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Summary  

It has been long hypothesised that mitochondrial reduction is intrinsically related to the remodelling 

of Fe-S clusters assembly. Yet as our knowledge of divergent free-living protists broadens, so does 

the spectrum of variability within the range of mitochondrial-related organelles (MROs) 

fundamental functions. We resolved to high precision the MRO proteome of Paratrimastix 

pyriformis using Localisation of Organelle Proteins by Isotope Tagging (LOPIT) and demonstrate 

its role in the synthesis of folate derivates bearing one-carbon (1C) units, its link to the glycine 

cleavage system (GCS) and their only conceivable role as suppliers for the cytosolic methionine 

cycle, involved in recycling of S-adenosine methionine. This observation provides congruity to the 

presence of GCS in MROs of free-living anaerobes and its absence in endobionts, which typically 

lose the methionine cycle and, in the case of oxymonads, also mitochondria. 

Keywords: Reduced mitochondria, proteome, LOPIT, spatial proteomics, one-carbon metabolism, 

methionine cycle, glycine cleavage system, mitochondrial loss, Paratrimastix, mitochondria-

related organelle  

Introduction 

It is now well-established that the mitochondrion has been acquired prior to the last eukaryotic 

common ancestor (LECA) and is present in all eukaryotes with the single known exception of 

oxymonad Monocercomonoides exilis (Karnkowska et al., 2016; Roger et al., 2017). Eukaryotes 

thriving in low-oxygen environments usually display divergent, reduced types of mitochondria 

(mitochondrion-related organelles, MROs), the best-studied examples of which are 

hydrogenosomes and mitosomes (Santos et al., 2018). The diversity of MROs in free-living protists 

has been revealed recently (Leger et al., 2017), but functional methodologies are hindered by their 

xenic cultivation methods. Their organelles are characterised using transcriptomic and/or genomic 

data, targeting predictions, and homology searches that use established sets of MRO proteins as 

baits. Though this methodology has proven very powerful it suffers from serious biases. For 

instance, the error rates of targeting predictors are typically unknown and are expected to vary 

considerably between organisms. Homology-based methods, in contrast, cannot recover proteins 

that are not already in the researcher's crosshairs. Moreover, the assumption that orthology 

translates into identical cellular localisation is not entirely correct. As a result, heterologous 
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localisation in tractable model organisms endure the hardship of inaccuracy and their validity 

roughly corresponds to the similarity between the tested organelle and its heterologous model. 

In view of all mentioned shortcomings, experimental, self-standing de novo identifications of MRO 

proteomes by proteomic methods are urgently/gravely required, as such data would radically 

enhance in-silico predictions of MRO proteomes, yet their availability is rather scarce. The few 

published proteomes of reduced mitochondria belong to only three lineages of parasitic or 

endocommensal protists, namely the hydrogenosomes of trichomonads, the hydrogenosomes or 

mitosomes of diplomonads and the mitosome of Entamoeba histolytica  (Beltrán et al., 2013; Fang 

et al., 2016; Jedelský et al., 2011; Jerlström-Hultqvist et al., 2013; Mi-ichi et al., 2009; Rada et al., 

2011; Schneider et al., 2011).  

To the best of our knowledge, the oxymonad flagellate Monocercomonoides exilis (Preaxostyla, 

Metamonada) is completely devoid of mitochondria and as such it represents a notable exception 

amongst eukaryotes. Evidence suggests that in the common ancestor of Preaxostyla the 

mitochondrial pathway for iron-sulfur cluster assembly (ISC) had been replaced by the sulfur 

mobilisation system (SUF), acquired by lateral gene transfer from unknown bacteria (Karnkowska 

et al., 2016; Vacek et al., 2018). This replacement stripped the MRO of one of its essential functions 

(Braymer et al., 2021), hence preadapting the lineage to its subsequent loss. Regardless, not all 

members of Preaxostyla are amitochondriate, thus the correlation between the presence of the SUF 

pathway and the absence of mitochondrion is not rigorous and MROs likely perform other essential 

function(s) in species that retained them. Paratrimastix pyriformis, a free-living freshwater 

bacterivorous flagellate, is one such case and its MRO has been partially characterised (Hampl et 

al., 2008; O’Kelly et al., 1999; Zubáčová et al., 2013). A precise determination of the protein 

composition and metabolic roles of the MRO in P. pyriformis is thus key to understanding the 

process of MRO reduction and its loss in Preaxostyla. 

The only experimentally localised pathway in this organelle is the glycine cleavage system (GCS, 

composed of four subunits H, L, P, and T), involved in the degradation of glycine (Zubáčová et al., 

2013). GCS-H was localised in situ by immunofluorescence staining, while the localisation of 

GCS-P was inferred using heterologous systems. Many other crucial questions regarding the 

biochemical function of this MRO remain unanswered, namely the localisation of Fe-S cluster 

assembly and that of extended glycolysis enzymes. The latter represents a common repertoire of 
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proteins present in anaerobic and microaerophilic protists forming acetyl-CoA and providing a sink 

for electrons from reduced ferredoxins and NADH (Hrdy et al., 2004) exemplified by 

pyruvate:ferredoxin oxidoreductase (PFO) and [FeFe] hydrogenase (HydA), respectively. In the 

transcriptome of P. pyriformis, several genes encoding HydA and PFO are present, as well as three 

maturases (HydE, HydF and HydG) (Hampl et al., 2008; Zubáčová et al., 2013) essential for the 

assembly of an active site of HydA (McGlynn et al., 2007). Although some of the above proteins 

bear N-terminal targeting extensions, experimental evidence for their MRO localisation is missing 

(Zubáčová et al., 2013). 

We reconstructed the functions of P. pyriformis MRO using spatial proteomic data. The established 

MRO proteome contains 31 proteins including a complete pathway of folate-mediated one-carbon 

(1C) metabolism, a route connected to GCS and capable of producing formate. We propose that 

the production of formate and methylated folate species remains an unnoticed yet essential function 

of MROs in free-living eukaryotes.  

Results 

Applying LOPIT-DC robustly assigned more than a thousand proteins into sub-

compartments of P. pyriformis cell  

We applied Localisation of Organelle Proteins by Isotope Tagging after Differential 

UltraCentrifugation (LOPIT-DC) to determine proteins localisation within P. pyriformis cells 

(Geladaki et al., 2019). The method relies on the assumption that proteins localised in the same 

organelle co-fractionate, hence displaying similar distribution profiles to known organellar markers 

(Sadowski et al., 2006). Cell lysates were divided by differential centrifugation into 10 fractions – 

9 fractions of pelleted cell components and supernatant enriched in the remaining cytosolic proteins 

(Figure 1A). Inspection of fractions 1-6 using transmission electron microscopy (TEM) ensured 

that the protocol did not compromise the integrity of organellar membranes (Figure S1) and 

confirmed conspicuous changes of fraction content with MROs present mainly in fractions #2 and 

#3. 

Four biological replicates of similar sets of 10 fractions were prepared, labelled with tandem mass 

tag (TMT) 10-plex reagent, and peptide abundances across them were quantified by mass 

spectrometry. More than 5,000 proteins were identified in each biological replicate, 4,541 of which  
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were common for all (Figure 1B, Table S1) and this common subset was further analysed in R 

using pRoloc package (Gatto et al., 2014). 

Classification using supervised machine learning methods requires a manually curated set of 

markers, a list of proteins of well-known localisation. For the purpose of this analysis, we compiled 

a set of 226 markers for 11 sub-compartments (Table S2) based on up-to-date manually curated 

annotations, data from previous studies (Zubáčová et al., 2013) and unsupervised or semi-

supervised approaches (see Methods for details). The distribution profiles of marker proteins for 7 

selected sub-compartments displayed high similarities between replicates, suggesting acceptable 

reproducibility of the fractionation protocol (Figure 1C). The distribution profile of nuclear 

proteins, or lack thereof in the first fraction, indicates that either the nuclei were removed together 

with unbroken cells or disrupted by sonication. The MRO exhibited the most distinguished profile 

Figure 1. Application of LOPIT-DC on P. pyriformis cells. A) Schematic representation of the fractionation 

workflow. B) Venn diagram displaying common and unique proteins identified in four replicates. The total number 

of quantified proteins for each replicate is shown in brackets. C) Distribution profile of marker proteins across ten 

labelled fractions, for clarity only seven selected sub-compartments are shown. D) Principal component analysis 

(PCA) plot mapping 226 markers proteins for 11 sub-compartments. 
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amongst all sub-compartments, and it was enriched mainly in fractions #2 and #3, corresponding 

to EM observations (Figure S1). 

Visualisation of protein distribution in a 2D plot was achieved by principal component analysis 

(PCA). Marker proteins were mapped on the PCA projection (Figure 1D) and amongst well-

separated sub-compartments we could clearly distinguish the components of the MRO. To quantify 

the resolution between sub-compartments, we used the Qsep score (Gatto et al., 2019) which 

provided ratios of between-cluster to within-cluster average distances (Figure S2). This analysis 

confirmed that the MRO is well-defined and separated from other sub-compartments. 

To assign the remaining 4,315 proteins into sub-compartments we used two classification 

algorithms: support vector machine (SVM) and Bayesian approach based on t-augmented Gaussian 

mixture model with maximum a posteriori prediction (TAGM MAP) (Figure 2). In total, 2,503 

proteins were classified into one of the sub-compartments by at least one algorithm, and in 1,012 

cases both algorithms agreed; 1,786 proteins remained without classification (Table S2). In general, 

SVM classified higher number of proteins overall, particularly of the cytosolic sub-compartment, 

while TAGM MAP tended to inflate the nuclear sub-compartment. The MRO and ribosome sub-

compartments displayed the most consistent results between both methods. 

 

 

 

Figure 2. PCA plots with proteins assigned to sub-compartments labelled. A) PCA projection after SVM 

classification B) PCA projection after TAGM MAP classification 
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The mitochondrion-related organelle provides THF intermediates to cytosolic pathways 

Altogether, 31 proteins (including 16 markers) were assigned to the MRO (Table 1), and of the 15 

proteins assigned de novo, both classification methods agreed in 13 cases. The protein composition 

of the MRO was thus resolved with high confidence.  

Accession Description markers SVM  

scores 

SVM pred tagm.map. 

probability 

tagm.map. 

outlier 

tagm.map. 

allocation. 

pred 

PaPyr10343 Mitochondrial carrier family protein   MRO 1 MRO 1 0 MRO 

PaPyr10635 Mitochondrial chaperonin 60 (Cpn60) MRO 1 MRO 1 0 MRO 

PaPyr11848 Glycine cleavage system T-protein (GSCT) MRO 1 MRO 1 0 MRO 

PaPyr1229 Mitochondrial chaperonin 10 (Cpn10) MRO 1 MRO 1 0 MRO 

PaPyr1721 Mitochondrial processing protease β subunit (MPPb) MRO 1 MRO 1 0 MRO 

PaPyr2518 Tom40 MRO 1 MRO 1 0 MRO 

PaPyr3126 Glycine cleavage system P1-protein (GCSP1) MRO 1 MRO 1 0 MRO 

PaPyr3574 Mitochondrial carrier family protein  MRO 1 MRO 1 0 MRO 

PaPyr4058 Mitochondrial carrier family protein  MRO 1 MRO 1 0 MRO 

PaPyr5544 Glycine cleavage system L-protein (GSCL) MRO 1 MRO 1 0 MRO 

PaPyr640 Glycine cleavage system H-protein (GSCH) MRO 1 MRO 1 0 MRO 

PaPyr705 Sam50 MRO 1 MRO 1 0 MRO 

PaPyr7885 Mitochondrial processing protease α subunit (MPPa) MRO 1 MRO 1 0 MRO 

PaPyr8085 Glycine cleavage system P2-protein (GCSP2) MRO 1 MRO 1 0 MRO 

PaPyr9 Tim22 MRO 1 MRO 1 0 MRO 

PaPyr9238 Mitochondrial carrier family protein  MRO 1 MRO 1 0 MRO 

PaPyr5119 Formate-tetrahydrofolate ligase (MTHFD) unknown 0.77 MRO 1 5.98E-24 MRO 

PaPyr4383 Hydrogenase maturase HydE unknown 0.764 MRO 1 1.51E-24 MRO 

PaPyr2959 Chaperone protein DnaK unknown 0.763 MRO 1 2.07E-23 MRO 

PaPyr3253 Bifunctional protein FolD unknown 0.759 MRO 1 5.79E-26 MRO 

PaPyr4362 Lipoate ligase (LplA) unknown 0.755 MRO 1 9.08E-23 MRO 

PaPyr5495 Peroxin-3 unknown 0.751 MRO 1 1.05E-21 MRO 

PaPyr9283 Hydrogenase maturase HydF unknown 0.746 MRO 1 8.17E-24 MRO 

PaPyr1430 Serine hydroxymethyltransferase (SHMT) unknown 0.715 MRO 1 3.47E-24 MRO 

PaPyr1304 D-serine dehydratase (DSD) unknown 0.714 MRO 1 2.79E-20 MRO 

PaPyr804 TRIC unknown 0.68 MRO 1 9.20E-23 MRO 

PaPyr4978 Tom22 unknown 0.655 MRO 1 8.71E-20 MRO 

PaPyr2234 VDAC unknown 0.646 MRO 1 1.97E-23 MRO 

PaPyr2826 Mitochondrial Rho GTPase 1 unknown 0.592 MRO 1 6.18E-17 MRO 

PaPyr577 Hypothetical protein unknown 0.572 MRO 2.06E-14 1 unknown 

PaPyr1418 Tim23 unknown 0.557 MRO 3.99E-09 1 unknown 

 

Table 1. P. pyriformis MRO proteome established by LOPIT-DC analysis. List of proteins 

assigned to the MRO compartment. The list includes 16 marker proteins and 15 proteins identified 

in this study. Scores and predictions by two statistical methods are provided.   
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The map of organelle functions built on predicted protein content is shown in Figure 3. Members 

of the mitochondrial carrier family (MCF), proteins involved in the transport and maturation of 

MRO proteins, and components of the GCS were used as markers. Amongst the de novo assigned 

Figure 3. Metabolic map of P. pyriformis MRO based on LOPIT-DC analysis. Proteins used as markers for 

classification are coloured in yellow, hypothetical proteins are coloured grey, proteins present in the genome but 

missing in LOPIT dataset are coloured dark grey.  H, L, P, T – components of glycine cleavage system; SHMT, 

serine hydroxymethyltransferase; FolD, methylenetetrahydrofolate dehydrogenase/methenyl tetrahydrofolate 

cyclohydrolase; MTHFD, formate-tetrahydrofolate ligase; FPGS, folylpolyglutamate synthase; MTHFR, 

methylenetetrahydrofolate reductase; DHFR, dihydrofolate reductase;  LplA, lipoate ligase; DSD, D-serine 

dehydratase; PFO, pyruvate:ferredoxin oxidoreductase; Fdx, ferredoxin; HydA, [FeFe] hydrogenase; HydE, HydF, 

HydG, hydrogenase maturases; MPPαβ, mitochondrial processing protease subunits α and β; VDAC, voltage-

dependent anion channel; TRIC, trimeric intracellular ion channel; Pex3, peroxisomal biogenesis factor 3; Cpn10, 

mitochondrial chaperonin 10; Cpn60, mitochondrial chaperonin 60; DnaK, chaperone protein; MCF1, MCF2, 

MCF3, MCF4, mitochondrial carrier family proteins; THF, tetrahydrofolate; LA, lipoic acid.  
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MRO proteins were bifunctional methylenetetrahydrofolate dehydrogenase/methenyl 

tetrahydrofolate cyclohydrolase (FolD; PaPyr3253), formate-tetrahydrofolate ligase (MTHFD; 

PaPyr5119) and serine hydroxymethyltransferase (SHMT; PaPyr1430). These three proteins play 

a role in folate-mediated 1C metabolism where formate is generated from serine. The first reaction 

catalysed by SHMT (PaPyr1430) brings a 1C unit into the folate pool by transferring a methyl 

group from serine to tetrahydrofolate (THF). Indeed, PaPyr1430 has been previously considered 

an MRO protein based on its N-terminal extension (Zubáčová et al., 2013). Further interconversion 

of THF derivates into formate is mediated by FolD (PaPyr3253) and MTHFD (PaPyr5119), leading 

to the concurrent production of ATP (Figure 3). Finally, folylpolyglutamate synthase (FPGS; 

PaPyr1465), an enzyme important for intracellular folates retention and compartmentalisation 

(Lawrence et al., 2014), seems to be dually localised in both the MRO and cytosol, judging from 

its mixed distribution profile (Figure S3B).  

Folate-mediated 1C metabolism has been mainly studied in human cancer cells, considered a 

potential target for treatment due to its up-regulation (Nilsson et al., 2014). In mammalian cells, 

the complete 1C pathway is localised both in the cytosol and the mitochondria (Tibbetts and 

Appling, 2010). This situation was observed also in P. pyriformis, where the second paralogues for 

each, MTHFD (PaPyr5307), FolD (PaPyr2026) and SHMT (PaPyr5925), were classified clearly as 

cytosolic (Figure 3, Table S2) together with another enzyme related to 1C metabolism, 

methylenetetrahydrofolate reductase (MTHFR; PaPyr5097). MTHFR catalyses the irreversible 

conversion of 5,10-methylene-THF into 5-methyl-THF, substrate of the methionine cycle (Mudd 

et al., 2007). Considering all this, we hypothesise that formate or THF species produced within the 

MRO are exported to the cytosol, where they are utilised for production of 5-methyl-THF 

supplementing the methionine cycle. All enzymes of the methionine cycle were detected and 

classified as cytosolic. 

The remaining proteins classified as MRO-localised were lipoate ligase (LplA, PaPyr4362), Rho 

GTPase (PaPyr2826), chaperone protein DnaK (PaPyr2959) and D-serine dehydratase (DSD, 

PaPyr1304). Lipoic acid (LA) is an essential cofactor in subunits of four known enzyme complexes, 

all of them generally present in mitochondria (Rowland et al., 2018), yet only GCS-H is present in 

P. pyriformis. Lipoylation of H-protein is likely mediated by LplA (PaPyr4362) that plays role in 

a bacterial salvage pathway, where exogenous lipoic acid is activated and transferred to H-protein 
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(Green et al., 1995; Solmonson and DeBerardinis, 2018). Mitochondrial Rho GTPases, known also 

as Miro, localise in the outer membrane and contain two Ca2+ binding EF-hands domains flanked 

by GTPase domains on both sides (Fransson et al., 2003). Studies on various models suggested that 

Miro proteins are important for mitochondrial transport within the cell and maintenance of their 

morphology and homeostasis (Fransson et al., 2003; Saotome et al., 2008). P. pyriformis Rho 

GTPase (PaPyr2826) is shorter than Miro proteins from other eukaryotes as it lacks a GTPase 

domain at the C-terminus. D-serine dehydratase (PaPyr1304) is a PLP-dependent enzyme 

converting serine into pyruvate and ammonia (Dowhan and Snell, 1970). Chaperone protein DnaK 

(PaPyr2959) is a proteobacterial ortholog of mitochondrial Hsp70, a pivotal player in 

mitochondrial protein import (Boorstein et al., 1994). 

The dark proteome of the MRO likely consists of membrane proteins involved in its 

biogenesis 

Six proteins robustly assigned to the MRO (PaPyr577, PaPyr804, PaPyr1418, PaPyr2234, 

PaPyr4978, PaPyr5495) lack functional annotation and thus have been labelled as hypothetical. To 

mine information regarding the identity/function of these proteins, we searched for conserved 

motifs and transmembrane domains and used more sensitive profiling and structure-informed 

methods [HHpred (Söding, 2005), HMMER v3.3, hmmer.org, SWISS-MODEL (Bienert et al., 

2017)] to find putative homologues in other organisms. Using the same tools, we examined yet 

another hypothetical protein, PaPyr7077, which regardless of lacking MRO assignation by machine 

learning approaches exhibited a distribution profile consistent with MRO proteins in two sample 

replicates. We propose functions for six of them. 

PaPyr2234 is a very abundant protein in our dataset, and it is likely a divergent member of the 

porin3 superfamily (PF01459), potentially representing a voltage-dependent anion channel 

(VDAC) according to SWISS-MODEL. VDACs localise in the outer membrane of mitochondria 

and are important for the passive diffusion of ions and small metabolites, including ATP/ADP, 

NAD/NADH, pyruvate, glutamate, or malate (Gincel and Shoshan-Barmatz, 2004; Rostovtseva 

and Colombini, 1997). PaPyr804 represents according to HHpred search and phylogenetic 

reconstruction (Figure S4) a trimeric intracellular ion channel (TRIC). In eukaryotes, these 

monovalent cation channels are predominantly present in the membrane of the endoplasmic 

reticulum (ER) where they balance the charge during Ca2+ uptake or release (Yazawa et al., 2007). 
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PaPyr4978, PaPyr7077, and PaPyr1418 were recognised as members of the TOM/TIM translocase 

machinery, Tom22, Tim44, and Tim17/22/23, respectively. It has been shown in yeast that three 

different proteins (Tom20, Tom70 and Tom22) help recognise proteins transported into 

mitochondria (Brix et al., 1997). In the genome of Paratrimastix pyriformis, homologues of Tom20 

and Tom70 failed to be identified, hence PaPyr4978 is putatively the one to recognise targeting 

peptides on proteins directed to the MRO. PaPyr7077 represents a putative homologue of Tim44, 

a component of the PAM motor complex (Neupert and Brunner, 2002). The presence of Tim44 has 

been reported in other Metamonads (Beltrán et al., 2013; Leger et al., 2017; Pyrihová et al., 2018; 

Rada et al., 2011; Schneider et al., 2011; Stairs et al., 2021) and our phylogenetic reconstruction 

pinpoints the relationship of PaPyr7077 to Tim44 of Trichomonas vaginalis (Figure S4). Members 

of the Tim17/22/23 protein family have been identified in all eukaryotes as components of protein 

translocation complexes in the mitochondrial inner membrane – TIM23 complex facilitates protein 

import into the matrix, while TIM22 mediates protein insertion into the mitochondrial inner 

membrane (Chaudhuri et al., 2020; Rassow et al., 1999; }árský and Dole~al, 2016). In the genome 

of P. pyriformis, two other obvious homologues of Tim17/22/23 proteins are present (PaPyr9 and 

PaPyr5590), of which the former has been detected here and used as a marker. Both contain the 

conserved glycine-zipper (GX3GX3G) and PRAT 

((G/A)X2(F/Y)X10RX3DX6(G/A/S)GX3G) motifs, 

hallmarks of this protein family. In PaPyr1418 only 

a glycine-zipper motif was identified. Phylogenetic 

affiliations of P. pyriformis Tim17/22/23 proteins 

were determined using the dataset of }árský and 

Dole~al (}árský and Dole~al, 2016) enriched by 

sequences from diverse eukaryotic lineages not 

available in the Uniprot database (Richter et al., 

2020), resulting in PaPyr5590, PaPyr9, and 

PaPyr1418 as orthologues of Tim17, Tim22, and 

Tim23, respectively (Figure 4). 

Figure 4. Schematic phylogeny of the Tic17/22/23 family 

with the positions of P. pyriformis homologs. Employing a 

previously compiled dataset (}árský and Dole~al, 2016), the 
ML tree was inferred by IQ-TREE using the Posterior Mean 

Site Frequency empirical model with the ultrafast 

bootstrapping strategy (see Methods). 
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Lastly, a putative function was assigned to PaPyr5495, a protein sharing similarities with 

peroxisomal biogenesis factor 3 (Pex3) (Figure S4). In human cells, Pex3 is responsible for docking 

of receptor protein Pex19 on the peroxisomal membrane during the import of PTS1 C-terminal 

signal-containing proteins (Fang et al., 2004). Importantly, Pex19 homologue in P. pyriformis 

(PaPyr8690) was identified using HMM profiles and shown to be phylogenetically related to other 

sequences from Preaxostyla (Figure S4). All Preaxostyla Pex19 homologues clearly possess a 

conserved Pex19 Pfam motif (PF04614) and, yet divergent, Trimastix marina and P. pyriformis 

Pex19 bear an N-terminal sequence similar to the Pex3-interaction motif known from plants, fungi, 

and animals (Figure S4). Since no peroxisomes have been observed in Preaxostyla (Hampl, 2017) 

and no other genetic markers for peroxisomes were detected (Karnkowska et al., 2016, 2019) we 

speculate that the Pex3/Pex19 system may have been recruited to function in the MRO membrane 

of Paratrimastix pyriformis. 

The MRO is not involved in extended glycolysis and Fe-S clusters assembly 

In the hydrogenosomes of trichomonads, pyruvate undergoes oxidative decarboxylation into 

acetyl-CoA and CO2 by PFO, while ferredoxins reduced in this reaction are subsequently 

reoxidized by HydA with concomitant production of H2 (Lindmark et al., 1975). Five genes 

encoding for PFO, two for ferredoxins, nine for HydA, and one gene for each of the three HydA 

maturases (HydE, F, G) are present in the P. pyriformis genome. 

Three out of four PFOs (with the sole exception was PFO_3, PaPyr7655) were identified by 

LOPIT-DC and assigned to the cytosolic compartment by at least one classification method. Both 

genes annotated as ferredoxin (PaPyr13543, PaPyr13544) showed a distribution profile similar to 

cytosolic markers but were not classified as cytosolic by algorithms (Figure S3A.). Five out of nine 

HydA enzymes were detected in all four LOPIT-DC replicates and none of them exhibited a 

distribution profile that would suggest localisation into the MRO (Figure S3A). HydA_4 

(PaPyr6388) was assigned to the cytosol by both classification tools, whereas HydA_1 

(PaPyr1254), HydA_2 (PaPyr1278) and HydA_6 (PaPyr8158) were assigned to the cytosol only 

by SVM. The last hydrogenase present in the dataset, HydA_8 (PaPyr8532_PaPyr8533), was not 

classified to any sub-compartment. Of hydrogenase maturases, curiously, two (HydE; PaPyr4383 

and HydF, PaPyr9283) were robustly assigned to the MRO while the profile of the third (HydG, 

PaPyr1252) was clearly cytosolic (Figure S3A). Altogether, these results support a cytosolic 
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localisation of extended glycolysis in P. pyriformis but raise an interesting question on the role of 

hydrogenase maturases. 

The common function for virtually all mitochondria and MROs is the synthesis of Fe-S clusters, in 

Preaxostyla performed by the sulphur mobilisation system (SUF). This pathway consists of the 

ATPase SufC (PaPyr9323), a scaffold protein SufB (PaPyr903) and the cysteine desulfurase fusion 

protein SufDSU (PaPyr904) (Vacek et al., 2018). All three proteins were detected in all four 

LOPIT-DC replicates and enriched in the cytosolic fraction (Figure S3A). Both classification 

methods assigned SufC and SufDSU to the cytosol; SufB was classified as cytosolic only by the 

SVM algorithm, but with high confidence. The data clearly point to cytosolic localisation of Fe-S 

cluster synthesis in P. pyriformis.  

Localisation by heterologous expression often contradicts the results of LOPIT-DC 

A popular experimental approach for assessing the localisation of proteins from organisms that 

cannot be genetically transformed is the expression in heterologous systems. T. vaginalis and its 

hydrogenosome are evolutionarily related to the MRO of P. pyriformis, therefore we have chosen 

this model to attest to the localisation of 14 selected non-marker proteins classified robustly to the 

MRO or the cytosol. C-terminally HA-tagged proteins were expressed in T. vaginalis and their 

localisation was visualised by immunofluorescence microscopy (IFA) and compared with an anti-

malic enzyme antibody used as hydrogenosomal marker (Figure S5). Of all tested proteins, 5 

colocalised with malic enzyme staining, HydE (PaPyr4383), HydA_4 (PaPyr6388), HydA_6 

(PaPyr8156) putative VDAC (PaPyr2234), putative Pex3 (PaPyr5495); 7 proteins displayed 

cytosolic localisation, HydA_2 (PaPyr1278), HydG (PaPyr1252), PFO_2 (PaPyr12211), PFO_4 

(PaPyr7937_PaPyr7938), FolD (PaPyr3253), MTHFD (PaPyr5119) and SufC (PaPyr9323). The 

last two proteins, HydF (PaPyr9283) and putative Tom22 (PaPyr4978) exhibited patterns that could 

not be safely interpreted either way. In many cases (HydA_2, HydG, both PFOs, FolD, MTHFD, 

SufC, VDAC) the hydrogenosomal signal appeared unusual suggesting that the overexpression 

may cause a phenotype that affects hydrogenosomes. These results should therefore be carefully 

interpreted. 

In summary, the results of heterologous expression localisations matched the outcomes of LOPIT 

proteomics in only 8 cases and were often hard to interpret. As the sub-compartmental 

classification of the tested proteins by LOPIT-DC was robust and difficult to dispute, the result 
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indicates that the heterologous approach, at least in the case of P. pyriformis, is of little suitability 

due to high artifactuality. 

N termini of MRO proteins have a low positive charge and are not reliably predicted as 

targeting signals 

The translation of most proteins destined to aerobic mitochondria takes place in the cytosol and 

their delivery is ensured by N-terminal or internal targeting sequences (Wiedemann and Pfanner, 

2017). Mitochondrial N-terminal targeting signals (NTS) vary in length, but they share some 

common features – they are cleaved by mitochondrial processing peptidases (MPP) within an 

arginine-containing motif and display an amphipathic α-helix structure composed of hydrophobic 

and positively charged amino acids (Kunze and Berger, 2015; Roise et al., 1986). Bioinformatic 

tools that predict mitochondrial localisation largely focus on these N-terminal features, but in 

proteins targeted to MROs, divergence hinders their identification. Meanwhile, internal localisation 

signals cannot be predicted at all (Mentel et al., 2008; Zimorski et al., 2013). We have used our 

experimentally determined set of MRO proteins of P. pyriformis to calculate the average net charge 

of their N-termini and tested the performance of targeting predictors for this organism. 

The average net charge of the first 10, 20 and 30 amino acids of all 31 MRO proteins was calculated 

for three pH values using Isoelectric Point Calculator 2.0 (http://ipc2.mimuw.edu.pl/index.html; 

Table S3). At neutral pH, the N-termini of most proteins were calculated to contain a weak positive 

net charge close to 1.0 and only in two proteins, mitochondrial membrane carrier 4 (PaPyr9238) 

and Pex3 (PaPyr5495), the value was above 3.0. Values are similar to those in T. vaginalis 

hydrogenosomal proteins but lower than those in yeast, human, or Anaeramoeba, where they fall 

in the range 3.0-4.0 (Garg and Gould, 2016; Garg et al., 2015; Stairs et al., 2021). This suggests 

that the positive charge of N-termini has low importance for the delivery of proteins into P. 

pyriformis MRO and that this MRO likely displays weak or no membrane potential.  

The performance of 6 tools for mitochondrial targeting prediction (iPSORT, MitoFates, 

NommPred, MultiLoc2, TargetP 2.0 and Cello) was tested using the set of MRO proteins and 10 

negative control sets of the same sizes (n=30) robustly assigned to 10 other sub-compartment using 

LOPIT-DC (Table S4). Specificity was always below 50% (the highest value 0.6 by TargetP-2.0, 

which however displayed poor sensitivity of 0.17), i.e., more than half of the predicted proteins 

were false positives. The highest measured sensitivity was 0.63 (by Cello; 0.82 on the soluble 
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mitochondrial subset). Although the algorithms tend to select MRO proteins from the set, their 

error rates were still too high to be useful for genome-wide prediction of P. pyriformis MRO 

proteins. 

Discussion  

The hyperplexed LOPIT (hyperLOPIT) approach was shown to be a powerful method to map 

protein distribution within cells (Christoforou et al., 2016) and its recent application to Toxoplasma 

gondii tachyzoites proved successful also for protists (Barylyuk et al., 2020). Yet, hyperLOPIT is 

not suitable for all cell types due to a large amount of starting material required to perform sub-

cellular fractionation by density gradient (Mulvey et al., 2017). For polyxenically grown P. 

pyriformis with low cell densities, we employed a simplified version – LOPIT-DC, which produces 

comparable results with less starting material (Geladaki et al., 2019). 4,541 P. pyriformis proteins 

showed measurable abundance profiles in all four biological replicates. This number is comparable 

to the number of proteins detected in human U-2 OS cells (6,837 proteins), considering the total 

size of predicted proteomes (Geladaki et al., 2019), as well as the fraction of proteins successfully 

classified into sub-compartments. Geladaki et al. (2019) classified 35% of identified proteins using 

SVM method, while 45% were classified by the same method in this study. Nevertheless, it should 

be noted that the number of unclassified proteins depends on factors such as quality of the marker 

set, threshold setup and dynamics of protein localisations within the cell, which if high may 

complicate the classifications (Thul et al., 2017). Finally, the median distance between the clusters 

calculated by Qsep in our experiment is similar to that of Geladaki et al. (2019), suggesting that we 

have reached a satisfactory level of clusters separation.  

To analyse LOPIT data by machine learning methods, it is recommended to use at least 13 markers 

per sub-compartment (Breckels et al., 2018). For model organisms, e.g., Homo sapiens, a marker 

set of 872 proteins for 12 sub-compartments is available in the pRoloc package (Breckels et al., 

2018). Due to the virtual absence of experimental data, our marker set for 11 sub-compartments 

comprised only 226 proteins, hence the predicted clusters of proteins may be less accurate than in 

human cells or T. gondii. Therefore, we decided to focus only on the proteome of the MRO for 

which we used 16 reliable markers proteins and displayed the best separation from other sub-

compartments.  
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Thirty-one proteins assigned to the MRO sub-compartment is a relatively small number compared 

to the proteome of T. vaginalis hydrogenosome that comprises potentially as many as 600 proteins 

(Beltrán et al., 2013; Rada et al., 2011; Schneider et al., 2011). Given that we experimentally 

detected only about one-third of the total predicted proteome, we hypothesise that the MRO 

proteome is not complete, as some proteins escaped the detection due to the sensitivity limit or 

were not expressed under experimental conditions. Even considering these limitations, LOPIT data 

provided us with the most reliable picture of protein localisation, less prone to contaminations than 

classical proteomics based on organelle purification. Notably, Beltrán et al. (2013) identified 631 

proteins in the fraction of highly purified T. vaginalis hydrogenosomes, but only 179 were 

considered true hydrogenosomal proteins and out of 2,934 proteins identified in the 

hydrogenosome of Pentatrichomonas hominis, only 442 were considered reliable candidates (Fang 

et al., 2016).  

The results of the LOPIT analysis revealed the presence of a complete folate-mediated 1C 

metabolism in the P. pyriformis MRO, extending the previously experimentally localised GCS. 

The GCS and the folate pathway in eukaryotes are intrinsically interconnected to deliver 1C units 

for methylation, methionine regeneration, and de novo formation of purines and thymidine through 

various folate species which serve as 1C carriers (Ducker and Rabinowitz, 2017). In mammals, 

compartmentalisation of the 1C pathway between cytosol and mitochondria is thought to occur to 

avoid depletion of cytosolic NAD+ required for glycolysis, therefore oxidative direction of the 

reactions is favoured in mitochondria while reductive in the cytosol (Tibbetts and Appling, 2010).  

P. pyriformis lacks most routes that require different forms of THF, hence 1C metabolism likely 

plays one single role, namely the synthesis of 5-methyl-THF, essential for the methionine cycle. In 

this cycle, methylation of homocysteine regenerates methionine, which is further converted to S-

adenosyl methionine (SAM), an essential cofactor for a great number of reactions (Mudd et al., 

2007). 

Whilst reactions of 1C metabolism are reversible, their reversibility depends on the availability of 

substrates and their stoichiometric amounts. This premise is observed as THF upon the synthesis 

of formate by MTHFD, is released and ready to cycle with a newly catabolised carbon unit 

produced by the activity of either SHMT or GCS, within the organelle. Hence it is accepted that 

the carbons from 1C metabolism are required in stoichiometric amounts, meanwhile, THF is only 
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required in catalytic amounts (Tibbetts and Appling, 2010). In P. pyriformis, in absence of 

substrate-level or oxidative phosphorylation, the requirement of the MRO to replenish NAD+ used 

by FolD and GCS likely depends on the activity of DHFR, a step that requires folate entry in the 

organelle with concomitant oxidation of 2 molecules of NADH for every carbon that enters the 

GCS, which would force a stricter 1C:THF stoichiometry in the organelle. Two genes encoding 

DHFR are present in the genome of P. pyriformis (PaPyr1795, PaPyr350), neither of which was 

detected in the LOPIT-DC analysis. The identity of 1C donors in P. pyriformis can only be inferred 

from the enzymes found in the organelle for their catabolism, indicating that the donor molecules 

are likely serine, glycine and formate. Yet, the equilibrium towards the synthesis of formate may 

be disrupted at points when the NAD+/NADH balance must be restored. At this point, the pool of 

THF intermediates must be relieved from the MRO for the redox balance to be maintained and the 

cycle to continue (Fig 3).  

Folate and its activated derivatives THF (H4folate, H2folate) require polyglutamylation to become 

carriers of the 1C moiety, and to maintain their compartmentalisation (Lawrence et al., 2014). 

Indeed, folylpolyglutamate synthase (FPGS; PaPyr1465) is encoded by the P. pyriformis genome 

and is likely dually localised between MRO and cytosol. The transfer of folate and its reduced 

derivatives between the mitochondrial and the cytosolic compartments has been thoroughly 

assessed. Isotope labelling experiments have been performed in a plethora of cell types and tissues, 

using inhibitors of the folate pathway, in aerobiosis/anaerobiosis, and with the aid of diversely 

labelled substrates (Cybulski and Fisher, 1981; Horne et al., 1992; Lichtenstein et al., 1969; 

Pasternack et al., 2002; Tan et al., 2020). Many of these results support the notion that certain THF 

species may be capable of passing from one cellular compartment to another in a carrier-mediated 

fashion, and the difference in the number of polyglutamylation chains seems to be the defining 

component of this behaviour. We hypothesise that some of the 4 MCF family proteins identified in 

P. pyriformis are likely involved in this process.   

The presence of 1C metabolism known from aerobic mitochondria may not be limited to the MRO 

of P. pyriformis. Leger et al. (2017) predicted GCS and SHMT in the MROs of all free-living 

Fornicates and proposed that glycine degradation correlates with their lifestyle for an unclear 

reason. Moreover, GCS and SHMT were predicted to be localised in the MRO of other free-living 

Metamonada, such as Barthelona sp., Anaeramoeba flamelloides and A. ignava (Stairs et al., 2021; 
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Yazaki et al., 2020) and free-living Archamoebae Mastigamoeba balamuthii and Pelomyxa 

schiedtii (Nývltová et al., 2015; Záhonová et al., 2022). Our data are consistent with these 

observations and provide a potential reason for maintaining GCS and SHMT in these organelles – 

production of folates to supply cytosolic 1C metabolism. Folate pathway enzymes have not been 

predicted in the MROs of other free-living metamonads, probably due to the limitations of in-silico 

methods thus were not queried as unambiguously mitochondrial proteins. Indeed, P. pyriformis 

FolD (PaPyr3253) and MTHFD (PaPyr5119), clearly classified as MRO proteins by LOPIT, were 

predicted as mitochondrial only by Cello and the fungal setting of MultiLoc2, whereas all other 

tools and settings considered them cytosolic. Finally, using T. vaginalis as a heterologous 

expression system provided false-negative results, as overexpressed FolD and MTHFD remained 

in the cytosol of T. vaginalis. In summary, we hypothesise that 1C metabolism remains an 

overlooked function of other MROs which cannot be easily revealed by in silico predictions but 

rather by proteomic studies similar to this work. 

Several MRO proteins with weak homology to database representatives were present in the LOPIT 

dataset, and most of them enrich the inventory of membrane proteins responsible for organelle 

biogenesis. The protein translocation machinery of P. pyriformis appears to be reduced compared 

to Trichomonas vaginalis and anaeramoebids (Makki et al., 2019; Rada et al., 2011; Stairs et al., 

2021), however, most of the core components were detected in the transcriptome or genome 

(Tom40, Sam50, Tim17, Tim23, Tim14, Cpn10, Cpn60, MPPαβ) (Zubáčová et al., 2013) and in 

our study, we further identified distant homologues of Tom22 (PaPyr4978), Tim44 (PaPyr7077), 

an extremely divergent Tim22 protein (PaPyr1418), and DnaK (PaPyr2959). The presence of a 

tail-anchored (TA) Rho GTPase Miro should be noted with particular interest. This protein is 

known from a wide spectrum of aerobic mitochondria, hypothesised to play roles in the regulation 

of mitochondrial morphology, transport along microtubules, and interactions with the ER 

(Yamaoka and Hara-Nishimura, 2014). Functional studies on Dictyostelium discoideum, however, 

showed that knock-out of Miro does not compromise the transport and distribution of mitochondria 

yet affects its metabolism (Vlahou et al., 2011). So far, the presence of Miro proteins in organisms 

with reduced mitochondria has been limited to Blastocystis (Gentekaki et al., 2017), so its 

distribution could be more widespread in MROs than previously considered. Finally, P. pyriformis 

apparently recruited the Pex3-Pex19 system, known to mediate sorting and insertion of 

peroxisomal membrane proteins, to import TA proteins to the MRO membrane. It was shown that 
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Miro proteins can interact with Pex19 for its membrane insertion (Covill-Cooke et al., 2020). In 

Saccharomyces cerevisiae, Pex19 mediates the import of TA proteins into mitochondria (Cichocki 

et al., 2018) and Pex3 shows mitochondrial localisation at the early stage of de novo peroxisomal 

biogenesis in human fibroblasts (Sugiura et al., 2017). Our finding regarding the MRO localisation 

of Pex3 in absence of peroxisomes adds to the slowly growing body of evidence on the versatility 

of this system.  

It is widely accepted that Fe-S cluster synthesis is a common function of mitochondria and their 

derivatives with the debatable exception of Entamoeba histolytica (Braymer et al., 2021; 

Maralikova et al., 2010; Mi-ichi et al., 2009). Replacement of the mitochondrial ISC pathway by 

the bacterial SUF system in Preaxostyla was likely a preadaptation for the loss of MRO in 

Monocercomonoides exilis (Karnkowska et al., 2016). The localisation of the SUF system in P. 

pyriformis had not been previously addressed experimentally, and here we provide clear evidence 

that it is indeed localised in the cytosol and does not contribute to the essential role of the MRO. 

Interestingly, two proteins assigned to the MRO proteome, hydrogenase maturases HydE and 

HydF, known to bear Fe-S clusters, raise the question of how these proteins are maturated. The 

presence of these proteins in the MRO is remarkable also in terms of their function, which involves 

the maturation of the H-cluster of HydA, alongside maturase HydG (Britt et al., 2020). Confusingly 

enough, the third maturase HydG was robustly classified as cytosolic together with four paralogues 

of HydA; one HydA remained unclassified and four were not detected by LOPIT. It is unclear, how 

the maturation of cytosolic HydA is achieved if the set of maturases is distributed across two 

compartments, however, a similar situation has been reported already in T. vaginalis and G. 

intestinalis (Lloyd et al., 2002; Smutná et al., 2022). The lack of evidence for the MRO localisation 

of HydA is consistent with the apparent lack of PFOs and ferredoxins in this compartment and 

indicates that the pathway of extended glycolysis has cytosolic localisation in P. pyriformis.   

In conclusion, we demonstrate the feasibility of the LOPIT-DC method for non-model, non-axenic 

organisms, opening avenues to robustly determine the localisation of hundreds of proteins 

simultaneously. Via this approach, we identified several new components of P. pyriformis MRO, 

including its protein import machinery and additional proteins partaking in its biogenesis. From 

the reconstructed biochemical map, we infer that the organelle provides 1C units to the cytosol to 

supply the methionine cycle. This points to folate metabolism, known from aerobic mitochondria, 
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as another basic mitochondrial function until now overlooked in MROs but potentially very 

common among free-living anaerobes, most of which had already been shown to contain GCS and 

SHMT without satisfactory functional explanation. In the particular case of P. pyriformis, 

production of THF species and formate is probably the only reason why the cell maintains the 

organelle even after Fe-S cluster synthesis relocation to the cytosol. 
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Supplementary figure legends 

Figure S1. Electron microscopy of first six sub-cellular fractions. Transmission electron 

microscopy showed that MROs remained intact during cells disruption and fractionation. Fractions 

of sub-cellular compartments were collected by differential centrifugation at different speeds A) 

1,000 × g, B) 3,000 × g, C) 5,000 × g, D) 9,000 × g, E) 12,000 × g, F) 15,000 × g (scale bar, 2 µm) 

G) Enlarged intact MRO; arrows indicate double membrane.  

Figure S2. Sub-compartments resolution of LOPIT-DC quantified by Qsep tool. A) Heatmap 

displays average normalised ratio of distances between clusters to within cluster. B) Boxplot 

summarizes Qsep average normalised distances. The dashed vertical line represents the overall 

median value of normalised pairwise distances.  

Figure S3. PCA projection after SVM classification with highlighted proteins of interest and 

distribution profile of FPGS. A) PCA projection after SVM classification with highlighted HydA, 

hydrogenase maturases, PFOs, ferredoxins, FPGS and proteins from the SUF pathway. B) 

distribution profile of FPGS across then labelled fractions. 

Figure S4. Phylogenetic analyses of hypothetical MRO proteins of P. pyriformis. For three 

hypothetical proteins for which we could retrieve homological sequences in eukaryotes, we 

constructed ML phylogenies using the IQ-TREE’s Posterior Mean Site Frequency model and 1,000 

ultra-fast bootstrap replicates (see Methods). The three hypothetical proteins, highlighted by black 

background, were identied as TRIC ion channel (PaPyr804), Tim44 (PaPyr7077), and peroxin-3 

(PaPyr5495). Support values are shown where ≥ 85. Albeit the positions of P. pyriformis sequences 

are not well-supported, their homology with the respective protein families is unequivocal. Along 

with peroxin-3, the phylogeny of its interacting partner peroxin-19 is shown. In the lower panel, 

the alignment of selected Pex19 homologs is shown with the Pex3-interacting domain highlighted 

in red. Although this is not recognized by the alignment algorithm, this domain is characteristic by 

a sequence of hydrophobic and charged amino acids. The core peroxin-19 domain is located 

downstream. In case of PaPyr8690, this domain is not identified by HHpred or Pfam and was 

inferred by homology with the sequence from Trimastix marina (shown in opaque colors). 

Figure S5.  Localisation of P. pyriformis proteins using Trichomonas vaginalis as a 

heterologous expression system. P. pyriformis proteins C-terminally HA-tagged were expressed 
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in T. vaginalis and visualised by immunofluorescence microscopy. Anti-HA antibody (cyan) 

detected overexpressed proteins; malic enzyme (ME, hydrogenosomal marker) was detected with 

polyclonal anti-ME antibody (magenta). DAPI was used as nuclear stain (blue). The scale bar 

represents 5 μm. HydA_2, hydrogenase (PaPyr1278); HydA_4, hydrogenase (PaPyr6388); 

HydA_6, hydrogenase (PaPyr8158); HydE, hydrogenase maturase E (PaPyr4383); HydF, 

hydrogenase maturase F (PaPyr9283); HydG, hydrogenase maturase G (PaPyr1252); PFO_2 

pyruvate:ferredoxin oxidoreductase (PaPyr12211); PFO_4, pyruvate:ferredoxin oxidoreductase 

(PaPyr7937_PaPyr7938); FolD, methylenetetrahydrofolate dehydrogenase/methenyl 

tetrahydrofolate cyclohydrolase (PaPyr3253); MTHFD, formate-tetrahydrofolate ligase 

(PaPyr5119); SufC (PaPyr9323); VDAC, voltage-dependent anion channel (PaPyr2234); Tom22 

(PaPyr4978); Pex3, peroxisomal biogenesis factor 3 (PaPyr5495). 

Table S1. Non-normalised abundance of TMT-labelled peptides and proteins metadata. 

Table S2. Normalised abundance of TMT-labelled peptides and outcomes of classification 

methods. 

Table S3. Calculated net charge of the first 10, 20 and 30 amino acids of MRO proteins.  

Table S4. Evaluation of targeting predictors. 

Table S5. Sequences of primers used for heterologous expression system. 

 

Materials and Methods 

Cell cultivation 

Paratrimastix pyriformis (strain RCP-MX, ATCC 50935) was grown at room temperature in a 

polyxenic culture in Sonneborn's Paramecium medium ATCC 802 (Sonneborn, 1950) 

supplemented with 1% (v/v) of Luria-Bertani (LB) broth (Bertani, 1951).  

Trichomonas vaginalis (strain T1) was maintained at 37°C in tryptone-yeast extract-maltose 

medium (TYM, pH 6.3) supplemented with 10% (v/v) heat-inactivated horse serum (Diamond, 

1957).  
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Subcellular fractionation by differential centrifugation 

Prior to fractionation, 6-7 L of P. pyriformis culture on exponential phase of growth was filtered 

through filter paper (80 g/m2) to remove bacterial aggregates, and subsequently sieved through a 3 

µm polycarbonate filter (Nuclepore Track-Etch Membrane,Whatman) followed by two washing 

steps with 10% (v/v) LB.  P. pyriformis cells were collected into a 50 mL tube and harvested by 

centrifugation at 1000 × g for 10 min at room temperature. The cell pellet (approximately 2 × 108 

cells) was resuspended in 2 mL of pre-cooled lysis buffer (10 mM HEPES pH 7.4, 25 mM sucrose, 

2 mM magnesium acetate, 2 mM EDTA) supplemented with cOmplete EDTA-free protease 

inhibitors (Roche). Subcellular fractionation by differential centrifugation was performed as 

described in (Geladaki et al., 2019) with slight modifications. Briefly, cells were disrupted by three 

rounds of sonication of 10 s with pulse 1 s ON / 1 s OFF at amplitude 20%, using a standard 1/8” 

diameter probe (Qsonica). After each round, cells were examined under the microscope. Three 

rounds were sufficient to break 80-90% of cells. The sonicate was centrifuged twice at 200 × g at 

4 °C for 10 min to remove unbroken cells. Nine fractions pelleted at different centrifugation speeds 

were collected and the final supernatant after 120,000 × g represents the cytosol-enriched fraction. 

Collected pellets were resuspended in 50-100 µL of membrane solubilising buffer [50 mM HEPES 

pH 8.5, 8 M urea, 0.2 % (w/v) SDS]. Protein concentration was measured by BCA Protein Assay 

Kit (Sigma-Aldrich) according to manufacturer’s instructions.   

Protein digestion and TMT labelling   

A total of 60 µg of protein from each fraction was bound to magnetic HILIC beads according to 

the SP3 protocol published by (Hughes et al., 2018). After washing out the buffer with 80% (v/v) 

EtOH, the protein-bead mixture was resuspended in 100 mM triethylammonium bicarbonate 

(TEAB), disulphide bridges were reduced with 10 mM Tris(2-carboxyethyl)phosphine (TCEP) and 

cysteines were modified with 50 mM chloroacetamide (one step reaction 30 min at 60 °C). To 

digest proteins, 2 µg of trypsin was added to the reaction and incubated overnight at 37 °C. The 

next day, samples were centrifugated and the collected supernatants were acidified with 

trifluoroacetic acid (TFA) to a final concentration 1% (v/v). At this step, samples were divided into 

technical triplicates. 20 µg of peptides were desalted on a homemade desalting column (Kulak et 

al., 2014), reconstituted in 17µL 100mM TEAB, and labelled with TMT 10plex isobaric tagging 

reagent (Thermo Fisher Scientific). 0.8 mg of TMT 10plex reagents were resuspended in 42 µL of 
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anhydrous acetonitrile (ACN). Then 6.4 µL of the TMT reagent was added to each fraction sample 

and incubated for one hour at room temperature. The reaction was stopped by the addition of 1.5 

μL of 5% (v/v) hydroxylamine. Subsequently, the respective indicated fractions were mixed. After 

evaporation, the sample was desalted on a Opti-trap cartridge C18 column (Optimize 

Technologies).  

The resulting mixture was fractionated on a reverse phase at high pH, flow 2 µL/min, YMC column 

(300 mm, 0.3 mm, 1.9 µm), linear 60 min gradient [buffer A – 20 mM ammonium formate, 2% 

(v/v) ACN; buffer B – 20 mM ammonium formate, 80% (v/v) ACN] from 1% B to 60% B (Kulak 

et al., 2017). Fractions were collected for 64 minutes, and these were combined into 8 resulting 

pooled fractions by the farthest neighbour method described in (Wang et al., 2011) 

The fractionated peptides were resuspended in 1% (v/v) TFA + 2% ACN and roughly 1.5 µg were 

injected onto nanoHPLC Dionex UltiMate 3000RS (Thermo Fisher Scientific) in combination with 

Thermo Orbitrap Fusion. Thermo PepMap Trap column (pn: 160454) was used for peptides 

preconcentration and main separation was done on 50 cm EASY Spray Column Thermo (pn: 

ES903). Each fraction was separated on a 180 min gradient from 2% A to 35% B [A  –  0.1% (v/v) 

formic acid, B  – 99.9% ACN, 0.1% (v/v) formic acid]. Cycle time was set to 4 s. The MS2 spectra 

for identification were measured in an ion trap with CID fragmentation, 60 ms maximum injection 

time, and the quantification MS3 spectra were measured in an Orbitrap with HCD fragmentation 

using the SPS function, 118 ms maximum injection time, 10 precursors for synchronous precursors 

selection feature (Le et al., 2020). 

Raw LC-MS data processing  

Raw data from each biological replicate were searched with Proteome Discoverer 2.4 (Thermo 

Fisher Scientific) with Sequest search engine. Method was based on predefined workflow for SPS 

MS3 isobaric quantification and was used with batch specific correction parameters for TMT 

10plex label. Database of Paratrimastix pyriformis (13,533 entries) was used to search along with 

common contaminants database and databases of selected bacterial taxa known to be co-cultivated 

with P. pyriformis (ASM2556v1 Enterobacter cloacae, ASM63591v2 Brevundimonas 

naejangsanensis, ASM64851v1 Citrobaster freundii, ASM76115v1 Pseudomonas rhizosphaerae, 

ASM383324v1 Paenibacillus xylanexedens, ASM385183v1 Pseudomonas chlororaphis and 

GCF_900105615.1 Clostridium sphenoides). Dynamic modifications were set as follows: 
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Oxidation / +15.995 Da (M). Protein N-Terminal:  Acetyl / +42.011 Da, Met-loss / -131.040 Da 

(M), Met-loss+Acetyl / -89.030 Da (M).  Static Modifications: Carbamidomethyl / +57.021 Da 

(C), TMT6plex / +229.163 Da (K), Peptide N-Terminus:  TMT6plex / +229.163 Da.  To assess  

FDR, percolator was used. For reporter ions detection 20 pmm tolerance was set with most 

confident centroid peak integration. 

LOPIT-DC data processing 

Data were processed in R (version 4.0.4) using pRoloc package (version 1.30.0) (Gatto and 

Christoforou, 2014)  according to the published Bioconductor workflows (Breckels et al., 2018; 

Crook et al., 2019). Briefly, experimental replicates were pre-processed to allow decontamination 

and normalisation. Bacterial and other contaminants were removed. Then, average reporter 

intensity was calculated for each feature based on three technical replicates of the LC-MS 

measurement. All proteins that contained one or more missing values across ten labelled fractions 

were removed from the dataset by filterNA function. Normalisation of protein intensity-interval 

was performed by the sum method (each reporter intensity was divided by the sum of the reporter 

ions intensities). After normalisation, four independent LOPIT-DC experiments were merged into 

one dataset containing 4,541 proteins common for all four replicates. 

To search for the subcellular compartments, we used the HDBSCAN unsupervised clustering 

(Campello et al., 2013) available in Python, and semi-supervised phenotype discovery algorithm 

(phenoDisco) (Breckels et al., 2013) available in the pRoloc package of R. The following 

parameters were applied for HDBSCAN: min_cluster_size=10, min_samples=8, 

cluster_selection_method=leaf'. Phenotype discovery was run several times with the group size 

(GS, minimum number of proteins per group) set to 10, 20 or 30. The content of newly found 

clusters by either HDBSCAN or phenoDisco were carefully evaluated. Finally, by using these two 

methods as well as gene annotation, conserved domains, previous studies, and literature, a list of 

226 manually curated proteins defining 11 cell sub-compartments (cytosol, proteasome, ribosome, 

nucleus, nucleus-chromatin, ER, Golgi, endomembrane vesicles, plasma membrane, MRO, food 

vacuole) was prepared. Different populations of endosomes were merged to form a single class, 

and the same was performed for 40S/60S ribosomal subunits. 

To assign proteins with unknown localisation into subcellular clusters two supervised machine 

learning approaches were used:  support vector machine (SVM) and t-augmented Gaussian mixture 
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(TAGM) model (Crook et al., 2018) both available in pRoloc package. In the case of SVM the 

parameters were optimised as described  (Breckels et al., 2018). The best sigma and cost parameters 

were chosen (sigma = 0.1, cost = 8) based on F1 score. For most clusters, median was used to set 

up the cut-off scores. Threshold scores were as follows: Cytosol = 0.55, Proteasome = 0.53, 

Ribosome = 0.63, Nucleus = 0.5, Nucleus-chromatin = 0.42, ER = 0.63, Golgi = 0.4, 

Endomembrane vesicles = 0.45, Plasma membrane = 0.53, MRO = 0.55, Food vacuole = 0.3. Any 

prediction of protein localisation with a score below these thresholds was labelled as unknown. 

TAGM MAP, the other used classification method, assigns proteins into sub-compartments based 

on a probabilistic approach (Crook et al., 2018). Uniform localisation threshold set to 99% 

probability was applied for this method. To reduce dimensions and visualise the data, principal 

component analysis (PCA) was used.  

RNA extraction and cDNA synthesis 

Total RNA was extracted from 2 L of P. pyriformis culture using TRI Reagent (Sigma-Aldrich) 

according to the manufacturer's instructions. To prepare cDNA, mRNA was isolated from total 

RNA using Dynabeads mRNA Purification Kit (Invitrogen), followed by cDNA synthesis using 

SMARTer PCR cDNA synthesis Kit (Takara Bio). 

Localisation of P. pyriformis proteins by heterologous expression system 

Selected genes of P. pyriformis were amplified using PrimeSTAR MAX DNA Polymerase (Takara 

Bio) from cDNA and cloned into the TagVag2 vector (Hrdy et al., 2004) via restriction 

endonucleases or Gibson assembly. Sequences of primers used for cloning are summarized in Table 

S5. Electroporation of Trichomonas vaginalis was performed as described (Novák et al., 2016). 

Four hours after electroporation, G418 (200 µg/mL) was added to medium. After 3-6 passages 

expression of P. pyriformis genes in T. vaginalis cells was examined by immunoblot and 

immunofluorescence microscopy.  

Immunofluorescence microscopy 

Slides for immunostaining were prepared as described previously in (Dawson et al., 2008) with 

slight modifications. T. vaginalis cells were fixed with 4% (v/v) formaldehyde for 30 min at room 

temperature. Fixed cells were spread on coverslips coated with 0.1% (v/v) poly-L-lysine solution 

then left 30 min to adhere and air-dried.  
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T. vaginalis cells were stained with anti-HA rat monoclonal antibody (Roche) at dilution 1:500 to 

examine subcellular localisation of overexpressed P. pyriformis genes. Hydrogenosomes were 

stained with rabbit anti-malic enzyme antibody (kindly provided by prof. Jan Tachezy) at a dilution 

of 1:500. Secondary antibodies Alexa488 Goat anti-Rat (Invitrogen) and Alexa594 Goat anti-

Rabbit (Invitrogen) were used at dilution 1:1000. All antibodies were diluted in PEMBALG buffer 

[100 mM PIPES, pH 6.9, 1 mM EGTA, 0.1 mM MgSO4, 100 mM lysine, and 0.5% (w/v) cold 

water fish skin gelatine]. Coverslips were mounted to the slides using VECTASHIELD Mounting 

Medium with DAPI (Vector Laboratories). 

Images of prepared slides were captured using a Leica SP8 confocal microscope. Deconvolution 

of images were performed using Huygens Professional (version 21.10). Deconvolved images were 

further processed using Fiji software (version 1.53f51) (Schindelin et al., 2012). 

Immunoblotting 

To confirm expression and size of P. pyriformis proteins expressed in Trichomonas vaginalis, 

immunoblotting was performed. Approximately 5×106 of T. vaginalis cells were harvested by 

centrifugation at 1000 × g for 10 min to prepare a whole cell lysate. Pelleted cells were resuspended 

in 50 µL of 1 × SDS-PAGE sample buffer and denatured for 5 min at 95°C. Ten µL of each sample 

was resolved by SDS-PAGE using 12% (v/v) polyacrylamide gel. Samples were 

electrophoretically transferred onto PVDF membranes (Amersham). Non-specific binding was 

blocked by incubation of the membranes in 5% (w/v) non-fat milk in TBST [Tris-buffered saline,  

0.1% (v/v) Tween 20]. Membranes were incubated overnight at 4°C with primary anti-HA 

antibody, washed 3×10 min with TBST and incubated with a secondary antibody conjugated to 

HRP. After 1 h of incubation, membranes were washed 3×10 min with TBST. To visualise protein 

bands via chemiluminescence, Clarity ECL Western Blotting Substrates (Bio-Rad) was applied to 

the PVDF membrane and detected on an Amersham Imager 600.  

Electron microscopy 

Approximately 3 L of culture were filtered and fractionated as described above. Pellets of the first 

six collected fractions were resuspended in 1 mL of fixation buffer containing 200 mM sodium 

cacodylate (pH 7.4) and 2.5% (v/v) glutaraldehyde. After 3 h of incubation at room temperature, 

samples were washed twice by 100 mM sodium cacodylate. Next, post-fixation with 2% (v/v) OsO4 
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in 100mM sodium cacodylate (pH 7.4) buffer was carried out on ice for 1 hour. Dehydration of 

fixed subcellular fractions was performed through an ethanol series (35, 50, 70, 80, 95, 100%) and 

then ethanol was replaced with 100% acetone. Infiltration with a mixture of Epon resin and 100% 

acetone at a ratio 1:2, 1:1, 2:1 (one hour each) was followed by overnight incubation with absolute 

Epon resin. After polymerisation of the resin (65°C, 48 h) ultrathin sections were prepared using a 

Reichert-Jung Ultracut E ultramicrotome and collected onto carbon-and-Formvar coated copper 

grids. Ultrathin sections were post-contrasted with 4% (w/v) uranyl acetate and 2% (w/v) lead 

citrate. Prepared sections were examined JEOL 1011 transmission electron microscope. 

Phylogenetic and in silico structural analyses 

To clarify the identity of the hypothetical proteins of the P. pyriformis MRO, we employed a 

combination of phylogenetic reconstruction and in silico structure prediction. For three proteins 

(PaPyr5495, PaPyr7077 and PaPyr804) we could retrieve multiple BLAST hits, based on which 

we created HMMER v3.3 (www.hmmer.org) profiles for a more comprehensive search of 

homologues in the NCBI nonredundant protein (nr) database and EukProt (Richter et al., 2020). 

Regions flanking the domains of interest as determined by InterProScan v5.52-86.0 (Jones et al., 

2014) were manually removed in Geneious Prime v2020.1.2 (Kearse et al., 2012)  to allow more 

reliable sequence alignments. The resulting datasets were aligned by MAFFT v7.453 (Katoh and 

Standley, 2013) using the L-INS-i refinement and a maximum of 1,000 iterations, followed by 

manual trimming; alignments are attached as Supplementary Material. ML trees were inferred by 

IQ-TREE v 1.6.12 using the Posterior Mean Site Frequency (PMSF) empirical model with ultrafast 

bootstrapping strategy (1,000 replicates) and a LG4X guide tree (Wang et al., 2018, 2019). Obvious 

contaminants were manually pruned based on intermediary phylogenies as well as functional 

domain predictions by InterProScan. For PaPyr577, a single homologue was found in Trimastix 

marina (AC: Trimastix_PCT|3971) and the resulting HMMer profile did not recover more 

homologues in EukProt. To find Pex19 (PaPyr8690), and the members of Tim17/22/23 protein 

family (PaPyr5590, PaPyr9, PaPyr1418), we used previously constructed alignments kindly 

provided by Kristína Záhonová and Vojtěch }árský (}árský and Dole~al, 2016). In addition, we 

analysed the phylogenetic relationships of enzymes of the cytosolic and MRO folate pathways. 

Their phylogenetic analysis was performed as above.  
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For the hypothetical proteins lacking any sequence homologues and thus phylogenetic support, 

SWISS-MODEL (Waterhouse et al., 2018) and PHYRE2 (Kelley et al., 2015) structure-based 

searches were performed (last online access in October 2021) to identify putative functions. 

 

Testing of MRO targeting prediction  

For performance comparison of targeting predictors, 30 complete, reliably predicted proteins from 

the MRO were selected along with 30 complete, randomly chosen, and reliably predicted proteins 

from each of the remaining compartments. These were analysed by the following algorithms: Cello 

v2.5 in eukaryote mode (last accessed 5 February 2022) (Yu et al., 2006), iPSORT in non-plant 

mode (Bannai et al., 2002), MitoFates v1.1 in Metazoa mode (Fukasawa et al., 2015), MultiLoc2 

in animal and fungal modes (Blum et al., 2009), NommPred v0.2 in MRO mode (Kume et al., 

2018) and TargetP v2.0 in non-plant mode (Armenteros et al., 2019). From tabulated results, 

sensitivity and specificity were calculated using formulae:  

Sensitivity = true positives / (true positives + false negatives)   (1) 

Specificity = true positives / (true positives + false positives)   (2) 

Other than default thresholds were also considered when optimising these statistics. Notably, 

ribosomal proteins were more frequently predicted as mitochondrial by Cello and their omission 

from the tested sequences led to increased specificity (0.57 vs. 0.41).  

 

Resource availability 

Lead contact 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Vladimír Hampl (vlada@natur.cuni.cz). 

Materials availability 

Plasmids and T. vaginalis cell lines generated in this study are available from the lead contact upon 

request. 

Data and code availability  

The predicted proteome of Paratrimastix pyriformis is available at 

https://doi.org/10.5281/zenodo.6405158. The mass-spectrometry-based proteomics data have 

been deposited to the ProteomeXchange Consortium (Deutsch et al., 2017) via the PRIDE  

(Perez-Riverol et al., 2019) partner repository. 
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