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Abstraci— Understanding the connection between the
brain’s structural connectivity and its functional connectivity
is of immense interest in computational neuroscience.
Although some studies have suggested that whole brain
functional connectivity is shaped by the underlying struc-
ture, the rule by which anatomy constrains brain dynamics
remains an open question. In this work, we introduce a
computational framework that identifies a joint subspace of
eigenmodes for both functional and structural connectomes.
We found that a small number of those eigenmodes are
sufficient to reconstruct functional connectivity from the
structural connectome, thus serving as low-dimensional
basis function set. We then develop an algorithm that can
estimate the functional eigenspectrum in this joint space
from the structural eigenspectrum. By concurrently estimat-
ing the joint eigenmodes and the functional eigenspectrum,
we can reconstruct a given subject’s functional connectivity
from their structural connectome. We perform elaborate
experiments and demonstrate that the proposed algorithm
for estimating function connectivity from the structural
connectome using joint space eigenmodes is superior to all
other existing benchmark methods.

Index Terms— Brain connectivity, structural connectome,
functional connectome, Laplacian, eigen decomposition.

[. INTRODUCTION

The connection between the dynamics of neural processes
and the anatomical substrate of the brain is a central question in
neuroscience research. Understanding this interplay is essential
for understanding how behaviour emerges from the underlying
anatomy. To this extent, a common way to represent the whole
brain is using a network or graph, where nodes represent
cortical and sub—cortical gray matter volumes and edges
stand for the strength of structural or functional connectivity.
Structural connectivity is typically extracted from tractography
algorithms applied to diffusion magnetic resonance imaging
(MRI) or diffusion tensor imaging (DTI) data. Functional
connectivity usually refers to pairwise correlation between
activation signals in various brain regions is measured by
various functional brain imaging modalities - functional MRI
(fMRI), electroencephalography (EEG), magnetoencephalogra-
phy (MEG) etc. Although some studies have suggested that
whole brain functional connectivity is shaped by the underlying
structure, the rule by which anatomy constrains brain dynamics
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remains an open question. Prior studies offer preliminary
evidence that structural networks shape and provide constraints
for the dynamics of functional connectivity, which can be
measured at different time-scales. However, the exact nature
and extent of this relationship is still under-explored. A deeper
understanding of how functional connectivity emerges from
the structural brain graph is an interesting research challenge
[1]. It could help to decouple the activity of brain regions that
are not directly connected by structural links. We would then
be able to explore how signals propagate between different
structural regions, and interfere or interact with each other to
induce a global pattern of temporal correlations. Conversely, a
fuller understanding of this relationship will allow us to explore
that portion of functional activity that are not explainable by
SC alone; potentially reflecting more complex transynaptic
processing across brain network. We build upon the seminal
work in [2] that investigated the use of brain connectivity
harmonics as a basis to represent spatial patterns of cortical
networks. By using the orthogonality of connectome harmonics,
it was shown that a linear combination of these eigenmodes
can be used to recreate any spatial pattern of neural activity.
Several studies have aimed towards a unified understanding
of the mapping between structural and functional connectivity
[3]-[8] A broad class of existing literature is built on generative
models of functional activity. [1], [3], [9], [10]. The output
of these models, with various degrees of complexity, is a
simulated functional time—series. The functional connectome is
estimated via the correlation of these time—series. A more direct
relationship between the structural and functional connectivity
matrices have also been considered. Such models aim to
directly estimate the functional connectivity from the structural
connectivity matrix. No intermediate functional time—series is
generated. An emerging approach belonging to this category
attempts to find a link between the eigenvalues and eigenvectors
of the structural and functional connectivity matrices, and
can be referred to as eigenmode mapping [5], [11]-[14].
This approach was shown to give accurate prediction of the
functional connectome, despite their computational simplicity.
A notable study in this category was [12], where authors aimed
to predict the functional connectome using the eigenmodes of
structural Laplacian. In particular, an exponential curve fitting
rule was proposed to estimate the projections of functional
connectome (on the eigenmodes of structural Laplacian) from
the eigenvalues of the Laplacian. Similarly, authors in [14]
posed this structure function mapping as a Ls minimization
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problem. However, similar to [12], the feasible eigenmodes
were restricted to the individual eigenmodes of structural
connectome (roughly equivalent to Laplacian eigenmodes).
Despite the success of this approach, it can be limiting to
enforce the functional eigenmodes to belong to the space of
the structural Laplacian eigenmodes. Further, it was shown by
Abdelnour et al. [12] that the one-to-one relationship between
the two is only strong at the group average level, and less
so at the individual subject level. Recently Becker et al. [13]
allowed a more flexible eigenmode mapping, by introducing
a rotation matrix along with the structural eigenmodes as a
means to capture individual subjects’ FC. Their approach to
eigenmode mapping was also more advanced and versatile,
consisting of a series expansion, achieved via a polynomial fit
of the two matrices’ eigenvalues.

Regardless of their mutual differences, all above mentioned
eigenmode mapping methods rely on constructing independent
eigenspectra of both functional connectivity and structural
connectivity. In this paper, we introduce a new approach to in-
tegrate both structural Laplacian and functional connectivity by
a common vector space shared by both the connectomes. Thus,
the two matrices’ eigenmodes are computed not independently
but jointly, using an algorithm based on manifold optimization.
This framework allows us to express functional connectivity
of a particular subject (brain sample) as a subspace of the
joint eigenmodes of structure and function. Notably, just a
small fraction of the proposed joint eigenmodes are sufficient
to span the functional connectivity. We further extend the core
idea to develop a predictive model that is able to accurately
predict functional connectivity from structural Laplacian. The
bottleneck for this prediction model is to find a mapping
from the projection of structural Laplacian and functional
connectome to the joint space. We circumvent this by using
a nonlinear and data-driven mapping technique. The main
contribution in this paper is a state-of-the-art method for
structure-function mapping of human brain connectivity.

This paper is outlined as follows. In Section II, we introduce
our framework governing the relationship between structural
Laplacian and functional connectivity. The details on structure-
function predictive model are presented in Section III. Thorough
experimental analysis of our approach including state-of-the-art
comparisons are contained in Section IV. Finally, we conclude
in Section V with a summary of our work.

[I. THEORY AND METHODS

Suppose S € RV*N and F € RV*N are the structural and
functional connectivity matrices of an arbitrary subject. Here
N corresponds to the number of regions-of-interest (ROI) in
a brain atlas. The entry (¢, j) of these matrices represents the
strength of the connectivity between regions ¢ and j evaluated
either structurally or functionally.

We consider the problem of finding a joint or common
vector space between S and F'. In other words, our goal is
to find a matrix A = [a;|as]...|ax] and a; € RV*! Vi =
{1,2,..., N} that can express both structural and functional
connectivity by its orthonormal column vectors a;. Without
loss of generality, we instead work with the Laplacian of the

structural connectivity as in [12]. Let D is the (diagonal) degree
matrix of structural connectivity S. Then, the (normalized)
Laplacian of the structural connectivity is given by:

L= (I-D'28D71/?),

where I € RV*Y is an identity matrix. Finally, the revised
mathematical problem is to find a matrix A = [a1]az|...an]
such that:

L =AA AT
F=AAAT.

The above joint diagonalization gives us the pair of diagonal ma-
trices Ag and Ay, where the diagonals ® = {¢1, 2, ..., dn}
and U = {¢)1,v9,...,1N} constitute the joint eigenspectra of
L and F respectively. From the perspective of projection theory,
the eigenspectra @ and ¥ could be viewed as the projections
of structural Laplacian and functional connectome on the space
spanned by {a1,as,...,an}. For example, ¢; and ¢); are the
projections of L and F respectively on a;. Thus, the problem
in (1) could be equivalently formulated as a minimization as
follows:

)

{A*, &, U*} =arg min ||F — AAg AT ||
A DT (2)
st. L=AApAT.

The mathematical problem in (2) is a particular case of
joint diagonalization, which is a well-studied area in signal
processing [16]-[18]. There exist several algorithms to solve
(2); here we choose the method by [16] due to its computational
simplicity. We refer the columns of A as joint eigenmodes
of the pair (L, F'). One attractive aspect of joint eigenmodes
is that we can diagonalize both structural (Laplacian) and
functional connectivity using the same set of these eigenmodes.
We note that there is no clear relationship between these joint
eigenmodes and individual eigenmodes of structural Laplacian
or functional connectivity (connectome). Suppose (U, Ay) are
the eigenmode and eigenspectrum respectively of structural
Laplacian L and (V', Ar) are the eigenmode and eigenspectrum
respectively of functional connectome. Then,

LU = UA,, FV = VAy. 3)

We note that the dominant eigenmodes of Laplacian L are
those eigenvectors with least eigenvalues, whereas dominant
eigenmodes of functional connectome F' are those eigenvectors
with highest eigenvalues.

Suppose the eigenvalues of L are arranged as follows: A\ <
Ay < ... < An. Then one can show that 0 < )\; < 2. A
detailed proof is quite straightforward by using two facts: (i)
symmetric nature of structural connnectome .S and (ii) non-
negativeness of each entry of S. We also note that functional
connectomes are positive semi-definite matrices because they
arise from covariance matrices. Therefore, the eigenvalues in
(3) of each functional connectome follows: v; > 0, Vi, where
~; are the diagonal entries of Ar.

It remains an open question to explore the connections
between the joint eigenspectra and individual eigenspectra.
We state some interesting theorems on the properties of joint
eigenspectra ® and ¥ as follows:
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Fig. 1. A pair of structural and functional connectomes (from public dataset [15]) and their eigenspectra. The line plot in (b) shows eigenvalues
of Laplacian of the structural connectome shown in (a). Similarly, the line plot in (d) displays eigenvalues of the functional connectome in (c). In
second row, we show the top four eigenmodes (eigenvectors corresponding to least eigenvalues) of the structural Laplacian. Similarly, we show
the top eigenmodes of functional connectome in third row. The stem plots in fourth row show the projections of structural Laplacian and functional
connectome on the joint eigenmodes. In the buttom row we display top four dominant (with respect to ¥) joint eigenmodes.
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Theorem 1: The joint eigenvalues of structural Laplacian
{¢1,02,...,0n} are bounded:

0<¢; <2, Viel2, .. N.

Proof: See Appendix A.
Theorem 2: The joint eigenvalues of functional connectome
{t1,,...,9%N} are non-negative.

P > 0.

Proof: See Appendix B.

In Figure 1, for a representative subject, we display a pair
of structural and functional connectomes and their respective
eigenspectra (ordered). It can be seen that the eigenvalues of
L lie in the range [0, 2] and the eigenvalues of the functional
connectome are non-negative. The structural and functional
eigenmodes corresponding to the dominant/top four eigenvalues
L and F respectively are shown in second and third rows of
Figure 1. The bottom two rows show the joint eigenspectra, and
the top four joint eigenmodes as a result of joint optimization
of the L and F' pair. We note that there is no visually evident
similarity or connection between the joint eigenmodes with
the respective dominant (individual) eigenmodes of structural
and functional connectomes.

Figure 2 shows (®, V) eigenspectra for two other rep-
resentative subjects. The joint diagonalization is performed
independently on (L, F') pair for each subject. Notice that
eigenvalues in ¥ for each subject sparse in nature, most of the
eigenvalues are close to zero except a few. This unique nature
of the ¥ motivates us to establish a subspace relationship
between vector space of structural Laplacian connectome and
vector space of functional connectome of the same subject.
We note that the most dominant eigenmode is always one
corresponds to the least value of ®. However, subsequent (after
the top one) dominant joint eigenmodes do not follow any
consistent sequence across subjects.

Subspace Relationship

In this section, we establish that the functional connectome
can be reconstructed using only a small number of the joint
eigenmodes - i.e. a low-rank subspace. As an example, we
re-arrange the joint eigenmodes {a;} Vi € 1,2,..., N and
U of the subject from Fig. 1(n) in ascending order of the
latter and shown in Fig. 3(a). We plot Pearson R correlation
between ground-truth functional connectome and the estimated
one from the reduced eigenmodes as a function of number of
joint modes (k). Here k£ = 1 implies the estimated functional
connectome from only one joint mode and £ = N is when
all modes are used in the estimation which results in perfect
recovery.

Using the properties of SVD, the structural Laplacian can
be expressed as outer-products of the joint eigenmodes:

N
L= Z qbkakaf.

k=1

Similarly, the functional connectome can be expressed as the
outer-products of the joint eigenmodes. The Pearson R plot in

Fig. 3(b) suggests that K = 20 is enough to approximate F'.
In particular:

K
F= Z wkakaf.
k=1

Only a few number (K < N) of joint eigenmodes sufficiently
span the functional connectome. Another example is shown
the last row in Figure 3. Here only K = 30 dominant modes
span the functional connectome (/N = 219). In summary, the
existence of joint eigenmodes and the sparse nature of ¥ lead
to this subspace relationship. Note that the low-rank nature
of functional connectome is also preserved in form of joint
subspace [12], [19].

Il. STRUCTURE-FUNCTION MAPPING

In this section, we extend the concept of joint eigenspace to
estimate functional connectivity of a subject from its structural
(via Laplacian) counterpart. Given the joint eigenmodes be-
tween the structural Laplacian and functional connectome, the
task boils down to estimating ¥ from ® at an individual subject
level. It was reported in [12] that there could be an inverse
relationship between log(¥) and ® based on a linear graph
model predicting a subject’s functional connectivity matrix
from their structural connectivity matrix via graph diffusion
[19]. Motivated by the findings in [12], here we aim to estimate
U from .

Joint Eigenspectrum Mapping

We propose a data-driven approach to learn a group level
mapping between ® and U. The idea is to consider the
diagonals of both Ay and Ay as two points in a vector space
of size RV*!, Then we pose the mapping between ® and ¥
as a least-squares problem [20]. Suppose there are M subjects
in the group from which learn the least-squares mappings.
Therefore, for each subject j € {1,2,..., M} there is a pair
of joint eigenvalues (®;, ¥;) obtained by via performing joint
diagonalization of the pair (L;, F}). First, we embed joint
eigenvalues of each subject in two matrices X € RY*M and
Y € RVXM a5 follows:

X =[®1,D,...,Ppn], 4@
Y = [0, Uy, ..., Uy,
where ®;,¥; € RV Vj € {1,2,..., M}. We consider the
following linear transformation W € RV*¥:
Y =WX. &)

To circumvent the limitation of over-fitting incurred by simple
least-squares solution, we seek to impose rank constraint [21]
on W. Note that this problem is a NP-hard. Various approaches
have been proposed in the literature to solve this problem
approximately [22]. One efficient approach is to regularize the
objective by trace norm (sum of singular values), which is
popularly called as nuclear norm. In particular, we consider
the following minimization:

W = argmin |[Y" — WX|[% + pl[W]|., (6)
w

where p > 0 and ||W]|]. is the nuclear norm of W. We solve
the minimization using a primal gradient method [21].
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Predicting Functional Connectome with Joint Mapping

Here we aim to estimate the functional connectome Fl for an
individual subject [, given their structural Laplacian L;, group
level joint eigenmodes and individual joint eigenspectra. An
optimal spectrum mapping in (6) would work best under the
assumption that joint eigenmodes for each subject is known
to us. However, this is not really a realistic assumption from
the perspective of a predictive model. We empirically notice
that each subject has different set of joint eigenmodes. This
is what makes the above formulation as bottleneck to being
an efficient predictive model from structural to functional
connectome. Instead, our aim is to find a set of group-level
joint eigenmodes A € RV*N where each column represents
group-level joint eigenvector. In particular, we consider the
following optimization problem:

M
minimize F. — AAy AT?
) JZ:;H J Vv HF (7
subject to L, = .AA.;)J,AT; ATA=AAT =1,

where F; and L stand for functional connectome and structural
Laplacian of subject j respectively. Using eigen spectrum
mapping from (5), we get ¥; = W&, which implicitly takes
into account the fact that L; = A®; AT, Further, by using
standard trace equality and the connection between Frobenius
norm and trace of a matrix, we further simplify the objective
function above as follows:

M

> (w(FTFy) = 2 w((FF AAwa, A”)

(A, A7) (A, AT}

By using AT A = I and cyclic property of trace of matrix, the
third term above is simplified to (®7 WTW®;). In fact, it is
clear that both first and third terms above do not depend on
A. Thus, the reduced optimization is:

M
minir\nize —tr Z FjTAAWq) ; AT g

=1 (3)
subject to AT A= AAT = 1.

It is worth noting that there is no known closed-form solution
to (8). We adopt the iterative algorithm described in [23] to
find an approximate solution.

In summary, we propose a two-step strategy for the structure
function mapping. First, we construct matrices X and Y using
both structure and function connectomes of the subjects; then
we learn the spectrum mapping W in (6). Second, we solve (8)
to obtain group level joint eigenmodes A. In the next iteration,
we re-train the mapping W in (5) using these joint eigenmodes
followed by estimating a refined group joint eigenmodes using
the new mapping. Upon convergence, we obtain a final set of
joint eigenmodes A and spectrum mapping W. We refer the
proposed predictive method as joint eigen spectrum mapping
(JESM).

Detailed steps of the proposed JESM Algorithm are described
in 1. We finally obtain the group level joint eigenmodes A

Algorithm 1: Joint Eigen Spectrum Mapping (JESM)

Input: Structural and functional connectomes: S;, Fj
for j € {1,2,...,M}.
Output: Joint eigenmodes A and mapping W.
1for j=1,2,...,M do
2 Compute structural Laplacian L; from Sj.

3 | Perform joint diagonalization of (L, F;) to obtain
joint eigenvalues ®; and ¥, as in (2).
4 Embed vectorized joint eigenvaules ®; and ¥; in

matrices X and Y as in (4).
Obtain spectrum mapping W using (6).

5
6 end

8 Initialize k < 1

9 repeat

10 Calculate joint eigenmodes A using (8).

1 Recompute joint eigenvelaues:

®; = diag(ATL;A) and ¥; = diag(ATF;A).

12 Embed vectorized joint eigenvaules ®; and ¥; in
matrices X and Y as in (4).

13 Obtain spectrum mapping W using (6).

15 k< EkE+1

16 until stopping condition is satisfied: k = kpqy.

and mapping W, and estimate functional connectome for an
arbitrary subject [ as follows:

(i)l = diag(ATLlA).
U, = Wo,.
Fi=AAg A",

€))

A. Dataset

To validate the proposed brain connectivity analysis frame-
work, we experimented on data from 70 healthy subjects [15].
The brain data acquisition comprised of (i) a magnetization-
prepared rapid acquisition gradient echo (MPRAGE) sequence
sensitive to white/gray matter contrast, (ii) a DSI sequence
(128 diffusion-weighted volumes), and (iii) a gradient echo
EPI sequence sensitive to BOLD contrast. These data was
pre-processed using the Connectome Mapper pipeline [24].
Gray and white matter were segmented using Freesurfer
and parcellated into 83 cortical and subcortical areas. The
parcels were then further subdivided into 129, 234, 463
and 1015 approximately equally sized parcels. Structural
connectivity matrices are estimated for each subject using
deterministic streamline tractography on reconstructed DSI
data [25]. Functional data were estimated using the protocol in
[26]. This includes regression of white matter, cerebrospinal
fluid, motion deblurring and lowpass filtering of BOLD signal.

B. Benchmark Comparisons

We compare the performance of JESM with the following
benchmark methods in terms of estimating functional connec-
tivity of a subject from its structural counterpart.

1) Abdelnour et al. [12]: The standalone eigenmodes of

structural Laplacian A were used to estimate the functional
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Fig. 3. Example of subspace relationship in structure-function joint eigen-spectrum. (a): ¥ obtained via joint diagonalization. Top K = 20 values are
marked in red. (b): Plot of Pearson R value as a function of K. For each K, we estimate functional connectome as in (II). The red dotted x-line
indicates the instance when estimated functional connectome almost matches with the ground-truth one. In the top example, it is K = 20 where the
Pearson R is 0.996. Similarly, for K = 30, the Pearson R is 0.998 in case of (219 x 219) atlas in the buttom example. The respective estimated
functional connectomes are displayed in the last column. It is evident that both the estimated connectomes are visually indistinguishable to the true
functional connectomes shown in third column. These examples demonstrate that functional connectome lies within structural connectome.
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connectome of the subject. Following [19], the functional
eigenspectra I' were estimated using an exponential
transformation of A.

2) Tewarie et al. [14]: We implemented the optimization
framework of [14] to estimate the projections of functional
connectome on the eigenmodes of structural connectome.

3) Becker et al. [13]: We implemented the stucture-function
mapping method in [13], where given both structural and
functional connectomes of a particular subject, a rotation
matrix and a polynomial expansion of the respective eigen-
spectra were used to estimate the functional connectome
from structure.

C. Performance Evaluation of the Predictive Model

We study the effectiveness of the proposed method in terms
of accurately estimating functional connectome (FC) of a
subject from its structural connectome (or Laplacian) and
compare with state-of-the-art methods in the literature. The
prediction performance is quantified in terms of Pearson R
statistic between the estimated FC and true FC of a subject.

In our group level prediction pipeline, we learn the mapping
between joint eigenvalues of structural Laplacian and eigenval-
ues of functional connectome. First, we use both connectomes
of the entire set of subjects. Next we learn group level joint
eigenmodes by solving an optimization problem using the
toolbox in [27]. Both the mapping and joint eigenmodes
are further refined through few iterations. Finally, we use
the learned mapping and group level joint modes to predict
functional connectome of a subject from structural connectivity.

IV. RESULTS

In this section, we perform exhaustive experiments to
examine the effectiveness of the proposed joint eigenmode
approach in structure-function mapping. We start with detailed
experimentation of our proposed eigenspectrum mapping
approaches. Finally, we compare with state-of-the-art methods
in the literature for structure-function mapping.

In Figures 4 and 5, we present visual results of estimated
functional connectomes using our method for two representative
subjects [15]. We display the results using the benchmark
methods: Abdelnour et al. [12], Tewarie et al. [14], and
Becker et al. [13]. The respective Pearson R values are noted
below each panel. It is visually evident that proposed JESM
outperforms both Abdelnour et al. [12] and Tewarie et al. [14]
by a significant margin. The estimated functional using JESM
more closely resembles the ground-truth as compared to the
ones produced by Becker et al. [13].

We summarize the comparison of our proposed algorithm
and benchmarks for structure function prediction using violin
plots in Figure 6. A total 70 healthy subjects from the dataset
[15] were used to learn the proposed eigen mapping operator
W and joint eigenmodes .A. For all algorithms, we compute
Pearson R for all the subjects and displayed in violin plots.
We note that the proposed JESM method outperforms the
benchmarks by a significant margin.

V. DISCUSSION

We provided a principled mathematical framework to
connect the structural and functional connectivity matrices.
By expressing both connectomes using a common eigen
space, we simplified subspace relationship between structural
and functional connectomes. We mathematically validated
a fundamental hypothesis in neuroscience that structural
connections imply functional ones [1], [28]. We developed
a novel algorithm for predicting functional connectomes based
on structural connectomes and joint mapping, and demonstrate
the superiority of this prediction algorithm compared to existing
benchmarks.

The existence of joint subspace between structural Laplacian
and functional connectome for a particular subject provides a
new insight towards understanding the relationship between
them. In particular, the results in Fig. 3 suggest that only a
few number of joint eigenmodes are sufficient to approximate
the functional connectome. From theoretical point of view,
this is a remarkable result. It is noteworthy that the joint
eigenvalues of functional connectome are sparse in nature;
only very few are significant, reflecting the low-rank property
of functional connectome. The joint subspace enables the
projection of functional time-series onto a common structure-
function manifold that is preserved across subjects.

The group level predictive model is of particular interest
to us. We note that there is no direct connection between
joint eigenmodes across subjects. Therefore, for predicting the
functional connectome for a particular subject from its structural
connnectome via joint subspace mapping, we need to know:
(i) the mapping between joint eigenspectra of both and (ii)
joint eigenmodes which closely diagonalize both connectomes.
We address this concern by two-step optimization. First, we
learn a mapping from joint eigenvalues of structural Laplacian
to joint eigenvalues of functional connectome via spectrum
mapping. Second, we use this learned spectrum mapping to
estimate a joint eigenmodes using manifold optimization. By
efficient use of advanced numerical optimization, we obtain
a group level eigenmodes that jointly diagnolize individual
subject level structural and functional connectomes.

Among the notable existing works, [12] predicts the func-
tional connectome using the eigenmodes of structural Laplacian.
Authors in [14] formulated this structure function mapping as a
L5 minimization problem where the feasible eigenmodes were
restricted to the individual eigenmodes of structural connectome.
Becker et al. [13] proposed an efficient eigenmode mapping,
by introducing a rotation matrix along with the structural
eigenmodes as a means to capture individual subjects’ FC.
However, our approach is quite different from [13] in terms of
the mathematical formulations: (i) we do not assume any direct
relationship between the connectomes, rather we just estimate
joint eigenmodes between them, (ii) we consider a more simpler
linear mapping between eigenspectra than rotation operators
of eigenspectra.

Finally, although we focus here on joint eigenmodes and
eigenspectra between the structural Laplacian and functional
connectomes obtained from fMRI, our approach is general
and applicable to functional connectomes obtained from other
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Fig. 4. Visual comparison of structure function mapping on Subject 43. The Pearson R values are reported in the sub-captions. A higher R value
indicates superior prediction. Among all the methods, our proposed method JESM achieves best results in terms of both visual quality and R value.
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Fig. 5. Visual comparison of structure function mapping on Subject 58. The Pearson values are also reported in the sub-captions. A higher R value
indicates superior prediction. Our proposed method JESM achieves best results in terms of both visual quality and Pearson R value.
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Fig. 6. Violin plot of Pearson R value on the entire set of subjects.
Notice that our proposed method joint eigen spectrum mapping (JESM)
outperforms the existing state-of-the-art approaches.

TABLE |
SUMMARY OF THE VARIABLES AND DEFINITIONS USED IN THIS TEXT.
Symbol | Description

N Numer of region-of-interest (ROI).

S Structural connectome of size (IN x N).

L Laplacian of structural connectome.

F Functional connectome.

A Eigenvalues of Laplacian (L).

U Eigenvectors of Laplacian.

r Eigenvalues of functional connectome.

Vv Eigenvectors of functional connectome.

P Joint eigenvalues of Laplacian (L).

v Joint eigenvalues of functional connectome (F').

A Joint eigenmodes of L and F'.

M Number of subjects.

L, Laplacian of subject j.

F; Functional connectome of subject j.

®; Joint eigenvalues of Laplacian of subject j.

v, Joint eigenvalues of functional connectome of subject j.
Ap Diagonal matrix with diagonal entries A.

Arp Diagonal matrix with diagonal entries I".

Ag Diagonal matrix with diagonal entries ®.

Ay Diagonal matrix with diagonal entries W.
Aq;.j Diagonal matrix with diagonal entries ®; of subject j.
A\I/j Diagonal matrix with diagonal entries ¥ of subject j.

functional neuroimaging methods like MEG and EEG. A more
general extension of the problem of joint mapping posed here
is the examination of joint functional and structural eigenmodes
across multiple functional connectomes obtained either from
multiple modalities or from dynamic functional connectivity
methods. Our long-term vision is to obtain potentially sensitive
structure-function biomarkers for differential diagnosis or
prognosis or therapeutic monitoring in various neurological
disorders.

APPENDIX

Lemma 1: For any € RY*! spanned by joint eigenvectors,
the maximum joint eigenvalue of structural Laplacian follows
' Lx

max = ¢nN.
€T

xTx (10)

Proof: We have a;,i € {1,2,..., N} be joint eigenvectors in
A such that a is the eigenvector corresponding to the largest
joint eigenvalue ¢ and a; is the joint eigenmode corresponds
to the smallest joint eigenvalue ¢;. Suppose = (c1a1+coas+
...+ cnay), for some constants {cy,ca,...,cn}. Then

T Lz =(cra1 + ...+ cNaN)TL(clal +...+cnapn).
Using the properties of joint eigenmodes La; = ¢;a; for
i€{1,2,...,N}, we get

" Lz =(c1a1 + ...+ cNaN)T(cl(blal +...+cendnan)
N

= Zc?@. (since a1, as,...,ay are orthonormal)
i=1

Similarly, ”x = Zf\; c?. Therefore,
N o N 2
_ Zi:1 i i < ON 21:1 G
N 2 = N 2
D i1 G dim G
Lemma 2: Given a symmetric matrix S with non-negative
entries, and its diagonal degree matrix D, and the matrix
S = D'/28D~'/2 then both (I — S) and (I + S) are
positive semi-definite (PSD) matrices.
Proof: For any given € R”, spanned the joint eigenvectors
in A we can write:

(D - S)x =

zTLx

zTx

= ¢N. n

> Si(wi— ;)% (1)
(4,9), (i#3)

where S;; = S;; using the symmetric properties of S. By

construction of structural connectivity, each entry of S is non-

negative real number. Therefore

(D - 8)x > 0.

This proves that (D — S) is a positive semi-definite matrix:
(D — S) = 0. We use the properties of eigenvalues of
multiplication of matrices [29]. Since D is positive definite
matrix, D~/ is also positive definite. Therefore

D Y2(D-8)DV?=(I—-8)=0. (12)
Similar to (11), we have
(D + S)x = Z Sij(zi+x;)? >0, (13)

(4,9),(i#4)
Using the properties of eigenvalues of matrix multiplication,

D—1/2(D + S)D—l/2 =(I+ 5’) = 0. (14)

A. Proof of Theorem 1

The lower bound on eigenvalues of L directly follows from
(12) in Lemma 2. It proves that L = (I — §) is a PSD matrix.
Therefore, the minimum joint eigenvalue of L follows ¢; > 0.

To show the upper bound of eigenvalues of L, we recall
(14) in Lemma 2 that (I + S) 3= 0. For any z, spanned the
joint eigenvectors in .4, we have

2’z + xSz >0 = Tz > —xT Sz,
By adding a positive quantity 2 to both sides:

2’x — x2Sz < 22Tz = wT(I — S’)w < 2zxTz.
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By further simplification,

15)

Combining (10) in Lemma 1 and (15), we obtain ¢ < 2. H

B. Proof of Theorem 2

We show here that each functional connectome is a positive
semi-definite matrix. Without loss of generality, we note that
functional connectome [26], [30] basically measures the second
moment matrix of a temporal signal (/random variable) z €
RNXL 1p particular,

F = E(z2").

Suppose there are T' time-point at each ROI is used to estimate
the connectivity. Then, E(zz7) = £ 37 2(t)z(t)". Now,
for any random vector b € RV X1, we can write

E((6"2)?) > 0.

b"Fb=b"E(zz")b = E(b"22Tb) =

Note that b7 F'b is the expectation of the square of the scalar
random variable 2 = b’ z. Therefore, for any eigenvectors in
A, the respective eigenvalue is non-negative. ]
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