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Abstract  

Work in the last two decades has identified sleep spindles, discrete “sigma band” oscillations during stage 

2 sleep, as a key oscillatory mechanism required for off-line memory consolidation. Although, sleep 

spindles are known to evolve concomitant with brain maturation and reflect cognitive function across the 

lifespan, the details of this developmental trajectory are unknown. To address this, we curated a database 

of sleep electroencephalograms from 772 developmentally normal children to characterize spindles from 

birth through 18 years. After validating an automated spindle detector against ~20,000 hand-marked 

spindles across ages, we demonstrate that sleep spindle features follow distinct age-specific patterns in 

distribution, rate, duration, frequency, estimated refractory period, and inter-hemispheric spindle lag. These 

data expand our current knowledge of normal physiological brain development and provide a large normative 

database to detect deviations in sleep spindles to aid discovery, biomarker development, and diagnosis in 

pediatric neurodevelopmental disorders.   
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1. Introduction 

Sleep spindles, discrete 0.5-2 second bursts of 9-15 Hz “sigma band" oscillations, are a hallmark feature 

of electroencephalogram (EEG) recordings during stage 2 non-rapid eye movement (N2) sleep 1, 2. Sleep 

spindles are generated by GABAergic neurons in the thalamic reticular nucleus and elaborated by well-

delineated thalamocortical circuits 3, 4. Work in the last two decades has identified spindles as a key 

oscillatory mechanism required for off-line memory consolidation during N2 sleep 5, 6, 7, 8, 9, 10, 11, 12. Sleep 

spindles gate dendritic calcium shifts required for synaptic plasticity 13 and coordinate the reactivation 

patterns of sharp-wave ripples 7, 8, 14, hippocampal oscillations that reflect neuronal replay 15.  Human 

cognitive studies have linked spindles to sleep-dependent consolidation of both procedural 16, 17, 18, 19, 20, 21 

and declarative 22, 23, 24, 25, 26 memory tasks. Spindle rate correlates with general cognitive abilities and sleep 

dependent memory consolidation in both typically developing children 27, 28, 29 and those with neurologic 

disorders, including autism 30, 31, developmental delay 30, 32, and epilepsy 33. Confirming a mechanistic 

role, interventions that increase spindle activity result in improved sleep dependent memory consolidation 

34, 35, 36, 37, 38, 39, 40, 41. Thus, sleep spindles provide a powerful non-invasive neurophysiological biomarker 

for thalamocortical circuitry and cognitive function across development. 

 Sleep spindles emerge early in life. In newborns, immature “pre-spindles” appear before 3 weeks 

of age42, followed by robust and prominent asynchronous sleep spindles between 3 and 9 weeks of age 43. 

These prominent spindle oscillations evolve dynamically in rate, duration, frequency, and inter-

hemispheric synchrony, with the most marked changes observed in the first year of life 32, 44, 45, 46. Sleep 

spindles become increasingly synchronous over the first two years of life, reflecting the time course of 

cerebral white matter myelination 32, 47, 48, 49, and spindle frequencies are thought to increase linearly from 

childhood to adolescence in the frontal regions 2, 50.  
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Human spindles have historically been discriminated into two main types: slow spindles (<13 Hz) 

that predominate in frontal brain regions, and fast spindles (>13 Hz) that predominate in central and 

parietal brain regions 45, 51, 52, 53, 54.  Previous studies have suggested that these different spindle populations 

have different cognitive roles, with frontal slow spindles more consistently related to declarative memory 

tasks10, 26, 55 and central fast spindles related to motor learning 10, 56, 57, 58. The reported frequency border 

between fast and slow spindles varies across ages and studies 10, 45, 53, 59, 60, 61, and when these distinct 

populations emerge over development is unknown.  

While sleep spindles offer a promising biomarker of cognitive development and neurological 

disease across the lifespan, careful study of the developmental dynamics and normative values for spindle 

features are lacking for pediatric age groups. Previous work describing spindle features over development 

have been limited to clinical descriptions based on visual analysis or quantitative studies with small sample 

size 45, 46, 62, 63, limited electrode coverage 50, 62, 63, 64, low age resolution 2, 64, and limited pediatric age 

ranges 2, 50, 53, 63, 65. The challenge of obtaining sleep EEGs in healthy pediatric subjects and the lack of 

appropriate automated spindle detectors robust to age-specific spindle features impede development in 

this area. 

To address this gap, we curated and analyzed a database of scalp EEG recordings during N2 sleep 

from a large cohort of developmentally normal children from age 0 to 18 years. We then trained and 

validated an automated spindle detector with hand-marked spindles across age groups. Using this detector, 

we evaluated several sleep spindle features—rate, duration, percentage, peak frequency, minimum inter-

spindle interval, and interhemispheric synchrony—across typical development. We found sleep spindle 

characteristics follow distinct age-specific and regional-specific patterns. These data expand our current 

knowledge of normal physiological brain development and provide a large normative database to aid 

discovery, biomarker development, and diagnosis in brain development and pediatric neurodevelopmental 
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disorders. 

 

2. Materials and Methods 

2.1. Participants and EEG recordings  

Subjects aged 0-18 years with normal EEG recordings (as defined by clinical electroencephalographers 

independent from this study) in which N2 sleep was captured, were retrospectively identified from 

recordings performed in the Massachusetts General Hospital EEG laboratory between February 2002 and 

June 2021 (excluding July 2012-March 2015 due to data storage issues). Clinical chart review was 

performed and only those children with documented normal neurodevelopment and events leading to EEG 

evaluation that are not expected to alter EEG rhythms or cognitive function were included. Children that 

received neuroactive medications during the recording period were excluded. Children with chronic 

neurologic or psychiatric diagnoses were excluded, with the following exceptions: children diagnosed 

with mild attention or depression symptoms or tics not requiring medication treatment were included. 

Children with provoked seizures (e.g. not epilepsy, but seizures due to syncope, hypoglycemia, or other 

transient metabolic derangement), including febrile seizures, were included as the risk of subsequent 

epilepsy is similar to the general population 66, but we note we also evaluated this cohort separately. 

Children born prematurely (<37 weeks gestational age) were excluded. In addition, EEGs from 27 children 

ages 6-18 years recruited as population controls in research protocols at our institution were included. Of 

819 total EEG recordings, 2 (0.2%) had poor recording quality and were excluded; 36 (4.4%) had < 3 min 

of N2 sleep and were excluded, resulting in 781 EEG recordings from 772 unique children for analysis. 

Clinical EEG data were acquired following the international 10-20 system for electrode placement 

(Fp1, Fp2, F3, F4, C3, C4, P3, P4, F7, F8, T3, T4, T5, T6, O1, O2, Fz, Cz and Pz) with a standard clinical 
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recording system (Xltek, a subsidiary of Natus Medical). Sampling frequency varied from 200 to 512 Hz. 

Research EEG data were acquired using a 64-channel cap (Easycap) and the 10-20 channels were selected 

for analysis. Research EEG data were acquired at 2035 Hz and down-sampled to 407 Hz. In each case, 

impedances were maintained below 10kΩ. All EEGs were visually reviewed by a board-certified pediatric 

neurophysiologist (CJC). Channels with poor recording quality and periods of significant artifact were 

ignored. Epochs containing N2 sleep (or trace alternant (TA) or quiet sleep (QS) patterns for <1 month 

old subjects) were identified according to standard criteria 67, 68. The N2 EEGs were then re-referenced to 

an average signal for subsequent analysis. All data analyses were conducted in accordance with protocols 

approved and monitored by the local Institutional Review Board according to National Institutes of Health 

guidelines. 

2.2 Manual spindle detections 

Two reviewers trained in spindle detection across ages performed manual spindle markings by consensus 

on 93 healthy subjects ages 0-18 years old. Following standard criteria, spindles were required to last a 

minimum of 0.5 seconds 67, 68. To train an automated spindle detector robust to both healthy and disease 

states for subsequent use, we also included manual spindle markings from separate projects including 10 

subjects with continuous spike and wave sleep with encephalopathy ages 3-18 years old, and 12 subjects 

with Rolandic epilepsy ages 4-15 years old, in our training dataset 33. In each case, 100 s of EEG data 

from 19 channels using the standard 10-20 EEG montage were manually reviewed and the start and end 

time of each spindle marked, resulting in 19,625 total manually marked spindles from 115 unique pediatric 

subjects. 

2.3. Sleep spindle detector 

Typical N2 sleep architecture includes both vertex waves and K-complexes, brief events with increasingly 
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sharper slopes at younger ages 67. Such sharp events typically present by age 5 months and produce 

wideband spectral features 69 that impact measures of sigma power common in many spindle detection 

approaches 2, 33, 70.  For accurate detection of spindles in the setting of sharp sleep architecture, we adapted 

an automated latent state model (LS) spindle detector that we developed specifically to perform well in 

the setting of sharp events in the EEG 33. A detailed description of the detector can be found in 33 and code 

to apply the LS spindle detector is available for reuse and further development at https://github.com/Mark-

Kramer/Spindle-Detector-Method. Application of this detector to this pediatric dataset consisted of three 

steps: 1) training; 2) validation across age groups; and 3) application. For each step, for each channel, we 

evaluate 0.5 s intervals of data and compute three EEG features: theta band power (4-8 Hz), sigma band 

power (9-15 Hz), and the Fano factor of the oscillation intervals—a measure of cycle regularity. We chose 

0.5 s intervals, which are the typical minimum duration accepted for sleep spindles 2, 12, 71, 72, to maintain 

a 2 Hz frequency resolution, allowing reliable estimation of the theta band power. We advance each 0.5 s 

interval by 0.1 s, enabling detection of spindles at least 0.5 s in duration with 0.1 s resolution. To estimate 

the theta and sigma power in an interval, we detrended the (unfiltered) data, applied a Hanning taper, 

computed the Fourier transform multiplied by its complex conjugate, and divided the power at each 

frequency by the summed total power from 1-50 Hz. To compute the variability of oscillation cycles, we 

considered bandpass filtered data between 3-25 Hz (FIR, stop band attenuation 40 dB at 3 Hz, stop band 

attenuation 20 dB at 25 Hz, passband ripple 0.1 dB) and identified the peaks and troughs (minimum peak 

distance 28 ms, minimum peak prominence 2 uV); here filtering reduced the impact of high frequency 

activity on peak/trough detections. Then, to characterize the variability of the times between adjacent 

peaks and troughs we computed the Fano factor 73. We took the natural logarithm of each feature, shifted 

the interval by 0.1 s, and repeated these computations for the entire duration of the EEG signal for each 

channel. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.486476doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.31.486476
http://creativecommons.org/licenses/by/4.0/


8 

 

 To train the LS spindle detector, we used the manual spindle detections described in Section 2.2. 

For each channel (n=18 channels) and each subject (n=115), we computed for each 0.5 s interval the three 

features and assigned a spindle state label ("spindle” or “not spindle”). An interval was designated as 

“spindle” only if the entire interval lied within the bounds of a manually marked spindle. From these data, 

we fit empirical likelihood functions to each feature and state and estimated the transition matrix between 

the “spindle” and “not spindle” states. The LS spindle detector estimates the probability of a spindle in 

each 0.5 s interval, providing an easily interpretable value. Briefly, the probabilities of the spindle (pyes) 

and not spindle (pno) state are first initialized at 0.5. Then, for the first 0.5 s interval, the transition matrix 

is applied to [pyes, pno] to compute the one step prediction [p1
yes, p1

no]. The three features for this interval 

are then computed and the likelihood of each feature is used to compute the posterior [p*
yes, p*

no]. The 

posterior is normalized so that the probability sums to one (i.e., p*
yes + p*

no = 1), where p*
yes is the 

probability of a spindle for this interval. This process is repeated for each 0.5 s intervals in 0.1 s steps for 

the duration of the signal, where the [pyes, pno] for each interval is set to the normalized posterior of the 

previous interval.   

 To validate the LS detector across age groups, we performed a leave-one-out cross validation. To 

do so, we trained the detector with one subject omitted. We then applied this LS detector to estimate the 

probability of a spindle for each 0.5 s interval of each marked electrode of the omitted subject. We repeated 

this process for all 115 subjects. We then evaluated detector performance across all subjects using standard 

measures (see Statistical Analysis). We found that the probability threshold value of 0.95 is optimal across 

ages, so spindle detections were identified when probability of a spindle exceeded this threshold value 

(i.e., when the probability of a spindle exceeded 95%). Spindle detections separated by less than 1 s were 

concatenated 2, 33. 

2.4. Analysis of spindle features 
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From the detected sleep spindles, the rate (mean number of spindles per minute), duration (mean duration 

of spindles in seconds), and percentage (percentage of time with spindles during the N2 recording) were 

calculated at each electrode for each EEG recording. To compute peak spindle frequency, we first 

estimated the power spectrum of each spindle. To do so, we applied a Hanning taper and 5 s of zero 

padding to each spindle detection and then estimated the power spectrum using the Fast Fourier 

Transform. At each spindle detection, the power spectra from 8-16 Hz were then divided by the summed 

power over 1-50 Hz. The resulting power spectra were averaged in each channel and each age group, and 

the peak frequency was identified as the frequency in the spectrum with the highest power 

(Supplementary Figure 1). 

The inter-spindle interval (ISI) was calculated as the time interval (s) between the end of a spindle 

and the onset of the next spindle in the same channel. We computed the ISI for the central electrodes from 

each EEG recording. To estimate spindle refractory periods, we computed the average of the lowest 10% 

of ISIs for each channel in which at least 10 spindles were detected. We choose the lowest 10% of ISIs to 

focus analysis on the shortest times between spindle detection while also minimizing the impact of 

outliers. To compute inter-hemispheric spindle lag, we first identified all times when spindles were 

Supplementary Figure 1. Spindle 

frequency analyses. A) An example 15 s 

recording from one channel showing 

spindle detections (blue). The normalized 

spindle spectra and peak frequencies (red 

markers) were identified. Note, some 

spindles demonstrate two peaks which will 

be retained in the distributions but not peak 

frequency analysis. (B) Example normalized 

spectra (thin colored curves) from electrode 

Fz from a 10 year-old subject. From the 

average spectrum (thick black curve) the 

peak spindle frequency (red marker) was 

identified.  
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detected in at least two frontopolar or centroparietal channels on either hemisphere (FP1, F3, C3, P3 or 

FP2, F4, C4, P4). The spindle lag was then calculated as the time between the first detected spindle among 

these channels in one hemisphere and the first detected spindle among the homologous channels in the 

opposite hemisphere. 

2.5. Statistical analyses  

To assess the performance of the spindle detector across ages, we report positive predictive value (PPV), 

sensitivity, and the F1 score (the harmonic mean of the PPV and sensitivity) of the detector relative to 

manual expert classification. To provide the most conservative assessment of detector performance, for 

each measure, we performed a by-sample analysis, in which manual and automated detections are 

compared at each sample of data 33, 70. For all subsequent measures, we used the detector threshold that 

optimized the F1 score (95%).  

To characterize spindle features over age, subjects were categorized by year, rounding down to the 

most recent birthday. For visualization, topographic maps of spindle rate, duration, and percentage were 

interpolated using the Fieldtrip toolbox (http://www.ru.nl/neuroimaging/fieldtrip) 74.  

To model spindle features across age, the spindle features (except for minimum ISI) were first 

transformed using an inverse hyperbolic sine function. This transformation is a sigmoid function whose 

domain is the whole real line, which tends to reduce the magnitude of extreme values 75. Spindle rate, 

duration, and percentage did not follow a linear relationship with age. To characterize these features, we 

applied locally weighted scatterplot smoothing (LOESS) which uses weighted linear least squares and a 

quadratic polynomial model with a span of 0.3 76. The 95% bootstrap pointwise confidence intervals of 

the LOESS fitted line were generated by resampling with replacement from the empirical data with 1000 

iterations. The population 95% confidence intervals were generated for each age bin with a window size 
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of 0.3, and values across immediately adjacent age bins were smoothed with a rolling average with a 

window size of 0.3. For minimum ISI and spindle lag, we applied a general linear model with the age as 

the predictor where p < 0.05 was considered as significant. 

To test for differences in spindle rate between males and females at each electrode and each age 

group, we used a two-sampled t-test where p < 0.05 after Holm-Bonferonni correction 77 was considered 

significant. 

We performed a cluster-based permutation test to identify clusters of electrodes with spindle 

features higher than the mean across electrodes for each age group. 78, 79, 80. To do so, for each subject in 

each age group, we a) subtracted the mean spindle value across channels from the value at each channel, 

resulting in positive and negative deviations. We then b) evaluated the distribution of these deviations 

across subjects to identify channels with higher spindle values compared to zero, using a one-tailed t-test. 

Channels below a critical alpha-level (p<0.05) were identified and joined in a cluster if they were adjacent 

based on the 10-20 electrode placement system. Next, c) a cluster-level statistic was computed as the sum 

of the absolute value of all t-values within a cluster. To determine which cluster-level statistics were 

unlikely to occur by chance, we used a cluster-based permutation test. Assuming spindle features are 

equally likely to occur above or below the mean, we randomly shuffled the sign of the deviations in each 

subject from a). We then performed steps b) and c) and computed the largest cluster-level statistic from 

the resampled data. This process was repeated 5000 times. Clusters from unpermuted data were considered 

significant if their cluster-level statistic exceeded the top 5% of the permutation distribution of 5000 

samples (e.g., p<0.05). This process was performed for the spindle rate, duration, and percentage for each 

age subgroup. 

To test for differences in spindle peak frequency between frontal and central electrodes at each age 
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subgroup, we compared peak frequency values at Fz and Cz using a one-sampled t-test where p < 0.05 

after Holm-Bonferonni correction was considered significant. 

 

3. Results 

3.1 Data characteristics 

We analyzed 781 N2 EEG recordings from 772 unique subjects (382 F, 49.5%) ranging in age from 0 

days to 18 years. Clinical characteristics are provided in Table 1. The final diagnosis for the events that 

led to the EEG evaluations are listed in Table 2. The average duration of N2 sleep (TA or QS) per EEG 

recording was 14.04 min (IQR 8.40-18.07 min).  

Table 1 Patient demographics 
 

 

 

 

 

 

 

 

 

 

Demographics Subjects, 

N (%) 

 EEGs, N 

(%) 

 Total EEGs 772  781  

Female sex 382 (49.5) 389  (49.8) 

Ethnicity     

Not Hispanic or Latino 413 (53.5) 420  (53.8) 

Hispanic or Latino 140 (18.1) 140 (17.9) 

Unknown 219 (28.4) 221 (28.3) 

Race     

White 473 (61.3) 480 (61.5) 

Black or African American 72 (9.3) 72 (9.2) 

Asian 27 (3.5) 27 (3.5) 

American Indian or Alaska Native 2 (0.3) 2 (0.3) 

Native Hawaiian or Other Pacific 
Islander 

0 (0) 0 (0) 

Other 115 (14.9) 116 (14.9) 

More than One Race 17 (2.2) 17 (2.2) 

Unknown 66 (8.5) 67 (8.6) 
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3.2 Automated spindle detector validation across age groups 

Leave-one-out cross validation of the automated spindle detector revealed excellent performance against 

 manual markings in 93 normally developing children ages 0-18 years (n=47 infants ages 0-2 years old, 

n=46 school age subjects ages 2-18 years; Figure 1). Balanced detector performance was achieved using 

a 95% probability threshold (mean F1: 0.44, 95% CI [0.11 0.76]). At this threshold, the detector’s 

sensitivity was 0.48 and positive predictive value 0.47 against hand markings. We note that this 

performance is higher than previously reported spindle detectors, which have ranged from F1 0.2-0.43 70. 

Example spindle detections across ages are shown in Figure 1C. 

Table 2 Indications for EEGs (N = 781) 

Diagnosis N Diagnosis N Diagnosis N 

Provoked seizure 132 FND 15 Mild hypertonia  2 
Syncope/pre-syncope 99 Respiratory event 14 Muscle fasciculation 2 
Migraine/headache 57 Tremors 8 Pain 2 
Sleep phenomenon 57 Anxiety/panic attack 7 Aplastic anemia 1 
Nonspecific movement 56 Dizziness 7 Bell's palsy 1 
Staring spell 44 Altered mental status 6 Benign hypotonia  1 

Gastrointestinal reflux 30 Concussion 6 
Episode of 
unsteadiness 1 

Stereotypy/tic 30 Vomiting 6 Hiccups 1 
Behavioral event 28 Fatigue 5 Intussusception 1 
Research control 

subjects 26 Toxic exposure 5 Lyme disease 1 
Breath-holding spell 23 Vertigo 5 Polydipsia 1 
Transient 

unresponsiveness  23 Visual phenomenon 5 Rigors 1 
Unusual eye movement 22 Fall 4 Suspected abuse 1 
Shuddering spell 20 Startle reflex 3 Transient weakness 1 

BRUE 18 Hypoglycemia 2 Trauma 1 

The sleep phenomenon category includes all sleep related indications: sleep myoclonus (36), parasomnias (13), 
hypersomnia (1), periodic limb movement (1), somnolence (1) and other sleep phenomena (5). The provoked 
seizure category includes febrile seizures (108) and provoked seizures (24). BRUE: Brief resolved unexplained 
event; FND: functional neurologic disorder 
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3.3. Evolution of normative spindle parameters over development 

Spindle distribution 

Sleep spindle characteristics follow a distinct, age-specific developmental trajectory.  In infants, spindles 

are more prominent over frontopolar and central regions. In toddlers (1-2 years), spindles become more 

prominent over the central regions. Spindles then migrate anteriorly to become dominant in frontal regions 

by 5-6 years and frontopolar regions by 9-10 years, though with increasing rates appearing diffusely. Over 

adolescence, spindles migrate posteriorly and dominate in central and parietal regions by late teens (17-

18 years; Figure 2).  

Figure 1. Spindle detector performance across ages. A) Using leave-one out cross validation, the 

optimal F1 statistic against hand markings was achieved at the 95% probability threshold (0.44, red 

marker). Colored curves represent detector performance for individual subjects across probability 

thresholds and the black curve indicates the mean performance across subjects.  B) The sensitivity 

and positive predictive value (PPV) of the detector at different probability thresholds (95% threshold 

indicated in red). C) Example spindle detections in different age groups: 1 month, 3 months, 6 months, 

1 year, 5 years, 18 years. Each sample shows five-seconds of N2 sleep with automated spindle 

detections highlighted in blue. 
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Spindle rate 

Averaged across all channels, the mean spindle rate follows an N-shaped curve over development, with 

the most prominent nadirs at 0 months (0.47 spindles/min, 95% CI [0.25, 0.71]) and 2.34 years (1.40 

spindles/min, 95% CI [1.17, 1.65]), and the most prominent peaks at 5.0 months (2.24 spindles/min, 95% 

CI [2.00, 2.51]) and 17.33 years (6.15 spindles/min, 95% CI [5.65, 6.70]). A secondary relative nadir is 

Figure 2. Topographic maps of spindle distribution over development. Top row) Electrode clusters 

with spindle rates higher than average (p<0.05) are shown. Bottom row) The mean spindle rate 

(number per minute) is plotted per age group. The number of EEG recordings included in each age 

group is indicated below each topoplot. 

Figure 3. Normative spindle rates over development. A) Average spindle rate across all electrodes 

with age. The red line (shaded areas) indicates local regression fits (95% confidence intervals). The 

grey shaded areas indicate 95% confidence intervals of the population data. B) Results for each 

electrode, arranged according to 10-20 electrode placements. Colors indicate brain region (frontal-

green, central (e.g., Rolandic)-red, temporal-purple, parietal-blue, occipital-yellow). 
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observed at 0.85 years (1.71 spindles/min, 95%CI [1.51, 1.93] and a secondary peak at 15 months (1.83 

spindles/min, 95%CI [1.59, 2.11]).  Spindle rate in the frontopolar (FP1/FP2), central (C3/C4), and parietal 

(Pz, P3/P4) regions follow this N-shaped developmental trajectory robustly, while spindle rate in the 

frontal (F3/F4, F7/F8) and anterior midline (Fz, Cz) regions follow a similar but less prominent trend. In 

contrast, spindle rate increases near-monotonically with age in the temporal (T3/T4), posterior temporal 

(T5/T6), with only subtle peaks observed at 0.42 and 1.56 years (0.73 spindles/min, 95%CI [0.56, 0.92]; 

0.91 spindles/min, 95%CI [0.72, 1.12] in the temporal region, at 0.42 and 1.44 years (0.52 spindles/min, 

95%CI [0.38, 0.66]; 0.98 spindles/min, 95% CI [0/78, 1.20] in the posterior temporal. In the occipital 

region, there is an initial nadir at 0.41 years (0.22 spindles/min, 95% CI [0.14, 0.31]) followed by a local 

peak at 1.39 years (0.72 spindles/min, 95% CI [0.56, 0.88]) (Figure 3).  

Supplementary Figure 2. Spindle rate by sex across age and brain regions reveals no 

difference. Boxplots of spindle rate for male (blue) and female (red) subjects reveals no evidence 

of a difference in any brain region for any age group. 
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After correction for multiple comparisons, we found no evidence of a difference between male and 

female spindle rates in any region at any age (p>0.16 for all comparisons, Supplementary Figure 2). We 

note that children with a history of febrile seizures followed the same developmental trajectory as those 

without provoked seizures, and excluding these children produced equivalent results (Supplementary 

Figure 3).  

Spindle duration  

Changes is spindle duration follow a developmental trajectory similar to spindle rate. Averaged across 

channels, the longest spindles are present in mid-infancy at 0.39 year (mean 1.50 s, 95% CI [1.41, 1.59]) 

and late adolescence at 18 years (1.55 s, 95% CI [1.43, 1.67]). Nadirs are observed at 0 months (0.72 s, 

95% CI [0.64, 0.80]) and 1.96 years (0.95 s, 95% CI [0.91, 0.99]). Like spindle rate, this N-shaped 

trajectory is again most prominent in frontopolar, central and parietal regions. In contrast, spindle duration 

increases consistently with age in temporal and occipital regions (Supplementary Figure 4).  

Supplementary Figure 3. Children with provoked seizures have typical spindle rates. A) Spindle 

rate across all electrodes with age. Green (blue) circles indicate subjects with history of febrile 

(provoked) seizure; Grey dots are remaining healthy subjects. The red line (shaded areas) 

indicates local regression fits (95% confidence intervals). The grey shaded areas indicate 95% 

confidence intervals of the population data. B) Spindle rate over age after excluding subjects with 

febrile or provoked seizures follows the same trajectory as A). 
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Spindle percentage  

Spindle percentage (the percentage of time during N2 sleep with spindles) is an aggregate measure 

reflecting both spindle rate and duration. As such, the mean percentage of spindles across all channels 

follows a robust N-shaped curve over development, which is most prominent in central and parietal 

regions (Supplementary Figure 5). Averaged across channels, spindle percentage achieve local maxima 

at mid-infancy (0.41 year, mean 6.26%, 95% CI [5.20, 7.54]) and late adolescence (18 years mean 15.51%, 

95% CI [12.53, 19.19]). A smaller peak occurs at 14 months (3.29%, 95% CI [2.79, 3.86]. Prominent 

nadirs were observed at 0 months (0.57%, 95% CI [0.23, 0.96]) and 2.30 years (2.37%, 95% CI [1.95, 

2.87]. 

Supplementary Figure 4. Normative spindle 

duration over development. A) Average 

spindle duration with age. The thick line 

indicates the local regression fit. The thick 

shaded areas indicate the 95% confidence 

intervals of the model. The lightly shaded areas 

indicate 95% confidence intervals of the 

population data. B) Similar plots are provided 

for each electrode, organized by the 10-20 

electrode placement system. Colors are 

organized by brain region in the inset. 

 

Supplementary Figure 5. Normative spindle 

percentage over development. A) Average 

spindle percentage with age. The thick line 

indicates the local regression fit. The thick 

shaded areas indicate the 95% confidence 

intervals of the model. The lightly shaded areas 

indicate 95% confidence intervals of the 

population data. B) Similar plots are provided 

for each electrode, organized by the 10-20 

electrode placement system. Colors are 

organized by brain region in the inset. 
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3.4. Spindle frequency over development 

Spindle frequency changes with age 

The peak frequency of spindles is highest in infancy and mid-adolescence, and similar between these age 

groups (0-1 year, mean peak frequency: 13.1 Hz; 14-18 years, mean peak frequency: 13.1 Hz). Between 

ages 1 and 2 years, there is a sharp drop in spindle frequency (2 years, mean peak frequency 11.2 Hz). 

From ages 2-14 years there is a consistent increase in spindle frequency with age. This U-shaped pattern 

of peak spindle frequency with age is present across all brain regions (Figure 4).  

Slow and fast spindles emerge early in development  

To identify when the canonical frontal “slow” and central “fast” spindles emerge and empirically 

characterize their frequencies, we compared peak spindle frequency between central (Cz) and frontal (Fz) 

Figure 4. Normative spindle frequency over development. A) Each line represents the normalized 

peak spindle power across channels by age. Peak frequencies are high in infants and late adolescents. 

B) The distribution of normalized spindle frequencies across channels is plotted as a function of age. 

C) Spindle frequency distributions by age are provided for each 10-20 channel. 
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regions over age. We found no difference between central and frontal spindle peak frequencies in patients 

<18 months (p > 0.23 for all comparisons). Beginning at 6 months, the peak frequency of frontal spindles 

declines and by 18 months frontal spindles had a lower peak frequency (11.7 Hz) compared to central 

regions (12.7 Hz; p<0.0001). After 2 years, peak frequencies in the frontal and central regions both 

increase with age through age 18 years, but remain distinct from each other, with lower frequencies always 

observed in frontal regions compared to central regions (Figure 5, p<0.05 for all comparisons after 

correction for multiple comparisons). 

3.5. Spindle refractory periods over development 

Figure 5. Frontal slow spindles emerge by 18 months. A) Example of averaged power spectra 

for spindle detections in Fz (blue) and Cz (red) in a 10 year-old. B) Peak spindle frequency in Fz 

(blue) and Cz (red) over 0 to 18 years. C) The distribution of normalized spindle frequencies 

across channels is plotted as a function of age. D) Spindle peak frequencies are lower in Fz 

compared to Cz channels after 18 months (* indicate p < 0.05 after correction for multiple 

comparisons).  
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To estimate spindle refractory periods over development, we computed the mean of the smallest 10% of 

inter-spindle intervals in the central regions in each hemisphere (channels C3 and C4). We found that the 

spindle refractory period decreases monotonically with increasing age (p=0, Beta= -1.15, 95% CI [-1.29, 

-1.02]), Figure 6). 

3.6. Inter-hemispheric spindle lag over development 

To characterize the coordination of spindles between hemispheres, we computed the inter-hemispheric lag 

between spindles detected in the frontal, central and parietal regions (channels FP1, F3, C3, P3 and FP2, 

Figure 6. Minimum inter-spindle interval 

decreases with age. A) The ISI is calculated 

as the time from the end of one spindle to the 

start of the next. B) The lowest 10% of ISIs 

from channels C3 and C4 were considered. 

C). ISI decreases with age. The red line 

(shaded areas) indicates local regression fits 

(95% confidence intervals). The grey shaded 

areas indicate 95% confidence intervals of 

the population data.  

Figure 7. Inter-hemispheric spindle lag over development. A) Spindles detected in at least two 

frontocentral channels in the same hemisphere were analyzed. B) The spindle lag was calculated 

from the start of the first detected spindle in one hemisphere to the start of the first detected spindle 

in the contralateral hemisphere. C) Spindle lag decreases with age. The red line (shaded areas) 

indicates local regression fits (95% confidence intervals). The grey shaded areas indicate 95% 

confidence intervals of the population data. 
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F4, C4, P4; Figure 8A). We found that interhemispheric spindle lag decreases monotonically with 

increasing age (p=0, Beta = -0.28, 95% CI [-0.31, -0.24]) (Figure 7). 

 

4. Discussion 

 
Spindles are fundamental thalamocortical sleep rhythms that are mechanistically linked to essential sleep-

dependent cognitive processes. Although, sleep spindles are known to evolve concomitant with brain 

maturation, the details of this developmental trajectory have been lacking. By applying a validated 

automated spindle detector to a large database of N2 sleep EEGs from healthy neonates, infants, and 

children we characterize several key features of spindles over the course of development. This work 

reveals that, like anatomical brain maturation, sleep spindle features—including rate, duration, 

topography, refractory period, and inter-hemispheric synchrony follow a predictable, heterochronic, and 

non-linear developmental trajectory from birth to late adolescence. This novel neurophysiological data 

provides a direct window into the maturing thalamocortical networks that generate and drive these critical 

oscillations and insights into the development of the focal and distributed cognitive functions that they 

support.  

The ability to utilize biomarkers to detect disease in pediatric populations is hampered by the 

dynamic changes in baseline measures that occur over healthy development. Using this large database, we 

provide robust normative parameters of spindle features for each age across development. Such high-

resolution developmental natural history data can be used to assess for deviations from this distribution in 

at-risk populations to aid in diagnosis, elucidate thalamocortical pathophysiology, and measure treatment 

responses after interventions.   

Using the same detection and recording techniques across ages, we found that very early “pre-
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spindles” 67, 81, spindles observed in neonatal periods, and spindles observed over the first year of life 

share remarkably similar features to the mature spindles observed in late adolescents. Consistent with 

previous clinical observations in infants and a larger study of older children, we found that both spindles 

in infancy and late adolescence are dominated by faster ~13 Hz frequencies over central or Rolandic brain 

regions 2, 67, 68. In contrast, but also consistent with earlier work, we found that between infancy and 

adolescence, spindles are slower and dominate over frontal regions 2. As spindle frequency is a heritable 

trait 2, spindle measures from infancy may provide a reliable early window into the integrity of the 

thalamocortical circuitry required for mature spindles. 

Compared to spindle frequency and topography, spindle rate and duration follow a different 

developmental trajectory, with an initial peak identified here and in previous smaller studies in the first 

year 46, 47 followed by a rapid decline and then steady increase from age two years onward 2, 50. Notably, 

these early non-linear dynamics rise and fall in striking parallel with the trajectory of cortical growth. 

Cortical grey matter increases dramatically (more than 100%) in the first year, due to ongoing 

neurogenesis, synaptogenesis, and increased spine density 82, 83, 84. Following this period of explosive 

growth, cortical thickness reverses course and begins to decrease between the first and second year, 

reflecting synaptic pruning 85. This U-shaped trajectory of cortical growth is heterochronic, with the most 

dramatic early cortical growth is seen in the central and parietal regions, the same locations we observe 

the most prominent spindle rates in the first year. In the prefrontal regions, cortical growth peaks around 

18 months, which coincides with our detection of the first frontal slow spindles 82, 86. In contrast to gray 

matter, white matter maturation increases steadily over the first two years of life, then continues at slower 

rate through late adolescence 85. Thus, the near-linear change in spindle rate with age in older children 

observed here and in prior studies 50, 54, 87 parallels, and may reflect, ongoing maturation of thalamocortical 

white matter connections.  
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Spindle rate and duration are dictated by the thalamocortical circuits that generate them. In the 

setting of reduced noradrenergic and serotonergic signaling during N2 sleep, the relatively hyperpolarized 

GABAergic neurons in the thalamic reticular nucleus (TRN) can autonomously generate burst firing or 

can be triggered by relatively small glutamatergic inputs from thalamocortical neurons. The burst firing 

of inhibitory TRN cells results in hyperpolarization of thalamocortical neurons, which conversely 

activates a hyperpolarization-activated cation current (Ih) and disinhibits the T-type calcium current, 

leading to a burst of action potentials from the glutamatergic thalamocortical cells that target the cortex 

and sends feedback to further engage the TRN 88. How and why spindles terminate is thought to be related 

to after-depolarization refractory periods in the thalamocortical neurons. In ex vivo slices, spindles can 

persist indefinitely if the Ih current is blocked 89, 90. Interestingly, we observed the longest spindle durations 

during infancy, suggesting reflect an immature state of this current. We also observed the longest spindle 

refractory periods in infancy, suggesting that spindle duration and refractory periods are not simply anti-

correlated and other factors must be contributing.  

Several lines of evidence suggest that sleep spindles support off-line replay of learned experiences 

during sleep, resulting in improved consolidation of these memories 9, 32, 87, 91, 92. Several studies have 

linked sleep spindle rate with cognitive functions in children 28, 29, 33, 93, 94, 95 and adults in both health 96, 97, 

98, 99 and disease 30, 33, 61, 100, 101, 102, 103, 104, with fast spindles more tied to procedural or motor learning 56, 

57, 58 and slow spindles to declarative memory 26, 55. We identified that fast spindles are present from birth 

and distinct slow spindles consistently emerge by 18 months. This finding is consistent with clinical 

descriptions 67, 105 and our previous observations of discrete 13 Hz and 11 Hz bands emerging at ~16 

months of age during non-rapid eye movement sleep (see Figure 2 in Chu et al, 2014 106). Our results 

suggest that several features of spindles may be required for accurate assays and prediction of intelligence. 

For example, spindle rate may reflect cortical replay and consolidation and frequency may indicate 
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network maturity. 

Our study draws from a database of primarily hospital-based recordings, which biases the subjects 

included towards those that pursued medical evaluation for an unusual event. Our approach did allow 

detailed clinical chart review to confirm normal neurodevelopment and the absence of neuroactive 

medications, or neurological or psychiatric diagnoses expected to impact cortical function, which may 

improve capture of these concerns compared to subjective reporting in population studies. We also note 

that the findings reported here are consistent with several smaller population-based studies 62, 64. While 

our study included 19-channel EEG montages, which improves upon the spatial sampling of EEGs used 

in typical polysomnograms, our EEG durations primarily included only short naps. We therefore could 

not evaluate the dynamics of spindles over the course of several N2 epochs, as would be expected over a 

full night of sleep. We note that while subtle changes in spindle rate may be present over the course of a 

full night 2, prior work has also found that naps can reliably estimate overnight spindle rate in adults 107. 

Further, we evaluated spindle dynamics over age using a cross-sectional study design. Validation of the 

dynamics observed here within individuals will require a long-term longitudinal study. Finally, we 

evaluated spindles from term infants onward and the developmental trajectory of spindles in premature 

neonates remains poorly characterized. Immature spindle bursts, also called “delta brushes” or delta-beta 

complexes, can be first observed in premature neonates at 28 weeks postmenstrual age in the form of 

coupled slow and fast oscillations triggered by sensory input 108, 109, 110. Delta brushes are generated by the 

same thalamocortical circuits as sleep spindles, can be similarly triggered by cortical sensory events, and 

serve the same roles in consolidating learned experiences 110, 111, 112, 113. “Spindle bursts” in premature 

infants could therefore provide additional insight and an even earlier biomarker of cognitive function, 

brain maturation, and thalamocortical circuit integrity.  

Sleep spindles are a unique neuronal rhythm that reflect and support cognitive function across the 
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lifespan. Spindles are known to follow a non-linear trajectory from late childhood through late adulthood. 

This work fills in the critical developmental gap of spindle ontogeny and maturation from birth through 

adolescence. Our findings reveal that neonatal spindle frequency and topology provide early, transient 

views of the adolescent form of these genetically influenced traits. In contrast, we show that spindle rate 

follows a maturational trajectory that closely parallels cortical development. These data expand our 

current knowledge of normal physiological brain development and provide a large normative database to 

detect deviations in sleep spindles to aid discovery, biomarker development, and diagnosis in cognitive 

development and pediatric neurodevelopmental disorders.  
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