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19 ABSTRACT

20

21  Rapid global climate change is posing a huge threat to biodiversity. Assessments of the
22 adaptive capacity for most taxa is usually performed on the species as a whole, but fails
23 to incorporate intraspecific adaptive variation that may play a fundamental role in
24 buffering future shifting climates. Here we generate a chromosome-scale genome
25 assembly for Populus koreana, a pioneer and keystone tree species in East Asia
26  temperate forests. We also obtain whole-genome sequences of 230 individuals collected
27  from 24 natural populations. An integration of population genomics and environmental
28  variables was performed to reveal the genomic basis of local adaptation to diverse
29  climate variable. We identify a set of climate-associated single nucleotide
30  polymorphisms (SNPs), insertions-deletions (Indels) and structural variations (SVs), in
31  particular numerous adaptive non-coding variants distributed across the genome of P,
32 koreana. We incorporate these variants into an environmental modelling scheme to
33  predict spatiotemporal responses of P. koreana to future climate change. Our results
34 highlight the insights that the integration of genomic and climate data can shed on the
35 future evolutionary adaptive capacities of a species to changing environmental
36  conditions.
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38 Introduction

39

40  Climate change is predicted to become a major threat to biodiversity and there is ample
41  evidence of climate-induced local extinctions among plant and animal species !. To
42 escape demographic collapses and extinction, species have to shift their range and
43 migrate to suitable locations, or persist in the same location by genetically adapting to
44  changing environmental conditions from standing genetic variation and de novo
45  mutations 2. However, migrating in order to keep pace with rapid climate change may
46  be difficult for many organisms, like plants 3. Therefore, understanding and predicting
47  the evolutionary potential of a species for future adaptations is not only relevant for
48  understanding whether and how natural species can persist in the context of climate
49  change, but can also benefit conservation and management strategies to cope with
50  global biodiversity loss *°. The traditional way to assess the capacity for future
51  evolutionary adaptation is via reciprocal transplant experiments or other approaches
52 that involve tracking genetic lineages for many generations ®. Doing so is challenging
53  or often unfeasible for many wild non-model organisms due to experimental
54  intractability, long generation times or other challenges to obtain fitness-related
55  phenotypic traits .

56 Using genomic data to predict the evolutionary potential of populations under
57 climate change provides a different perspective for understanding adaptive
58 evolutionary processes and for assessing the future vulnerability of different
59  populations %112 The first step to evaluate the evolutionary adaptation under changing
60  environmental conditions is to investigate the current spatial patterns of genomic
61  variation, followed by the identification of the genetic basis of local adaptation '°.
62  Although there may be millions of variants across the genome within any specific
63  species, relatively few are expected to be related to climate adaptation and hence are
64  relevant for accurate estimates of adaptive capacity. The process of discovering the

65 genomic variants associated with climate adaptation lies at the core of genomic
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66  prediction for future climate vulnerability '*. Genotype-environmental association
67  approaches are increasingly used to identify loci involved in climate adaptation °. Once
68  candidates for locally adaptive allelic variation have been identified, it is possible to
69  measure genomic vulnerability, which assesses the amount of change in the genetic
70  composition of a population that is required to track future environmental conditions
71 10167 Ag such, it goes beyond species-level distribution modelling and provides key
72 insights into assessing the possible maladaptation of populations under future climate
73 change *!%, Therefore, genomic predictions of climate adaptation and maladaptation
74  have immense potential to inform conservation management, especially for threatened
75  species most at risk of local extinction, and/or non-model long-lived species where
76  other experiments are impractical !7-18,

77 Forest trees play a leading role in the global carbon cycle and, along with the
78  characteristics of being the most efficient carbon sink, they will play an increasingly
79  important role in combating climate change and global warming *!°. However, trees
80  are characterized by long lifespans, large body sizes and often have long generation
81  times and large distribution ranges which make them particularly vulnerable to
82  maladaptation under altered climatic scenarios 2°. With the advance of genomic
83  technologies, it is now possible to characterize genome-wide patterns of genetic
84  diversity even in non-model species 2%, In this context, integrating genomic data into
85  predictive models aimed at quantifying and map spatial patterns of climate
86  maladaptation is especially important for long-lived organisms like trees, for which
87  climate change is likely to happen within the lifetimes of single individuals 2°.

88 In the present study, we aim to utilize landscape genomic approaches to investigate
89  the contemporary and future patterns of climate-associated genetic variation for a long-
90 lived poplar species, Populus koreana, which is a member of the family Salicaceae and
91 s one of the dominant tree species in temperate deciduous forests in East Asia. We
92  present the first de novo chromosome-scale reference genome of P. koreana, which is

93  then used as a reference for a population genomics study of 230 individuals collected
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94  from 24 natural populations across the species’ distribution. We characterize patterns
95  of genome-wide variation, including not only single-nucleotide polymorphisms (SNPs)
96  but also small insertions/deletions (Indels) and larger structural variants (SVs). This
97  wvariation is further analyzed to decipher genetic diversity, population structure and the
98  demographic history of the species. Finally, we identify candidate loci potentially
99  involved in climate adaptation through genome-wide environmental association studies.

100 By using two different analytical approaches we carry out genomic vulnerability

101  assessment and identify areas where P. koreana would be at greater risk due to future

102 climate change.

103

104  Results and Discussion

105

106  Chromosome-scale genome assembly of P. koreana

107

108  For de novo assembly of the P. koreana genome, we integrated data from three

109  sequencing and assembly technologies: ~42.42 Gb of Nanopore long-read sequencing

110  (106x), ~29.82 Gb of short-read Illumina sequencing (74%), and ~54. 22Gb of Hi-C

111  paired-end reads (137%) (Supplementary Table 1-4). The final assembly captured 401.4

112 Mb of genome sequence, with contig N50 of 6.41 Mb and approximately 99.6%

113 (~399.94 Mb) of the contig sequences anchored to 19 pseudo-chromosomes (Fig. 1a, b;

114  Table 1; Supplementary Table 5), which corresponds to the haploid chromosome

115  number of the species. The high quality of the P. koreana assembly was supported by a

116  high mapping rate (99.4%) of Illumina short reads. In addition, we identified 97.8% of

117  the single-copy orthologs from the Benchmarking Universal Single-Copy Orthologs

118  (BUSCO) analysis (Supplementary Table 6), further confirming the continuity and

119  completeness of the assembled P. koreana genome.

120 Repetitive sequences were identified using a combination of homology-based and

121  ab initio approaches. In total, 37.2% of the genome sequences were identified as
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122 repetitive elements, including 16.0% of retrotransposons and 17.9% of DNA
123 transposons. Long-terminal repeat (LTR) retrotransposons were found to account for
124 15.7% of the genome (Supplementary Table 7). After masking the repetitive sequences,
125 we carried out a combination of transcriptome, homology and ab initio-based
126  approaches to predict genes. A total of 37,072 protein-coding genes were annotated,
127  with an average coding sequence length of 1,136 bp and an average of five exons per
128  gene (Supplementary Table 8). Of the 37,072 genes, 35,380 (95.4%) could be annotated
129 by at least one public database e. g. Pfam, InterPro, NR, Swiss-Prot, GO and KEGG
130  (Supplementary Table 9). We also identified a set of noncoding RNAs in the P. koreana
131  genome (Supplementary Table 10).

132 To investigate the evolutionary history of P. koreana, we performed a gene family
133 clustering using the P. koreana genome and 12 other representative angiosperm species,
134  including eight Salicaceae species and four other outgroup species (Fig. lc). We
135  identified 905 single-copy gene families and used these for phylogenetic tree
136  construction and species divergence time estimation. The phylogenetic analysis showed
137  that P. koreana was most closely related to P. trichocarpa compared to other selected
138  species in the genus of Populus, and the divergence time of the two species was
139  estimated to approximately 2.69 million years ago (Mya). The gene family analysis also
140  revealed 1,265 and 2,998 gene families have undergone significant expansion or
141  contraction in P. koreana respectively. Gene Ontology (GO) enrichment analyses
142 showed that the expanded gene families were significantly enriched in stress response,
143 biosynthetic processes, secondary metabolism, and response to external biotic stimulus
144  (adjusted P < 0.01) (Supplementary Fig. 1; Supplementary Table 11). Furthermore,
145  investigation of collinear paralogs in the P. koreana genome confirmed the occurrence
146  of whole-genome duplication (WGD) (Fig. 1a). By comparing the density distribution
147  of synonymous substitution rates per site (Ks) of collinear paralogs and orthologs
148  between P. koreana and other Salicaceae species, the results suggested that all

149  Salicaceae species shared the same WGD event before their divergence (Fig. 1d). The
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150  shared WGD event was also confirmed by the extensive collinearity between the
151  genomes of P. koreana and P. trichocarpa (Supplementary Fig. 2) 24,

152

153  Population structure, genetic diversity and demographic history

154

155  To explore genetic variation in P. koreana, we generated whole-genome resequencing
156  data of 230 individuals from 24 populations sampled throughout the natural distribution
157  of the species in Northeast China (Fig. 2a). On average, ~95% of the clean reads were
158  aligned onto the P. koreana genome, with an average depth of 27.4x and coverage of
159  94.6% (Supplementary Table 12). Using this dataset, we identified a total of 16,619,620
160  high-quality SNPs and 2,663,202 Indels (shorter than or equal to 50bp). In addition, we
161  also identified a final set of 90,357 large SVs (>50bp).

162 We first used ADMIXTURE to investigate the genetic structure of the P. koreana
163  populations and found that the mode with the number of clusters (K) set to 3 exhibited
164  the lowest cross-validation error (Fig. 2a, b; Supplementary Fig. 3), which broadly
165  separated the individuals into two geographical groups (North and South). The North
166  group consists of 66 individuals from seven populations in the
167  Greater Khingan Mountains area while the other 164 individuals from seventeen
168  populations of the Changbai Mountains area, formed the South group. The
169  classification was also supported by a neighbor-joining (NJ) phylogenetic tree which
170  confirmed the two genetic groups (Supplementary Fig. 4). We further examined
171  patterns of genetic differentiation and isolation-by-distance (IBD) between and within
172 each group (Fig. 2c). We detected significant IBD in the southern group and in all
173 populations combined, but not in the northern group, possibly owing to the small
174  number of populations used for the test in the northern group. Moreover, the pattern of
175  IBD was stronger for all populations combined compared to populations in either the
176  southern or northern group alone. It is possible that the allopatric fragmentation into

177  isolated refuges during glacial periods has contributed to the accumulation of genetic
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178  differences between the disjunct populations, in particular because no or few
179  distribution records are present in the intermediate areas 2> 26, Nevertheless, the genetic
180  differentiation between the two genetic groups was found to be weak (Supplementary
181  Fig. 5, the average Fst values: 0.021). The genome-wide screens of genetic variation
182  within and between groups revealed that nucleotide divergence (dxy) between the two
183  groups was almost the same as the nucleotide diversity within groups (Supplementary
184  Fig. 6), again suggesting that population structure in P. koreana is relatively weak.

185 To further infer the demographic history of the P. koreana, we performed the
186  pairwise sequentially Markovian coalescent (PSMC) to assess change in effective
187  population size (Ne) over the past ~3-4 million years ago (Mya) (Fig. 2d). We found
188  that different populations of P. koreana displayed highly similar demographic
189  trajectories (Supplementary Fig. 7). The inferred N. only differed between the southern
190  and northern groups following the last glacial maximum (LGM, 10,000-20,000 years
191  ago), where samples from the northern group showed a steady population decline while
192 a slight population expansion was observed in samples from the southern group. The
193  inferred demographic histories of P. koreana populations were also confirmed by the
194  patterns in site frequency spectrum as summarized by Tajima’s D statistics
195  (Supplementary Fig. 8), where Tajima’s D was on average positive in the northern
196  group populations while the average Tajima’s D was slight negative in the southern
197  group.

198 We estimated nucleotide diversity (r) in 10 Kbp non-overlapping windows across
199  the genome for the 24 populations and found qualitatively similar results, with an
200  average diversity of 1.08% (Supplementary Fig. 9). In addition, the genome-wide decay
201  of linkage disequilibrium (LD) as a function of physical distance showed similar
202  patterns in the southern and northern populations, with 7 declining below 0.2 after ~15
203  Kbp on average (Supplementary Fig. 10). Overall, our results reveal weak population
204  structure in P. koreana between southern and northern population groups which might

205  have been geographically isolated following the LGM.
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206

207  Identifying genomic variants associated with local climate adaptation

208

209  The high-quality reference genome for P. koreana coupled with the high-depth
210  resequencing data generated in this study facilitate the precise characterization of
211  genomic information, including not only SNPs, but also Indels and SVs that are usually
212 ignored ?’. To investigate the extent to which genetic variation is driven by
213 contemporary climate gradients and to detect the environment-associated genetic
214 variants, we used two complementary genotype--environment association (GEA)
215  approaches. First, we tested for GEAs for 19 environmental variables (10 temperature
216  and 9 precipitation-related variables, Supplementary Table 13) using latent fixed mixed
217  modeling (LFMM) 28, which tests for associations between genotypes and environment
218  variable while accounting for background population structure. With a g-value cut-off
219  of 0.05, we identified a total of 3,013 SNPs, 378 Indels, and 44 SVs (Supplementary
220  Fig. 11), involving 514 genes that were significantly associated with one or more
221  environmental variables (Fig. 3; Supplementary Fig. 12; Supplementary Table 14). In
222 general, we found that these environment-associated variants were widely distributed
223 across the genome of P. koreana and did not cluster in specific regions.

224 LFMM is a univariate approach that tests for associations between one variant and
225  one environmental variable at a time and to alleviate these issues we also used a
226  complementary multivariate landscape genomic method, redundancy analysis (RDA)
227 %, to identify covarying variants that are likely associated with multivariate
228  environment predictors. To avoid issues due to multicollinearity, six uncorrelated
229  environmental variables (Spearman’s r <0.6, Supplementary Fig. 13) were selected for
230  the RDA analyses, including three temperature variables (Annual Mean Temperature
231  (BIOL1), Isothermality (BIO3), Maximum Temperature of Warmest Month (BIOS5)) and
232 three precipitation variables (Precipitation of Wettest Month (BIO13), Precipitation

233 Seasonality (BIO15), Precipitation of Coldest Quarter (BIO19)). Of the 3,435
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234  significant variants identified in our LFMM analyses, 1,779 (1,554 SNPs, 206 Indels
235 and 19 SVs) were found to display extreme loadings (standard deviation >3) along one
236  or multiple RDA axes (details in Materials and Methods). These shared variants were
237  regarded as “core adaptive variants” for local climate adaptation and they were broadly
238  distributed across the genome (Supplementary Fig. 14). Significantly stronger genetic
239  differentiation (Fst) were observed at these adaptive variants (Supplementary Fig. 15),
240  indicating that spatially varying selection has likely driven population differentiation at
241  climate-associated adaptive variants compared to random neutral genetic markers %31,
242 On average, we found that more adaptive variants were associated with precipitation-
243 related compared to temperature-related variables (Supplementary Fig. 14).

244 Of the core adaptive variants, only 3.2% were non-synonymous and 2.0% were
245  synonymous mutations, with all remaining variants being non-coding (Supplementary
246  Table 15), indicating that adaptation to climate in P. koreana have primarily evolved as
247  aresult of selection acting on regulatory rather than on protein-coding changes *. In
248  particularly, we found a significant enrichment of climate adaptive variants located in
249  the 5’ UTR of genes (Supplementary Fig. 16). Moreover, 9.7% of the adaptive variants
250  were found to be located within the regions of accessible chromatin as identified by
251  transposase-accessible chromatin sequencing (ATAC-seq) (Supplementary Table 14),
252  again suggesting that changes in cis-regulatory elements may play important roles in
253  driving environmental adaptation in natural populations of P. koreana. To further assess
254  the selection pressures acting on the climate adaptive variants, we calculated the
255  standardized integrated haplotype score (iHS) across all common variants to identify
256  loci with signatures of selective sweeps 3. Our results show that climate-associated
257  variants did not display stronger signatures of positive selection compared to randomly
258  selected SNPs (Supplementary Fig. 17), suggesting that adaptation to local climate in
259 P koreana may largely arise by polygenic selection, characterized by subtle to moderate
260  shifts in allele frequencies of many loci with small effect sizes 34,

261 Together, we identified many well-studied genes involved in climate adaptation in

10
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262 P koreana (Supplementary Fig. 12; Supplementary Table 14 and 16), although no
263  significant functional enrichment could be detected. For loci that are significantly
264 involved in adaptation to precipitation-associated environmental variables, the
265  distribution of allele frequencies in general showed similar patterns (Supplementary
266  Fig. 18). A prime example of such a locus that is strongly associated with variation in
267  precipitation during the wettest month is CRL/ (Fig. 3a). It is a LOB-domain
268  transcription factor that play an essential role in crown root formation and that has been
269  shown to play a critical role in regulating root system architecture in response to
270  flooding and drought stresses *%37. We found two tandem duplicates homologous to
271  Arabidopsis CRLI in P. koreana (Fig. 3b), and we identified a total of 104 candidate
272  adaptive variants (83 SNPs, 19 Indels and 2 SVs) located around these two genes
273 (Pokorl2247, Pokori2248). We choose one candidate adaptive SNP located in 5° UTR
274  of Pokori2247 (LG04:25159299) as an example to show the distribution pattern of
275  allele frequencies (Fig. 3d). The T allele was mainly distributed in the southeast regions
276  of the P. koreana distribution range that are characterized by heavy precipitation in the
277  wettest month, whereas the C allele was almost fixed in areas experiencing low rainfall
278  (Fig. 3f). To verify the potential function of Pokorl2247 in mediating adaptation to
279  extreme precipitation, we performed qRT-PCR to profile its expression under
280  submergence stress. Interestingly, we found that Pokori2247 exhibited differential
281  expression between genotypes in response to submergence stress treatment, with
282  individuals carrying the TC genotype at LG04:25159299 displaying enhanced
283  expression compared to individuals with the CC genotypes in response to submergence
284  (Fig. 3h). This indicates that the haplotype carrying the T allele may be associated with
285 increased tolerance to submergence in regions with high rainfall. Nevertheless, the
286  relatively high degree of LD (Fig. 31) at this region makes it hard to identify the true
287  causal variant(s) that are involved in mediating environmental adaptation. Furthermore,
288  we did not observe signals of strong recent selection at this locus %. The extended

289  haplotype homozygosity (EHH) did not exhibit significant differences between

11
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290  haplotypes carrying the T or the C allele at the focal SNP (Fig. 3g; the standardized
291  [iHS| score =1.693), which again supports a polygenic pattern of adaptation *°. In
292  addition, many other genes were also found to be involved in precipitation-associated
293  adaptation (Supplementary Fig. 12, 18; Supplementary Table 14, 16), such as
294 Pokor27800, which encodes a MYB transcription factor (orthologous to MYB60) that
295  is essential for promoting stomata opening and closure in response to flooding and/or
296  drought stresses *°; Pokori18547 is orthologous to Arabidopsis DPLI and encodes a
297  sphingoid long-chain base-1-phosphate lyase, and this gene has been shown to be
298 involved in the dehydration stress response #'; Similarly, Pokor25841, encoding a
299  SQUAMOSA promoter binding protein-like transcription factor orthologous to
300  Arabidopsis SPL12, has been shown to be an important regulator of plant growth,
301  development and stress responses *2.

302 We also identified a set of temperature-associated loci, including genes
303  orthologous to Arabidopsis HMG1, PGP4, FAD5, EMB1507 showing similar allele
304  frequency distribution patterns as we saw for the precipitation associated genes (Fig.
305  3a; Supplementary Fig. 12, 19; Supplementary Table S14). A striking example of such
306  alocus associated with variation in the maximum temperature of the warmest month
307 was Pokori7228, which encodes a heat shock protein (HSP) orthologous to
308  Arabidopsis HSP60-34 **. The rapid synthesis of HSPs induced by the heat stress can
309 protect cells from heat damage and enable plants to obtain thermotolerance by
310  stabilizing and helping refold heat-inactivated proteins #*. Relatively high LD was
311  found within the region surrounding this gene (Fig. 3m), including a total of 62
312 candidate adaptive variants (59 SNPs, 2 Indels and 1 SV). We chose one candidate
313  adaptive SNP located in an intronic region of Pokor17228 (LG07: 4796402) for further
314  exploration of allele frequency distribution patterns (Fig. 3e). Populations located in
315  areas with relatively higher temperature of the warmest month of the year were more
316  likely to carry the G allele, while the A allele was more likely to be observed in regions

317  with low temperatures (Fig. 3j). To further explore the role of Pokori7228 in the

12
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318  response to heat stress, we examined the expression pattern of the two genotypes (GG
319  vs AA) at the candidate SNP. The genotypes with the candidate warm-adapted allele
320  (G) showed much higher expression than the A allele after two and three hours of heat
321  stress treatment (Fig. 31), indicating that Pokor17228 is a likely candidate gene for heat
322 stress tolerance in P. koreana. Similar to what is observed at most candidate adapted
323  variants, we failed to detect signatures of strong recent selection signal at this locus (the
324  standardized [iHS| score =1.661). Despite this, the haplotypes carrying the warm-
325  adapted allele (G) had elevated EHH relative to the haplotypes carrying the other allele
326  (A) (Fig. 3k), suggesting it might have experienced weak positive selection.

327 Taken together, our results support a polygenic model for local climate adaptation
328  across natural populations of P. koreana. The thorough characterization of the genetic
329  basis underlying ecological adaptation performed in this study offers promising
330  information for predicting species response to future climate change %14,

331

332  Genomic vulnerability prediction to future climate change

333 Based on the established contemporary genotype—environment relationships and
334  the identified climate-associated genetic loci, we aim to make predictions of how
335  populations of P. koreana will response to future climate change. To achieve this we
336  used two complementary approaches to investigate the spatial pattern of maladaptation
337  across the range of P. koreana and to identify populations that are most vulnerable to
338  future climate shifts under four CMIP6 emission scenarios of shared socioeconomic
339  pathway (SSP126, SSP245, SSP370 and SSP585) for two defined periods (2061-2080
340  and 2081-2100) #°. First, we calculated the risk of nonadaptedness (RONA) for each
341  population based on the 19 environmental variables (Fig. 4; Supplementary Fig. 20).
342 RONA measures the expected allele frequency shifts required to cope with future
343  climate conditions after establishing a linear relationship between allele frequencies at
344  environmentally associated variants and present climates %%, As expected, for most

345  environmental variables, RONA increases under more severe climate change scenarios,
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346  with higher emissions leading to increased overall RONA values (i.e. SSP585 wvs.
347  SSP126, more details in Supplementary Table 17). Moreover, we found substantial
348  variation in RONA estimates among different environmental variables, and for each
349  variable, RONA values were also different across populations (Fig. 4; Supplementary
350  Fig. 20; Supplementary Table 17). We choose predictions for two environmental
351  wvariables (BIO5 and BIO13, described above) under future climate scenario SSP370 in
352 2061-2080 as representative outcome. Populations located in areas with more drastic
353  environmental changes are anticipated to have greater RONA values. RONA estimates
354  for temperature variables were substantially higher than those projected from
355  precipitation-induced responses, indicating that substantial allele frequency shifts are
356  needed at temperature-associated loci to cope with future temperature increases (Fig. 4
357 a,b; Supplementary Fig. 21) !6. In addition, we found that populations in both the
358  northern and southern distributions of P. koreana had almost equally large values of
359 RONA in face of temperature changes. In contrast, for precipitation changes southern
360  populations displayed much higher genomic vulnerability compared to northern
361  populations where RONA values were generally low, in particular for those populations
362  near the Korean Peninsula that were predicted to experience severe rainfall and extreme
363  precipitation events in the future (Fig. 4 c,d).

364 Second, we used the gradient forest (GF) approach to model the turnover in allele
365 frequencies along present environmental gradients and predict genetic offset to a
366  projected future climate '°. We first performed GF analyses to determine the relative
367  importance of various environmental variables based on the putatively environmental-
368  associated variants. Of the 19 environmental variables tested, the top explanatory
369  variables were mostly precipitation related, again suggesting that adaptation to
370  precipitation is likely the most important environmental driver shaping the spatial
371  patterns of adaptive genetic variation (Fig. 5b). To avoid multicollinearity issues and to
372 simultaneously consider the ranked importance by GF, we used the same six

373  uncorrelated environmental variables that were used in the RDA analyses (BIO15,
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374  BIO19, BIO13, BIOI1, BIO3, BIOS) to estimate genomic vulnerability across the
375  geographic distribution of P. koreana. By visualizing climate-associated genetic
376  variation across the natural distribution of P. koreana, we found that adaptive genetic
377  variation could be largely explained by these six climatic variables (Supplementary Fig.
378  22). Moreover, we observed that the use of the six uncorrelated climatic variables or all
379  the nineteen climatic variables had no major impact on the results (Supplementary Fig.
380 23, 24). Overall, genomic offset was found to be highest in southeastern populations
381 near the Korean Peninsula (Fig. 5a), where also high RONA values for both
382  precipitation and temperature-related variables were observed (Fig. 4). Therefore, all
383  these findings demonstrate that southeastern populations of P. koreana near the Korean
384  Peninsula are expected to experience higher magnitudes of environmental change in
385  the future, from both warmer temperatures and more extreme summer rainfall
386  conditions, and are therefore likely to be more vulnerable to climate change 17,

387 Although genomic information shows great promise for predicting future
388  wvulnerability of species to climate change, recent simulation studies revealed that the
389  measures of potential genomic offset could be artificially inflated by other neutral
390  processes such as population structure and effective populations sizes 7. However, in
391  our study, both RONA and genomic offset estimated here are all based on candidate
392  climatic adaptive variants that were identified by genome scan procedures after
393  accounting for the effects of neutral population structure. In addition, compared to the
394  expectation that populations with small N. would exhibit greater signatures of genetic
395  drift that further leads to greater turnover of allele frequencies and cause false-positive
396  signals of increased estimates of offsets 47, we did not find a relationship between the
397  level of nucleotide diversity, which is proportion to N, and the estimated genomic
398  offsets across populations (Supplementary Fig. 25a). Furthermore, as higher genetic
399  drift in small populations would limit the efficacy of purifying selection and result in
400  higher genetic load *8, we further estimated and compared genetic load using a measure

401  that compare the proportion of 0-fold nonsynonymous to 4-fold synonymous SNPs
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402  among populations. In line with the results on nucleotide diversity, there was no
403  relationship between the estimated genetic load and offsets (Supplementary Fig. 25b).
404  Together, all results suggest that neutral evolutionary processes should not have much
405 impact on our estimates of genetic offsets and the vulnerability assessment across
406  populations to future climate change.

407 The metrics of genomic vulnerability estimated here are therefore reliable and have
408  clear implications for not only delineating future conservation units but also informing

4 For instance, the

409  management decisions of this key long-lived tree species
410  southeastern populations nearby the Korean Peninsula are inferred to be most at risk
411  from future higher temperatures and more intense precipitation. Considering that these
412  populations contain many unique, climate-adaptive germplasms where a set of adaptive
413  alleles for warmer and wetter climates have been identified in multiple functional
414  important genes, ex sifu conservation efforts may be appropriate and necessary in this
415  area .

416

417  Conclusion

418

419  Ongoing climate change is predicted to threaten populations for numerous species, and
420  despite the importance of intraspecific adaptive variation in determining responses,
421  predictions of vulnerability to climate change usually lack a component of evolutionary
422 responses. In this study, we first assembled a highly continuous, accurate, and complete
423 genome of P. koreana using Nanopore long reads and Hi-C interaction maps. The high-
424  quality reference genome enables us to perform comprehensive population genomic
425  analyses, which are fundamental for an accurate characterization of the spatial patterns
426  of genomic variation and for gaining unique insights into the genetic architecture of
427  climatic adaptation. We further combine genomics, space-for-time and machine-
428  learning approaches to predict broad spatiotemporal responses to future climate change

429  in this species. Most notably, we identify a set of populations located in southeastern
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part of the current distribution range as being potentially most vulnerable under future
climate scenarios, information which is invaluable for developing conservation and
management strategies. To summarize, our results demonstrate how genomic data can
be used to assess climate change vulnerability in an ecologically important non-model
species, showing great promise as the first step in the design of applied conservation

efforts in response to a rapidly changing climate.

Materials and Methods

Plant materials and genome sequencing

Fresh leaf tissues were sampled from a wild P. koreana plant growing in Changbai
Mountain of Jilin province in China, and immediately stored in liquid nitrogen. Total
genomic DNA was extracted using the CTAB method. For the Illumina short-read
sequencing, paired-end libraries with insert sizes of 350bp were constructed and
sequenced using an [llumina HiSeq X Ten platform. For the long-read sequencing, the
genomic libraries with 20 Kbp insertions were constructed and sequenced utilizing the
PromethION platform of Oxford Nanopore technologies. For the Hi-C experiment,
about 3g of fresh young leaves of the same P. koreana accession was ground to
powder in liquid nitrogen. A sequencing library was then constructed by chromatin
extraction and digestion, DNA ligation, purification and fragmentation °!, and was

subsequent sequenced on an Illumina HiSeq X Ten platform.

Genome assembly and scaffolding
The quality-controlled reads were firstly corrected via a self-align method using the
NextCorrect module in the software NextDenovo v2.0-beta.1

(https://github.com/Nextomics/NextDenovo) with parameters “reads cutoff=1k,

seed cutoff=32k”. Smartdenovo v1.0.0 (https://github.com/ruanjue/smartdenovo) was

then used to assemble the draft genome with the options -k 21 -J 3000 -t 16. To improve
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458  the accuracy of the draft assembly, two-step polishing strategies were applied: the first
459  step included three rounds of polishing by Racon v1.3.1 °2 based on the corrected ONT
460  long reads. The second step includes four rounds of polishing by Nextpolish v1.0.5 33
461  based on cleaned Illumina short reads after removing adapters and low-quality reads
462  using fastp v0.20.0 >* with parameters ‘-f 5 -F 5 -t 5 -T 5 -n 0 -q 20 -u 20’. Finally,

1 33 software with the

463  allelic haplotigs were removed using the purge haplotigs v1.1.
464  options ‘-1 5 -m66 -h 170’ to obtain the final contig-level assembly.

465 For chromosome-level scaffolding, the Hi-C reads were first filtered by fastp
466  v0.20.0 with parameters described above. Each pair of the clean reads were then aligned
467  onto the contig-level assembly by bowtie2 v2.3.2 3¢ with parameters ‘-end-to-end, -
468  very-sensitive -L 30°. The quality of Hi-C data was evaluated by HiC-Pro v2.11.4 %7,
469  which further classified read-pairs as valid or invalid interaction pairs. Only valid
470  interaction pairs were retained for further analysis. Finally, scaffolds were clustered,
471  ordered and oriented onto chromosomes using LACHESIS 3% with parameters:
472  CLUSTER MIN RE SITES = 100; CLUSTER MAX LINK DENSITY=2.5; CLUSTER
473  NONINFORMATIVE RATIO = 1.4; ORDER MIN N RES IN TRUNK=60; ORDER
474  MIN N RES IN SHREDS=60. The placement and orientation errors that exhibit
475  obvious discrete chromosome interaction patterns were then manually adjusted.

476 The completeness of the genome assembly was assessed by both the representation
477  of Illumina whole-genome sequencing short reads from mapping back reads to the
478  assembly using bwa v0.7.12 *, and by Benchmarking Universal Single-Copy
479  Orthologs (BUSCO) v4.0.5 ® with the searching database of “embryophyte_odb10”.
480

481  Repeat and gene annotation

482  For repeat annotation, we used the Extensive de-novo TE Annotator (EDTA v1.9.3) ¢!,
483  which incorporates well performed structure- and homology-based programs

484  (including LTRharvest, LTR FINDER, LTR retriever, TIR-learner, HelitronScanner

485 and RepeatModeler) and subsequent filtering scripts, for a comprehensive repeat
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486  detection. Subsequently, TEsorter (v1.2.5, https://github.com/zhangrengang/TEsorter/)

487 2 was used to reclassify those TEs that were annotated as “LTR/unknown” by EDTA.
488 For gene annotation, we first used RepeatMasker v4.1.0  to mask the whole
489  genome sequences with the TE library constructed using EDTA. An integrated strategy
490  that combined homology-based prediction, transcriptome-based prediction and ab
491  initio prediction was used to predict the protein-coding genes. For homology-based
492  gene prediction, published protein sequences of six plant species, including Populus
493  euphratica, Salix brachista, Salix purpurea, Populus trichocarpa, Arabidopsis thaliana
494  and Vitis vinifera were downloaded and aligned onto the repat-masked genome by using
495  TBLASTN (ncbi-BLAST v2.2.28 %) program with E-value cutoff setting 1e, and
496  GeneWise v2.4.1 % was then used to predict gene models with default settings. For
497  transcriptome-based gene prediction, trimmed RNA-seq reads from leaf, stem and bud

498  tissues were mapped to the reference genome using HISAT v2.2.1 6¢

with parameters
499  “--max-intronlen 20000 --dta --score-min L, 0.0, -0.4”, and Trinity v2.8.4 ¢7 was used
500 for transcripts assembly with default parameters. Assembled transcripts were
501  subsequently aligned to the corresponding genome to predict gene structure using
502  PASA v2.4.1 %8, For the ab initio prediction, Augustus v3.3.2 ¢ was employed using
503  default parameters after incorporating the transcriptome-based and homology-based
504  evidence for gene model training. Finally, all predictions of gene models generated
505 from these approaches were integrated into the final consensus gene set using
506  EvidenceModelervl.1.1 . After prediction, PASA was again used to update
507  alternatively spliced isoforms to gene models and to produce a final gft3 file with three
508  rounds of iteration.

509 In addition, we also performed noncoding RNAs (ncRNAs) annotation. Transfer
510 RNAs (tRNAs) were identified using tRNAscan-SE v2.0.7 7° with default parameters.
511 Ribosomal RNAs (rRNAs) were identified by aligning rRNA genes of P
512 trichocarpa v3.1 to the assembly using blast. The other three types of ncRNA

513  (microRNA, small nuclear RNA and small nucleolar RNA) were identified using
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514  Infernal v1.1.4 ™! by searching Rfam database v12.0 72,

515 For functional annotation, our predicted protein-coding genes were aligned to
516  multiple public databases including NR, Swiss-Prot, TTEMBL 73, COG and KOG using
517 NCBI BLAST+ v.2.2.31 with E-value of le-5 as cutoff . Motifs and domains were
518 annotated by searching against InterProScan (release 5.32-71.0) 7*. Gene ontology (GO)
519  terms and KEGG pathways of predicted sequences were assigned by InterProScan and
520 KEGG Automatic Annotation Server, respectively 7.

521

522 Gene family clustering and phylogenetic analysis

523  Protein sequences from 13 plant species, including Populus koreana, Populus
524  euphratica, Populus pruinosa, Populus trichocarpa, Populus deltoides, Populus
525  tremula, Populus alba, Salix suchowensis, Salix pruinosa, Ricinus communis,
526  Arabidopsis thaliana, Vitis vinifera and Oryza sativa, were selected for gene family
527  clustering. Genes with premature stop codons or encoding proteins shorter than 50
528 amino acids were removed. For genes with alternative splicing variants, the longest
529  transcript was selected to represent the gene. An all-against-all comparison was
530  performed using BLASTP v2.5.0+ with e-value setting e, and OrthoFinder v2.5.2 7
531  was used to further cluster gene families.

532 A total of 905 single-copy orthologous genes were extracted. The coding DNA
533 sequence (CDS) alignments of each single-copy gene family were generated based on
534  protein sequences aligned with MAFFT v7.475 77 and poorly conserved blocks and
535 gaps were trimmed by trimAl v1.4 7® with default settings. Then, the consensus
536  sequences were concatenated into a ‘super gene’ for each species, and RAXML v8.2.8
537 7 was used to construct a phylogenetic tree under the GTRGAMMA model with 1000
538  bootstrap replicates, which was visualized by FigTree v1.4.4. Molecular dating was
539  carried out using the MCMCTree program implemented in the PAML package v4.10.0
540 ¥ based on the calibration time for divergence between O. sativa and A. thaliana (mean:

541 152 Mya) and between A. thaliana and V. vinifera (mean: 117 Mya) obtained from the
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542  TimeTree database (http://www.timetree.org) 8!. Finally, we applied CAFE v4.2.1 # to

543  compute changes in gene families along each lineage of the phylogenetic tree under a
544  random birth-and-death model. The expanded and contracted gene families in P,
545  koreana relative to other species were subjected to functional analysis using GO
546  enrichment.

547

548  Genome synteny and whole-genome duplication (WGD) analysis

549  We selected four species (P. euphratica, P. trichocarpa, P. tremula, S. purpurea) from
550  Salicaceae to determine whether P. koreana shared the same whole-genome duplication
551 events as other Salicaceae species. Colinear genes and syntenic blocks within each
552  genome and between genomes were inferred using all-versus-all BLASTP and MCscan
553 8, with syntenic blocks being defined as those with at least five syntenic genes.
554  Synonymous substitutions per synonymous site (Ks) between colinear blocks was
555  calculated for each pair of homologous genes using WGDI v0.4.5 84, The median Ks
556  values of each syntenic block were then selected and used for the distribution analysis
557  after performing the evolutionary rate correction.

558

559  Genome resequencing, read mapping and variant calling

560  Atotal of 230 individuals were collected from 24 natural populations, representing most
561  natural habitats of P. koreana. Within each population, individuals were sampled after
562  ensuring that sampled individuals were at least 100m apart from each other. Genomic
563  DNA was extracted from leaf samples with Qiagen DNeasy plant kit. Whole genome
564  paired-end sequencing was generated using the Illumina NovaSeq 6000 platform with
565  atarget coverage of 20x per individual.

566 For raw resequencing reads, we used Trimmomatic v0.36 % to remove adapters
567 and cut off bases from either the start or the end of reads if the base quality was < 20.
568  Trimmed reads shorter than 36 bases were further discarded. After quality control, all

569  high-quality reads were mapped to our de novo assembled P. koreana genome using the

21


https://doi.org/10.1101/2022.04.04.486908
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.04.486908; this version posted April 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

570 BWA-MEM algorithm of bwa v.0.7.17 >° with default parameters. The alignment
571  results were then processed by sorting and PCR duplicate marking using SAMtools
572 v.1.9 % and Picard v.2.18.11 (http://broadinstitute.github.io/picard/). For genetic variant
573  identification, SNP and Indel calling was performed using Genome Analysis Toolkit
574  (GATK v.4.0.5.1) ¥ and its subcomponents HaplotypeCaller, CombineGVCFs and
575  GenotypeGVCFs to form a merged VCF file with “all sites” (including nonvariant sites)
576  included using the ‘EMIT ALL SITES’ flag. SV calling was performed using the
577  software DELLY v0.8.3 8% with default parameters. We further performed multiple
578 filtering steps to only retain high-quality variants for downstream analysis. For SNPs,
579  SNPs with multi-alleles (>2) and those located at or within 5 bp from any indels were
580 removed. In addition, after treating genotypes with read depth (DP) < 5 and genotype
581  quality (GQ) < 10 as missing, SNPs with missing rate higher than 20% were filtered;
582  for indels, those with muti-alleles (>2) and with QD < 2.0, FS > 200.0, SOR > 10.0,
583  MOQRankSum < -12.5, ReadPosRankSum < -8.0 were removed. Indels with missing
584  rate >20% after treating genotype with DP<5 and GQ<I10 as missing were further
585 filtered out; for SVs, those with length < 50bp and with imprecise breakpoints (flag
586 IMPRECISE) were removed. After treating genotypes with GQ<10 as missing, we
587  further filtered SVs with missing rate >20%. Finally, we implemented the software
588  SNPable (http://lh31h3.users.sourceforge.net/snpable.shtml) to mask genomic regions
589  where reads were not uniquely mapped and filtered out variants located in these regions.
590  After these filtering steps, 16,619,620 SNPs, 2,663,202 indels and 90,357 SVs were
591 remained for subsequent analyses. The filtered variants were further phased and
592  imputed using Beagle v4.1 % and the effects of individual variants were annotated using
593  SnpEffv.4.3 % with “-ud 2000” and other parameters set to default.

594

595  Population structure analysis

596  We first used PLINK v1.90 °! with the parameters “indep-pairwise 50 10 0.2” to extract

597  aLD pruned SNP set with minor allele frequency (MAF) > 5%, which yielded 535,191
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598 independent SNPs to be used in the population structure analysis. First, we used
599  ADMIXTURE v.1.3.0 *> with default parameters to investigate population genetic
600  structure across all individuals, with the number of clusters (K) being set from 1 to 8.
601  Second, to quantify the relatedness between individuals, the identify-by-state (IBS)
602  genetic distance matrix was calculated using “-distance 1-ibs” parameter in PLINK
603  v1.90. We constructed a neighbor-joining (NJ) phylogenetic tree based on the distance
604  matrix using MEGAX ** and displayed the tree using FigTree v.1.4.4. Third, for the
605 isolation-by-distance (IBD) analysis, we first used VCFtools v0.1.15 ** to calculate the
606  population differentiation coefficient (Fst). The matrix of Fst (Fst (1— Fst)) and the
607  matrix of geographic distance (km) among different groups of populations were then
608 used for performing the Mantel tests using the R package “vegan” ?°, with the
609  significance being determined based on 999 permutations.

610

611  Genetic diversity, linkage disequilibrium and demographic history analysis

612 To estimate and compare genetic diversity across populations of P. koreana, we
613  calculated both intra-population (7) and inter-population (dxy) nucleotide diversity after
614  taking into account both polymorphic and monomorphic sites using the program pixy
615  v0.95.0 °° over 100 Kbp nonoverlapping windows. In addition, Tajima’s D statistics
616  were calculated using VCFtools v0.1.15 in 100 Kbp non-overlapping windows for the
617  northern and southern groups of populations, respectively. To further estimate and
618  compare the pattern of LD among different groups of populations, PopLDdecay v.3.40
619 %7 was used to calculate the squared correlation coefficient (%) between pairwise SNPs
620  with MAF >0.1 in a 100-kb window and then averaged across the whole genome.

621 PSMC *® was used to infer historical changes in effective population size (N.) of P
622  koreana using parameters of -N25 -t15 -r5 -p "4+25*2+4+6". We selected seven
623  individuals from both the northern and southern groups of populations to run the PSMC
624  analyses, and 100 bootstrap estimates were performed per individual. Assuming a

625  generation time of 15 years and a mutation rate of 3.75x10"® mutations per generation,
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626  we converted the scaled population parameters into N, and years.

627

628 Identification of environment-associated genetic variants

629  We used two different approaches to identify environment-associated variants (SNPs,
630 indels, and SVs) across the whole genome. We only kept common variants with
631  MAF >10%, including a total of 5,182,474 SNPs, 736,051 indels and 30,934 SVs, for
632  these analyses. First, we used a univariate latent-factor linear mixed model (LFMM)
633  implemented in the R package LEA v3.3.2 % to search for associations between allele
634  frequencies and the 19 BIOCLIM environmental variables °°. Based on the number of
635  ancestry clusters inferred with ADMIXTURE v.1.3.0, we ran LFMM with three latent
636  factors to account for population structure in the genotype data. For each environmental
637  variable, we ran five independent MCMC runs using 5000 iterations as burn-in
638  followed by 10,000 iterations. P-values from all five runs were then averaged for each
639  variant and adjusted for multiple tests using a false discovery rate (FDR) correction of
640 5% as the significance cutoff. Second, we performed a redundancy analysis (RDA) to
641 identify genetic variants showing especially strong relationship with multivariate
642  environmental axes 2%!%1, RDA has been demonstrated to be one of the best-performing
643  multivariant genotype-environmental association approaches and which exhibits low
644  false-positive rates °. Six uncorrelated environmental variables (BIO1, BIO3, BIOS3,
645 BIO13, BIOI15 and BIO19) with pairwise correlation coefficients <0.6 were selected
646  for the RDA analyses using the R package vegan v2.5-7. Significant environment-
647  associated variants were defined as those having loadings in the tails of the distribution
648  using a standard deviation cut-off of 3 along one or more RDA axes.

649 To further assess selection pressures acting on climate adaptive variants, we
650  assessed the extended haplotype homozygosity (EHH) pattern for a selected set of
651  strongly associated variants using the R package “rehh” 1°2, and calculated the
652  standardized integrated haplotype score (iHS) across the genome for common variants

653  using the software selscan v.1.3.0 103,
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654

655  Stress treatment and expression analysis by qRT-PCR

656  Stem segments from wild genotypes of P. koreana were surface sterilized by soaking
657  in 10% sodium hypochlorite solution and 70% Ethyl alcohol for 5 minutes, and then
658  thoroughly washed five times with distilled water. The stem segments were inserted
659  into MS medium (0.05mg/L NAA) for 30 d at 25/20 °C (day 16 h/night 8 h) and after
660  rooting, the stem segments were transplanted to soil for 40 d at 25/20 °C (day 16 h/night
661 8 h). To explore the effect of different genotypes of one candidate adaptive SNP located
662 in the 5° UTR of Pokori2247 (LG04:25159299) in mediating adaptation to extreme
663  precipitation, we carried out a submergence treatment. For the submergence treatment,
664  water was maintained at 2 cm above the soil surface and plants were maintained in the
665  growth chamber providing 25 °C/20 °C (day 16 h/night 8 h) for Oh, 3h, 6h, 9h and 12
666  h. In addition, we also carried out a heat stress treatment to explore the effect of one
667  candidate adaptive SNP located in intronic region of Pokorl7228 (LGO07: 4796402) in
668  response to heat stress. For the heat stress treatment, plants were placed into a plant
669 incubator at 42 °C/20 °C (day/night) with an illumination of 16 h/8 h (day/night) for 0
670  h,1h,2h,3hand 24 h. At each time point, leaf tissues were collected from each plant
671  at the same place and frozen immediately in liquid nitrogen for expression analyses.
672 Quantitative Reverse Transcription PCR (qRT-PCR) ' was used to investigate the
673  expression levels of selected genes in the abiotic treatments (Pokori2247 for
674  submergence stress; Pokorl7228 for heat stress). Total RNA was extracted from pooled
675  leaf materials using a Plant RNA extract kit (Biofit, Chengdu, China), and the HiScript
676  II RT SuperMix for qPCR kit (+gDNA wiper) (Vazyme, Nanjing, China) was used to
677  obtain cDNA. gPCR was performed with gene-specific primers (Supplementary Table
678  18) using the Taq Pro Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China)
679  reaction system on the CFX96 Real-Time detection system (Bio-Rad, CA, USA). Each
680  experiment was performed with three technical replicates and the UBQ10 was used as

681  the endogenous control for data analysis.
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682

683  ATAC-seq analysis

684  For the ATAC experiment, fresh leaf tissue were collected from the same individual
685 used for the genome-assembly of P. koreana and prepared according to the
686  experimental protocol following '%°. In brief, approximately 500mg of flash-frozen
687 leaves were immediately chopped and processed for ATAC-seq, followed by library
688  construction and were then subjected to sequencing on the Illumina HiSeq X-Ten
689  platform (San Diego, CA, USA). The raw reads generated were first trimmed using
690  Trimmomatic v.0.36 ® with a maximum of two seed mismatches, and the adapters were
691  trimmed by NexteraPE. Then the clean reads were aligned to the reference genome
692  using Bowtie v.2.3.2 %% using the following parameters: ‘bowtie2 --very-sensitive -N 1
693  -p4-X2000 -q’. Aligned reads were sorted using SAMtools v.1.1.1 3¢, The redundant
694 reads from PCR amplification and reads that mapped to either chloroplast or
695  mitochondria were removed using Picard v.2.18.11

696  (http://broadinstitute.github.io/picard/). Finally, only high quality properly paired reads

697  were retained for further analysis. ATAC-seq peak calling was done by MACS2 % with
698 the ‘-keep dup all’ function.

699

700  Genomic vulnerability assessment

701  For each sampling location, we downloaded future (2061-2080 and 2081-2100)
702  environmental data for the 19 BIOCLIM variables from WorldClim CMIP6 dataset
703  (BCC-CSM2-MR model; resolution 2.5 arcmin) !, Each of the two future
704  environmental datasets consists of four Shared Socio-economic Pathways (SSPs):
705  SSP126, SSP245, SSP370 and SSP585. We used two different approaches to evaluate
706  the genomic vulnerability to future climate change. First, we calculated the risk of
707  nonadaptedness (RONA) !¢, which quantifies the theoretical average change in allele
708  frequency needed to cope with climate change, under projected future climate scenarios.

709  Following the method used in %7, a linear relationship between allele frequencies at
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710  significantly associated loci (detected by both LFMM and RDA) and environmental
711  variables was first established using linear regressions. For each locus, population and
712 environmental variable, the theoretical allele frequency change needed to cope with
713 future climate conditions (RONA) were calculated, and the average RONA values were
714 further weighted by the R? for each linear regression following “6. Second, as a
715  complementary approach to RONA, we used a nonparametric, machine-learning
716  gradient forest analysis to calculate genomic vulnerability across the range of P
717  koreana using ‘gradientForest’ in R %19 We first built a GF model with 500 trees on
718  the 19 BIOCLIM variables using the environmental-associated variants detected by
719  both LFMM and RDA, which provided a ranked list of the relative importance of all
720  environmental variables. Based on the ranked importance and pairwise correlation
721  coefficients of the nineteen variables, we selected six unrelated environmental variables
722 (BIOI, BIO3, BIOS, BIO13, BIO15 and BIO19, identical to the RDA analyses) to build
723  a second gradient forest model for estimating the genetic offset under the different
724  future scenarios. The genetic offset was calculated as a metric for the Euclidean
725  distance of the genomic composition between the current and future projected climates,
726  and then mapped with ArcGIS 10.2 to display its’ geographical distribution.
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984  Fig. 1 Genome assembly of Populus koreana and evolutionary analyses in the Salicaceae. a
985  Landscape of genomic features and genetic diversity in P. koreana. Circles represent, from
986  outermost to innermost, gene density (1), transposable element density (2), the distribution of SNPs
987  (3), Indels (4) and SVs (5) estimated from the population genomic data. Lines in the center
988  represents the intra-genome collinear blocks. b Hi-C heatmap showing chromatin interactions at
989 100 Kb resolution in P. koreana. ¢ Phylogenetic tree of P. koreana and 12 other eudicot species.
990  The number of gene families that expanded (blue) and contracted (red) in each lineage after
991  speciation are indicated beside the tree. The red box indicates the base of the Salicaceae. The
992 numbers above nodes in the tree represents divergence times between lineages (million years ago,
993  Mya). d Distribution of synonymous substitution rate (Ks) between syntenic blocks of five species:

994  P. koreana, P. trichocarpa, P. tremula, P. euphratica and S. purpurea.
995
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Fig. 2 Population genomic analyses of Populus koreana. a Geographic distribution of 24 natural
populations (circles) where colors represent ancestral components inferred by ADMIXTURE
(according to the substructure at K = 3). The location of the individual selected for genome assembly
is indicated by a black star. b Model-based population assignment using ADMIXTURE for K = 2
and 3. The height of each colored segment represents the proportion of the individual’s genome
derived from the inferred ancestral lineages. ¢ Isolation-by-distance analyses (Mantel’s test) for
southern (red dots and line), northern (blue dots and line) and all populations (black dots and line),
respectively. d Inferred demographic history of southern (blue lines) and northern groups (red lines)
of populations from the PSMC model. Bold lines are the median estimates for the seven selected
individuals from each of the two groups, whereas faint lines are 140 bootstrap replicates, with 10

replicates being conducted for each of the selected individuals from the two groups.
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1010  Fig. 3 Genome-wide screening of the loci associated with local environmental adaptation. a
1011 Manhattan plots for variants associated with the Maximum Temperature of Warmest Month (BIO5)
1012 (red, upper panels) and the Precipitation of Wettest Month (BIO13) (blue, lower panels). Dashed
1013 horizontal lines represent significance thresholds. Different chromosomes are distinguished by
1014  different shades of the major color. Selected candidate genes are labeled in the plot at their
1015  respective genomic positions. b,c Local manhattan plots around two candidate genes (black arrows),
1016 ~ CRLI (Pokori2447 and Pokori2448) and HSPG60-3A (Pokorl7228) on chromosome 4 and 7,
1017  associated with BIO5 and BIO13 respectively. SNPs, Indels and SVs are represented by blue dots,
1018  yellow triangles and red squares, separately. d,e The gene structure of selected genes, with the two
1019  representative candidate SNPs corresponding to the sites shown in f-m are marked by red triangles,
1020  respectively. f,j Allele frequencies of the candidate SNPs associated with BIO5 (f LG04:25159299)

1021  or BIO13 (j LGO7: 4796402). Colors on the map are based on variation in the relevant climate
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1022 variables across the distribution range. g,k Decay of extended haplotype homozygosity (EHH) for
1023 the two alternative alleles at the two representative SNPs. h,] Comparison of the relative expression
1024 of CRLI (h) and HSP60-3A4 (1) genes between the two genotypes using qRT-PCR after submergence
1025 (h) and heat (1) treatment, respectively. i,m Heatmap of LD surrounding the two candidate regions
1026  show above. The blue stars indicate the two representative SNPs, and the black triangles mark the

1027  corresponding genic regions.
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Fig. 4 Risk of non-adaptedness (RONA) of P. koreana to future climatic conditions. a,c RONA
estimates for two environmental variables (a: BIOS; c: BIO13) for populations under the climate
scenarios of SSP370 in 2060-2080. The raster colors on the map represent the degree of projected
future climate change (absolute change). Areas with darker red (a) or blue (c) are predicted to
experience more dramatic change in the respective climate variables. Solid circles with different
colors on the map reflect different natural populations, where red and blue represents the southern
and northern groups of populations, respectively. Circle size represent average RONA values in the
populations and squares (one southern and one northern) indicate the two example populations
illustrated in b and d. b,d Example diagrams of RONA to future climatic conditions, presented on
genotype-environment association plot, for two climatic-associated variants within HSP60-34 (b)
and CRL]I (d), respectively. Hollow circles represent future climate conditions for the populations
and provide the basis for calculating the required allele frequency change (RONA) to track future

climatic conditions. The two example populations in (a) and (c) are again highlighted by squares.
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1044
1045  Fig. 5 Gradient-forest modelling and predicted genomic vulnerability. a Map of genetic offset

1046  across the natural distribution of P. koreana for the period 2060-2080 under the scenario SSP370.
1047  The color scale from blue to red refers to increasing genetic offset and points on map reflect sampled
1048  populations. b Ranked importance of 19 environmental variables based on the gradient forest
1049  analysis shows that precipitation-related environmental factors strongly explain spatial genomic
1050  variation in P. koreana. The six uncorrelated environmental variables selected for calculation of
1051  genetic offset are highlighted in bold text.
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1055  Table 1 Statistics for the genome assembly and annotation

1056
Genome assembly 1057
Assembled genome size (Mb) 401.41
Number of contigs 135
N50 of contigs (bp) 6,410,956
NO90 contig length (bp) 1,239,380
Longest contig (bp) 17,436,127
Number of protein-coding genes 37,072
Percentage of repetitive sequence 37.19%
GC content 35.12%
BUSCO (complete) 97.83%
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