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and Functional Connectomes
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Abstract— Understanding the connection between the
brain’s structural connectivity and its functional connectivity
is of immense interest in computational neuroscience.
Although some studies have suggested that whole brain
functional connectivity is shaped by the underlying struc-
ture, the rule by which anatomy constrains brain dynamics
remains an open question. In this work, we introduce a
computational framework that identifies a joint subspace of
eigenmodes for both functional and structural connectomes.
We found that a small number of those eigenmodes are
sufficient to reconstruct functional connectivity from the
structural connectome, thus serving as low-dimensional
basis function set. We then develop an algorithm that can
estimate the functional eigenspectrum in this joint space
from the structural eigenspectrum. By concurrently estimat-
ing the joint eigenmodes and the functional eigenspectrum,
we can reconstruct a given subject’s functional connectivity
from their structural connectome. We perform elaborate
experiments and demonstrate that the proposed algorithm
for estimating function connectivity from the structural
connectome using joint space eigenmodes is superior to all
other existing benchmark methods.

Index Terms— Brain connectivity, structural connectome,
functional connectome, Laplacian, eigen decomposition.

I. INTRODUCTION

The connection between the dynamics of neural processes

and the anatomical substrate of the brain is a central question in

neuroscience research. Understanding this interplay is essential

for understanding how behaviour emerges from the underlying

anatomy. To this extent, a common way to represent the whole

brain is using a network or graph, where nodes represent

cortical and sub–cortical gray matter volumes and edges

stand for the strength of structural or functional connectivity.

Structural connectivity is typically extracted from tractography

algorithms applied to diffusion magnetic resonance imaging

(MRI) or diffusion tensor imaging (DTI) data. Functional

connectivity usually refers to pairwise correlation between

activation signals in various brain regions is measured by

various functional brain imaging modalities - functional MRI

(fMRI), electroencephalography (EEG), magnetoencephalogra-

phy (MEG) etc. Although some studies have suggested that

whole brain functional connectivity is shaped by the underlying

structure, the rule by which anatomy constrains brain dynamics
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remains an open question. Prior studies offer preliminary

evidence that structural networks shape and provide constraints

for the dynamics of functional connectivity, which can be

measured at different time-scales. However, the exact nature

and extent of this relationship is still under-explored. A deeper

understanding of how functional connectivity emerges from

the structural brain graph is an interesting research challenge

[1]. It could help to decouple the activity of brain regions that

are not directly connected by structural links. We would then

be able to explore how signals propagate between different

structural regions, and interfere or interact with each other to

induce a global pattern of temporal correlations. Conversely, a

fuller understanding of this relationship will allow us to explore

that portion of functional activity that are not explainable by

SC alone; potentially reflecting more complex transynaptic

processing across brain network. We build upon the seminal

work in [2] that investigated the use of brain connectivity

harmonics as a basis to represent spatial patterns of cortical

networks. By using the orthogonality of connectome harmonics,

it was shown that a linear combination of these eigenmodes

can be used to recreate any spatial pattern of neural activity.

Several studies have aimed towards a unified understanding

of the mapping between structural and functional connectivity

[3]–[8] A broad class of existing literature is built on generative

models of functional activity. [1], [3], [9], [10]. The output

of these models, with various degrees of complexity, is a

simulated functional time–series. The functional connectome is

estimated via the correlation of these time–series. A more direct

relationship between the structural and functional connectivity

matrices have also been considered. Such models aim to

directly estimate the functional connectivity from the structural

connectivity matrix. No intermediate functional time–series is

generated. An emerging approach belonging to this category

attempts to find a link between the eigenvalues and eigenvectors

of the structural and functional connectivity matrices, and

can be referred to as eigenmode mapping [5], [11]–[14].

This approach was shown to give accurate prediction of the

functional connectome, despite their computational simplicity.

A notable study in this category was [12], where authors aimed

to predict the functional connectome using the eigenmodes of

structural Laplacian. In particular, an exponential curve fitting

rule was proposed to estimate the projections of functional

connectome (on the eigenmodes of structural Laplacian) from

the eigenvalues of the Laplacian. Similarly, authors in [14]

posed this structure function mapping as a L2 minimization
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problem. However, similar to [12], the feasible eigenmodes

were restricted to the individual eigenmodes of structural

connectome (roughly equivalent to Laplacian eigenmodes).

Despite the success of this approach, it can be limiting to

enforce the functional eigenmodes to belong to the space of

the structural Laplacian eigenmodes. Further, it was shown by

Abdelnour et al. [12] that the one-to-one relationship between

the two is only strong at the group average level, and less

so at the individual subject level. Recently Becker et al. [13]

allowed a more flexible eigenmode mapping, by introducing

a rotation matrix along with the structural eigenmodes as a

means to capture individual subjects’ FC. Their approach to

eigenmode mapping was also more advanced and versatile,

consisting of a series expansion, achieved via a polynomial fit

of the two matrices’ eigenvalues.

Regardless of their mutual differences, all above mentioned

eigenmode mapping methods rely on constructing independent

eigenspectra of both functional connectivity and structural

connectivity. In this paper, we introduce a new approach to in-

tegrate both structural Laplacian and functional connectivity by

a common vector space shared by both the connectomes. Thus,

the two matrices’ eigenmodes are computed not independently

but jointly, using an algorithm based on manifold optimization.

This framework allows us to express functional connectivity

of a particular subject (brain sample) as a subspace of the

joint eigenmodes of structure and function. Notably, just a

small fraction of the proposed joint eigenmodes are sufficient

to span the functional connectivity. We further extend the core

idea to develop a predictive model that is able to accurately

predict functional connectivity from structural Laplacian. The

bottleneck for this prediction model is to find a mapping

from the projection of structural Laplacian and functional

connectome to the joint space. We circumvent this by using

a nonlinear and data-driven mapping technique. The main

contribution in this paper is a state-of-the-art method for

structure-function mapping of human brain connectivity.

This paper is outlined as follows. In Section II, we introduce

our framework governing the relationship between structural

Laplacian and functional connectivity. The details on structure-

function predictive model are presented in Section III. Thorough

experimental analysis of our approach including state-of-the-art

comparisons are contained in Section IV. Finally, we conclude

in Section V with a summary of our work.

II. THEORY AND METHODS

Suppose S ∈ R
N×N and F ∈ R

N×N are the structural and

functional connectivity matrices of an arbitrary subject. Here

N corresponds to the number of regions-of-interest (ROI) in

a brain atlas. The entry (i, j) of these matrices represents the

strength of the connectivity between regions i and j evaluated

either structurally or functionally.

We consider the problem of finding a joint or common

vector space between S and F . In other words, our goal is

to find a matrix A = [a1|a2| . . . |aN ] and ai ∈ R
N×1, ∀i =

{1, 2, . . . , N} that can express both structural and functional

connectivity by its orthonormal column vectors ai. Without

loss of generality, we instead work with the Laplacian of the

structural connectivity as in [12]. Let D is the (diagonal) degree

matrix of structural connectivity S. Then, the (normalized)

Laplacian of the structural connectivity is given by:

L = (I −D
−1/2

SD
−1/2),

where I ∈ R
N×N is an identity matrix. Finally, the revised

mathematical problem is to find a matrix A = [a1|a2| . . .aN ]
such that:

L =A∆ΦA
T

F =A∆ΨA
T .

(1)

The above joint diagonalization gives us the pair of diagonal ma-

trices ∆Φ and ∆Ψ, where the diagonals Φ = {φ1, φ2, . . . , φN}
and Ψ = {ψ1, ψ2, . . . , ψN} constitute the joint eigenspectra of

L and F respectively. From the perspective of projection theory,

the eigenspectra Φ and Ψ could be viewed as the projections

of structural Laplacian and functional connectome on the space

spanned by {a1,a2, . . . ,aN}. For example, φ1 and ψ1 are the

projections of L and F respectively on a1. Thus, the problem

in (1) could be equivalently formulated as a minimization as

follows:

{A∗,Φ∗,Ψ∗} =arg min
A,Φ,Ψ

||F −A∆ΨA
T ||F

s.t. L = A∆ΦA
T .

(2)

The mathematical problem in (2) is a particular case of

joint diagonalization, which is a well-studied area in signal

processing [16]–[18]. There exist several algorithms to solve

(2); here we choose the method by [16] due to its computational

simplicity. We refer the columns of A as joint eigenmodes

of the pair (L,F ). One attractive aspect of joint eigenmodes

is that we can diagonalize both structural (Laplacian) and

functional connectivity using the same set of these eigenmodes.

We note that there is no clear relationship between these joint

eigenmodes and individual eigenmodes of structural Laplacian

or functional connectivity (connectome). Suppose (U ,∆Λ) are

the eigenmode and eigenspectrum respectively of structural

Laplacian L and (V ,∆Γ) are the eigenmode and eigenspectrum

respectively of functional connectome. Then,

LU = U∆Λ,FV = V ∆Γ. (3)

We note that the dominant eigenmodes of Laplacian L are

those eigenvectors with least eigenvalues, whereas dominant

eigenmodes of functional connectome F are those eigenvectors

with highest eigenvalues.

Suppose the eigenvalues of L are arranged as follows: λ1 f
λ2 f . . . f λN . Then one can show that 0 f λi f 2. A

detailed proof is quite straightforward by using two facts: (i)

symmetric nature of structural connnectome S and (ii) non-

negativeness of each entry of S. We also note that functional

connectomes are positive semi-definite matrices because they

arise from covariance matrices. Therefore, the eigenvalues in

(3) of each functional connectome follows: γi g 0, ∀i, where

γi are the diagonal entries of ∆Γ.

It remains an open question to explore the connections

between the joint eigenspectra and individual eigenspectra.

We state some interesting theorems on the properties of joint

eigenspectra Φ and Ψ as follows:
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(d) Functional eigenvalues (Γ).

Connectomes and their eigenvalues.
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Top four dominant eigenmodes of Laplacian (L).

(i) v1. (j) v2 (k) v3 (l) v4

Top four eigenmodes of functional connectome (F).
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Joint eigenvalues of structural Laplacian and functional connectome.
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Top four joint eigenmodes.

Fig. 1. A pair of structural and functional connectomes (from public dataset [15]) and their eigenspectra. The line plot in (b) shows eigenvalues
of Laplacian of the structural connectome shown in (a). Similarly, the line plot in (d) displays eigenvalues of the functional connectome in (c). In
second row, we show the top four eigenmodes (eigenvectors corresponding to least eigenvalues) of the structural Laplacian. Similarly, we show
the top eigenmodes of functional connectome in third row. The stem plots in fourth row show the projections of structural Laplacian and functional
connectome on the joint eigenmodes. In the buttom row we display top four dominant (with respect to Ψ) joint eigenmodes.
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Theorem 1: The joint eigenvalues of structural Laplacian

{φ1, φ2, . . . , φN} are bounded:

0 f φi f 2, ∀i ∈ 1, 2, . . . , N.

Proof: See Appendix A.

Theorem 2: The joint eigenvalues of functional connectome

{ψ1, ψ2, . . . , ψN} are non-negative.

ψi g 0.

Proof: See Appendix B.

In Figure 1, for a representative subject, we display a pair

of structural and functional connectomes and their respective

eigenspectra (ordered). It can be seen that the eigenvalues of

L lie in the range [0, 2] and the eigenvalues of the functional

connectome are non-negative. The structural and functional

eigenmodes corresponding to the dominant/top four eigenvalues

L and F respectively are shown in second and third rows of

Figure 1. The bottom two rows show the joint eigenspectra, and

the top four joint eigenmodes as a result of joint optimization

of the L and F pair. We note that there is no visually evident

similarity or connection between the joint eigenmodes with

the respective dominant (individual) eigenmodes of structural

and functional connectomes.

Figure 2 shows (Φ,Ψ) eigenspectra for two other rep-

resentative subjects. The joint diagonalization is performed

independently on (L,F ) pair for each subject. Notice that

eigenvalues in Ψ for each subject sparse in nature, most of the

eigenvalues are close to zero except a few. This unique nature

of the Ψ motivates us to establish a subspace relationship

between vector space of structural Laplacian connectome and

vector space of functional connectome of the same subject.

We note that the most dominant eigenmode is always one

corresponds to the least value of Φ. However, subsequent (after

the top one) dominant joint eigenmodes do not follow any

consistent sequence across subjects.

Subspace Relationship

In this section, we establish that the functional connectome

can be reconstructed using only a small number of the joint

eigenmodes - i.e. a low-rank subspace. As an example, we

re-arrange the joint eigenmodes {ai} ∀i ∈ 1, 2, . . . , N and

Ψ of the subject from Fig. 1(n) in ascending order of the

latter and shown in Fig. 3(a). We plot Pearson R correlation

between ground-truth functional connectome and the estimated

one from the reduced eigenmodes as a function of number of

joint modes (k). Here k = 1 implies the estimated functional

connectome from only one joint mode and k = N is when

all modes are used in the estimation which results in perfect

recovery.

Using the properties of SVD, the structural Laplacian can

be expressed as outer-products of the joint eigenmodes:

L =
N
∑

k=1

φkaka
T
k .

Similarly, the functional connectome can be expressed as the

outer-products of the joint eigenmodes. The Pearson R plot in

Fig. 3(b) suggests that K = 20 is enough to approximate F .

In particular:

F ≊

K
∑

k=1

ψkaka
T
k .

Only a few number (K j N ) of joint eigenmodes sufficiently

span the functional connectome. Another example is shown

the last row in Figure 3. Here only K = 30 dominant modes

span the functional connectome (N = 219). In summary, the

existence of joint eigenmodes and the sparse nature of Ψ lead

to this subspace relationship. Note that the low-rank nature

of functional connectome is also preserved in form of joint

subspace [12], [19].

III. STRUCTURE-FUNCTION MAPPING

In this section, we extend the concept of joint eigenspace to

estimate functional connectivity of a subject from its structural

(via Laplacian) counterpart. Given the joint eigenmodes be-

tween the structural Laplacian and functional connectome, the

task boils down to estimating Ψ from Φ at an individual subject

level. It was reported in [12] that there could be an inverse

relationship between log(Ψ) and Φ based on a linear graph

model predicting a subject’s functional connectivity matrix

from their structural connectivity matrix via graph diffusion

[19]. Motivated by the findings in [12], here we aim to estimate

Ψ from Φ.

Joint Eigenspectrum Mapping

We propose a data-driven approach to learn a group level

mapping between Φ and Ψ. The idea is to consider the

diagonals of both ∆Φ and ∆Ψ as two points in a vector space

of size R
N×1. Then we pose the mapping between Φ and Ψ

as a least-squares problem [20]. Suppose there are M subjects

in the group from which learn the least-squares mappings.

Therefore, for each subject j ∈ {1, 2, . . . ,M} there is a pair

of joint eigenvalues (Φj ,Ψj) obtained by via performing joint

diagonalization of the pair (Lj ,Fj). First, we embed joint

eigenvalues of each subject in two matrices X ∈ R
N×M and

Y ∈ R
N×M as follows:

X = [Φ1,Φ2, . . . ,ΦM ],

Y = [Ψ1,Ψ2, . . . ,ΨM ],
(4)

where Φj ,Ψj ∈ R
N×1, ∀j ∈ {1, 2, . . . ,M}. We consider the

following linear transformation W ∈ R
N×N :

Y =WX. (5)

To circumvent the limitation of over-fitting incurred by simple

least-squares solution, we seek to impose rank constraint [21]

on W . Note that this problem is a NP-hard. Various approaches

have been proposed in the literature to solve this problem

approximately [22]. One efficient approach is to regularize the

objective by trace norm (sum of singular values), which is

popularly called as nuclear norm. In particular, we consider

the following minimization:

W = argmin
W

||Y −WX||2F + µ||W ||∗, (6)

where µ > 0 and ||W ||∗ is the nuclear norm of W . We solve

the minimization using a primal gradient method [21].
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Predicting Functional Connectome with Joint Mapping

Here we aim to estimate the functional connectome F̂l for an

individual subject l, given their structural Laplacian Ll, group

level joint eigenmodes and individual joint eigenspectra. An

optimal spectrum mapping in (6) would work best under the

assumption that joint eigenmodes for each subject is known

to us. However, this is not really a realistic assumption from

the perspective of a predictive model. We empirically notice

that each subject has different set of joint eigenmodes. This

is what makes the above formulation as bottleneck to being

an efficient predictive model from structural to functional

connectome. Instead, our aim is to find a set of group-level

joint eigenmodes A ∈ R
N×N , where each column represents

group-level joint eigenvector. In particular, we consider the

following optimization problem:

minimize
A

M
∑

j=1

||Fj −A∆Ψj
AT ||2F

subject to Lj = A∆Φj
AT ;ATA = AAT = I,

(7)

where Fj and Lj stand for functional connectome and structural

Laplacian of subject j respectively. Using eigen spectrum

mapping from (5), we get Ψj =WΦj which implicitly takes

into account the fact that Lj = AΦjA
T . Further, by using

standard trace equality and the connection between Frobenius

norm and trace of a matrix, we further simplify the objective

function above as follows:

M
∑

j=1

(

tr(F T
j Fj)− 2 tr

(

(F T
j A∆WΦj

AT
)

+ tr
{(

A∆WΦj
AT

)T (
A∆WΦj

AT
)}

)

.

By using ATA = I and cyclic property of trace of matrix, the

third term above is simplified to
(

ΦT
j W

TWΦj

)

. In fact, it is

clear that both first and third terms above do not depend on

A. Thus, the reduced optimization is:

minimize
A

− tr

M
∑

j=1

F
T
j A∆WΦj

AT

subject to ATA = AAT = I.

(8)

It is worth noting that there is no known closed-form solution

to (8). We adopt the iterative algorithm described in [23] to

find an approximate solution.

In summary, we propose a two-step strategy for the structure

function mapping. First, we construct matrices X and Y using

both structure and function connectomes of the subjects; then

we learn the spectrum mapping W in (6). Second, we solve (8)

to obtain group level joint eigenmodes A. In the next iteration,

we re-train the mapping W in (5) using these joint eigenmodes

followed by estimating a refined group joint eigenmodes using

the new mapping. Upon convergence, we obtain a final set of

joint eigenmodes A and spectrum mapping W . We refer the

proposed predictive method as joint eigen spectrum mapping

(JESM).

Detailed steps of the proposed JESM Algorithm are described

in 1. We finally obtain the group level joint eigenmodes A

Algorithm 1: Joint Eigen Spectrum Mapping (JESM)

Input: Structural and functional connectomes: Sj , Fj

for j ∈ {1, 2, . . . ,M}.
Output: Joint eigenmodes A and mapping W .

1 for j = 1, 2, . . . ,M do

2 Compute structural Laplacian Lj from Sj .

3 Perform joint diagonalization of (Lj ,Fj) to obtain

joint eigenvalues Φj and Ψj as in (2).

4 Embed vectorized joint eigenvaules Φj and Ψj in

matrices X and Y as in (4).

5 Obtain spectrum mapping W using (6).

6 end

88 Initialize k ← 1
9 repeat

10 Calculate joint eigenmodes A using (8).

11 Recompute joint eigenvelaues:

Φj = diag(AT
LjA) and Ψj = diag(AT

FjA).
12 Embed vectorized joint eigenvaules Φj and Ψj in

matrices X and Y as in (4).

13 Obtain spectrum mapping W using (6).

1515 k ← k + 1.
16 until stopping condition is satisfied: k = kmax.

and mapping W , and estimate functional connectome for an

arbitrary subject l as follows:

Φ̂l = diag(AT
LlA).

Ψ̂l =WΦl.

F̂l = A∆Ψ̂l
AT .

(9)

A. Dataset

To validate the proposed brain connectivity analysis frame-

work, we experimented on data from 70 healthy subjects [15].

The brain data acquisition comprised of (i) a magnetization-

prepared rapid acquisition gradient echo (MPRAGE) sequence

sensitive to white/gray matter contrast, (ii) a DSI sequence

(128 diffusion-weighted volumes), and (iii) a gradient echo

EPI sequence sensitive to BOLD contrast. These data was

pre-processed using the Connectome Mapper pipeline [24].

Gray and white matter were segmented using Freesurfer

and parcellated into 83 cortical and subcortical areas. The

parcels were then further subdivided into 129, 234, 463

and 1015 approximately equally sized parcels. Structural

connectivity matrices are estimated for each subject using

deterministic streamline tractography on reconstructed DSI

data [25]. Functional data were estimated using the protocol in

[26]. This includes regression of white matter, cerebrospinal

fluid, motion deblurring and lowpass filtering of BOLD signal.

B. Benchmark Comparisons

We compare the performance of JESM with the following

benchmark methods in terms of estimating functional connec-

tivity of a subject from its structural counterpart.

1) Abdelnour et al. [12]: The standalone eigenmodes of

structural Laplacian Λ were used to estimate the functional
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Fig. 2. Joint eigenvalues for different representative subjects from dataset [15]. Notice that there is no consistent ordering in the dominant
eigenmodes with reference to ascending ordering of joint Laplacian eigenvlaues (Φ).
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Brain atlas of size (219× 219).

Fig. 3. Example of subspace relationship in structure-function joint eigen-spectrum. (a): Ψ obtained via joint diagonalization. Top K = 20 values are
marked in red. (b): Plot of Pearson R value as a function of K. For each K, we estimate functional connectome as in (II). The red dotted x-line
indicates the instance when estimated functional connectome almost matches with the ground-truth one. In the top example, it is K = 20 where the
Pearson R is 0.996. Similarly, for K = 30, the Pearson R is 0.998 in case of (219 × 219) atlas in the buttom example. The respective estimated
functional connectomes are displayed in the last column. It is evident that both the estimated connectomes are visually indistinguishable to the true
functional connectomes shown in third column. These examples demonstrate that functional connectome lies within structural connectome.
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connectome of the subject. Following [19], the functional

eigenspectra Γ were estimated using an exponential

transformation of Λ.

2) Tewarie et al. [14]: We implemented the optimization

framework of [14] to estimate the projections of functional

connectome on the eigenmodes of structural connectome.

3) Becker et al. [13]: We implemented the stucture-function

mapping method in [13], where given both structural and

functional connectomes of a particular subject, a rotation

matrix and a polynomial expansion of the respective eigen-

spectra were used to estimate the functional connectome

from structure.

C. Performance Evaluation of the Predictive Model

We study the effectiveness of the proposed method in terms

of accurately estimating functional connectome (FC) of a

subject from its structural connectome (or Laplacian) and

compare with state-of-the-art methods in the literature. The

prediction performance is quantified in terms of Pearson R

statistic between the estimated FC and true FC of a subject.

In our group level prediction pipeline, we learn the mapping

between joint eigenvalues of structural Laplacian and eigenval-

ues of functional connectome. First, we use both connectomes

of the entire set of subjects. Next we learn group level joint

eigenmodes by solving an optimization problem using the

toolbox in [27]. Both the mapping and joint eigenmodes

are further refined through few iterations. Finally, we use

the learned mapping and group level joint modes to predict

functional connectome of a subject from structural connectivity.

IV. RESULTS

In this section, we perform exhaustive experiments to

examine the effectiveness of the proposed joint eigenmode

approach in structure-function mapping. We start with detailed

experimentation of our proposed eigenspectrum mapping

approaches. Finally, we compare with state-of-the-art methods

in the literature for structure-function mapping.

In Figures 4 and 5, we present visual results of estimated

functional connectomes using our method for two representative

subjects [15]. We display the results using the benchmark

methods: Abdelnour et al. [12], Tewarie et al. [14], and

Becker et al. [13]. The respective Pearson R values are noted

below each panel. It is visually evident that proposed JESM

outperforms both Abdelnour et al. [12] and Tewarie et al. [14]

by a significant margin. The estimated functional using JESM

more closely resembles the ground-truth as compared to the

ones produced by Becker et al. [13].

We summarize the comparison of our proposed algorithm

and benchmarks for structure function prediction using violin

plots in Figure 6. A total 70 healthy subjects from the dataset

[15] were used to learn the proposed eigen mapping operator

W and joint eigenmodes A. For all algorithms, we compute

Pearson R for all the subjects and displayed in violin plots.

We note that the proposed JESM method outperforms the

benchmarks by a significant margin.

V. DISCUSSION

We provided a principled mathematical framework to

connect the structural and functional connectivity matrices.

By expressing both connectomes using a common eigen

space, we simplified subspace relationship between structural

and functional connectomes. We mathematically validated

a fundamental hypothesis in neuroscience that structural

connections imply functional ones [1], [28]. We developed

a novel algorithm for predicting functional connectomes based

on structural connectomes and joint mapping, and demonstrate

the superiority of this prediction algorithm compared to existing

benchmarks.

The existence of joint subspace between structural Laplacian

and functional connectome for a particular subject provides a

new insight towards understanding the relationship between

them. In particular, the results in Fig. 3 suggest that only a

few number of joint eigenmodes are sufficient to approximate

the functional connectome. From theoretical point of view,

this is a remarkable result. It is noteworthy that the joint

eigenvalues of functional connectome are sparse in nature;

only very few are significant, reflecting the low-rank property

of functional connectome. The joint subspace enables the

projection of functional time-series onto a common structure-

function manifold that is preserved across subjects.

The group level predictive model is of particular interest

to us. We note that there is no direct connection between

joint eigenmodes across subjects. Therefore, for predicting the

functional connectome for a particular subject from its structural

connnectome via joint subspace mapping, we need to know:

(i) the mapping between joint eigenspectra of both and (ii)

joint eigenmodes which closely diagonalize both connectomes.

We address this concern by two-step optimization. First, we

learn a mapping from joint eigenvalues of structural Laplacian

to joint eigenvalues of functional connectome via spectrum

mapping. Second, we use this learned spectrum mapping to

estimate a joint eigenmodes using manifold optimization. By

efficient use of advanced numerical optimization, we obtain

a group level eigenmodes that jointly diagnolize individual

subject level structural and functional connectomes.

Among the notable existing works, [12] predicts the func-

tional connectome using the eigenmodes of structural Laplacian.

Authors in [14] formulated this structure function mapping as a

L2 minimization problem where the feasible eigenmodes were

restricted to the individual eigenmodes of structural connectome.

Becker et al. [13] proposed an efficient eigenmode mapping,

by introducing a rotation matrix along with the structural

eigenmodes as a means to capture individual subjects’ FC.

However, our approach is quite different from [13] in terms of

the mathematical formulations: (i) we do not assume any direct

relationship between the connectomes, rather we just estimate

joint eigenmodes between them, (ii) we consider a more simpler

linear mapping between eigenspectra than rotation operators

of eigenspectra.

Finally, although we focus here on joint eigenmodes and

eigenspectra between the structural Laplacian and functional

connectomes obtained from fMRI, our approach is general

and applicable to functional connectomes obtained from other
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(b) Abdelnour, R = 0.253.
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(d) Becker, R = 0.626.
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(e) JESM, R = 0.746.

Fig. 4. Visual comparison of structure function mapping on Subject 43. The Pearson R values are reported in the sub-captions. A higher R value
indicates superior prediction. Among all the methods, our proposed method JESM achieves best results in terms of both visual quality and R value.
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(e) JESM, R = 0.661.

Fig. 5. Visual comparison of structure function mapping on Subject 58. The Pearson values are also reported in the sub-captions. A higher R value
indicates superior prediction. Our proposed method JESM achieves best results in terms of both visual quality and Pearson R value.
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Fig. 6. Violin plot of Pearson R value on the entire set of subjects.
Notice that our proposed method joint eigen spectrum mapping (JESM)
outperforms the existing state-of-the-art approaches.

TABLE I

SUMMARY OF THE VARIABLES AND DEFINITIONS USED IN THIS TEXT.

Symbol Description

N Numer of region-of-interest (ROI).
S Structural connectome of size (N ×N ).
L Laplacian of structural connectome.
F Functional connectome.

Λ Eigenvalues of Laplacian (L).
U Eigenvectors of Laplacian.
Γ Eigenvalues of functional connectome.
V Eigenvectors of functional connectome.
Φ Joint eigenvalues of Laplacian (L).
Ψ Joint eigenvalues of functional connectome (F ).
A Joint eigenmodes of L and F .

M Number of subjects.
Lj Laplacian of subject j.
Fj Functional connectome of subject j.
Φj Joint eigenvalues of Laplacian of subject j.
Ψj Joint eigenvalues of functional connectome of subject j.

∆Λ Diagonal matrix with diagonal entries Λ.
∆Γ Diagonal matrix with diagonal entries Γ.
∆Φ Diagonal matrix with diagonal entries Φ.
∆Ψ Diagonal matrix with diagonal entries Ψ.
∆Φj

Diagonal matrix with diagonal entries Φj of subject j.

∆Ψj
Diagonal matrix with diagonal entries Ψj of subject j.

functional neuroimaging methods like MEG and EEG. A more

general extension of the problem of joint mapping posed here

is the examination of joint functional and structural eigenmodes

across multiple functional connectomes obtained either from

multiple modalities or from dynamic functional connectivity

methods. Our long-term vision is to obtain potentially sensitive

structure-function biomarkers for differential diagnosis or

prognosis or therapeutic monitoring in various neurological

disorders.

APPENDIX

Lemma 1: For any x ∈ R
N×1 spanned by joint eigenvectors,

the maximum joint eigenvalue of structural Laplacian follows

max
x

x
T
Lx

xTx
= φN . (10)

Proof: We have ai, i ∈ {1, 2, . . . , N} be joint eigenvectors in

A such that aN is the eigenvector corresponding to the largest

joint eigenvalue φN and a1 is the joint eigenmode corresponds

to the smallest joint eigenvalue φ1. Suppose x = (c1a1+c2a2+
. . .+ cNaN ), for some constants {c1, c2, . . . , cN}. Then

x
T
Lx =(c1a1 + . . .+ cNaN )TL(c1a1 + . . .+ cNaN ).

Using the properties of joint eigenmodes Lai = φiai for

i ∈ {1, 2, . . . , N}, we get

x
T
Lx =(c1a1 + . . .+ cNaN )T (c1φ1a1 + . . .+ cNφNaN )

=
N
∑

i=1

c2iφi. (since a1,a2, . . . ,aN are orthonormal)

Similarly, xT
x =

∑N
i=1 c

2
i . Therefore,

x
T
Lx

xTx
=

∑N
i=1 c

2
iφi

∑N
i=1 c

2
i

f
φN

∑N
i=1 c

2
i

∑N
i=1 c

2
i

= φN .

Lemma 2: Given a symmetric matrix S with non-negative

entries, and its diagonal degree matrix D, and the matrix

S̃ = D
−1/2

SD
−1/2, then both (I − S̃) and (I + S̃) are

positive semi-definite (PSD) matrices.

Proof: For any given x ∈ R
N , spanned the joint eigenvectors

in A we can write:

x
T (D − S)x =

∑

(i,j),(i ̸=j)

Sij(xi − xj)
2, (11)

where Sij = Sji using the symmetric properties of S. By

construction of structural connectivity, each entry of S is non-

negative real number. Therefore

x
T (D − S)x g 0.

This proves that (D − S) is a positive semi-definite matrix:

(D − S) ≽ 0. We use the properties of eigenvalues of

multiplication of matrices [29]. Since D is positive definite

matrix, D−1/2 is also positive definite. Therefore

D
−1/2(D − S)D−1/2 = (I − S̃) ≽ 0. (12)

Similar to (11), we have

x
T (D + S)x =

∑

(i,j),(i ̸=j)

Sij(xi + xj)
2 g 0. (13)

Using the properties of eigenvalues of matrix multiplication,

D
−1/2(D + S)D−1/2 = (I + S̃) ≽ 0. (14)

A. Proof of Theorem 1

The lower bound on eigenvalues of L directly follows from

(12) in Lemma 2. It proves that L = (I − S̃) is a PSD matrix.

Therefore, the minimum joint eigenvalue of L follows φ1 g 0.

To show the upper bound of eigenvalues of L, we recall

(14) in Lemma 2 that (I + S̃) ≽ 0. For any x, spanned the

joint eigenvectors in A, we have

x
T
x+ x

T
S̃x g 0 =⇒ x

T
x g −xT

S̃x.

By adding a positive quantity x
T
x to both sides:

x
T
x− x

T
S̃x f 2xT

x =⇒ x
T (I − S̃)x f 2xT

x.
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By further simplification,

x
T
Lx

xTx
f 2. (15)

Combining (10) in Lemma 1 and (15), we obtain φN f 2.

B. Proof of Theorem 2

We show here that each functional connectome is a positive

semi-definite matrix. Without loss of generality, we note that

functional connectome [26], [30] basically measures the second

moment matrix of a temporal signal (/random variable) z ∈
R

N×1. In particular,

F = E(zzT ).

Suppose there are T time-point at each ROI is used to estimate

the connectivity. Then, E(zzT ) = 1
T

∑T
t=1 z(t)z(t)

T . Now,

for any random vector b ∈ R
N×1, we can write

b
T
Fb = b

TE(zzT )b = E(bTzzT
b) = E

(

(bTz)2
)

g 0.

Note that bTFb is the expectation of the square of the scalar

random variable ẑ = b
T
z. Therefore, for any eigenvectors in

A, the respective eigenvalue is non-negative.
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