bioRxiv preprint doi: https://doi.org/10.1101/2022.03.24.485682; this version posted March 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Gfastats: conversion, evaluation and manipulation of genome sequences using assembly graphs
Giulio Formenti', Linelle Abueg', Angelo Brajuka', Nadolina Brajuka', Cristo Gallardo?, Alice Giani®,
Olivier Fedrigo', Erich D. Jarvis'

' The Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, New York,
USA

? Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg,
Freiburg, Germany.

3 Weill Cornell Medicine 1300 York Ave, New York, NY 10065

Abstract

Motivation

With the current pace at which reference genomes are being produced, the availability of tools that
can reliably and efficiently generate genome assembly summary statistics has become critical.
Additionally, with the emergence of new algorithms and data types, tools that can improve the quality
of existing assemblies through automated and manual curation are required.

Results

We sought to address both these needs by developing gfastats, as part of the Vertebrate Genomes
Project (VGP) effort to generate high-quality reference genomes at scale. Gfastats is a standalone tool
to compute assembly summary statistics and manipulate assembly sequences in fasta, fastq, or gfa
[.gz] format. Gfastats stores assembly sequences internally in a gfa-like format. This feature allows
gfastats to seamlessly convert fast* to and from gfa [.gz] files. Gfastats can also build an assembly
graph that can in turn be used to manipulate the underlying sequences following instructions provided
by the user, while simultaneously generating key metrics for the new sequences.

Availability and implementation

Gfastats is implemented in C++. Precompiled releases (Linux, MacOS, Windows) and commented
source code for gfastats are available under MIT license at https:/github.com/vgl-hub/gfastats.
Examples of how to run gfastats are provided in the Github. Gfastats is also available in Bioconda, in
Galaxy (https://assembly.usegalaxy.eu) and as a MultiQC module [1]
(https://github.com/ewels/MultiQC). An automated test workflow is available to ensure consistency of
software updates.

Supplementary information
Supplementary data are available at Bioinformatics online.

https://github.com/vgl-hub/gfastats
https://assembly.usegalaxy.eu/
https://paperpile.com/c/1zqMrD/7RKwH
https://github.com/ewels/MultiQC
https://doi.org/10.1101/2022.03.24.485682
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.24.485682; this version posted March 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Introduction

In recent years we have witnessed an unprecedented increase in the number of publicly available
genomes [2,3]. Thanks to advancements in genome sequencing and assembly [4], these genomes tend
to be highly accurate and contiguous. Reference genomes are made available in publicly maintained
archives such as Genbank by the US National Center for Biotechnology Information (NCBI,
www.ncbi.nlm.nih.gov/genbank), the European Nucleotide Archive (ENA,
www.ebi.ac.uk/ena/browser/home) by the European Bioinformatics Institute, the DNA Data Bank of
Japan (DDBJ, www.ddbj.nig.ac.jp) or the China National Genebank (CNGB, https://db.cngb.org), or
project-related repositories such as the Vertebrate Genomes Project (VGP) Genome Ark
(https://vgp.github.io/) [4]. Assemblies are usually stored as collections of sequences representing

either contigs (i.e. contiguous stretches of nucleotide sequences) or scaffolds (i.e. contigs separated by
gaps of unknown sequence). The size of gaps can be approximately estimated (sized gaps) or
unknown.

Sequence collections are generally stored in the popular FASTA format developed in 1985 [5]. In
FASTA, each sequence is introduced by a ">" character followed by a header and a comment, and the
sequence on newlines. Similar to FASTA, the FASTQ format was developed over two decades ago at
the Wellcome Trust Sanger Institute [6] and later popularized by Illumina to store short read
sequencing data with per-base quality information. More recently, the representation of biological
sequences has been expressed under the conceptual framework of graph theory [7]. In a graph,
genome assemblies can be represented as collections of sequences (nodes) linked by experimental
evidence (edges). GFA is a popular format to store sequence data as graphs. GFAI,

(http://gfa-spec.github.io/GFA-spec/GFA 1.html) which was introduced in 2014

(http://1h3.github.i0/2014/07/19/a-proposal-of-the-grapical-fragment-assembly-format), can be used to
conveniently store and visualize [8] key features of sequence graphs, such as the product of an

assembly [9], the representation of variation in genomes or overlaps between reads. Since the graph is
not yet collapsed to a linear representation, many additional characteristics can be deduced. The GFA1
format consists of lines with tab-delimited fields. The first field defines the line type, which in turn
defines additional required fields, followed by optional fields. Examples of line types are segments (S,
usually a contig) and edges (L, usually an overlap between two contigs). GFA was later generalized to
GFA2, which allows specifying an assembly graph in either less detail (e.g. only the topology of the
graph) or in more detail (e.g. the multi-alignment of reads underlying each sequence)
(https://github.com/GFA-spec/GFA-spec/blob/master/GFA2.md). Importantly, GFA2 introduces more
line types to include gaps (G), allowing scaffolds (i.e. contig separated by gaps) to be represented.

As more and more reference genomes become available, a single fast, versatile tool that can compute
assembly summary statistics from a variety of file formats is warranted. In the framework of the VGP,
which aims to generate high-quality genome assemblies for all vertebrate species, we have developed
and present here gfastats (short for graph-based *fa* statistics). By internally representing any input
sequence (FASTA, FASTQ, GFA1/2) in a more general GFA2-like format, gfastats can efficiently
compute accurate summary statistics. It further allows simultaneous manipulation of the assembly
sequences, thereby potentially facilitating both automated assembly and manual curation.

Results

For optimization purposes, gfastats is coded solely in C/C++, taking full advantage of object-oriented
programming. In gfastats v1.2.0 (the version presented hereinafter), contigs (segments), edges and
gaps are represented with classes, and so are the collections of paths through contigs and gaps that,
taken together, represent a genome assembly (Figure 1a). Features of interest are represented using
bed coordinates. Input includes any *fa* (fasta, fastq, gfa [.gz]) file. Since gfastats reads and stores

https://paperpile.com/c/1zqMrD/hV3EJ+EiruX
https://paperpile.com/c/1zqMrD/sCFCW
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ebi.ac.uk/ena/browser/home
http://www.ddbj.nig.ac.jp
https://db.cngb.org
https://vgp.github.io/
https://paperpile.com/c/1zqMrD/sCFCW
https://paperpile.com/c/1zqMrD/tBSOA
https://paperpile.com/c/1zqMrD/USUY8
https://paperpile.com/c/1zqMrD/jJ5bx
http://gfa-spec.github.io/GFA-spec/GFA1.html
http://lh3.github.io/2014/07/19/a-proposal-of-the-grapical-fragment-assembly-format
https://paperpile.com/c/1zqMrD/Z8fLr
https://paperpile.com/c/1zqMrD/9Ic8n
https://github.com/GFA-spec/GFA-spec/blob/master/GFA2.md
https://doi.org/10.1101/2022.03.24.485682
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.24.485682; this version posted March 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

any input in a gfa-like format, it allows the seamless conversion between different formats
(fasta<>fastq<>gfa[.gz]). Inputs are processed on the fly to generate summary statistics.

Gfastats computes a growing number of assembly/sequence metrics (Figure 1a; see Supplementary
Table 1 for a complete list and a comparison with other tools that provide assembly summary
statistics). Metrics for each contig can also be generated. AGP (A Golden Path), BED coordinates and
sizes of scaffolds, contigs and gaps can be conveniently outputted. Input can be filtered in a
pre-processing step to include/exclude sequences or portions of them using scaffold lists or bed
coordinate files. Sequences can be sorted, either according to a list or to other characteristics (name,
length, etc.). Gfastats also allows homopolymer (de)compression, a feature increasingly useful when
dealing with long reads.

Importantly, gfastats can convert AGP to GFA paths, allowing the output of any automated
scaffolding tool such as Bionano Solve (https://bionanogenomics.com/downloads/bionano-solve/)
SALSA2 [10] to be integrated in the graph. This avoids flatting the assembly graph to a linear
sequence, making the integration of information from different sources and algorithms possible. In
addition, since the assembly process is still imperfect, manual manipulation of contig and scaffold
sequences is also needed. Genome assemblies often undergo a long process of curation, in which
experts manually validate and correct the assembly using evidence from the raw data [11]. The
process is not just laborious, but it also relies on file format specifications not adapted and not
specifically designed for this purpose. By representing any input sequence as a graph, gfastats allows
their manual manipulation. For instance, gfastats can build a bidirected graph representation of the
assembly using adjacency lists, where each node is a segment, and each edge is a gap (Figure 1b).
Canonical algorithms (e.g. Depth First Search) are used to walk the graph. In this case, the
manipulation is achieved by the internal 'swiss army knife' (SAK) for genome assembly. SAK
evaluates a set of basic sequential instructions, i.e. actions to be performed one-by-one on the graph to
manipulate the sequence (e.g. join or split contigs, reverse complement sequence, etc.). Here, the
representation of the assembly as a graph allows several operations to be performed (e.g. the removal
of all trailing Ns from scaffolds by dropping all terminal gap edges). Once all instructions for the SAK
are processed, metrics are updated and returned, allowing evaluation of the revised assembly. The
filtered and/or manipulated input can also be outputted in any *fa* format, thereby generating new
sequences.

Testing on a 2.8 GHz Quad-Core Intel Core i7 using 370 genome assemblies from the VGP shows
that gfastats can compute all summary statistics in less than a minute for genome assemblies of size
up to 4 Gbp in O(N) time (Figure 1¢). Assembly manipulation comes with minimal overhead.

https://paperpile.com/c/1zqMrD/3eYv
https://paperpile.com/c/1zqMrD/mlf2O
https://doi.org/10.1101/2022.03.24.485682
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.24.485682; this version posted March 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

a assembly.fa|fq|gfal.gz] Include/exclude.bed b &
.)edCoordinates ~

11 A Os Oc)
A\ K\-—//
_/ ~
Legend " b
M /0
“» manipulation 100
B data
& computation 75
z
o —~ gzip
E %0 plain text
25
0
reports assembly.fa|fq|gfal.gz] 0e+00 26+09 46+09 66+09

Genome size

Figure 1. a) Schematic of gfastats workflow. Inputs (blue) include genome assemblies in fasta, fastq, gfa [.gz]
formats and include/exclude lists as bed coordinate files for filtering (green). These are represented internally by
multiple C++ classes (orange) and decomposed in their constituent elements (gray). Statistics can be generated
for the assembly (black), or the assembly can be converted to a graph (black), to ease manipulation by the
internal Swiss Army Knife (SAK; green). A variety of output can be generated, including summary statistics
and new sequences in *fa* format. b) Internal bidirected graph representation of the input sequences.
Segments/contigs (nodes, light blue) are connected by forward (purple) or backward (green) gaps (edges).
Terminal nodes can optionally contain sequence gaps (dashed lines). So an assembly scaffold is a path in the
graph (e.g. A - a —» B — ¢ — (). Sequence manipulation can be achieved using the internal SAK. For
instance, the gap edges a,b connecting segment nodes 4,8 can be removed leading to a disconnected component
with a starting gap 4, and connected graph A-B with a terminal gap. Overlap edges can be similarly treated. c)
Evaluation of gfastats runtime. Performance time is a function of genome size, with gfastats runtime increasing
linearly. There is a small increase in time when handling gzip compressed files.

Discussion and future perspectives

As graph representations of genome assemblies become more popular, effective tools that make
assembly graph storage, analysis and manipulation easily accessible become necessary. While a few
libraries already exist to deal with GFA files [12] (https://github.com/lh3/gfatools), they do not make
FASTA and GFA fully interoperable, and do not directly allow their seamless manipulation. The
design of gfastats addresses this need in a modular framework, allowing new features to be readily
implemented. Potential new features include: file indexing to test multiple hypotheses with minimal
runtime overhead, pattern search, sequence soft’/hard-masking, and new instructions to the SAK.
Additional FASTA and GFA statistics can also be introduced based on the needs of the genomics
community. Importantly, gfastats introduces a whole new conceptual framework for assembly
manipulation where the results of automated algorithms or manual curation be integrated in a single
file format and can be expressed in a human-readable set of instructions for the SAK, which also
conveniently acts as a log of the changes that were applied during the process.

Author contributions

G.F. implemented gfastats with contributions from A. G., A. B.,, L. A, N.B.and C. G. A. G,, L. A, N.
B. performed the comparative analyses. N. B. evaluated runtime performances using the VGP
genomes. A. B. implemented the automated test workflow and homopolymer compression. C. G.
implemented gfastats in Conda and Galaxy. A. G. contributed to the conceptual development. G. F.

https://paperpile.com/c/1zqMrD/Ektm6
https://doi.org/10.1101/2022.03.24.485682
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.24.485682; this version posted March 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

conceived the study and wrote the manuscript, with contributions from O. F. and E. D. J. All authors
reviewed and approved the manuscript.

Competing Interests statement
The authors declare no competing interests.

Acknowledgments
We thank Bjorn Griining for helping with the implementation of gfastats in Conda and Galaxy.

Supplementary table 1: Typical *fa* operations computed by gfastats for scaffolds, contigs (nodes),
gaps (edges). Several metrics are missing from popular summary statistics tools, e.g. QUAST [13],
SeqKit [14] and Bandage [8]. AuN, area under the curve.

References

[1] Ewels P, Magnusson M, Lundin S, Kéller M. MultiQC: summarize analysis results for multiple
tools and samples in a single report. Bioinformatics 2016;32:3047-8.

[2] Lewin HA, Robinson GE, Kress WJ, Baker W], Coddington J, et al. Earth BioGenome Project:
Sequencing life for the future of life. Proc Natl Acad Sci U S A 2018;115:4325-33.

[3] Lewin HA, Richards S, Lieberman Aiden E, Allende ML, Archibald JM, et al. The Earth
BioGenome Project 2020: Starting the clock. Proc Natl Acad Sci U S A 2022;119.
doi:10.1073/pnas.2115635118.

[4] Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, et al. Towards complete and error-free
genome assemblies of all vertebrate species. Nature 2021;592:737-46.

[5] Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science
1985;227:1435-41.

[6] Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for
sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res
2010;38:1767-71.

[7] Paten B, Novak AM, Eizenga JM, Garrison E. Genome graphs and the evolution of genome
inference. Genome Res 2017;27:665-76.

[8] Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome
assemblies. Bioinformatics 2015;31:3350-2.

[9] Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using
phased assembly graphs with hifiasm. Nat Methods 2021;18:170-5.

[10] Ghurye J, Rhie A, Walenz BP, Schmitt A, Selvaraj S, et al. Integrating Hi-C links with assembly
graphs for chromosome-scale assembly. PLoS Comput Biol 2019;15:¢1007273.

[11] Howe K, Chow W, Collins J, Pelan S, Pointon D-L, et al. Significantly improving the quality of
genome assemblies through curation. Gigascience 2021;10. doi:10.1093/gigascience/giaal53.

[12] Dawson ET, Durbin R. GFAKluge: A C++ library and command line utilities for the Graphical
Fragment Assembly formats. J Open Source Softw 2019;4. doi: 10.21105/joss.01083.

[13] Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome
assemblies. Bioinformatics 2013;29:1072-5.

[14] Shen W, Le S, Li Y, Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File
Manipulation. PLoS One 2016;11:¢0163962.

https://paperpile.com/c/1zqMrD/ppR4Y
https://paperpile.com/c/1zqMrD/T62kU
https://paperpile.com/c/1zqMrD/Z8fLr
http://paperpile.com/b/1zqMrD/7RKwH
http://paperpile.com/b/1zqMrD/7RKwH
http://paperpile.com/b/1zqMrD/hV3EJ
http://paperpile.com/b/1zqMrD/hV3EJ
http://paperpile.com/b/1zqMrD/EiruX
http://paperpile.com/b/1zqMrD/EiruX
http://paperpile.com/b/1zqMrD/EiruX
http://dx.doi.org/10.1073/pnas.2115635118
http://paperpile.com/b/1zqMrD/EiruX
http://paperpile.com/b/1zqMrD/sCFCW
http://paperpile.com/b/1zqMrD/sCFCW
http://paperpile.com/b/1zqMrD/tBSOA
http://paperpile.com/b/1zqMrD/tBSOA
http://paperpile.com/b/1zqMrD/USUY8
http://paperpile.com/b/1zqMrD/USUY8
http://paperpile.com/b/1zqMrD/USUY8
http://paperpile.com/b/1zqMrD/jJ5bx
http://paperpile.com/b/1zqMrD/jJ5bx
http://paperpile.com/b/1zqMrD/Z8fLr
http://paperpile.com/b/1zqMrD/Z8fLr
http://paperpile.com/b/1zqMrD/9Ic8n
http://paperpile.com/b/1zqMrD/9Ic8n
http://paperpile.com/b/1zqMrD/3eYv
http://paperpile.com/b/1zqMrD/3eYv
http://paperpile.com/b/1zqMrD/mlf2O
http://paperpile.com/b/1zqMrD/mlf2O
http://dx.doi.org/10.1093/gigascience/giaa153
http://paperpile.com/b/1zqMrD/mlf2O
http://paperpile.com/b/1zqMrD/Ektm6
http://paperpile.com/b/1zqMrD/Ektm6
http://dx.doi.org/10.21105/joss.01083
http://paperpile.com/b/1zqMrD/Ektm6
http://paperpile.com/b/1zqMrD/ppR4Y
http://paperpile.com/b/1zqMrD/ppR4Y
http://paperpile.com/b/1zqMrD/T62kU
http://paperpile.com/b/1zqMrD/T62kU
https://doi.org/10.1101/2022.03.24.485682
http://creativecommons.org/licenses/by/4.0/

