch effects (<0.1).
However, it has a stable and controlled FDR at larger batch effect sizes (0.4 and 0.7), where
higher FDR was observed in other methods, such as t-test and wilcoxon (Figure. 4C). Similarly,
MAST has a stable and small FDR of less than 0.05 across different batch effects, showing the
best performance of controlling FDR among all methods, which may be due to the removal of
technical covariates, such as batch effects, by the hurdle model [20]. However, its TPR is much
lower than CellDrift.

CellDrift outperformed other methods with significantly higher TPR across various differential
expression sizes (Figure 4D). Meanwhile, we observed a high FDR of CellDrift in experiments
with small differential expression sizes (0.05 and 0.2), indicating relatively inferior performance
in controlling false discoveries. MAST had similar results. We argue, however, that it is more
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important to identify as many DE genes in rarely perturbed data as possible than to avoid false
discoveries (Figure. 4D). FDR of CellDrift decreased with increasing differential expression
sizes, and achieved a low level (<0.15) in large DE sizes (0.5, 0.8).
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Figure 4. Benchmark of the CellDrift approach. (A-B) A simple application of CellDrift in the interferon-stimulated
PBMC single-cell data. (A) UMAP of cell types and treatment groups of PBMC single-cell dataset. Ctrl: control; stim:
interferon-stimulated group. (B) CellDrift for 10 genes with the highest positive and negative contrast coefficients for
classical monocytes in the interferon-stimulated condition. (C-D) Single time point simulation benchmark of the
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generalized linear model of CellDrift with other commonly used differential expression approaches. Simulated data
with multiple batch effect sizes (C) and differential expression sizes (D) were used for benchmarking. True positive
rate (TPR) and false discovery rate (FDR) were used as metrics. The mean and standard deviation derived from 10
replicates for each test are shown in the figure. (E) Benchmark results of temporal pattern recovery for CellDrift
strategy (GLM + Fuzzy C-mean) and other approaches. Temporal pattern recovery was evaluated with adjusted rand
index (ARI) and measured across varying parameters, including numbers of time points, ratios of missing time points
and noise levels. (F) Benchmark results of imputation performance using Pearson correlations between imputed
contrast coefficients from FPCA and real simulated perturbation coefficients. The same parameters were used as (E).

Fuzzy C-means clustering and CellDrift contrast coefficients improve temporal pattern
identification and imputation performance

We simulated both linear and nonlinear time patterns of gene perturbation effects. The temporal
pattern recovery performance of three functional clustering algorithms was examined, including
KMeans, Fuzzy C-means, and FPCA-based EMCluster [47] for CellDrift GLM contrast
coefficient input. We used Adjusted Rand Index (ARI) as the metric to measure the accuracy of
prediction for simulated temporal patterns. The influence of different parameters, including the
number of time points, ratio of missing time points and noise levels were measured (Figure 4E,
S3).

From the results, we observed that FPCA-based EMCluster achieved higher accuracy in a
certain number of time points. Nonetheless, Fuzzy C-means achieved stable and better
performance than most other methods at varying numbers of time points, with ARI reaching 0.9.
Additionally, the ARI of Fuzzy C-means exceeded 0.8 at ratios of missing time points less than
0.5. ARI decreased at greater ratios of missing time points, but remained at the 0.7 level and
outperformed most other clustering algorithms, such as the Wilcoxon test. Note that the ARI of
Fuzzy C-mean remained stable at high noise levels with relatively higher accuracy than normal
KMeans and other methods (Figure 4E). Furthermore, Fuzzy C-mean has shown improved
performance for a variety of non-linear time patterns, pattern coefficient gaps and sequencing
depth (Figure S3A). Our findings suggest that Fuzzy C-mean has the most stable and relatively
better temporal pattern recognition performance.

We also compared GLM-based contrast coefficients with other statistical scores, such as scores
from t-test and Wilcoxon test, as the input for functional data analysis (Figure 4E). T-test scores
had inferior performance in most parameter settings. The Wilcoxon score achieved better
performance than the t-test, and its performance in various time points is comparable with GLM-
based functional clustering. However, its performance in large fractions of missing time points is
inferior to GLM-based clustering (Figure 4E).

Additionally, we investigated the imputation performance for missing time points, which is a
commonly seen situation in real temporal single cell data. Incorporated in our pipeline, FPCA
provides smoothing and interpolation functions. We compared GLM-based input with statistical
scores from t-test and Wilcoxon test, where we observed significant improvement in imputation
performance using GLM-based input (Figure 4F, S3B).

CellDrift identified temporal patterns of COVID-19 immune responses

We next demonstrated CellDrift by identifying temporal patterns of immune responses in a
large-scale COVID-19 PBMC single cell data. Multiple COVID-19 conditions, including mild,
mild-HCW (mild healthcare workers), severe and critical patients, as well as severe influenza
and sepsis patients. The six most common cell types were extracted for our analysis. CellDrift
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was used to analyze temporal trends using days since disease onset for patients in the original
study (Figure 5A).

We first focused on classical monocytes in severe COVID-19 patients and applied CellDrift
Fuzzy C-mean for all genes after the feature selection (supplementary Table S2). Genes with
similar temporal patterns of perturbation responses clustered together, indicating that several
patterns of dynamic changes were occurring upon virus infection during disease progression.
The genes responding to perturbations in clusters 11, 13 and 17 showed three distinct temporal
patterns, where the contrast coefficients of clusters 11 and 17 showed a positive and negative
correlation with time, while cluster 13 showed an insensitive pattern to time (Figure 5B). Based
on gene enrichment results, cluster 11 is highly associated with catabolic and biosynthesis
processes, while cluster 17 appears to be involved in immune responses, indicating a rapid
activation of immune response activities and a suppression of house-keeping activities in the
early disease stage (d1 ~ d15), with a reduced level of such change in later stages (after d15).
Additionally, we did functional PCA for all genes and identified 3 eigenfunctions that explained
over 99% temporal variance (Figure S4). The first eigenfunction can account for the majority of
observed temporal patterns, as shown by the FPC 1 scores in Figure S5. Moreover, genes
stratified by FPCL1 scores represented positive-correlated, negatively-correlated and insensitive
temporal patterns (Figure S6).

After we obtained temporal patterns in severe COVID-19 patients, the next step was to examine
whether the patterns vary across multiple perturbation groups, such as mild and severe COVID-
19 patients. To achieve it, we applied functional analysis in classical monocytes of multiple
disease conditions, where dynamic time warping was used to align multiple time series into a
comparable time scale. Next, we applied a one-way functional ANOVA test and calculated
ANOVA scores for each gene, representing the consistency of perturbation responses between
disease conditions over time. Based on ANOVA results, a number of genes from cluster 17
were identified as severe-prominent genes, including S100A8, S100A9, CTSD and others
(Figure 5C). In agreement with our findings, elevated levels of calprotectin (S100A8/S100A9)
have been found in severe COVID-19 patients with poor clinical outcomes [48,49]. Apart from
severe-prominent genes, we also prioritized mild-prominent genes and condition-irrelevant
genes, representing distinct gene programs of temporal perturbation responses across disease
conditions (Figure S9).

To validate our discoveries, we also applied CellDrift to data from another large-scale COVID-19
single cell experiment [1]. We observed similar temporal patterns between mild and severe
COVID-19 patients as shown in Figure 5C, which shows the reproducibility of CellDrift
approach.
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Figure 5. Temporal perturbation effects in COVID-19 atlas. (A) Overview of the number of cells in each cell group of
the dataset, which contains 6 disease conditions, 6 selected cell types and time points from day 1 to day 25 since
disease onset. The size of dots represents the number of cells. HCW_MILD: healthcare workers with mild COVID-19;
MILD, SEV, CRIT: mild, severe and critical COVID-19; CD4, CD8: CD4 T cell, CD8 T cell; cMono, hcMono: classical
and non-classical monocyte. (B) Three distinct temporal patterns of contrast coefficients from classical monocytes of
severe COVID-19 patients. The top row shows curves of genes with similar contrast coefficients in each cluster over
time, and the bottom row shows the gene set enrichment analysis of genes in each temporal cluster. The black line
represents the average time curve for all genes, which is the same across three plots. Gene enrichment scores are
defined as —log,oF DR-adjusted p values of enrichment significance and biological processes from Gene Ontology
were selected. (C) Five genes from cluster 17 were prioritized by the one-way functional ANOVA test, which have
significantly higher temporal curves in severe conditions than mild symptoms. Contrast coefficients for classical
monocytes across disease conditions are shown on smoothed curves computed by FPCA, and time curves were
aligned using dynamic time warping. (D) Validation of genes in (C) in another large-scale COVID-19 PBMC data [1].
FPCA smoothed curves for genes in three replicates of mild and severe patients are shown, which display similar
temporal patterns as (C).

CellDrift discovered differential temporal gene patterns during fetal gut developments
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We further implemented CellDrift in a fetal gut cell atlas to identify differential gene programs
during organ development [50]. Researchers examined gut development in 3 compartments,
including duo-jejunum, ileum, and colon, at 9 time points during development from the
embryonic stage (week 6) to the fetal stage (week 11) (Figure S8A). We selected epithelial and
mesenchymal cells from duo-jejunum as a reference tissue in order to provide an adequate
number of cells to GLM. Differential gene programs during development between the colon (or
ileum) and duo-jejunum were generated by GLM across time points (Supplementary Table S3).
Notably, the top two eigenfunctions explain more than 99% of the temporal variance of
mesenchymal cells between the colon and duo-jejunum, where the first eigenfunction shows
reverse temporal patterns during the development (Figure S8B, S9). CellDrift identified 20
temporal clusters (Figure S10), and ranked them by FPC1 scores, in which clusters 11 and 16
had high positive and negative correlations with FPC1 scores (Figure S8C). As a result of gene
enrichment, extracellular matrix organization genes are more active in early stages (weeks 7-8)
in the duo-jejunum, and then in later stages (weeks 9-10) in the colon, whereas morphogenesis
genes are more prominent in distal tissues (colon) at the beginning, and proximal (duo-jejunum)
later on. Similarly, the second eigenfunction in the comparison of epithelium cells between colon
and duo-jejunum revealed downregulated temporal pattern around early-stage (week 7.9) and
upregulated pattern at a later stage (week 9.2) (Figure S8F, G, S9), which were associated with
lipid metabolic process and chromosome organization, respectively (Figure S8H, ).

As a result of the time lapse of specific gene programs during organ morphogenesis, our
findings reveal temporal patterns that appear like waves from proximal to distal compartments
throughout the gut development.

Discussion

In this study, we presented a framework to identify temporal patterns of perturbation responses.
As far as we know, CellDrift is the first method to use functional data analysis to evaluate
longitudinal perturbation effects in single cell data. Using generalized linear models, we
modeled perturbational single cell data and introduced the new concept of cell type-perturbation
interaction, which improves the sensitivity of detecting both common and cell type-specific
perturbation effects in real-life single cell experiments. As a result of allowing for batch
covariates, we address a significant barrier to finding real perturbed genes.

Unlike currently available single-cell methods which either focus on temporal analysis or
perturbation investigation, we utilized the flexibility of GLM and functional data analysis to
combine these two areas together, and gained insights into evaluating complicated longitudinal
perturbation responses. We can use GLM to calculate gene-level perturbation effects instead of
latent space features, such as the ones evaluated with CPA and scGen. In many cases,
researchers focus on the perturbation effects of specific genes. The COVID-19-induced cytokine
storm, as an example, is being studied for temporal perturbation of cytokine genes [6].

In our study, we successfully improved true positive rates in multiple settings of batch effects
and perturbation effect size compared with popular methods in differential expression analysis,
enabling the capture of more perturbed features. The false discovery rate is insensitive to
varying batch sizes, indicating the successful repression of batch effects by CellDrift. Although
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the false discovery rate was high with small perturbation effect sizes, we argue that enhancing
sensitivity is more important than the false discovery rate where genes are rarely perturbed.
Notably, although the performance of a generalized linear model with the Fuzzy C-mean was
not uniformly superior in identifying temporal patterns, it was the most stable approach and
performed well in the majority of benchmark experiments. Similarly, combining the Wilcoxon test
with Fuzzy C-mean also delivered good results, but the performance decreased with a higher
ratio of missing time points, which is typical in real data. Gaussian Process (GP) has been found
to be effective in inferring temporal patterns from single-cell data [25]. FDA was selected over
the option of Gaussian Processes in this study because of its flexibility and versatility, including
smoothing curves, functional clustering, FPCA, one-way ANOVA tests and newly implemented
deep learning methods [51,52]. Nevertheless, we are interested in exploring the application of
GP in the analysis of temporal perturbational data in the future.

CellDrift was implemented in two cases in the paper, including immune transcriptome profiling in
infectious diseases and organ development over a continuous timeline. The cost of sample
collection and single cell sequencing technology is still one of the major obstacles to collecting
more longitudinal single cell data. Yet we are beginning to see more large-scale longitudinal
single cell experiments due to the popularity of single cell sequencing technology and the
progress of organoid research [13]. We established the effective performance of CellDrift in the
identification of temporal patterns of gene perturbation effects. Additionally, we can more
confidently generate hypotheses for perturbation responses by incorporating gene enrichment
analysis. Furthermore, we can associate temporal changes with other clinical events of patients,
and apply machine learning methods, such as k-nearest neighbors (KNN), to predict the
possibility of certain clinical events of patients before they happen. Notably, other applications of
functional data analysis, such as extrapolation and kernel regression, can greatly enhance our
ability to evaluate temporal perturbation effects.

There are several important areas that CellDrift and this evaluation do not address. First, we
didn’t establish the effectiveness of CellDrift in studies with small numbers (e.g. < 5) of time
points. Datasets from many such single-cell studies have been archived and continue to be
generated since it is still a relatively costly technology compared with traditional approaches,
such as bulk RNA-seq, in large-scale experiments. Additionally, we did not include time as a
covariate in the generalized linear model. Instead, the contrast coefficient information was
combined from GLM runs of separate time points, which might result in lower statistical power or
increased probability of a type 1 error, as well as making the CellDrift procedure cumbersome.
This may be an area for future improvement. Additionally, we did not introduce covariance
between genes, which would reduce the power of detecting gene correlations of perturbation
effects.
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