

27 **ABSTRACT**

28 At mature CA1→subiculum synapses, alternatively spliced SS4+ variants of neurexin-1
29 (Nrnx1^{SS4+}) and neurexin-3 (Nrnx3^{SS4+}) enhance NMDA- and suppress AMPA-receptors,
30 respectively. Both Nrnx1^{SS4+} and Nrnx3^{SS4+} act by binding to secreted cerebellin-2 (Cbln2)
31 that in turn activates postsynaptic GluD1, which is homologous to AMPA- and NMDA-
32 receptors. Whether neurexin-Cbln2-GluD1 signaling complexes have additional functions in
33 synapse formation besides regulating NMDA- and AMPA-receptors, and whether they
34 perform similar roles at other synapses, remains unknown. Using constitutive *Cbln2*
35 deletions, we here demonstrate that at CA1→subiculum synapses, *Cbln2* performs no
36 additional developmental functions besides regulating AMPA- and NMDA-receptors.
37 Moreover, we show that low-level expression of Cbln1, which is functionally redundant with
38 Cbln2, does not compensate for a synapse-formation function of Cbln2 at CA1→subiculum
39 synapses. In exploring the generality of these findings, we found that in prefrontal cortex,
40 Nrnx1^{SS4+}-Cbln2 signaling selectively regulates NMDA-receptors, whereas Nrnx3^{SS4+}-Cbln2
41 signaling has no apparent role. In contrast, in the cerebellum Nrnx3^{SS4+}-Cbln1 signaling
42 regulates AMPA-receptors, whereas now Nrnx1^{SS4+}-Cbln1 signaling has no manifest effect.
43 Thus, Nrnx1^{SS4+}- and Nrnx3^{SS4+}-Cbln1/2 signaling complexes generally control NMDA- and
44 AMPA-receptors in different synapses without regulating synapse formation, but these
45 signaling complexes are differentially active in diverse neural circuits.

46

47

48

49

50

51

52

53

54

55

56

57 INTRODUCTION

58 Synaptic organizers are cell-adhesion molecules that direct the formation of synapses and
59 shape their properties (Siddiqui and Craig, 2011; Ribic and Biederer, 2019; Sanes and
60 Zipursky, 2020; Südhof, 2021; Kim et al., 2021; Graham and Duan, 2021). Multiple
61 candidate synaptic organizers were described, among which neurexins and their
62 multifarious ligands are arguably the best studied (reviewed in Noborn and Sterky, 2021;
63 Gomez et al., 2021; Südhof, 2017; Kasem et al., 2018). Neurexins are presynaptic
64 adhesion molecules that are encoded in mice by the *Nrxn1*, *Nrxn2*, and *Nrxn3* genes, each
65 of which directs synthesis of longer α -neurexins and shorter β -neurexins from separate
66 promoters (Tabuchi and Südhof, 2002). In addition, the *Nrxn1* gene (but not the *Nrxn2* and
67 *Nrxn3* genes) contain a third promoter for even shorter *Nrxn1 γ* (Sterky et al., 2017). All
68 neurexin transcripts are extensively alternatively spliced at multiple sites, resulting in
69 thousands of neurexin isoforms whose expression is tightly regulated (Lukacsovich et al.,
70 2019; Nguyen et al., 2016; Ullrich et al., 1995; Fuccillo et al., 2015). Among the sites of
71 alternative splicing of neurexins, splice site 4 (SS4) is possibly the most important because
72 it regulates the interactions of neurexins with many of their ligands, including that of
73 cerebellins (reviewed in Südhof, 2017). SS4 exhibits two variants that contain (SS4+) or
74 lack (SS4-) a 30 residue insert, with only SS4+ neurexins binding to cerebellins.

75 Mammals contain four cerebellin genes (*Cbln1-4* in mice) that encode secreted multimeric
76 C1q-domain proteins. Cerebellins function as trans-synaptic adaptors by connecting
77 presynaptic neurexins to postsynaptic receptors (reviewed in Yuzaki, 2018; Matsuda,
78 2017). *Cbln1*, *Cbln2*, and *Cbln4* are broadly expressed in brain, whereas *Cbln3* is specific
79 for cerebellar granule cells and requires *Cbln1* for secretion (Bao et al., 2006; Miura et al.,
80 2006). Remarkably, *Cbln1*, *Cbln2*, and *Cbln4* are not uniformly expressed in all neurons,
81 but synthesized in restricted subsets of neurons (Seigneur and Südhof, 2017). For
82 example, cerebellar granule cells express high levels of *Cbln1* but only modest levels of
83 *Cbln2*, excitatory entorhinal cortex neurons express predominantly *Cbln4*, and neurons in
84 the medial habenula (mHb) express either *Cbln2* or *Cbln4* (Seigneur and Südhof, 2017).
85 Although all cerebellins bind to presynaptic neurexins, they interact with different
86 postsynaptic receptors: *Cbln1* and *Cbln2* bind to GluD1 and GluD2 (Matsuda et al., 2010),
87 whereas *Cbln4* binds to neogenin-1 (Neo1) and DCC (Wei et al., 2012; Haddick et al.,
88 2014; Zhong et al., 2017). By connecting presynaptic neurexins to postsynaptic GluDs or to

89 Neo1/DCC, cerebellins are thought to mediate trans-synaptic signaling and to organize
90 synapses, but their precise functions are incompletely understood.

91 In the cerebellum, deletion of *Cbln1* or of its receptor GluD2 (gene symbol *Grid2*)
92 throughout development causes a partial loss of parallel-fiber synapse numbers, and
93 completely abolishes long-term plasticity (Hirai et al., 2005; Uemura et al., 2007; Rong et
94 al., 2012a). Parallel-fiber synapses develop initially normally, but are subsequently lost
95 (Kashiwabuchi et al., 1995; Kurihara et al., 1997; Hirai et al., 2005; Takeuchi et al., 2005).

96 Analyses of genetic deletions of *Cbln1*, *Cbln2*, and *Cbln4* outside of the cerebellum
97 revealed behavioral changes and abnormal synaptic transmission with little or no loss of
98 synapses (Kusnoor et al., 2010; Rong et al., 2012a; Otsuka et al., 2016; Seigneur et al.,
99 2018; Seigneur and Südhof, 2018; Seigneur et al., 2021), suggesting a role in shaping
100 synapse properties. For example, constitutive *Cbln1/2* double and *Cbln1/2/4* triple KO mice
101 displayed major behavioral impairments but no synapse loss in the hippocampus at 2
102 months of age, although synapse loss developed over the next 4 months (Seigneur and
103 Südhof, 2018). Moreover, a modest loss of synapses was detected in the striatum and
104 prefrontal cortex at 6 months of age (Seigneur and Südhof, 2018). Furthermore, the
105 constitutive deletion of *Cbln2* produced abnormal compulsive behaviors in mice that
106 resulted from insufficient activation of serotonergic neurons in the dorsal raphe, and could
107 be reversed by administration of serotonergic agonists (Seigneur et al., 2021). Similarly,
108 conditional inactivation of *Cbln2* expression in the mHb led to major behavioral alterations
109 and a rapid decline in mHb→interpeduncular nucleus synaptic transmission, but produced
110 synapse loss only after 3 months (Seigneur et al., 2018).

111 Viewed together, these studies suggest that in all brain regions, cerebellins are essential for
112 maintaining a normal behavioral repertoire and that they are not involved in the initial
113 formation of synapses, but that their deletion in multiple brain regions causes a secondary
114 loss of a subset of synapses. Contrary to this conclusion, however, an RNAi-induced
115 suppression of *Cbln2* expression was found to suppress formation of excitatory synapse
116 numbers in the CA1 region of the hippocampus (Tao et al., 2018), which is puzzling since
117 little *Cbln2* can be detected in the CA1 region, and since constitutive KO mice at the same
118 age do not exhibit a synapse loss (Seigneur and Südhof, 2017 and 2018). Similarly, an
119 RNAi-induced suppression of *Cbln4* expression was shown in the medial prefrontal cortex
120 (mPFC) to cause an inhibitory synapse loss via a GluD1-dependent mechanism (Fossati et
121 al., 2019), which is also puzzling since *Cbln4* does not bind to GluD1 (Zhong et al., 2017;

122 Cheng et al., 2016). Moreover, it has been reported that overexpression of human Cbln2 in
123 mouse prefrontal cortex increases the spine density, implying an increase in synapse
124 formation (Shibata et al., 2021). However, this observation also raised questions because
125 again in *Cbln2* KO mice of the same age, little synapse loss is detected in the cortex
126 (Seigneur and Südhof, 2018), and even in the cerebellum of *Cbln1* KO mice, the observed
127 synapse loss is not accompanied by an equivalent decrease in spine density (Hirai et al.,
128 2005). Moreover, the properties and the function of synapses were not actually measured
129 by Shibata et al. (2021), making interpretations difficult. Finally, a synthetic synaptic
130 organizer protein composed of Cbln1 fused to neuronal pentraxin 1 was shown to induce
131 synapse formation in vivo (Suzuki et al., 2020), but in this experiment the binding partners
132 of the synthetic protein were unclear, especially since little is known about the function of
133 neuronal pentraxin 1, and the nature of the synaptogenic activity remained unexplored.

134 We previously demonstrated that at CA1→subiculum synapses, presynaptic neurexin-1
135 containing an insert in SS4 ($\text{Nrnxn1}^{\text{SS4}+}$) dominantly enhanced NMDA-receptor (NMDAR)
136 EPSCs, whereas presynaptic neurexin-3 containing an insert in SS4 ($\text{Nrnxn3}^{\text{SS4}+}$) dominantly
137 suppressed AMPA-receptor (AMPAR) EPSCs (Aoto et al., 2013; Dai et al., 2019). More
138 recently, we showed that $\text{Nrnxn1}^{\text{SS4}+}$ and $\text{Nrnxn3}^{\text{SS4}+}$ both act by binding to Cbln2 which in
139 turn binds to GluD1, indicating that at CA1→subiculum synapses, $\text{Nrnxn1/3}^{\text{SS4}+}$ -Cbln2-GluD1
140 complexes mediate trans-synaptic signaling that controls NMDARs and AMPARs (Dai et
141 al., 2021). No changes in synapse density were detected as a function of any of these
142 manipulations – in fact, the massive increase in AMPAR EPSCs induced by the *Cbln2*
143 deletion suggested that if a change in synapses occurred, it should have been an increase,
144 not a decrease (Dai et al., 2021).

145 These results characterized a trans-synaptic signaling pathway that organized one
146 particular synapse (CA1→subiculum synapses), but only this synapse was studied and it
147 was only examined after it had fully developed, raising a series of questions. Specifically,
148 does Cbln2 have additional essential roles in development at CA1→subiculum synapses?
149 Since low levels of Cbln1 are also present at these synapses, is it possible that Cbln1
150 compensates for such additional functions in mature synapses? Furthermore, does Cbln2
151 function identically at different subtypes of CA1→subiculum synapses, where the properties
152 of synapses formed on regular- and burst-firing neurons are quite different (Wojtowicz et al.,
153 2010; Wozny et al., 2008a and 2008b)? More broadly and possibly more importantly, does
154 a signaling pathway similar to the $\text{Nrnxn1/3}^{\text{SS4}+}$ -Cbln2-GluD1 pathway operate at other

155 synapses in brain, or is this pathway specific to CA1→subiculum synapses? To address
156 these questions, we here first examined the role of Cbln2 and Cbln1 in CA1→subiculum
157 synapses, and probed their function in relation to upstream Nrxn1^{SS4+} and Nrxn3^{SS4+}
158 signals. We then studied the potential role of Nrxn1/3^{SS4+}-Cbln1/2 signaling in two other
159 paradigmatic synapses, namely Layer 2/3 to Layer 5/6 excitatory connections in the mPFC
160 and parallel-fiber synapses in the cerebellum, which we investigated because previous
161 work demonstrated a role for cerebellins in these brain regions. Our data suggest that the
162 Nrxn1/3^{SS4+}-Cbln1/2 signaling pathway has no role in synapse formation but functions to
163 shape the NMDAR- and AMPAR-content at multiple types of synapses, and that different
164 types of synapses exhibit distinct facets of this signaling pathway, such that in the mPFC,
165 only the Nrxn1^{SS4+}-Cbln2 signaling mechanism is present, whereas in the cerebellum, only
166 the Nrxn3^{SS4+}-Cbln1 signaling pathway operates.

167

168 RESULTS

169 **Constitutive deletion of Cbln2 suppresses NMDARs and enhances AMPARs both at** 170 **regular- and at burst-firing subiculum neuron synapses**

171 Our previous conclusion that presynaptic Nrxn1^{SS4+} and Nrxn3^{SS4+} regulate postsynaptic
172 NMDARs and AMPARs, respectively, via binding to Cbln2 but that Nrxn1, Nrxn3, and Cbln2
173 are not required for synapse formation relied on conditional manipulations at mature
174 CA1→subiculum synapses (Dai et al., 2021). In contrast to these results, studies in the
175 cerebellum (Hirai et al., 2005; Ito-Ishida et al., 2008; Rong et al., 2012a; Yuzaki, 2011) and
176 the prefrontal cortex (Shibata et al., 2021) suggested a function for Cbln1 and Cbln2,
177 respectively, in synapse formation, raising the question whether we might have overlooked
178 such a role with conditional deletions. Moreover, in our experiments we did not differentiate
179 between CA1→subiculum synapses on regular- and on burst-firing neurons that exhibit
180 distinct forms of long-term plasticity (Wozny et al., 2008b). To explore whether Cbln2 may
181 have an earlier developmental role in addition to its regulation of AMPARs and NMDARs at
182 mature CA1→subiculum synapses, we examined the effect of the constitutive deletion of
183 Cbln2. To determine whether Cbln2 may have distinct functions at synapses on regular-
184 and burst-firing neurons, moreover, we studied these synapses separately at the same time
185 (Figure. 1).

186 We generated and probed littermate WT and constitutive Cbln2 KO mice, and examined
187 CA1 \rightarrow subiculum synaptic transmission in acute slices at postnatal day 35-42 (P35-42)
188 (Figure 1A). In these experiments, we distinguished between regular- or burst-firing
189 neurons in the subiculum by their electrical properties, stimulated axons emanating from the
190 CA1 region, the major source of excitatory inputs into the subiculum (Bohm et al., 2018),
191 and monitored EPSCs. In both regular- and burst-firing neurons, the constitutive Cbln2
192 deletion caused a large elevation (~50%) in AMPAR-EPSC amplitudes and a similarly large
193 decrease (~50%) in NMDAR-EPSC amplitudes, as quantified in input/output curves to
194 control for differences in stimulation efficiency (Figure 1B, 1C, 1G, 1H). These results
195 exactly duplicated those obtained with conditional deletions, suggesting that the absence of
196 Cbln2 throughout development did not produce an additional change in synaptic responses.
197 Moreover, the finding that synapses on regular- and burst-firing neurons, the two different
198 major types of excitatory synapses in the subiculum, are identically regulated by Cbln2 was
199 confirmed in additional conditional deletion experiments (Figure S1).

200 Although CA1 \rightarrow subiculum synapses on regular- and burst-firing subiculum neurons are
201 similar, they exhibit distinct forms of LTP, with the former expressing an NMDAR-dependent
202 form of postsynaptic LTP, whereas the latter exhibits a presynaptic form of LTP (Wozny et
203 al., 2008b). The Cbln2 deletion had no effect on presynaptic LTP in burst-firing neurons
204 (Figure 1D, 1E) with a change in paired-pulse ratios (PPRs, Figure 1F) after induction, but
205 abolished postsynaptic LTP in regular-firing neurons (Figure 1I, 1J) without a change of
206 PPR after induction (Figure 1K). This deficit in LTP could be due to impaired LTP induction
207 given the reduced NMDAR-response in Cbln2 KO mice, but we previously found that
208 constitutive expression of Nrxn3^{SS4+} that regulates only AMPARs but not NMDARs also
209 blocks LTP (Aoto et al., 2013), suggesting that the deficit in NMDAR-dependent LTP in
210 Cbln2 KO mice could also be caused by a change in AMPAR trafficking. Consistent with the
211 dramatic changes in AMPAR- and NMDAR-responses in Cbln2 KO mice, we observed a
212 significant deficiency in contextual learning and memory in Cbln2 KO mice as monitored
213 using the two-chamber avoidance test (Figure 2; see also Dai et al., 2019).

214 The finding that the constitutive and conditional deletion of Cbln2 produce the same
215 synaptic phenotype suggests that the constitutive deletion, like the conditional deletion,
216 does not produce differences in synapse formation, as would also be indicated by the
217 dramatic increase in AMPAR-EPSC amplitudes induced by the Cbln2 deletion in both
218 conditions. However, since cerebellins are broadly thought to mediate synapse formation

219 (Kusnoor et al., 2010; Mishina et al., 2012; Matsuda, 2017; Seigneur and Sudhof, 2018;
220 Yuzaki, 2018), we examined the overall synapse density in the subiculum as a function of
221 the constitutive Cbln2 deletion using measurements of immunocytochemical staining
222 intensity for vGluT1 and quantifications of synaptic protein levels as a proxy (Figure 3). The
223 constitutive Cbln2 KO caused no change in vGluT1 staining intensity (Figure 3B, 3C) or in
224 the levels of multiple synaptic proteins as assessed by quantitative immunoblotting (Figure
225 3D, 3E). Together with the lack of a decrease in AMPAR-mediated responses, these
226 findings suggest that the constitutive Cbln2 KO ablating Cbln2 expression throughout
227 development, similar to the conditional deletion in juvenile mice, does not decrease
228 synapse numbers.

229

230 **Cbln2 regulates AMPARs and NMDARs via a trans-synaptic Nrxn1^{SS4+}- and Nrxn3^{SS4+}-
231 dependent mechanism, respectively**

232 We next set out to test whether the constitutive Cbln2 KO phenotype is due to the ablation
233 of normally occurring presynaptic Nrxn1^{SS4+} and Nrxn3^{SS4+} signals, as suggested by
234 previous studies (Aoto et al., 2013; Dai et al., 2019 and 2021). Quantifications of the
235 alternative splicing of neurexins at SS4 in the CA1 region, subiculum, PFC, and cerebellum
236 suggest that in the cerebellum, all neurexins are primarily expressed at SS4+ splice
237 variants, whereas in the other three regions examined neurexins are expressed as a
238 mixture of SS4+ and SS4- splice variants (Figure S2). Thus, a shift in alternative splicing of
239 neurexins at SS4 could play a major regulatory role, as suggested previously (Ding et al.,
240 2017; Fuccillo et al., 2015; Iijima et al., 2011). Therefore we used two experimental
241 paradigms to induce such a shift and thereby to ask whether deletion of Cbln2 blocked the
242 ability of Nrxn1^{SS4+} to enhance NMDAR-EPSCs and of Nrxn3^{SS4+} to suppress AMPAR-
243 EPSCs.

244 First, we crossed constitutive Cbln2 KO mice with conditional Nrxn1^{SS4+} or Nrxn3^{SS4+}
245 knockin mice (Aoto et al., 2013; Dai et al., 2019), and bilaterally infected the CA1 region of
246 these double-mutant mice by stereotactic injections with AAVs encoding Δ Cre (which
247 retains the SS4+ splice variant) or Cre (which converts the presynaptic SS4+ splice variant
248 into the SS4- variant) (Figure 4A). The Cbln2 deletion completely ablated the effect of the
249 presynaptic Nrxn1^{SS4+} or Nrxn3^{SS4+} knockin on NMDAR- and AMPAR-EPSCs, respectively
250 (Figure 4B, 4C). None of these manipulations altered PPRs, documenting that they did not

251 influence the release probability (Figure 4D, 4E). These results confirm that Cbln2 is
252 required for transduction of the presynaptic Nrxn1^{SS4+} or Nrxn3^{SS4+} signals into postsynaptic
253 NMDAR and AMPAR responses, respectively.

254 Second, we overexpressed Nrxn1 β^{SS4+} or Nrxn3 β^{SS4+} in the presynaptic CA1 region in
255 constitutive Cbln2 KO mice *in vivo* using stereotactic bilateral injections of AAVs (Figure
256 4F). We previously showed that overexpression of Nrxn1 β^{SS4+} in wild-type CA1 neurons
257 increases NMDAR- but not AMPAR-EPSCs at CA1 \rightarrow subiculum synapses, whereas
258 overexpression of Nrxn3 β^{SS4+} in wild-type CA1 neurons suppresses AMPAR- but not
259 NMDAR-EPSCs in the same synapses (Dai et al., 2019). When we tested the effect of
260 Nrxn1 β^{SS4+} or Nrxn3 β^{SS4+} in constitutive Cbln2 KO mice, however, Nrxn1 β^{SS4+} no longer
261 increased NMDAR-EPSCs and Nrxn3 β^{SS4+} no longer suppressed AMPAR-EPSCs (Figure
262 4G, 4H). None of these manipulations altered PPRs, demonstrating that they did not affect
263 presynaptic properties (Figure 4I, 4J). Viewed together, these data suggest that Cbln2
264 transduces presynaptic Nrxn1^{SS4+} and Nrxn3^{SS4+} signals into distinct postsynaptic receptor
265 responses at CA1 \rightarrow subiculum synapses.

266

267 **Double deletion of Cbln1 and Cbln2 produces the same phenotype as deletion of 268 Cbln2 alone**

269 Up to this point, our results indicate that Cbln2 functions both at regular- and at burst-firing
270 neuron synapses in the subiculum to control AMPARs and NMDARs without being required
271 for synapse formation. However, in these and earlier experiments we only studied Cbln2,
272 but quantifications show that Cbln1 is also expressed in the subiculum, albeit at lower levels
273 (Figure S3). Cbln1 and Cbln2 have biochemically nearly indistinguishable properties,
274 suggesting that they are functionally redundant. The finding that Cbln1 is also expressed in
275 the subiculum raises the possibility that the observed Cbln2 KO phenotype reflects only
276 those functions of Cbln2 that are most sensitive to a decrease in overall Cbln1/2 levels, and
277 that the remaining Cbln1 could occlude other phenotypes. To address this concern, we
278 generated conditional Cbln1/2 double KO mice and analyzed the effect of the double
279 Cbln1/2 deletion in the subiculum by electrophysiology, using a more expansive array of
280 measurements to ensure that no effects were overlooked (Figure 5A).

281 Measurements of NMDAR-EPSCs and AMPAR-EPSCs elicited by stimulation of CA1
282 axons revealed the same phenotype in Cbln1/2 double conditional KO subiculum as the

283 conditional and constitutive Cbln2-only deletion: A decrease in NMDAR-responses and an
284 increase in AMPAR-responses (Figure 5B, 5D). These phenotypes were validated using
285 input/output measurements to control for variabilities in the position of the stimulating
286 electrode, and were due to a postsynaptic mechanism, as described before, since the
287 PPRs did not change (Figure 5C, 5E). We also measured spontaneous mEPSCs as an
288 indirect measure of synaptic activity and synapse numbers, and monitored mEPSCs at two
289 holding potentials (-70 mV and +60 mV) to capture the contributions of both AMPARs and
290 NMDARs to the mEPSCs (Figure 5F-5I). mEPSCs monitored at -70 mV are exclusively
291 mediated by AMPARs, whereas mEPSCs monitored at +60 mV contain contributions of
292 both AMPAR and NMDAR activation. At both holding potentials, the mEPSC frequency was
293 massively enhanced (~100-130% increase) by the Cbln1/2 double KO, presumably
294 because of the increased AMPAR-responses leads to increased detection of mEPSCs at
295 both holding potentials. Importantly, the average mEPSC amplitude was increased at the -
296 70 mV holding potential but the average mEPSC total charge transfer decreased at the +60
297 mV, consistent with the observation that the double Cbln1/2 KO increases AMPAR- but
298 decreases NMDAR-responses (Figure 5B, 5D).

299 Finally, we asked whether the phenotype of the double Cbln1/2 KO might be more sensitive
300 to manipulations of neurexins than that of the Cbln2 single KO. Focusing on Nrnx1 and
301 NMDARs, we found that as with the single deletion of Cbln2, NMDAR EPSCs were no
302 longer altered upon presynaptic overexpression of Nrnx1 β containing or lacking an insert in
303 SS4 (Figure 5J-5L). Overall, these data suggest that the Cbln1/2 double deletion has the
304 same overall phenotype as the Cbln2 single deletion, with a dramatic change in AMPAR-
305 and NMDAR-EPSCs but no apparent changes in presynaptic release probability.

306

307 **Nrnx1^{SS4+}-Cbln2 complexes upregulate NMDARs in the prefrontal cortex, while**
308 **Nrnx3^{SS4+}-Cbln2 complexes have no effect**

309 Our studies in two different CA1 \rightarrow subiculum synapses, described here and previously
310 (Aoto et al., 2013 and 2015; Dai et al., 2019 and 2021), show that Nrnx1^{SS4+}-Cbln2
311 complexes upregulate NMDARs whereas Nrnx3^{SS4+}-Cbln2 complexes downregulate
312 AMPARs. Does this trans-synaptic signaling pathway also operate in non-subiculum
313 synapses, or is this a specific feature of subiculum synapses?

314 To address this question, we conditionally deleted Cbln2 from the mPFC (Figure 6A), which
315 was chosen because it exhibits robust expression of Cbln2 (Figure S3) and because Cbln2
316 is particularly interesting in the mPFC due to its human-specific regulation of expression in
317 this brain region (Shibata et al., 2021). We stereotactically injected AAVs encoding Δ Cre or
318 Cre into the mPFC of Cbln2 conditional KO mice at P21, and analyzed layer2/3 (L2/3) \rightarrow
319 layer5/6 (L5/6) synapses in acute slices at P35-42 (Figure 6A). For this purpose, we placed
320 the stimulating electrode close to L2/3 neurons and recorded from L5/6 pyramidal neurons
321 (Figure 6B).

322 The conditional Cbln2 deletion produced a massive increase (~100%) in the
323 AMPAR/NMDAR ratio of L2/3 \rightarrow L5/6 synaptic transmission in the mPFC (Figure 6C). This
324 increase was due to a large reduction (~50%) in NMDAR-EPSC amplitudes without a
325 change of AMPAR-EPSC amplitudes (Figure 6C). Again, we observed no changes in PPRs
326 (Figure 6D).

327 These data suggest that, in L2/3 \rightarrow L5/6 synapses of the mPFC, Cbln2 surprisingly operates
328 only as a regulator of NMDARs but not of AMPARs (Figure 6C, 6D). Is the function of Cbln2
329 in the mPFC also downstream of neurexins? To examine this question, we investigated the
330 effect of the constitutive expression of Nrxn1^{SS4+} or Nrxn3^{SS4+} at L2/3 \rightarrow L5/6 synapses in the
331 mPFC. We bilaterally infected the mPFC of Nrxn1^{SS4+} or Nrxn3^{SS4+} conditional knockin mice
332 (Aoto et al., 2013; Dai et al., 2019) by stereotactic injections with AAVs encoding Δ Cre
333 (which retains the SS4+ variant) or Cre (which converts SS4+ variants into SS4- variants).
334 Consistent with the Cbln2 KO results, only the presynaptic Nrxn1^{SS4+} knockin produced a
335 phenotype, whereas the Nrxn3^{SS4+} knockin had no effect (Figure 6E-6H). Specifically,
336 constitutive expression of Nrxn1^{SS4+} deletion produced a large increase (~100%) in the
337 AMPAR/NMDAR ratio due to a large decrease (~100%) in the NMDAR-EPSC amplitudes
338 but not AMPAR-EPSC, and this phenotype was abolished by conversion of Nrxn1^{SS4+} to
339 Nrxn1^{SS4-} (Figure 6E). In contrast, the constitutive expression of Nrxn3^{SS4+} had no effect on
340 the AMPAR/NMDAR ratio or either AMPAR-EPSC or NMDAR-EPSC amplitudes (Figure
341 6G). Again, none of these manipulations altered PPRs, documenting that they did not
342 influence the release probability (Figure 6F, 6H). These results are consistent with the
343 Cbln2 KO findings in the mPFC, validating the Nrxn1^{SS4+} \rightarrow Cbln2 \rightarrow NMDAR signaling
344 pathway in the mPFC in the absence of the Nrxn3^{SS4+} \rightarrow Cbln2 \rightarrow AMPAR signaling pathway
345 that we also observed in the subiculum.

346

347 **In the cerebellum, Nrxn3^{SS4+}-Cbln1 complexes suppress AMPARs, whereas**
348 **Nrxn1^{SS4+}-Cbln1 complexes have no effect**

349 Cerebellins were discovered in the cerebellum, with constitutive deletions of Cbln1 or of its
350 receptor GluD2 causing a marked loss of parallel-fiber synapses (Hirai et al., 2005;
351 Kashiwabuchi et al., 1995; Kurihara et al., 1997; Takeuchi et al., 2005). However, it is
352 unclear whether this loss of synapses (that starts after synapses are initially formed)
353 reflects a direct function of Cbln1 in synapse formation or represents an indirect effect of a
354 change in AMPARs to which parallel-fiber synapses may be particularly sensitive (note that
355 parallel-fiber synapses do not express functional NMDARs; Llano et al., 1991; Perkel et al.,
356 1990). In the first case, Cbln1 would perform a function in the cerebellum that differs from
357 that of Cbln2 in the subiculum; in the second case, Cbln1 would also regulate AMPARs in
358 parallel-fiber synapses in a function that would be the same as the role we described for the
359 subiculum, and that should become detectable in synapses after they have been formed.

360 To address this question, we stereotactically infected lobes 4-5 of the cerebellum of *Cbln1*
361 conditional KO mice at P21 with AAVs encoding Δ Cre or Cre, and analyzed parallel-fiber to
362 Purkinje cell (PF-PC) synaptic transmission at P35-42 (Figure 7A). Strikingly, the *Cbln1*
363 deletion increased the AMPAR-EPSC input/output curve and its slope (Figure 7C), without
364 changing the coefficient of variation (CV), indicating that it did not influence the release
365 probability (Figure 7D).

366 These results appear to indicate that Nrxn3^{SS4+}-Cbln1 complexes but not Nrxn1^{SS4+}-Cbln1
367 complexes control parallel-fiber synapse properties in the cerebellum. Given the fact that
368 both Nrxn1 and Nrxn3 are expressed in the cerebellum almost exclusively as SS4+ splice
369 variants (Figure S2), this is surprising. To validate this conclusion, we again used the
370 mouse lines of conditional genetic knockin of endogenous SS4+ and SS4- variants of Nrxn1
371 and Nrxn3. Measurements of parallel-fiber synaptic transmission revealed that the
372 presynaptic Nrxn3^{SS4+} knockin fully phenocopies the Cbln1 cKO, whereas the Nrxn1^{SS4+}
373 knockin had no effect (Figure 7E-7H). As before, none of these manipulations altered the
374 coefficient of variation, suggesting that they did not influence the release probability (Figure
375 7F, 7H). These results confirm that the function of Cbln1 in cerebellum is dependent on
376 presynaptic Nrxn3^{SS4+} signals and acts to control postsynaptic AMPAR responses at the
377 PF-PC synapses (Figure 7).

378

379 **DISCUSSION**

380 We previously showed that at CA1→subiculum synapses, signaling by Nrxn1^{SS4+} and
381 Nrxn3^{SS4+} selectively enhances NMDAR-EPSCs and suppresses AMPAR-EPSCs,
382 respectively, via a surprising common mechanism: Binding to Cbln2 that in turn binds to
383 GluD1 (Dai et al., 2019 and 2021). The convergence of distinct Nrxn1^{SS4+} and Nrxn3^{SS4+}
384 signals on the same Cbln2-GluD1 effectors to produce different downstream effects is
385 unexpected, but was validated by the demonstration that distinct cytoplasmic GluD1
386 sequences transduced the differential Nrxn1^{SS4+} and Nrxn3^{SS4+} signals (Dai et al., 2021).
387 These findings thus described a trans-synaptic signaling pathway regulating NMDARs and
388 AMPARs, but raised new questions. In particular, given multiple lines of evidence
389 suggesting a role for cerebellins in synapse formation (see Introduction) and given the fact
390 that our experiments only manipulated mature neurons (Dai et al., 2019), the question
391 arose whether Cbln2 may have additional functions in synapse formation at
392 CA1→subiculum synapses during development, and whether additional roles of Cbln2 at
393 CA1→subiculum synapses might have been redundantly occluded by the low levels of
394 Cbln1 present. Most important, however, may be the question whether the Nrxn1^{SS4+}-Cbln2
395 and Nrxn3^{SS4+}-Cbln2 signaling pathways (and those of the closely related Cbln1 isoform)
396 were specific to CA1→subiculum synapses, or whether they broadly operated in other
397 synapses in brain as well. We have now addressed these questions. Our data suggest that
398 at CA1→subiculum synapses, Cbln1 does not redundantly occlude a major additional
399 function of Cbln2, that the Nrxn1^{SS4+}-Cbln2 and Nrxn3^{SS4+}-Cbln2 signaling pathways do not
400 have additional synapse-formation functions, and that these signaling pathways are
401 important regulators of NMDARs and AMPARs at multiple types of synapses in brain.
402 Strikingly, however, these signaling pathways do not equally operate at all synapses, but
403 are selectively present in subsets of synapses (Figure 8). The evidence supporting these
404 conclusions can be summarized as follows.

405 First, we showed that a constitutive deletion of *Cbln2* operating throughout development
406 has the same effect as the conditional post-developmental deletion of *Cbln2* (Figure 1-3).
407 Both produced the same enhancement of AMPAR-EPSCs (up to 100% increase) and the
408 same suppression of NMDAR-EPSCs (up to 40% decrease) without a change in synapse
409 numbers. Consistent with its broad effect on synapses, the *Cbln2* deletion also severely
410 impaired contextual learning (Figure 2). Moreover, the constitutive deletion of *Cbln2*
411 occluded the dominant effects of Nrxn1^{SS4+} and Nrxn3^{SS4+} signaling on NMDARs and

412 AMPARs, respectively (Figure 4), confirming that $\text{Nrnx1}^{\text{SS4+}}$ and $\text{Nrnx3}^{\text{SS4+}}$ operate
413 upstream of Cbln2 .

414 Second, we examined whether the function of Cbln2 is the same in the two types of
415 CA1 \rightarrow subiculum synapses that are formed on burst- and regular-spiking neurons and that
416 exhibit quite distinct properties (Wojtowicz et al., 2010; Wozny et al., 2008a and 2008b). In
417 both synapse types, the constitutive and the conditional Cbln2 deletion caused the same
418 increase in AMPAR-EPSCs and the same decrease in NMDAR-EPSCs (Figure 1, S1). The
419 two types of subiculum synapses differ in their form of LTP (Wojtowicz et al., 2010; Wozny
420 et al., 2008a and 2008b). Notably, the Cbln2 deletion blocked the NMDAR-dependent LTP
421 of synapses on regular-spiking neurons, possibly via an induction impairment, without
422 affecting the cAMP-dependent LTP in burst-spiking neurons (Figure 1). Since the former
423 type of LTP is postsynaptic and latter presynaptic, these findings agree with the conclusion
424 of a postsynaptic regulatory effect of Cbln2 signaling.

425 Third, we investigated the possibility that low-level expression of Cbln1 in the subiculum
426 might redundantly compensate for Cbln2 in an additional function besides the regulation of
427 AMPARs and NMDARs, causing such a function to become occluded in the Cbln2 KO
428 mice. To explore this possibility, we analyzed Cbln1/2 double KO mice, but identified
429 substantially the same phenotype as in Cbln2 single KO mice (Figure 5). Thus, it seems
430 unlikely that low-level expression of Cbln1 prevents manifestation of an additional Cbln2
431 function.

432 Fourth, we tested the possible function of the $\text{Nrnx1}^{\text{SS4+}}$ - Cbln2 and $\text{Nrnx3}^{\text{SS4+}}$ - Cbln2
433 signaling pathways at L2/3 \rightarrow L5/6 synapses in the mPFC, focusing on Cbln2 because it is
434 expressed at higher levels than Cbln1 in the mPFC (Figure S3). We observed that the
435 Cbln2 deletion caused a suppression of NMDAR-EPSCs, but did not enhance AMPAR-
436 EPSCs (Figure 6). This observation suggests that only the $\text{Nrnx1}^{\text{SS4+}}$ - Cbln2 but not the
437 $\text{Nrnx3}^{\text{SS4+}}$ - Cbln2 signaling pathway operates in the mPFC synapses. Consistent with this
438 conclusion, we found that the $\text{Nrnx1}^{\text{SS4+}}$ switch to $\text{Nrnx1}^{\text{SS4-}}$ selectively downregulated
439 NMDARs because only $\text{Nrnx1}^{\text{SS4+}}$ but not $\text{Nrnx1}^{\text{SS4-}}$ can bind to Cbln2 , whereas different
440 from CA1 \rightarrow subiculum synapses, the $\text{Nrnx3}^{\text{SS4+}}$ switch to $\text{Nrnx3}^{\text{SS4-}}$ had no effect on
441 AMPARs (Figure 6). A recent study discovered a hominin-specific increase in Cbln2
442 expression in the prefrontal cortex in primates (Shibata et al., 2021). The study suggested
443 that this finding might imply a higher synapse density in hominins, but our data suggest that

444 this interesting observation is associated with an increased NMDAR expression at
445 synapses in hominid evolution.

446 Fifth and finally, we examined parallel-fiber synapses in the cerebellum, the synapses at
447 which *Cbln1* was discovered and which do not express functional NMDARs (Llano et al.,
448 1991; Perkel et al., 1990). *Cbln1* has a well-characterized function at these synapses in
449 maintaining synapse stability and enabling long-term synaptic plasticity (Kashiwabuchi et
450 al., 1995; Kurihara et al., 1997; Hirai et al., 2005; Takeuchi et al., 2005). Strikingly, we
451 found that the post-developmental conditional deletion of *Cbln1* at these synapses also
452 significantly increased AMPAR-EPSCs, and that the induced switch from $\text{Nrnxn3}^{\text{SS4}+}$ to
453 $\text{Nrnxn3}^{\text{SS4}-}$ had the same effect on AMPAR-EPSCs, whereas the $\text{Nrnxn1}^{\text{SS4}+}$ switch to
454 $\text{Nrnxn1}^{\text{SS4}-}$ had no effect (Figure 7). These experiments suggest that in parallel-fiber
455 synapses of the cerebellum, $\text{Nrnxn3}^{\text{SS4}+}$ -*Cbln1* signaling controls AMPARs similar to the
456 action of $\text{Nrnxn3}^{\text{SS4}+}$ -*Cbln2* signaling at CA1 → subiculum synapses (Dai et al., 2019). At first
457 glance, these results seem to contradict previous studies on the deletions of *Cbln1* and its
458 GluD2 receptor in cerebellum, which cause a loss of parallel-fiber synapses (reviewed in
459 Yuzaki, 2018; Yuzaki and Aricescu, 2017). However, this loss affects less than half of all
460 synapses, while the remaining synapses are abnormal since they can't undergo LTD. More
461 importantly, this loss only occurs after an initially apparently normal formation of synapses
462 (Kurihara et al., 1997), and the GluD2 deletion was also previously shown to induce an
463 increase in AMPARs at parallel-fiber synapses (Yamasaki et al., 2011), replicating our
464 observations with the *Cbln1* deletion since *Cbln1* is the major binding partner to GluD2
465 (Figure 7).

466 Figure 8 illustrates the richness of regulatory mechanisms that control the postsynaptic
467 levels of AMPARs and NMDARs via presynaptic expression of neurexins and cerebellins. In
468 our studies, the changes in synaptic transmission induced by disrupting neurexin-cerebellin
469 signaling are large, resulting in major alterations in the information processing of any circuit
470 containing affected synapses. Since both cerebellin expression (Hrvatin et al., 2018; Ibata
471 et al., 2019) and neurexin alternative splicing at SS4 (Iijima et al., 2011; Ding et al., 2017;
472 Flaherty et al., 2019) may be activity-dependent, the unexpected signaling mechanism we
473 describe likely also mediates activity-dependent plasticity. Thus, activity-dependent gene
474 expression changes in a pre- or postsynaptic neuron may regulate the AMPAR- and
475 NMDAR-composition via $\text{Nrnxn1}^{\text{SS4}+}$ / $\text{Nrnxn3}^{\text{SS4}+}$ → *Cbln* signaling. This type of AMPAR and
476 NMDAR plasticity, which has not been previously identified, suggests a novel mechanism of

477 circuit plasticity that may contribute to fundamental brain functions such as learning and
478 memory (Silver et al., 2010; Josselyn and Tonegawa, 2020).

479 Needless to say, our findings raise major new questions. The current data at best are the
480 beginning of an understanding of how neurexin-cerebellin signaling shapes synapses.
481 Among major questions, most prominent may be the puzzle of why Nrxn3^{SS4+} has no effect
482 on mPFC synapses. It is expressed in the mPFC as the SS4+ the variant but doesn't
483 regulate AMPARs, suggesting it has a different function that is independent of Cbln2. In
484 contrast, it is easier to understand why Nrxn1^{SS4+} doesn't regulate NMDARs at parallel-fiber
485 synapses since these synapses lack functional NMDARs (Llano et al., 1991; Perkel et al.,
486 1990), but this finding also raises the question whether Nrxn1^{SS4+} has another currently
487 unknown function at these synapses. Neurexins can likely operate at the same synapses
488 via binding to different ligands (Wang et al., 2021), a fascinating amplification of their
489 functions that may also apply to parallel-fiber synapses. A further question is how the
490 function of Cbln1 and Nrxn3^{SS4+} in regulating AMPARs relates to the well-described
491 parallel-fiber synapse loss in constitutive Cbln1 KO mice. It is possible that an
492 overactivation of AMPARs leads to synaptotoxicity that destroys parallel-fiber synapses;
493 another plausible explanation could be that at cerebellar parallel-fiber synapses, Cbln1 has
494 additional functions that are not operative for cerebellins in subiculum synapses. Future
495 studies will have to explore these intriguing questions.

496 In summary, our data spanning diverse genetic manipulations in multiple brain regions
497 establish a general function for *Cbln1* and *Cbln2* in the trans-synaptic regulation of
498 NMDARs and AMPARs by presynaptic Nrxn1^{SS4+} and Nrxn3^{SS4+}, respectively. Remarkably,
499 this signaling pathway differentially operates in different neural circuits, creating a panoply
500 of synaptic regulatory mechanisms that are inherently plastic and enhance the activity-
501 dependent capacity for information processing by neural circuits.

502

503

504

505

506

507

508 **METHODS**

509 ***Mice***

510 The Cbln1 conditional KO and Cbln2 conditional/constitutive KO mouse lines were
511 described in Seigneur and Südhof (2017). SS4+ conditional knockin (cKI) mice of *Nrxn1*
512 and *Nrxn3* were described previously (Aoto et al., 2013; Dai et al., 2019; Dai et al., 2021).
513 All mice above were maintained on a mixed C57BL/6/SV129/CD1 (wild type) background.
514 Primers (IDT) are used for genotyping are as follows: *Nrxn1*-SS4+, forward: 5'-
515 AGACAGACCCGAACAAACCAA-3', reverse: 5'-TGCTAGGCCTATTCAGATGCT-3'; *Nrxn3*-
516 SS4+, forward: 5'-CTCCAACCTGTCATTCAAGGG-3', reverse: 5'-
517 CTACGGGCCGGTTATTTG-3'; Cbln1, LoxP forward: 5'-TAGGG
518 TGGACAGAGAAAAGG-3', LoxP reverse: 5'- CTTCTAACATCTGTCCTGACCACA-3'; Cbln2,
519 LoxP forward: 5'-TAAAAGACAGTCCAGAGTTTAGTC-3', LoxP reverse: 5'-
520 TCAAATAGAGAGGAGTAAGCACA-3', and Recombined reverse: 5'-
521 TTTCCTTGAAGGACTCCAATAG-3'. All mouse studies were performed according to
522 protocols approved by the Stanford University Administrative Panel on Laboratory Animal
523 Care. In all studies, we examined littermate male or female mice.

524 ***Single-molecule RNA FISH***

525 As described in our previous study (Dai et al., 2021), P30 Wild type BL6 mice were
526 euthanized with isofluorane and followed by transcardial perfusion with ice cold PBS. The
527 brain were quickly dissected and embedded in OCT (Optimal Cutting Temperature) solution
528 on dry ice. Horizontal sections with 16 um thickness were cut by using Leica CM3050-S
529 cryostat, mounted directly onto Superfrost Plus slides and stored in -80 °C until use. Single-
530 molecule FISH for Cbln1 (Cat# 538491-C2) and Cbln2 (Cat# 428551) mRNA was
531 performed using the multiplex RNAscope platform (Advanced Cell Diagnostics) according
532 to manufacturer instructions. Fluorescent microscopy images were acquired at 20x
533 magnification using Olympus VS120 slide scanner.

534 ***Semi-quantitative RT-PCR***

535 For semi-quantitative RT-PCR measurements of neurexin SS4 alternative splicing (Liakath-
536 Ali and Sudhof, 2021), total RNA was extracted using TRIzol and cDNA was synthesized
537 using the SuperScript III First-Strand Synthesis System (Invitrogen) according to the
538 manufacturer's instructions. PCR primers to detect *Nrxn*-SS4 isoforms (Forward, reverse):
539 *Nrxn1SS4*, CTGGCCAGTTATCGAACGCT, GCGATGTTGGCATCGTTCTC; *Nrxn2SS4*,
540 CAACGAGAGGTACCCGGC, TACTAGCCGTAGGTGGCCTT; *Nrxn3SS4*,

541 ACACCTCAGGTGGACAACTG, AGTTGACCTTGGAAAGAGACG; β -actin,
542 TTGTTACCAACTGGGACGACA, TCGAAGTCTAGAGAACATAGC.

543 **DNA constructs and Viruses**

544 hSyn-Cre-eGFP, hSyn- Δ Cre-eGFP, CAG-Cre-eGFP, CAG- Δ Cre-eGFP, full-length
545 Nrxn1 β^{SS4+} , Nrxn1 β^{SS4-} , Nrxn3 β^{SS4+} , and Nrxn3 β^{SS4-} were cloned into AAV-DJ vector (Xu et
546 al., 2012; Aoto et al., 2013; Dai et al., 2019) for in vivo Cre-recombination or overexpression
547 as previously described (Dai et al., 2019). The overexpression levels mediated by the
548 viruses were quantified in microdissected brain tissue (please see details in Dai et al.,
549 2019).

550 **Slice Electrophysiology**

551 As previously described, electrophysiological recordings from acute hippocampal slices
552 (Dai et al., 2019; Dai et al., 2021) or prefrontal cortex (Xu et al., 2012) or cerebellum (Zhang
553 et al., 2015) were essentially performed. In brief, slices were prepared from Cbln2^{+/+} and
554 Cbln2^{-/-} mice at P35-42, or from all other mice at 2-3 weeks after stereotactic infection of
555 AAVs (encode Cre, Δ Cre, and various β -neurexins). Horizontal hippocampal slices (300 μ m
556 thickness) and Coronal prefrontal cortex (PFC) slices (250 μ m thickness) were cut in a high
557 sucrose cutting solution containing (in mM) 85 NaCl, 75 sucrose, 2.5 KCl, 1.3 NaH₂PO₄, 24
558 NaHCO₃, 0.5 CaCl₂, 4 MgCl₂ and 25 D-glucose. Sagittal cerebellum slices were sectioned
559 in a low calcium solution containing (in mM) 125 mM NaCl, 2.5 mM KCl, 3 mM MgCl₂, 0.1
560 CaCl₂, 1.25 NaH₂PO₄, 25 NaHCO₃, 3 mM myo-inositol, 2 mM Na-pyruvate, 0.4 mM
561 ascorbic acid, and 25 D-glucose. Slices were equilibrated in ACSF at 31 °C for 30 min,
562 followed by room temperature for an hour. Hippocampal or PFC Slices were then
563 transferred to a recording chamber containing ACSF solution maintained at 30.5°C (in mM):
564 120 NaCl, 2.5 KCl, 1 NaH₂PO₄, 26.2 NaHCO₃, 2.5 CaCl₂, 1.3 MgSO₄·7 H₂O, 11 D-Glucose,
565 ~290 mOsm. Cerebellum slices were then transferred to a recording chamber containing
566 ACSF solution maintained at 30.5°C (in mM): 125 mM NaCl, 2.5 mM KCl, 1 mM MgCl₂, 2
567 CaCl₂, 1.25 NaH₂PO₄, 25 NaHCO₃, 3 mM myo-inositol, 2 mM Na-pyruvate, 0.4 mM
568 ascorbic acid, and 25 D-glucose. To induce evoked synaptic responses in subiculum, a
569 nichrome stimulating electrode was placed at the most distal portion of hippocampal CA1
570 region as shown in our previous studies (Dai et al., 2019; Dai et al., 2021). The firing type of
571 subiculum neurons (burst-spiking vs. regular-spiking) was identified by injecting a
572 depolarizing current immediately after breaking in and monitoring action potential patterns
573 in current-clamp mode as previously described (Aoto et al., 2013; Dai et al., 2019). To

574 induce evoked synaptic responses in mPFC, the electrode was placed at the border of L1
575 and L2/3 layer as illustrated in Figure 6B and the L5/6 layer pyramidal neurons were
576 recorded (Fenelon et al., 2011). To induce evoked synaptic responses in cerebellum, the
577 electrode was placed at the parallel fibers in the distal molecular layer as illustrated in
578 Figure 7B and the purkinje neurons were recorded (Zhang et al., 2015). AMPAR-EPSCs
579 input/output curves, AMPAR/NMDAR ratios, NMDAR input/output curves, LTP, and
580 mEPSCs (holding potentials = -70 mV for AMPAR-EPSCs, +40 mV for NMDAR-EPSCs,
581 and +60 mV for NMDAR mEPSCs) were recorded with an internal solution containing (in
582 mM): 117 Cs-methanesulfonate, 15 CsCl, 8 NaCl, 10 TEA-Cl, 0.2 EGTA, 4 Na₂-ATP, 0.3
583 Na₂-GTP, 10 HEPES, pH 7.3 with CsOH (~300 mOsm). All recordings were performed in
584 the presence of 50 µM picrotoxin for AMPAR-EPSCs, 50 µM picrotoxin and 10 µM CNQX
585 for NMDAR-EPSCs, and 50 µM picrotoxin and 0.5 µM TTX for mEPSCs. Paired-pulse
586 ratios were monitored with interstimulus intervals of 20–2000 ms. LTP was induced by four
587 tetani of 100 Hz stimulus trains applied for 1 s with 10 s intervals under voltage-clamp mode
588 (holding potential = 0 mV). Pre-LTP (averaging last 5 mins as baseline) and post-LTP
589 (averaging the last 5 mins) were recorded at 0.1 Hz. Paired-pulse ratios were measured
590 with 40 ms interstimulus intervals before and after LTP. Measurements of the
591 AMPAR/NMDAR ratios were performed in 50 µM picrotoxin at holding potentials of -70 mV
592 (AMPAR-EPSCs) or +40 mV (NMDAR-EPSCs, quantified at 50 ms after the stimulus). All
593 slopes of input/output ratio were calculated from 10-50 µA of input current except the
594 cerebellum that was calculated from 10-100 µA of input current. All data were analyzed with
595 the Igor software (WaveMetrics). Miniature events were handpicked with a threshold of 5
596 pA by using the Igor software (Dai et al., 2015).

597 ***Stereotactic Injections***

598 Stereotactic injections of AAV or Lentivirus into mice at P21 were performed essentially as
599 described (Xu et al., 2012; Aoto et al., 2013; Dai et al., 2019; Dai et al., 2021). Briefly, P21
600 mice were anesthetized with Avertin, and viruses were injected using a stereotactic
601 instrument (David Kopf) and a syringe pump (Harvard Apparatus) with ~0.85 µl of
602 concentrated virus solution (10⁸⁻⁹ TU) at a slow rate (0.1ul/min) into the CA1 region of the
603 intermediate hippocampus (Bregma coordinates (mm): AP: -3.1, ML: ± 3.4, DV: -2.5) or
604 with ~0.4 µl of virus into subiculum region (Bregma coordinates (mm): AP: -3.3, ML: ± 3.3,
605 DV: -2.5) or with ~0.8 µl of virus into mPFC region (Bregma coordinates (mm): AP: +1.25,
606 ML: ± 0.3, DV: -1.0 mm and -1.5 mm received both 0.4 µl of virus) or with ~0.8 µl of virus

607 into cerebellum lobe4-5 region (Bregma coordinates (mm): AP: -6.35, ML: \pm 0.5, DV: -1.5
608 mm received both 0.4 μ l of virus. After infection, viral mediated expression was confirmed
609 by the presence of eGFP. Images (Figure 4F, 6B, and 7B) were taken using a Nikon
610 confocal microscope (A1Rsi) with a 10x objective (PlanApo, NA1.4) with 1024x1024 pixel
611 resolution. The fluorescence of all slices prepared for physiology was confirmed under a
612 fluorescence microscope (Olympus).

613 ***Immunohistochemistry***

614 For hippocampal cryosections were performed as described (Dai et al., 2019; Dai et al.,
615 2021). Briefly, mice were anesthetized with isoflurane and perfused with 10 ml PBS
616 followed by 30 ml 4% PFA in 1x PBS using a perfusion pump (2 ml/min). Whole brains were
617 dissected out and kept in PFA for 6 hours, then post-fixed in 30% sucrose (in 1x PBS) for
618 24 h-48 h at 4°C. Horizontal brain sections (30 μ m) were collected at -20°C with a cryostat
619 (Leica CM1050). Sections were washed with PBS and incubated in blocking buffer (0.3 %
620 Triton X-100 and 5% goat serum in PBS) for 1 h at RT, and incubated overnight at 4 °C with
621 primary antibodies diluted in blocking buffer (anti-vGluT1, 1:1000, guinea pig, Millipore and
622 anti-MAP2, 1:1000, rabbit, Millipore). Sections were washed 3 times for 10 mins each in 1x
623 PBS, followed by treatment with secondary antibodies (1:1000, Alexa 405, Alexa 647) at
624 4°C overnight, then washed 3 times for 10 mins each with 1x PBS. All incubations were
625 performed with agitation. All sections were then mounted on superfrost slides and covered
626 with Fluoromount-G as previously described. Serial confocal z-stack images (1 μ m step for
627 10 μ m at 1024 x 1024 pixel resolution) were acquired using a Nikon confocal microscope
628 (A1Rsi) with a 60x oil objective (PlanApo, NA1.4). All acquisition parameters were kept
629 constant among different conditions within experiments. For data analysis ($n \geq 3$ animals per
630 condition), maximum intensity projections were generated for each image, and average
631 vGluT1 intensity (mean \pm S.E.M) calculated from the entire area of subiculum (object size
632 range 0.05-0.21 mm²). An example cerebellum slice was stained with vGluT1 (anti-vGluT1,
633 1:1000, guinea pig, Millipore) and Calbindin (anti-calbindin, 1:2000, mouse, Sigma).

634 ***Immunoblotting***

635 Immunoblotting was performed as described previously (Seigneur and Sudhof, 2018;
636 Patzke et al., 2019; Dai et al., 2021; Patzke et al., 2021). Briefly, dissected hippocampal
637 tissue were homogenized in Laemmli buffer (12.5 mM Tris-HCl, pH 6.8, 5 mM EDTA, pH
638 6.8, 143 mM β -mercaptoethanol, 1% SDS, 0.01% bromophenol blue, 10% glycerol), boiled
639 and separated by SDS-PAGE at 100 V for about 1.3 h, then transferred onto nitrocellulose

640 membranes using the Trans-Blot Turbo transfer system (Bio-Rad). Membranes were then
641 blocked with 5% milk in TBS containing 0.1% Tween 20 (TBST) at RT for 1h, and then
642 incubated in primary antibody overnight at 4°C. Membranes were washed 3X with TBST,
643 then incubated in fluorescent labeled secondary antibodies (donkey anti-rabbit IR dye
644 680/800CW, 1:10000; donkey anti-mouse IR dye 680/800CW, 1:10000; and donkey anti-
645 guinea pig IR dye 680RD, 1:10000; LI-COR Bioscience). Membranes were scanned using
646 an Odyssey Infrared Imager and analyzed with the Odyssey software (LI-COR
647 Biosciences). Intensity values for each protein were first normalized to actin then to the
648 control sample. The antibodies used are as follows: anti-Neuroligin-1 mouse (1:500; Südhof
649 lab; 4F9), anti-β-actin mouse (1:10000; Sigma-Aldrich; Cat# A1978), anti-PSD95 rabbit
650 (1:500; Südhof lab; L667), anti-Synapsin rabbit (1:1000; Südhof lab; E028), anti-CASK
651 mouse (1:1000; BD Transduction Laboratories; Cat# 610782), anti-Neurexin rabbit (1:500;
652 Südhof lab; G394), anti-GAD65 mouse (1:500; DSHB; Cat# mGAD6-a), anti-
653 Synaptotagmin-1 mouse (1:1000, Südhof lab; CL41.1), and anti-vGlut1 guinea pig (1:1000;
654 Millipore; Cat# AB5905).

655 ***Two-chamber avoidance test***

656 Littermate Cbln2 WT and Cbln2 KO male mice were generated from crossing heterozygous
657 Cbln2^{+/−} mice. Mice were handled daily for 5 days prior to behavioral experiments starting at
658 P45. Mice were maintained with a normal 12/12 hr daylight cycle, and analyzed in the
659 assay sequence and at the time shown in figure 2A. The modified protocol was performed
660 as described previously (Dai et al., 2019) and was based on previous studies (Ambrogi
661 Lorenzini et al., 1984; Cimadevilla et al., 2001; Qiao et al., 2014). Briefly, two chambers (left
662 and right) were designed with different visual cues (figure supplement 4C) under dim light
663 with a gate between them. The right chamber has a foot shock with electric current
664 (intensity: 0.15 mA, duration: 2s). Mice can explore both chambers freely. At the training
665 day, mice will be put in left chamber. Once they go to the right chamber, they will get a foot
666 shock after a 2 s delay. In this case, they will return back immediately to the left chamber.
667 This is one trial of learning. It may come as another trial, once they visit right chamber
668 again. This training process will be completed until mice are able to stay in left “safe”
669 chamber more than 2 mins. After 1 day and 7 days, they will be tested by putting back into
670 left chamber to record latency to enter the right chamber and the number of entries in 2
671 mins. Using this approach, two groups of Cbln2 WT and KO mice were tested. All behavior
672 assays were carried out and analyzed by researchers blindly.

673 **Quantification and statistical analysis**

674 All data are shown as means \pm SEMs, with statistical significance (* = $p<0.05$, ** = $p<0.01$
675 and *** = $p<0.001$) determined by Student's t-test or two-way analysis of variance
676 (ANOVA). Non-significant results ($p>0.05$) are not specifically identified.

677

678 **ACKNOWLEDGEMENTS**

679 This study was supported by a grant from the NIMH (MH052804 to T.C.S.) and fellowships
680 to K.L-A. from the European Molecular Biology Organization (ALTF 803-2017) and the
681 Larry L. Hillblom Foundation (2020-A-016-FEL).

682

683 **AUTHOR CONTRIBUTIONS**

684 J.D. performed all experiments and analyzed all data except for the in situ hybridization
685 experiment and semi-quantitative RT-PCR of alternative splicing variants that were
686 performed by K.L-A., and S.G. contributed mouse behavioral studies and genotyping
687 experiments. J.D. and T.C.S. conceptualized the project, designed the experiments and
688 wrote the manuscript with inputs from all authors.

689

690 **CONFLICT OF INTEREST**

691 The authors declare no conflict of interest.

692

693 **MATERIALS AVAILABILITY**

694 All reagents produced in this study, including recombinant DNA plasmids and mouse lines,
695 are openly distributed to the scientific community and freely shared upon request.

696

697 **DATA AVAILABILITY**

698 All numerical data and P values within this study have been included in the source data.

699

700

701

702

703

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
anti-vGluT1	Millipore	Cat. No. AB5905
anti-GAD65	DSHB	Cat. No. mGAD6-a
anti-MAP2	Millipore	Cat. No. AB5622
anti-Synaptotagmin 1	Südhof lab	CL41.1
anti-Neurexin	Südhof lab	G394
anti-CASK	BD Transduction Laboratories	Cat. No. 610782
anti-PSD95	Südhof lab	L667
anti-Synapsin	Südhof lab	E028
anti-Neuroligin-1	Südhof lab	4F9
anti- β -actin	Sigma	Cat. No. A1978
Anti-Calbindin	Sigma	Cat. No. C9848
Cbln1 in-situ probe	Advanced Cell Diagnostics	Cat. No. 538491-C2
Cbln2 in-situ probe	Advanced Cell Diagnostics	Cat. No. 428551
Bacterial and Virus Strains		
Lenti-hSyn-Cre-eGFP	Aoto et al., 2013	N/A
Lenti-hSyn-eGFP	Aoto et al., 2013	N/A
Lenti-CAG-Cre-eGFP	This paper	N/A
Lenti-CAG-eGFP	This paper	N/A
pAAV-hSyn-Cre-eGFP	Aoto et al., 2015	N/A
pAAV-hSyn-eGFP	Aoto et al., 2015	N/A
pAAV-hSyn-eGFP-p2A-Nrxn1 β SS4+/-	Dai et al., 2019	N/A
pAAV-hSyn-eGFP-p2A-Nrxn3 β SS4+/-	Dai et al., 2019	N/A
Chemicals, Peptides, and Recombinant Proteins		
CNQX	Tocris	Cat. No. 0190
Picrotoxin	Tocris	Cat. No. 1128
TTX	Fisher Scientific	Cat. No. 50-753-2807
Experimental Models: Organisms/Strains		
Mouse: C57BL/6J wildtype	The Jackson Laboratory	Jax Stock no: 000664

Mouse: Nrnx1-SS4+, Nrnx3-SS4+ cKI	Dai et al., 2019; Aoto et al., 2013	N/A
Mouse: Cbln1, Cbln2, Cbln12 cKO, Cbln2 KO	Seigneur et al., 2017	N/A
Software and Algorithms		
Clampfit 10	Molecular Devices	https://www.moleculardevices.com/products/axon-patch-clamp-system/acquisition-and-analysis-software/pclamp-software-suite
Igor software	Wavemetrics	https://www.wavemetrics.com/downloads
Image Studio	LI-COR Biosciences	https://www.licor.com/bio/image-studio/
NIS-Elements AR Analysis	Nikon	https://www.microscope.healthcare.nikon.com/products/software/nis-elements/nis-elements-advanced-research
Viewer III	Bioserve	http://www.biobserve.com/behavioralresearch/products/viewer/
Prism	GraphPad Sofeware	
SigmaPlot	Systat Software	https://systatsoftware.com/sp/download.html

704

705

706

707

708

709 **REFERENCES**

710 Aoto, J., Martinelli, D.C., Malenka, R.C., Tabuchi, K., and Sudhof, T.C. (2013). Presynaptic
711 neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking.
712 *Cell* 154, 75-88.

713 Bao, D.S., Pang, Z., Morgan, M.A., Parris, J., Rong, Y.Q., Li, L.Y., and Morgan, J.I. (2006). Cbln1 is
714 essential for interaction-dependent secretion of Cbln3. *Mol Cell Biol* 26, 9327-9337.

715 Bohm, C., Peng, Y., Geiger, J.R.P., and Schmitz, D. (2018). Routes to, from and within the
716 subiculum. *Cell Tissue Res* 373, 557-563.

717 Cheng, S.Q., Seven, A.B., Wang, J., Skiniotis, G., and Ozkan, E. (2016). Conformational Plasticity
718 in the Transsynaptic Neurexin-Cerebellin-Glutamate Receptor Adhesion Complex. *Structure* 24,
719 2163-2173.

720 Dai, J., Chen, P., Tian, H., and Sun, J. (2015). Spontaneous Vesicle Release Is Not Tightly Coupled
721 to Voltage-Gated Calcium Channel-Mediated Ca²⁺ Influx and Is Triggered by a Ca²⁺ Sensor Other
722 Than Synaptotagmin-2 at the Juvenile Mice Calyx of Held Synapses. *J Neurosci* 35, 9632-9637.

723 Dai, J., Aoto, J., and Sudhof, T.C. (2019). Alternative Splicing of Presynaptic Neurexins Differentially
724 Controls Postsynaptic NMDA and AMPA Receptor Responses. *Neuron*.

725 Dai, J., Patzke, C., Liakath-Ali, K., Seigneur, E., and Sudhof, T.C. (2021). GluD1 is a signal
726 transduction device disguised as an ionotropic receptor. *Nature* 595, 261-265.

727 Ding, X., Liu, S., Tian, M., Zhang, W., Zhu, T., Li, D., Wu, J., Deng, H., Jia, Y., Xie, W., et al. (2017).
728 Activity-induced histone modifications govern Neurexin-1 mRNA splicing and memory preservation.
729 *Nat Neurosci* 20, 690-699.

730 Flaherty, E., Zhu, S.J., Barreto, N., Cheng, E., Deans, P.J.M., Fernando, M.B., Schrode, N.,
731 Francoeur, N., Antoine, A., Alganem, K., et al. (2019). Neuronal impact of patient-specific aberrant
732 NRXN1 alpha splicing. *Nature Genetics* 51, 1679-+.

733 Fossati, M., Assendorp, N., Gemin, O., Colasse, S., Dingli, F., Arras, G., Loew, D., and Charrier, C.
734 (2019). Trans-Synaptic Signaling through the Glutamate Receptor Delta-1 Mediates Inhibitory
735 Synapse Formation in Cortical Pyramidal Neurons. *Neuron* 104, 1081-+.

736 Fuccillo, M.V., Foldy, C., Gokce, O., Rothwell, P.E., Sun, G.L., Malenka, R.C., and Sudhof, T.C.
737 (2015). Single-Cell mRNA Profiling Reveals Cell-Type-Specific Expression of Neurexin Isoforms.
738 *Neuron* 87, 326-340.

739 Gomez, A.M., Traunmuller, L., and Scheiffele, P. (2021). Neurexins: molecular codes for shaping
740 neuronal synapses. *Nat Rev Neurosci* 22, 137-151.

741 Graham, H.K., and Duan, X. (2021). Molecular mechanisms regulating synaptic specificity and
742 retinal circuit formation. *Wiley Interdiscip Rev Dev Biol* 10, e379.

743 Haddick, P.C., Tom, I., Luis, E., Quinones, G., Wranik, B.J., Ramani, S.R., Stephan, J.P., Tessier-
744 Lavigne, M., and Gonzalez, L.C. (2014). Defining the ligand specificity of the deleted in colorectal
745 cancer (DCC) receptor. *PLoS One* 9, e84823.

746 Hirai, H., Pang, Z., Bao, D., Miyazaki, T., Li, L., Miura, E., Parris, J., Rong, Y., Watanabe, M.,
747 Yuzaki, M., *et al.* (2005). Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. *Nat*
748 *Neurosci* 8, 1534-1541.

749 Hrvatin, S., Hochbaum, D.R., Nagy, M.A., Cicconet, M., Robertson, K., Cheadle, L., Zilionis, R.,
750 Ratner, A., Borges-Monroy, R., Klein, A.M., *et al.* (2018). Single-cell analysis of experience-
751 dependent transcriptomic states in the mouse visual cortex. *Nat Neurosci* 21, 120-129.

752 Ibata, K., Kono, M., Narumi, S., Motohashi, J., Kakegawa, W., Kohda, K., and Yuzaki, M. (2019).
753 Activity-Dependent Secretion of Synaptic Organizer Cbln1 from Lysosomes in Granule Cell Axons.
754 *Neuron* 102, 1184-1198 e1110.

755 Iijima, T., Wu, K., Witte, H., Hanno-Iijima, Y., Glatter, T., Richard, S., and Scheiffele, P. (2011).
756 SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. *Cell* 147, 1601-
757 1614.

758 Ito-Ishida, A., Miura, E., Emi, K., Matsuda, K., Iijima, T., Kondo, T., Kohda, K., Watanabe, M., and
759 Yuzaki, M. (2008). Cbln1 regulates rapid formation and maintenance of excitatory synapses in
760 mature cerebellar Purkinje cells in vitro and in vivo. *J Neurosci* 28, 5920-5930.

761 Josselyn, S.A., and Tonegawa, S. (2020). Memory engrams: Recalling the past and imagining the
762 future. *Science* 367, 39-+.

763 Kasem, E., Kurihara, T., and Tabuchi, K. (2018). Neurexins and neuropsychiatric disorders.
764 *Neurosci Res* 127, 53-60.

765 Kashiwabuchi, N., Ikeda, K., Araki, K., Hirano, T., Shibuki, K., Takayama, C., Inoue, Y., Kutsuwada,
766 T., Yagi, T., Kang, Y., *et al.* (1995). Impairment of motor coordination, Purkinje cell synapse
767 formation, and cerebellar long-term depression in GluR delta 2 mutant mice. *Cell* 81, 245-252.

768 Kim, H.Y., Um, J.W., and Ko, J. (2021). Proper synaptic adhesion signaling in the control of neural
769 circuit architecture and brain function. *Prog Neurobiol* 200, 101983.

770 Kurihara, H., Hashimoto, K., Kano, M., Takayama, C., Sakimura, K., Mishina, M., Inoue, Y., and
771 Watanabe, M. (1997). Impaired parallel fiber-->Purkinje cell synapse stabilization during cerebellar
772 development of mutant mice lacking the glutamate receptor delta2 subunit. *J Neurosci* 17, 9613-
773 9623.

774 Kusnoor, S.V., Parris, J., Muly, E.C., Morgan, J.I., and Deutch, A.Y. (2010). Extracerebellar Role for
775 Cerebellin1: Modulation of Dendritic Spine Density and Synapses in Striatal Medium Spiny Neurons.
776 *Journal of Comparative Neurology* 518, 2525-2537.

777 Llano, I., Marty, A., Armstrong, C.M., and Konnerth, A. (1991). Synaptic- and agonist-induced
778 excitatory currents of Purkinje cells in rat cerebellar slices. *J Physiol* 434, 183-213.

779 Liakath-Ali, K., and Sudhof, T.C. (2021). The Perils of Navigating Activity-Dependent Alternative
780 Splicing of Neurexins. *Front Mol Neurosci* 14, 659681.

781 Lukacsovich, D., Winterer, J., Que, L., Luo, W., Lukacsovich, T., and Foldy, C. (2019). Single-Cell
782 RNA-Seq Reveals Developmental Origins and Ontogenetic Stability of Neurexin Alternative Splicing
783 Profiles. *Cell Rep* 27, 3752-3759 e3754.

784 Matsuda, K. (2017). Synapse organization and modulation via C1q family proteins and their
785 receptors in the central nervous system. *Neurosci Res* 116, 46-53.

786 Matsuda, K., Miura, E., Miyazaki, T., Kakegawa, W., Emi, K., Narumi, S., Fukazawa, Y., Ito-Ishida,
787 A., Kondo, T., Shigemoto, R., *et al.* (2010). Cbln1 is a ligand for an orphan glutamate receptor
788 delta2, a bidirectional synapse organizer. *Science* 328, 363-368.

789 Miura, E., Iijima, T., Yuzaki, M., and Watanabe, M. (2006). Distinct expression of Cbln family
790 mRNAs in developing and adult mouse brains. *Eur J Neurosci* 24, 750-760.

791 Nguyen, T.M., Schreiner, D., Xiao, L., Traunmuller, L., Bornmann, C., and Scheiffele, P. (2016). An
792 alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in
793 the mouse hippocampus. *Elife* 5.

794 Noborn, F., and Sterky, F.H. (2021). Role of neurexin heparan sulfate in the molecular assembly of
795 synapses - Expanding the neurexin code? *FEBS J.*

796 Otsuka, S., Konno, K., Abe, M., Motohashi, J., Kohda, K., Sakimura, K., Watanabe, M., and Yuzaki,
797 M. (2016). Roles of Cbln1 in Non-Motor Functions of Mice. *Journal of Neuroscience* 36, 11801-
798 11816.

799 Patzke, C., Brockmann, M.M., Dai, J., Gan, K.J., Grauel, M.K., Fenske, P., Liu, Y., Acuna, C.,
800 Rosenmund, C., and Sudhof, T.C. (2019). Neuromodulator Signaling Bidirectionally Controls Vesicle
801 Numbers in Human Synapses. *Cell* 179, 498-513 e422.

802 Patzke, C., Dai, J., Brockmann, M.M., Sun, Z., Fenske, P., Rosenmund, C., and Sudhof, T.C.
803 (2021). Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating
804 synapsins in human synapses. *Mol Psychiatry*.

805 Perkel, D.J., Hestrin, S., Sah, P., and Nicoll, R.A. (1990). Excitatory synaptic currents in Purkinje
806 cells. *Proc Biol Sci* 241, 116-121.

807 Qiao, H., Foote, M., Graham, K., Wu, Y., and Zhou, Y. (2014). 14-3-3 proteins are required for
808 hippocampal long-term potentiation and associative learning and memory. *J Neurosci* 34, 4801-
809 4808.

810 Ribic, A., and Biederer, T. (2019). Emerging Roles of Synapse Organizers in the Regulation of
811 Critical Periods. *Neural Plast* 2019, 1538137.

812 Rong, Y., Wei, P., Parris, J., Guo, H., Patarini, R., Correia, K., Li, L., Kusnoor, S.V., Deutch, A.Y.,
813 and Morgan, J.I. (2012a). Comparison of Cbln1 and Cbln2 functions using transgenic and knockout
814 mice. *J Neurochem* 120, 528-540.

815 Rong, Y.Q., Wei, P., Parris, J., Guo, H., Patarini, R., Corrcia, K., Li, L.Y., Kusnoor, S.V., Deutch,
816 A.Y., and Morgan, J.I. (2012b). Comparison of Cbln1 and Cbln2 functions using transgenic and
817 knockout mice. *Journal of Neurochemistry* 120, 528-540.

818 Sanes, J.R., and Zipursky, S.L. (2020). Synaptic Specificity, Recognition Molecules, and Assembly
819 of Neural Circuits. *Cell* 181, 1434-1435.

820 Seigneur, E., Polepalli, J.S., and Sudhof, T.C. (2018). Cbln2 and Cbln4 are expressed in distinct
821 medial habenula-interpeduncular projections and contribute to different behavioral outputs. *Proc
822 Natl Acad Sci U S A* 115, E10235-E10244.

823 Seigneur, E., and Sudhof, T.C. (2017). Cerebellins are differentially expressed in selective subsets
824 of neurons throughout the brain. *J Comp Neurol* 525, 3286-3311.

825 Seigneur, E., and Sudhof, T.C. (2018). Genetic Ablation of All Cerebellins Reveals Synapse
826 Organizer Functions in Multiple Regions Throughout the Brain. *J Neurosci* 38, 4774-4790.

827 Shibata, M., Patabiraman, K., Muchnik, S.K., Kaur, N., Morozov, Y.M., Cheng, X., Waxman, S.G.,
828 and Sestan, N. (2021). Hominini-specific regulation of CBLN2 increases prefrontal spinogenesis.
829 *Nature* 598, 489-494.

830 Siddiqui, T.J., and Craig, A.M. (2011). Synaptic organizing complexes. *Curr Opin Neurobiol* 21, 132-
831 143.

832 Silver, R.A. (2010). Neuronal arithmetic. *Nat Rev Neurosci* 11, 474-489.

833 Sterky, F.H., Trotter, J.H., Lee, S.J., Recktenwald, C.V., Du, X., Zhou, B., Zhou, P., Schwenk, J.,
834 Fakler, B., and Sudhof, T.C. (2017). Carbonic anhydrase-related protein CA10 is an evolutionarily
835 conserved pan-neurexin ligand. *P Natl Acad Sci USA* 114, E1253-E1262.

836 Sudhof, T.C. (2017). Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural
837 Circuits. *Cell* 171, 745-769.

838 Sudhof, T.C. (2021). The cell biology of synapse formation. *J Cell Biol* 220.

839 Suzuki, K., Elegheert, J., Song, I., Sasakura, H., Senkov, O., Matsuda, K., Kakegawa, W., Clayton,
840 A.J., Chang, V.T., Ferrer-Ferrer, M., *et al.* (2020). A synthetic synaptic organizer protein restores
841 glutamatergic neuronal circuits. *Science* *369*.

842 Tabuchi, K., and Sudhof, T.C. (2002). Structure and evolution of neurexin genes: insight into the
843 mechanism of alternative splicing. *Genomics* *79*, 849-859.

844 Takeuchi, T., Miyazaki, T., Watanabe, M., Mori, H., Sakimura, K., and Mishina, M. (2005). Control of
845 synaptic connection by glutamate receptor delta2 in the adult cerebellum. *J Neurosci* *25*, 2146-
846 2156.

847 Tao, W., Diaz-Alonso, J., Sheng, N., and Nicoll, R.A. (2018). Postsynaptic delta1 glutamate receptor
848 assembles and maintains hippocampal synapses via Cbln2 and neurexin. *Proc Natl Acad Sci U S A*
849 *115*, E5373-E5381.

850 Uemura, T., Kakizawa, S., Yamasaki, M., Sakimura, K., Watanabe, M., Iino, M., and Mishina, M.
851 (2007). Regulation of long-term depression and climbing fiber territory by glutamate receptor delta2
852 at parallel fiber synapses through its C-terminal domain in cerebellar Purkinje cells. *J Neurosci* *27*,
853 12096-12108.

854 Ullrich, B., Ushkaryov, Y.A., and Sudhof, T.C. (1995). Cartography of neurexins: more than 1000
855 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. *Neuron* *14*,
856 497-507.

857 Wei, P., Patarini, R., Rong, Y., Guo, H., Bansal, P.K., Kusnoor, S.V., Deutch, A.Y., Parris, J., and
858 Morgan, J.I. (2012). The Cbln family of proteins interact with multiple signaling pathways. *J*
859 *Neurochem* *121*, 717-729.

860 Wojtowicz, A.M., Fidzinski, P., Heinemann, U., and Behr, J. (2010). Beta-adrenergic receptor
861 activation induces long-lasting potentiation in burst-spiking but not regular-spiking cells at CA1-
862 subiculum synapses. *Neuroscience* *171*, 367-372.

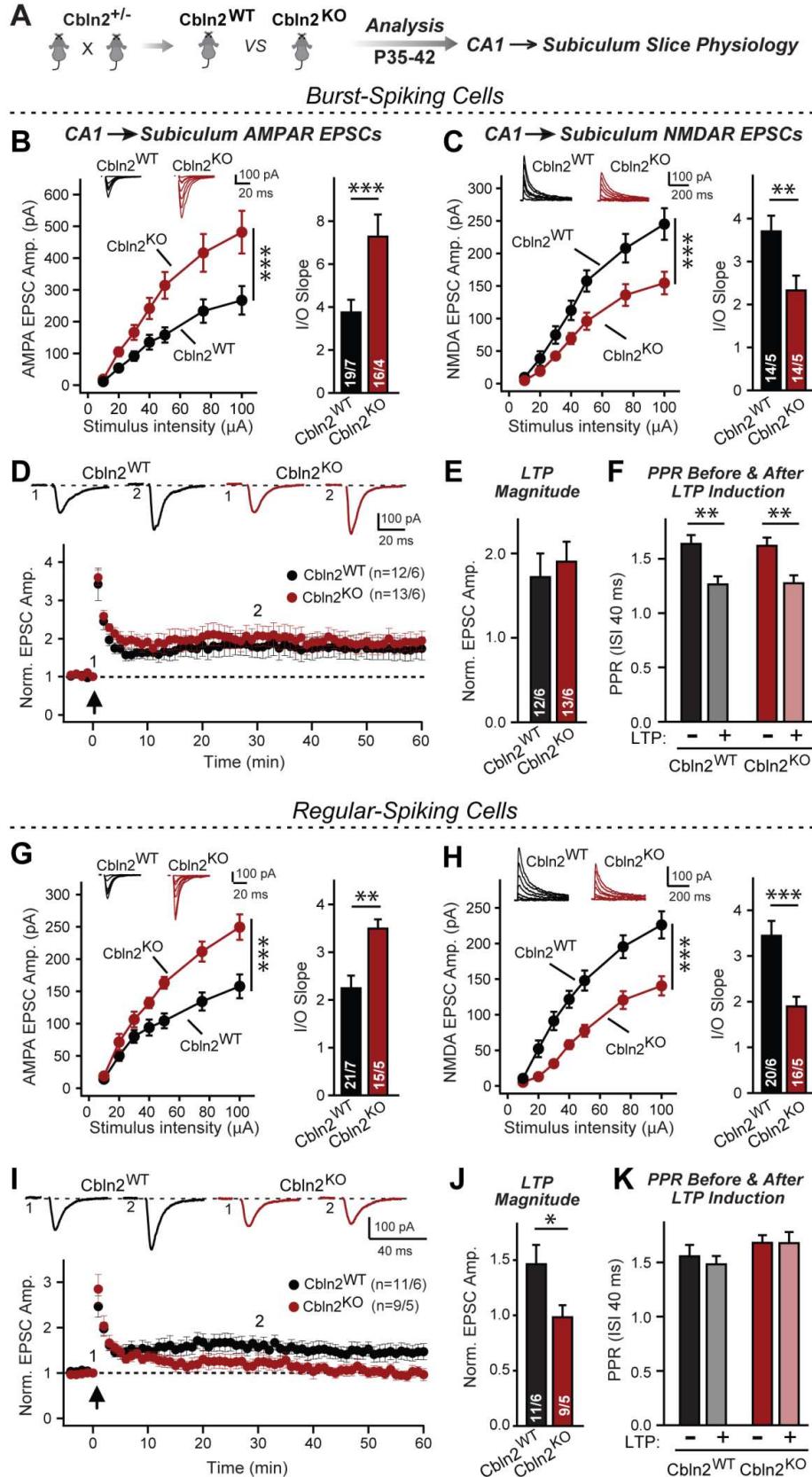
863 Wozny, C., Maier, N., Fidzinski, P., Breustedt, J., Behr, J., and Schmitz, D. (2008a). Differential
864 cAMP signaling at hippocampal output synapses. *J Neurosci* *28*, 14358-14362.

865 Wozny, C., Maier, N., Schmitz, D., and Behr, J. (2008b). Two different forms of long-term
866 potentiation at CA1-subiculum synapses. *J Physiol* *586*, 2725-2734.

867 Xu, W., Morishita, W., Buckmaster, P.S., Pang, Z.P., Malenka, R.C., and Sudhof, T.C. (2012).
868 Distinct neuronal coding schemes in memory revealed by selective erasure of fast synchronous
869 synaptic transmission. *Neuron* *73*, 990-1001.

870 Yamasaki, M., Miyazaki, T., Azechi, H., Abe, M., Natsume, R., Hagiwara, T., Aiba, A., Mishina, M.,
871 Sakimura, K., and Watanabe, M. (2011). Glutamate Receptor delta 2 Is Essential for Input Pathway-

872 Dependent Regulation of Synaptic AMPAR Contents in Cerebellar Purkinje Cells. *Journal of*
873 *Neuroscience* *31*, 3362-3374.


874 Yuzaki, M. (2011). Cbln1 and its family proteins in synapse formation and maintenance. *Curr Opin*
875 *Neurobiol* *21*, 215-220.

876 Yuzaki, M. (2018). Two Classes of Secreted Synaptic Organizers in the Central Nervous System.
877 *Annu Rev Physiol* *80*, 243-262.

878 Zhang, B., Chen, L.Y., Liu, X., Maxeiner, S., Lee, S.J., Gokce, O., and Sudhof, T.C. (2015).
879 Neuroligins Sculpt Cerebellar Purkinje-Cell Circuits by Differential Control of Distinct Classes of
880 Synapses. *Neuron* *87*, 781-796.

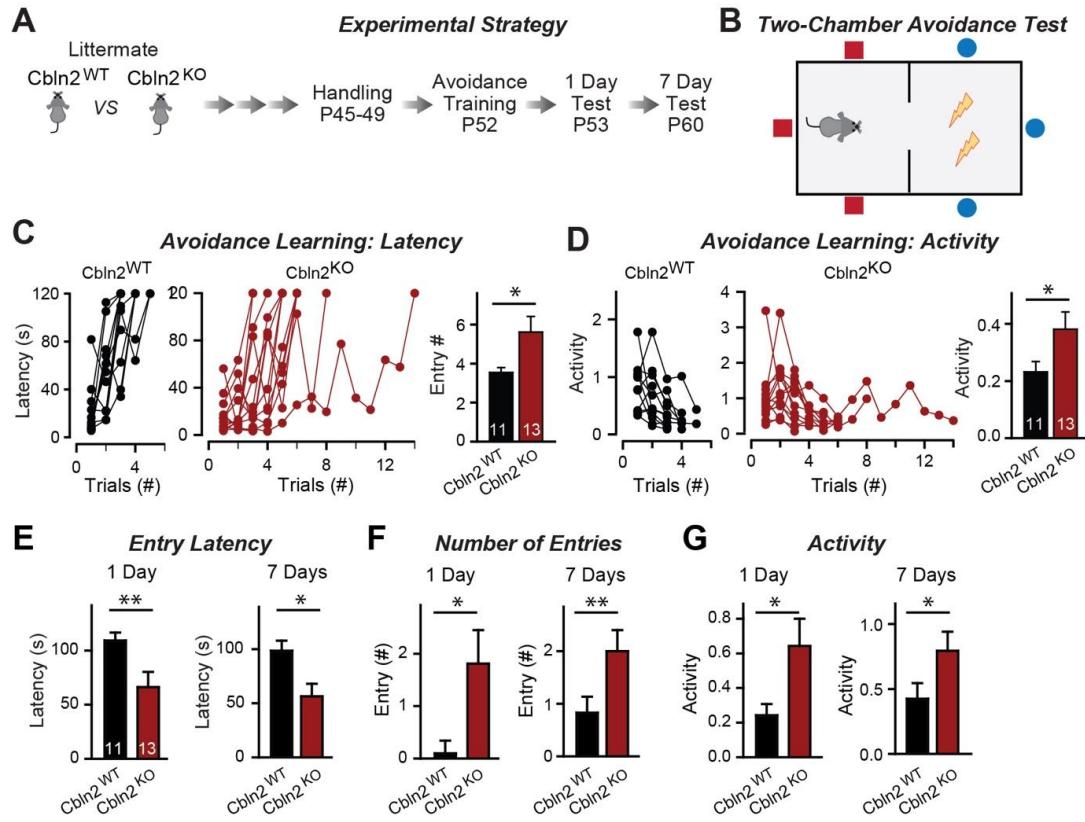
881 Zhong, C., Shen, J.L., Zhang, H.B., Li, G.Y., Shen, S.L., Wang, F., Hu, K., Cao, L.X., He, Y.N., and
882 Ding, J.P. (2017). Cbln1 and Cbln4 Are Structurally Similar but Differ in GluD2 Binding Interactions.
883 *Cell Reports* *20*, 2328-2340.

FIGURES and FIGURE LEGENDS

Figure 1: Constitutive *CbIn2* deletion increases AMPAR-EPSCs and suppresses NMDAR-EPSCs at CA1→subiculum synapses formed both on burst- and regular-spiking subiculum

neurons, and blocks NMDAR-dependent LTP in regular-spiking neurons without affecting cAMP-dependent LTP in burst-spiking neurons

A. Experimental strategy for analysis of littermate wild-type and constitutive *Cbln2* KO mice.

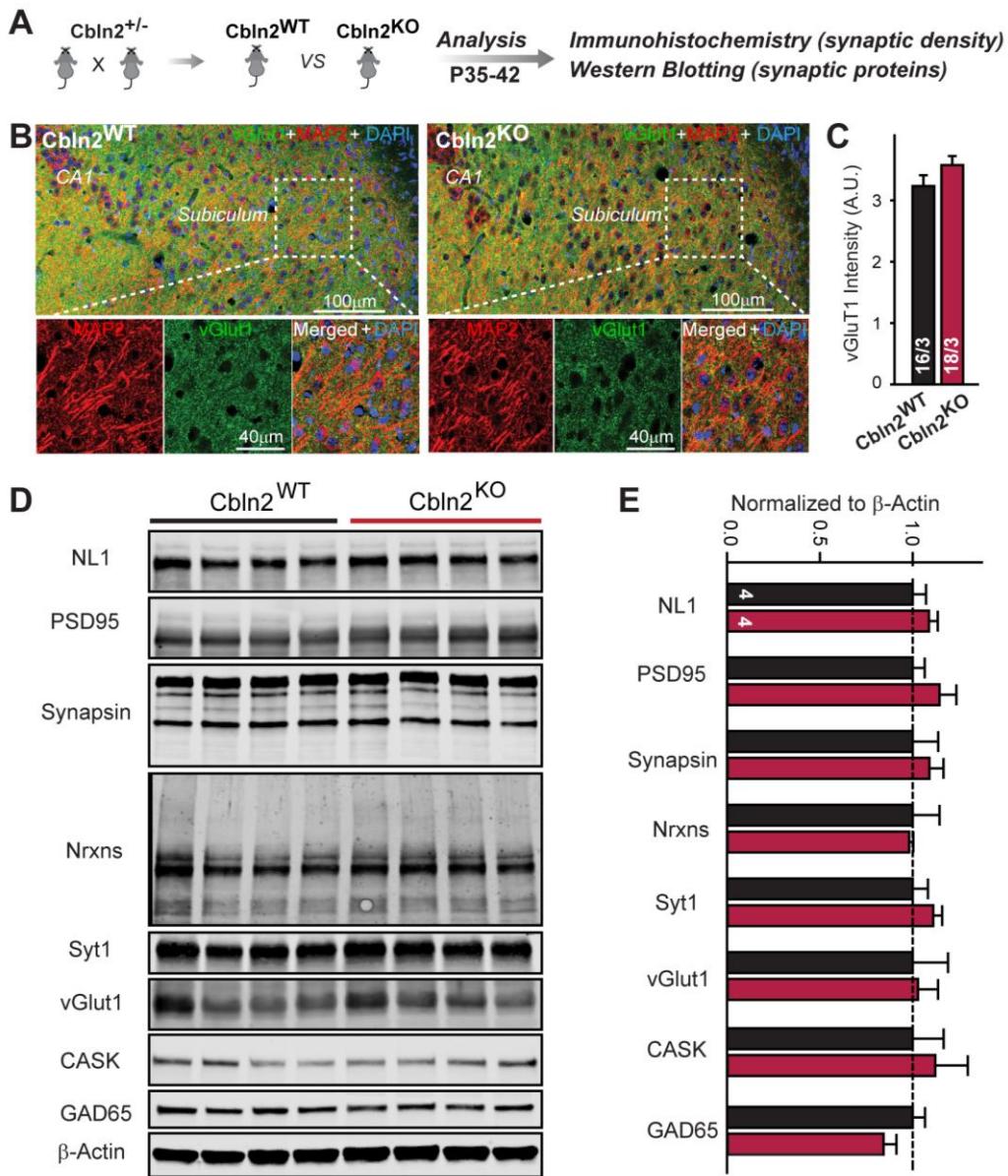

B & C. Input/output measurements of evoked AMPAR- and NMDAR-EPSCs recorded from burst-spiking neurons in acute subiculum slices reveal that the *Cbln2* KO enhances AMPAR-EPSCs (B) but suppresses NMDAR-EPSCs (C). EPSCs were evoked by stimulation of CA1 axons in acute slices from littermate control and *Cbln2* KO mice at P35-42 (left, summary plots of input-output curves with sample traces on top; right, summary graph of input/output slopes).

D-F. The *Cbln2* KO had no effect on the presynaptic LTP typical for burst-spiking neurons that is induced by four 100 Hz/1 s stimulus trains with 10 s intervals under voltage-clamp (D, summary plot of AMPAR-EPSC amplitudes with sample traces on top; E, summary graph of the LTP magnitude (normalized EPSC amplitudes during the last 5 mins of recordings at least 30 min after LTP induction); F, summary graph of paired-pulse ratios before and after LTP induction as a measure of the release probability).

G & H. Same as B & C, but recorded from regular-spiking neurons. Note that the AMPAR-EPSC and NMDAR-EPSC phenotype of the *Cbln2* KO is identical in burst- and regular-spiking neurons.

I-K. The *Cbln2* KO abolishes NMDAR-dependent postsynaptic LTP that is typical for regular-firing subiculum neurons, and does not involve a change in PPR. Data are from experiments analogous to those described in D-F.

All data are means \pm SEM. Number of neurons/mice are indicated in bars. Statistical significance was assessed by unpaired two-tailed t-test or two-way ANOVA ($^*P \leq 0.05$, $^{**}P \leq 0.01$, and $^{***}P \leq 0.001$).

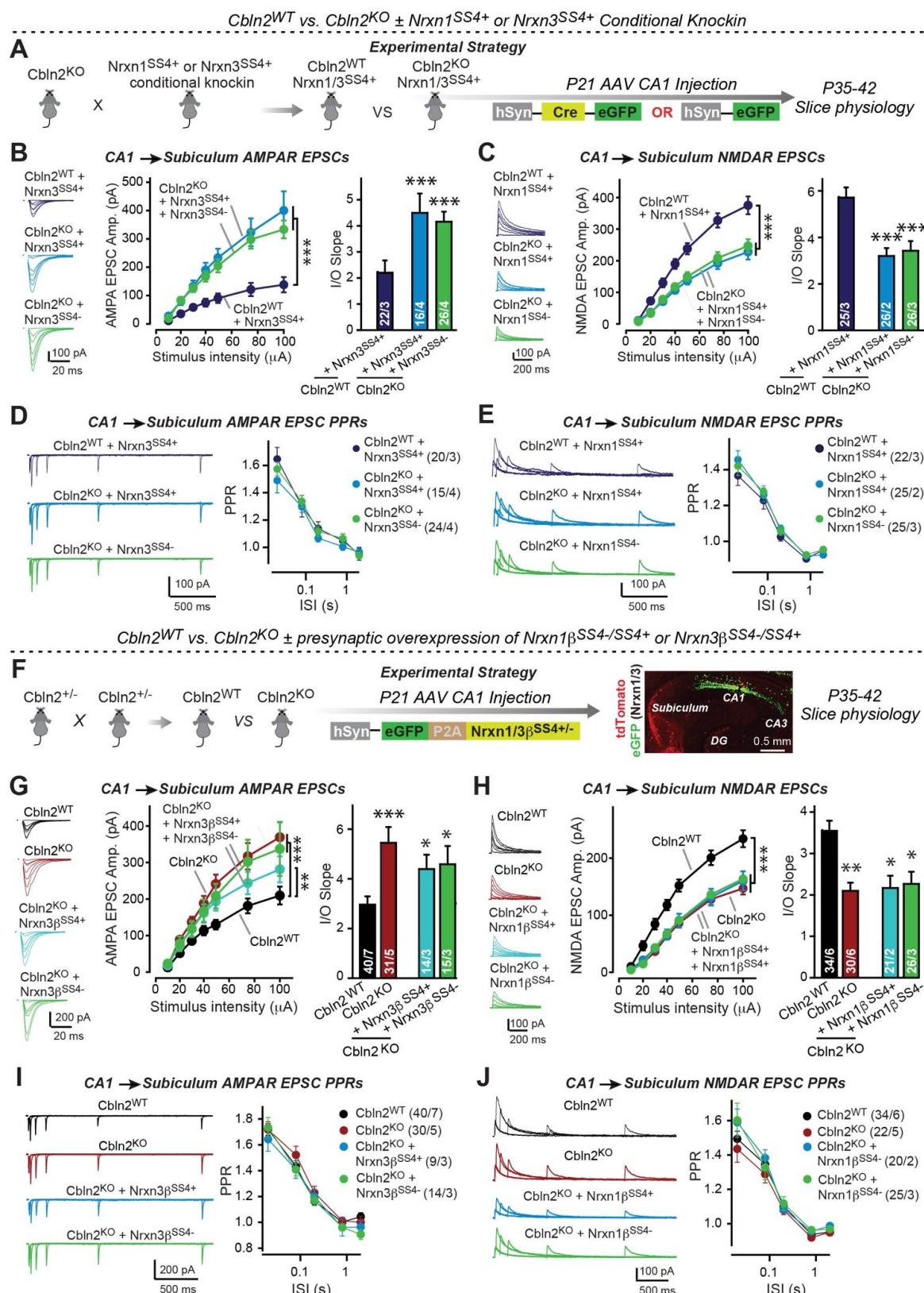

Figure 2: Constitutive *Cbln2* deletion impairs contextual memory in the two-chamber avoidance test

A & B. Experimental strategy of behavioral experiments utilizing littermate *Cbln2* KO and WT mice (A) and design of the two-chamber avoidance test in which mice receive mild electric foot shocks in the otherwise preferred darker chamber (B; Cimadevilla et al., 2001; Qiao et al., 2014).

C & D. *Cbln2* KO mice exhibit a delayed learning curve during two-chamber avoidance training. Mice learn to stay in the safe space by remembering visual cues to avoid the foot shock (C, trials for each mouse taking to learn when they remain in safe chamber for more than 2 mins (called latency; summary graphs shows number of entries); D, activity level in the safe chamber for each trial (summary graph shows activity level).

E-G. *Cbln2* KO severely decreases contextual memory in mice as measured by the two chamber avoidance test 1 day (left graphs) or 7 days (right graphs) after training (summary graphs of E, entry latencies; F, number of entries, and G, mouse activity).

Data are means \pm SEMs, the number of mice analyzed are depicted in the bars. Statistical analyses were performed by one-tail t-test (* = $P \leq 0.05$; ** = $P \leq 0.01$).


Figure 3: Constitutive *Cbln2* deletion does not alter the overall synapse density in the hippocampus

A. Experimental strategy for the analysis of littermate wild-type and constitutive *Cbln2* KO mice.

B. Representative images of subiculum sections stained for vGluT1 as a proxy of synapse density, MAP2 as a proxy of neuronal density, and DAPI.

C. The *Cbln2* KO does not cause a major loss of excitatory synapses in the subiculum as indicated by the vGluT1 staining intensity.

D & E. The *Cbln2* KO also does not significantly alter the levels of synaptic proteins in the hippocampus. Protein levels were measured in hippocampal lysates by quantitative immunoblotting using fluorescent secondary antibodies (D, representative blots, please also see original full-sized immunoblots in Figure 3-source data 1; E, summary graph (levels are normalized for β-actin as an internal standard, and then to the controls to render results from multiple experiments comparable; n = 3 independent experiments)). Data are means ± SEMs, the number of slices/mice or number of mice analyzed are depicted in the bars; statistical analyses by unpaired two-tailed t-test revealed no significant differences.

Figure 4: Constitutive *Cbln2* deletion occludes regulation of postsynaptic AMPAR- and NMDAR-EPSCs by presynaptic Nrxn1^{SS4+} and Nrxn3^{SS4+}, respectively

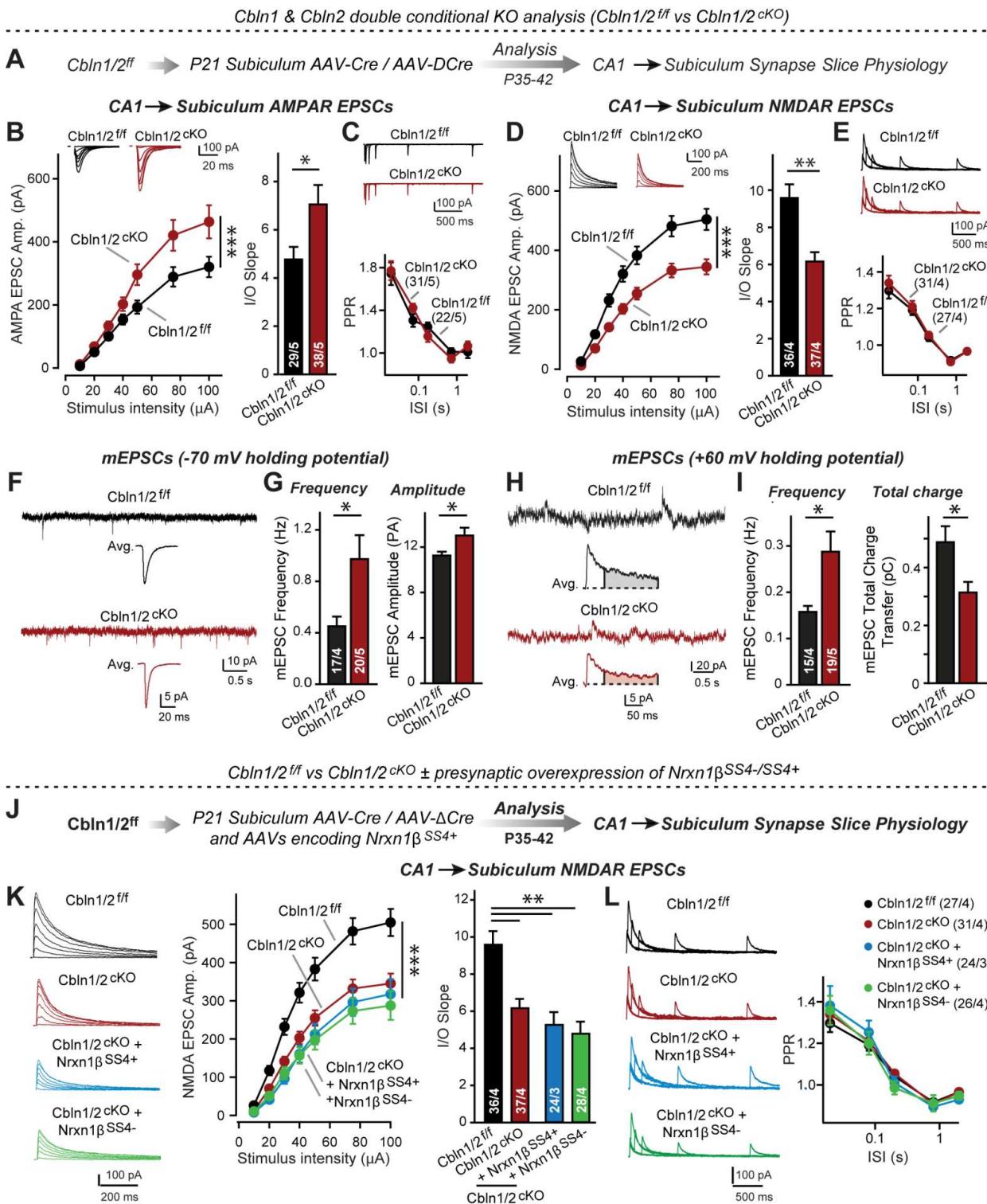
A. Experimental strategy for testing whether the *Cbln2* deletion blocks the effects of Nrxn1^{SS4+} and Nrxn3^{SS4+} signaling. Constitutive *Cbln2* KO mice (*Cbln2^{KO}*) were crossed with Nrxn1^{SS4+} and Nrxn3^{SS4+} knockin mice that constitutively express Nrxn1^{SS4+} and Nrxn3^{SS4+} splice variants, but that are converted into constitutively expressing Nrxn1^{SS4-} and Nrxn3^{SS4-} splice variants by Cre-recombinase (Dai et al., 2019). Three groups of mice were compared: 1. *Cbln2^{WT}* mice expressing Nrxn1^{SS4+} or Nrxn3^{SS4+}, 2.

Cbln2^{KO} mice expressing *Nrxn1*^{SS4+} and *Nrxn3*^{SS4+} in which presynaptic CA1 neurons were infected stereotactically at P21 with AAVs expressing inactive Δ Cre (retains presynaptic *Nrxn1*^{SS4+} and *Nrxn3*^{SS4+} genotype); and 3. *Nrxn1*^{SS4+} and *Nrxn3*^{SS4+} in which presynaptic CA1 neurons were infected stereotactically at P21 with AAVs expressing active Cre (generates presynaptic *Nrxn1*^{SS4-} and *Nrxn3*^{SS4-} genotype). CA1 \rightarrow subiculum synapses were then analyzed in acute slices from these mice at P35-42.

B. On the background of the *Cbln2* KO, knockin of *Nrxn3*^{SS4+} no longer suppresses AMPAR-ESPCs, nor does it reverse the increase in AMPAR-EPSCs induced by the *Cbln2* KO at CA1 \rightarrow subiculum synapses (left, representative traces; middle, summary plot of the input/output relation; right, summary graph of the slope of the input/output relations).

C. Similarly, *Nrxn1*^{SS4+} no longer enhances NMDAR-ESPCs on the background of the *Cbln2* KO, nor does it reverse the decrease in NMDAR-EPSCs induced by the *Cbln2* KO (left, representative traces; middle, summary plot of the input/output relation; right, summary graph of the slope of the input/output relations).

D & E. Constitutive expression of *Nrxn1*^{SS4+} and *Nrxn3*^{SS4+} alone or in combination with the *Cbln2* KO have no effect on the paired-pulse ratio of evoked AMPAR-EPSCs (D) or NMDAR-EPSCs (E) at CA1 \rightarrow subiculum synapses (left, sample traces; right, summary plots of PPRs).


F. Alternative experimental strategy for testing whether the *Cbln2* deletion blocks the effects of *Nrxn1*^{SS4+} and *Nrxn3*^{SS4+} signaling. Analysing the epistatic relation of neurexin alternative splicing at SS4 with the *Cbln2* KO at CA1 \rightarrow subiculum synapses using viral overexpression of *Nrxn1* β ^{SS4+} or *Nrxn3* β ^{SS4+} in *Cbln2* KO mice. The CA1 region of constitutive *Cbln2* KO mice was bilaterally infected at P21 by stereotactic injections with AAVs expressing *Nrxn1* β ^{SS4+}, *Nrxn1* β ^{SS4-}, *Nrxn3* β ^{SS4+}, or *Nrxn3* β ^{SS4-}, and subiculum neurons were analyzed 2-3 weeks later. The representative image on the right depicts the signal for eGFP (which is co-expressed with the neurexins) in CA1 neurons after 2 weeks infection.

G. On the background of the *Cbln2* KO, overexpression of *Nrxn3* β ^{SS4+} again no longer suppresses AMPAR-ESPCs, nor does it reverse the increase in AMPAR-EPSCs induced by the *Cbln2* KO at CA1 \rightarrow subiculum synapses (left, representative traces; middle, summary plot of the input/output relation; right, summary graph of the slope of the input/output relations).

H. Similarly, overexpressed *Nrxn1* β ^{SS4+} no longer enhances NMDAR-ESPCs on the background of the *Cbln2* KO, nor does it reverse the decrease in NMDAR-EPSCs induced by the *Cbln2* KO (left, representative traces; middle, summary plot of the input/output relation; right, summary graph of the slope of the input/output relations).

I & J. Overexpression of any neurexin has no effect on the paired-pulse ratio of evoked AMPAR-EPSCs (I) or NMDAR-EPSCs (J) (left, sample traces; right, summary plots of PPRs).

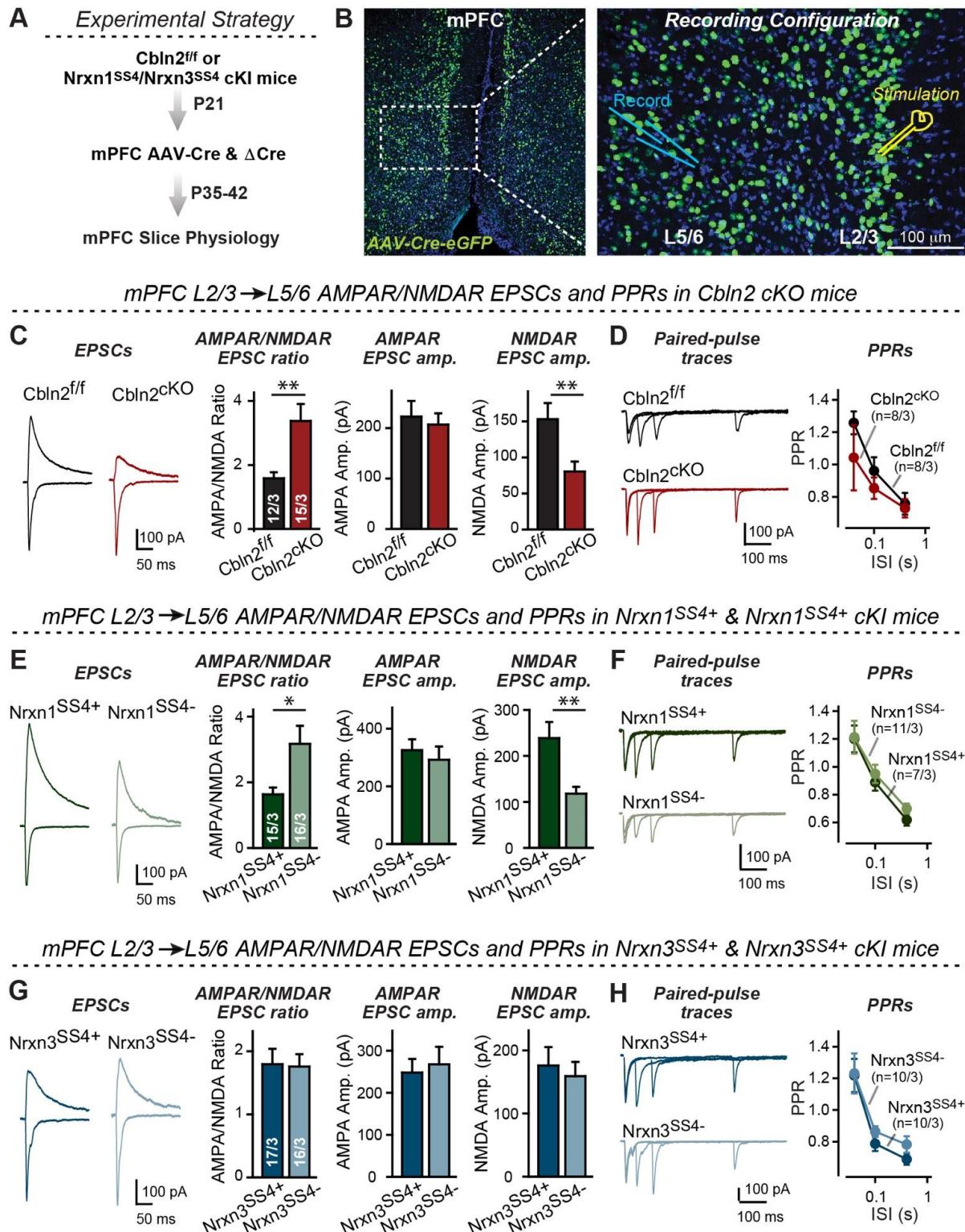
Data are means \pm SEM. Number of neurons/mice are indicated in bars. Statistical significance was assessed by unpaired two-tailed t-test comparing to control and two-way ANOVA (*P \leq 0.05, **P \leq 0.01, and ***P \leq 0.001).

Figure 5: *Cbln1* and *Cbln2* double KO in the subiculum phenocopies the *Cbln2* single KO in *CA1*→*subiculum* synapses

A. Experimental strategy. AAVs encoding Cre or Δ Cre (as a control) were stereotactically injected into the subiculum of conditional KO mice at P21, and mice were analyzed by slice physiology 2-3 weeks later.

B-E. Input/output measurements of evoked EPSCs recorded from combined burst- and regular-spiking neurons in acute subiculum slices reveal that the conditional *Cbln2* KO enhances AMPAR-EPSCs (B)

without changing the paired-pulse ratio of AMPAR-EPSCs (C) but suppresses NMDAR-EPSCs (D), again without changing the paired-pulse ratio of NMDAR-EPSCs (E). Sample traces are shown above the respective summary plots and graphs.


F-I. Analyses of mEPSCs recorded at -70 mV and +60 mV holding potentials from burst- and regular-firing neurons in the subiculum after deletion of both Cbln1 and Cbln2 reveal an increase in mEPSC frequency measured at both holding potentials, but a decrease in charge transfer only of mEPSCs monitored at a +60 mV holding potential consistent with the decreased NMDAR-EPSC amplitude detected during input/output measurements (F, sample traces; G, bar graphs of the mEPSC frequency and amplitude, respectively; H & I, same as F & G but for recordings at +60 mV).

J. Experimental strategy. The subiculum region of Cbln1/2^{cKO} was bilaterally infected at P21 by stereotactic injections of AAVs expressing Δ Cre-eGFP (Cbln1/2^{ff}) or Cre-eGFP (Cbln1/2^{cKO}), and then two weeks later cohorts of mice injected with Cre were further injected into the CA1 region with AAVs expressing Nrxn1 β^{SS4+} or Nrxn1 β^{SS4-} . Mice were then analyzed at P49-P56 by acute slice electrophysiology.

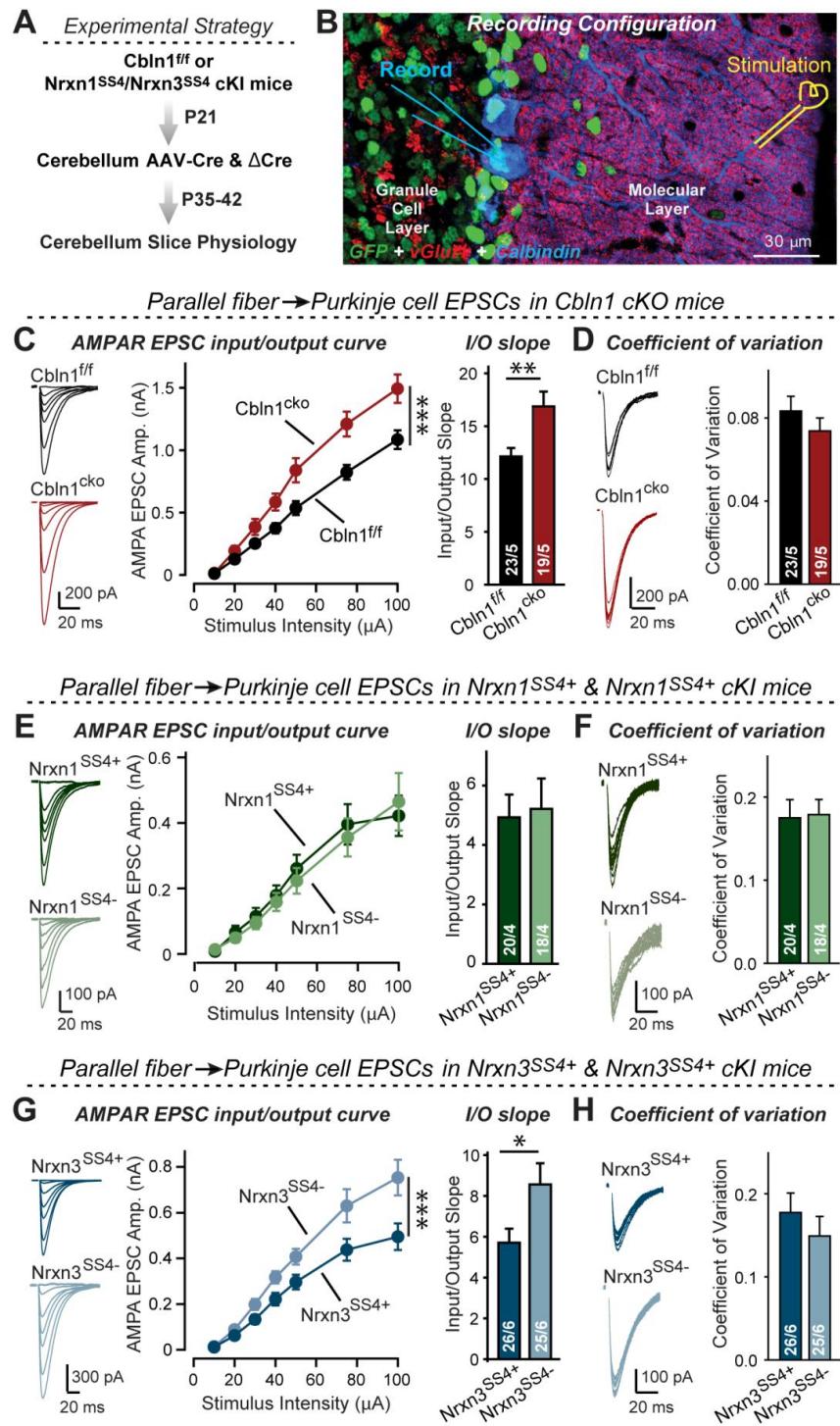
K. Overexpressed Nrxn1 β^{SS4+} no longer enhances NMDAR-EPSCs on the background of the double Cbln1/2 cKO, nor does it reverse the decrease in NMDAR-EPSCs induced by the double Cbln1/2 cKO (left, representative traces; middle, summary plot of the input/output relation; right, summary graph of the slope of the input/output relations).

L. Conditional deletion of both Cbln1 and Cbln2 without or with presynaptic overexpression of Nrxn1 β^{SS4+} or Nrxn1 β^{SS4-} does not alter paired-pulse ratios of NMDAR EPSCs. Left panels show sample traces; right panels summary plots of the paired-pulse ratio as a function of the interstimulus interval.

Data are means \pm SEMs; the number of cells/mice are depicted in the bars. Statistical analyses were performed by two-way ANOVA or unpaired two-tailed t-test comparing KOs to WT (*P \leq 0.05; **P \leq 0.01, and ***P \leq 0.001).

Figure 6: Nrxn1^{SS4+}-Cbln2 signaling controls NMDAR-EPSCs but not AMPAR-EPSCs in the medial prefrontal cortex (mPFC), whereas Nrxn3^{SS4+}-Cbln2 signaling does not regulate either AMPAR- or NMDAR-EPSCs in the mPFC

A & B. Experimental strategy (left, flow diagram of the experiments; middle and right, Analysis strategies of Cbln2/Nrxn1-SS4/Nrxn3-SS4 conditional KO. Right, the mPFC region of Cbln2^{cKO} was bilaterally infected at P21 by stereotactic injections of AAVs expressing ΔCre-eGFP (Cbln2^{ff}) or Cre-eGFP (Cbln2^{cKO}), and L5/6 pyramidal neurons in the prelimbic cortex (PL) region were analyzed 2-3 weeks later (A). The stimulation electrode was placed in L2/3 (B).


C. Left, sample traces of evoked AMPAR- and NMDAR-EPSCs at Cbln2^{ff} and $\text{Cbln2}^{\text{cKO}}$ mPFC brain slices; Right, statistics of AMPA/NMDA ratios, AMPAR-EPSCs amplitude, and NMDAR-EPSCs amplitude.

D. Left, sample traces of paired-pulse measurements from each condition; Right, summary plots of PPRs.

E & F. Same as C & D, but recorded from $\text{Nrnxn1}^{\text{SS4+}}$ knockin mice in which ΔCre retains a constitutive expression of Nrnxn1-SS4+ splice variants, whereas Cre converts the Nrnxn1-SS4+ variants into constitutive Nrnxn1-SS4- variants.

G & H. Same as C & D, but recorded from $\text{Nrnxn3}^{\text{SS4+}}$ knockin mice in which ΔCre retains a constitutive expression of Nrnxn3-SS4+ splice variants, whereas Cre converts the Nrnxn3-SS4+ variants into constitutive Nrnxn3-SS4- variants.

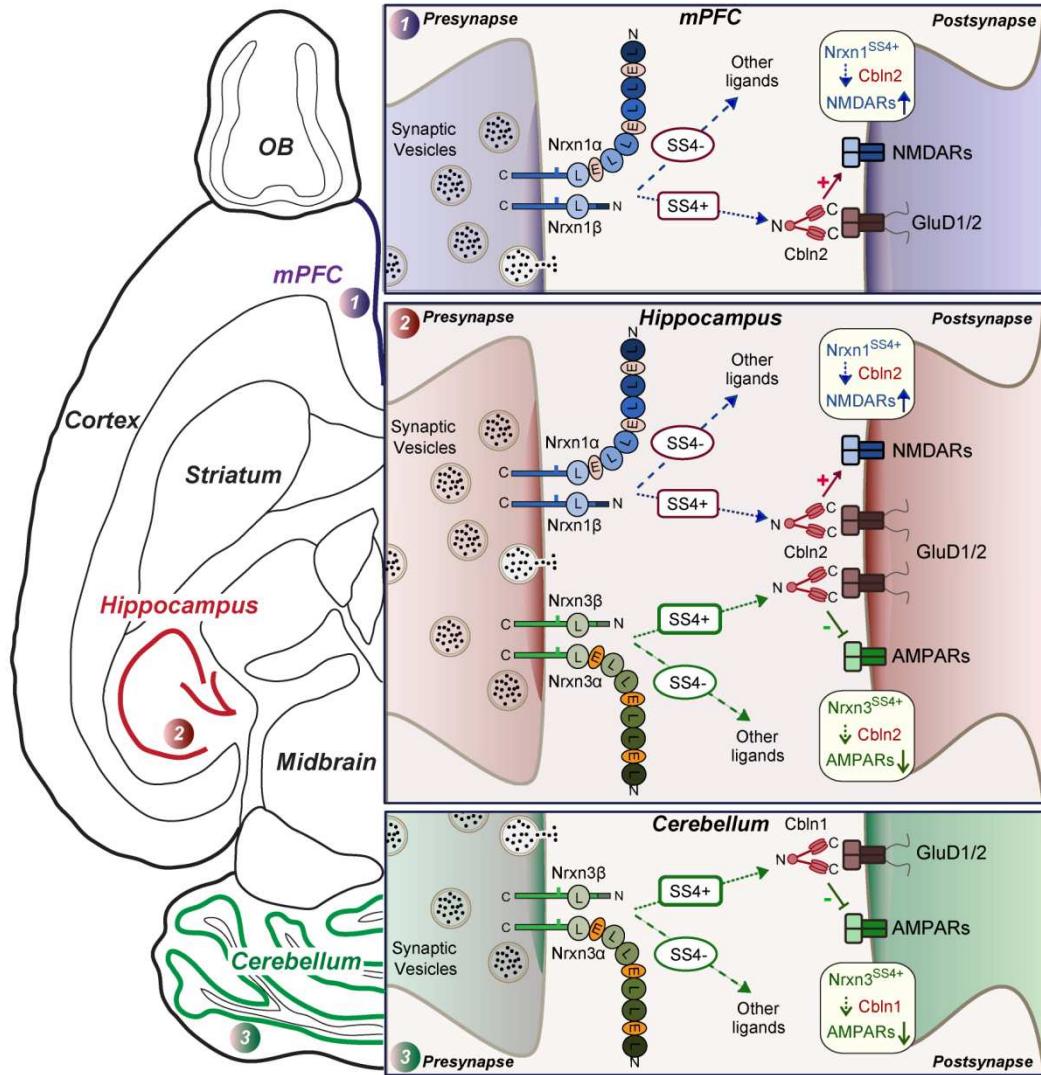
Data are means \pm SEM. Number of neurons/mice are indicated in bars. Statistical significance was assessed by unpaired two-tailed t-test or two-way ANOVA (* $P \leq 0.05$, ** $P \leq 0.01$, and *** $P \leq 0.001$).

Figure 7: Nrxn3^{SS4+}-Cbln1 signaling controls AMPAR-EPSCs in the cerebellum, but in this brain region Nrxn1^{SS4+}-Cbln1 signaling has no effect

A. Experimental workflow for analyzing the effect of the *Cbln1* cKO or of the conditional *Nrxn1^{SS4+}* or *Nrxn3^{SS4+}* knockin on parallel-fiber synaptic transmission in the cerebellum. Note that the expression of Δ Cre in *Nrxn1^{SS4+}* or *Nrxn3^{SS4+}* knockin mice retains the constitutive expression of their SS4+ splice variants, whereas the expression of Cre converts SS4+ into a constitutive SS4- splice variant.

B. Image of a cerebellar cortex section (lobes 4-5) from *Cbln1* cKO mouse in which these lobes were infected at P21 by stereotactic injections of AAVs expressing Δ Cre-eGFP (*Cbln1^{f/f}*) or Cre-eGFP

(*Cbln1*^{CKO}). Sections were analyzed at P35 by slice physiology; the positions of the recording electrode in the patched Purkinje cells and of the stimulation electrode in the granule cell layer are indicated.


C. The *Cbln1* deletion in cerebellum significantly increases the amplitude of AMPAR-EPSCs at parallel-fiber synapses (left, sample traces of evoked AMPAR-EPSCs; middle, summary plot of AMPAR-EPSCs input-output curves; right, summary graph of the slope of AMPAR-EPSC input/output curves).

D. The *Cbln1* deletion in cerebellum has no major effect on the coefficient of variation at parallel-fiber synapses, suggesting that it does not greatly change the release probability (left, sample traces of evoked AMPAR-EPSCs with 50 μ A stimulus intensity; right, summary graph of the coefficient of variation of AMPAR-EPSCs).

E & F. Same as C & D, but recorded from *Nrxn1*^{SS4+} knockin mice in which Δ Cre retains a constitutive expression of *Nrxn1*-SS4+ splice variants, whereas Cre converts the *Nrxn1*-SS4+ variants into constitutive *Nrxn1*-SS4- variants.

G & H. Same as E & F, but for *Nrxn3*^{SS4+} knockin mice in which Δ Cre retains a constitutive expression of *Nrxn1*-SS4+ splice variants, whereas Cre converts the *Nrxn1*-SS4+ variants into constitutive *Nrxn1*-SS4- variants.

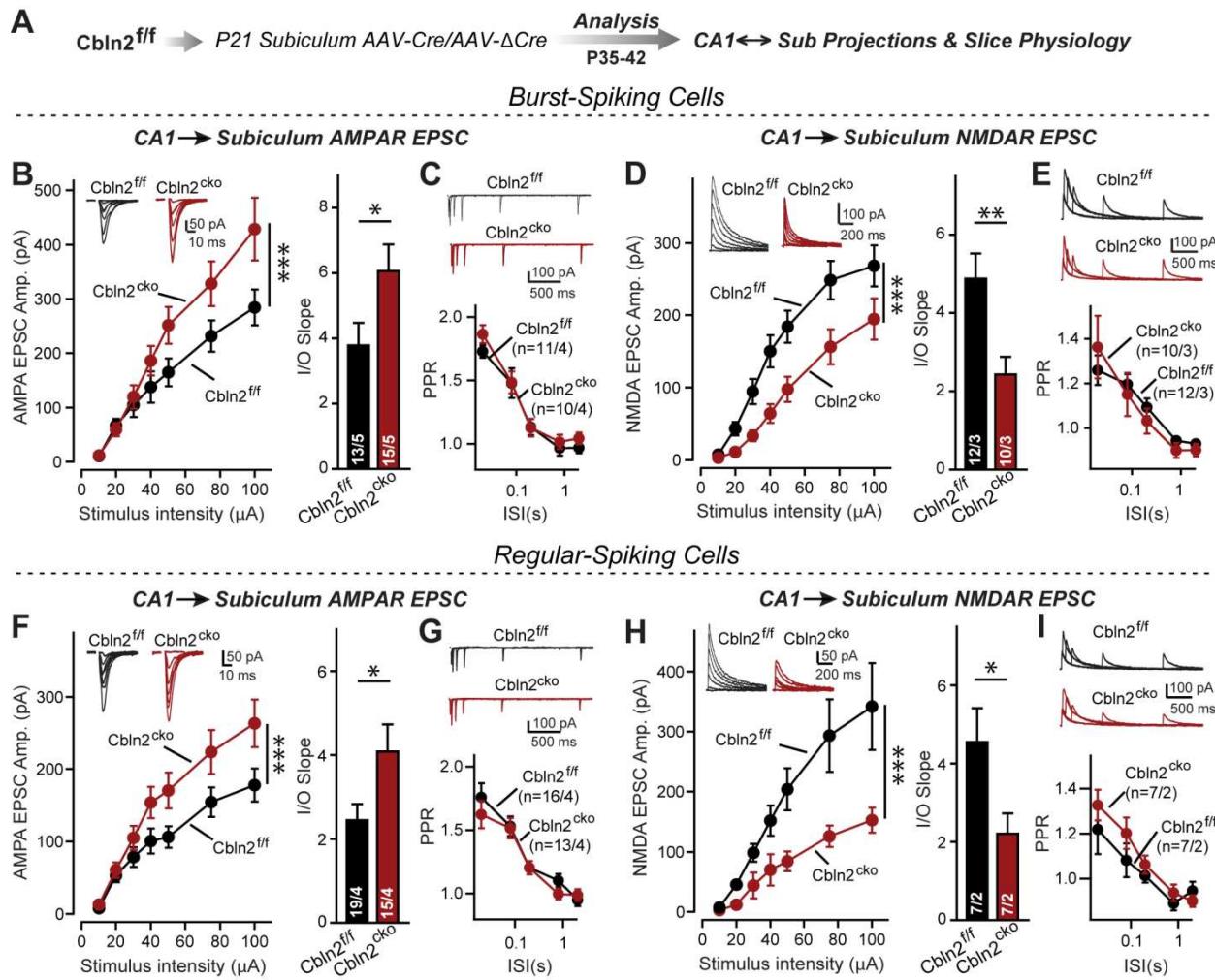
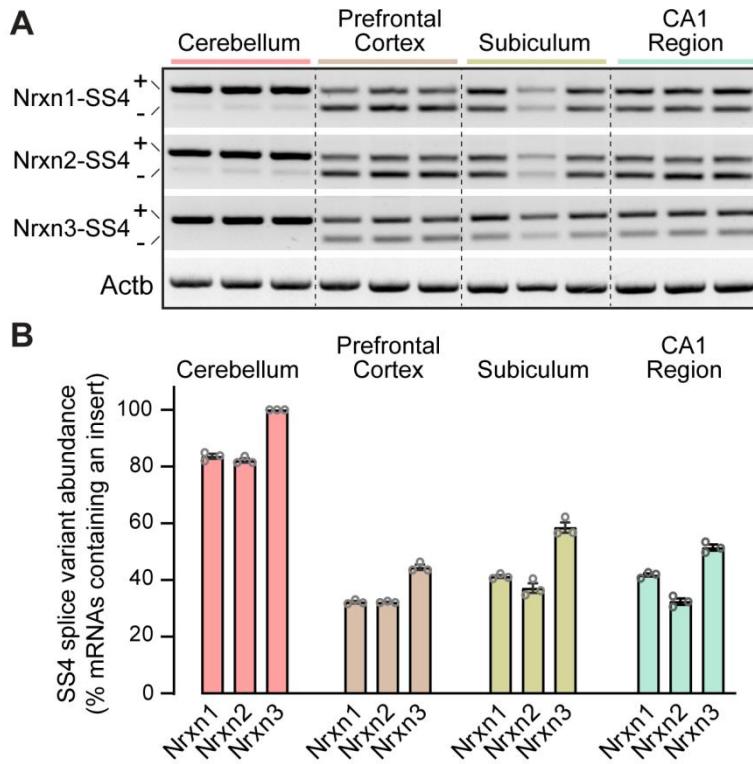

Data are means \pm SEM. Number of neurons/mice are indicated in bars. Statistical significance was assessed by two-way ANOVA or unpaired two-tailed t-test (*P \leq 0.05, **P \leq 0.01, and ***P \leq 0.001).

Figure 8: Schematic illustrating how $\text{Nrxn1}^{\text{SS4}+}$ -Cbln1/2 and $\text{Nrxn3}^{\text{SS4}+}$ -Cbln1/2 complexes control postsynaptic AMPARs and NMDARs in subiculum, prefrontal, and cerebellar circuits

The schematic is based on data shown previously (Aoto et al., 2013; Dai et al., 2019 and 2021) and described here. Alternative splicing of presynaptic Nrxn1 and Nrxn3 at SS4 that controls their interactions with Cbln1/2 and thereby with postsynaptic GluD1/2 differentially regulates the postsynaptic content of AMPARs and NMDARs in different brain region. In the hippocampus, Nrxn1^{SS4+}-Cbln1/2 complexes enhance NMDAR-EPSCs, whereas Nrxn3^{SS4+}-Cbln1/2 complexes suppress AMPAR-EPSCs, with both types of complexes acting via GluD1/2. In the mPFC, Nrxn1^{SS4+}-Cbln1/2 complexes also enhance NMDAR-EPSCs, but Nrxn3^{SS4+}-Cbln1/2 complexes have no effect. In the cerebellum, conversely, Nrxn3^{SS4+}-Cbln1/2 complexes suppress AMPAR-EPSCs, whereas now Nrxn1^{SS4+}-Cbln1/2 complexes have no effect. These results indicate that Nrxn1^{SS4+}-Cbln1/2 and Nrxn3^{SS4+}-Cbln1/2 complexes perform universal functions in regulating AMPARs and NMDARs, respectively, but that these regulatory signaling pathways are differentially expressed in different types of synapses.

SUPPLEMENTAL FIGURES and FIGURE LEGENDS


Figure S1: Conditional *Cbln2* KO in the subiculum produces the same phenotype as the constitutive *Cbln2* KO at the two different types of CA1} \rightarrow subiculum synapses that are formed on burst- and regular-spiking neurons

A. Experimental design for the generation and analysis of littermate control and conditional *Cbln2* KO mice. AAVs encoding Cre or Δ Cre (as a control) were stereotactically injected into the subiculum of conditional *Cbln2* KO mice at P21, and mice were analyzed by slice physiology 2-3 weeks later.

B-E. Input/output measurements of evoked AMPAR-EPSCs (B) and NMDAR-EPSCs (D) recorded from burst-spiking neurons in acute subiculum slices reveal that the conditional *Cbln2* KO enhances AMPAR-EPSCs (B) without changing the paired-pulse ratio of AMPAR-EPSCs (C) but suppresses NMDAR-EPSCs (D), again without changing the paired-pulse ratio of NMDAR-EPSCs (E), in burst-spiking neurons. Sample traces are shown above the respective summary plots and graphs.

F-I. Same as B-E, but recorded from regular-spiking neurons. Note that the conditional *Cbln2* KO phenotype is identical between burst- and regular-spiking neurons.

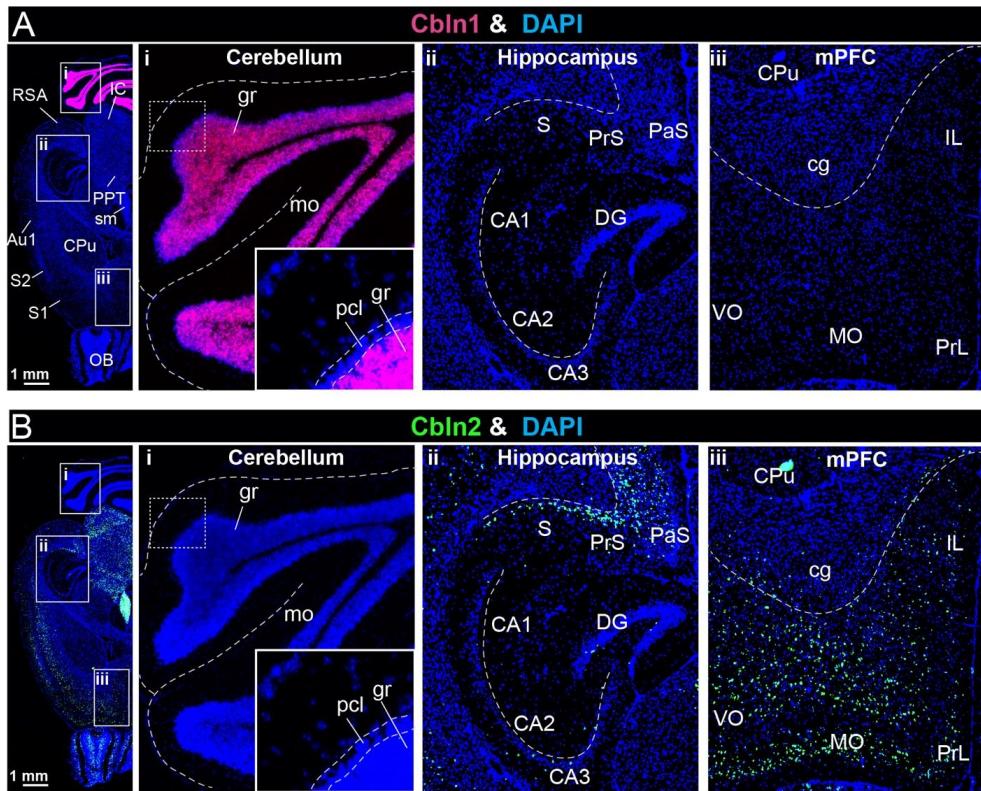

Data are means \pm SEM. Number of neurons/mice are indicated in bars. Statistical significance was assessed by unpaired two-tailed t-test or two-way ANOVA (* $P \leq 0.05$, ** $P \leq 0.01$, and *** $P \leq 0.001$).

Figure S2: Analysis of neurexin SS4 alternative splicing reveals that whereas all neurexins are almost exclusively expressed as SS4+ variants in the cerebellum, in other brain regions a mixture of SS4+ and SS4- variants is observed

A. Sample gels of amplified DNA obtained by RT-PCR of mRNAs from the indicated brain regions. RT-PCR was carried out with primers flanking SS4; as a result, in most brain regions two bands are observed that correspond to mRNAs containing (upper bands) and lacking SS4 (lower bands). Please also see original full-sized gels in Figure supplement 2-source data 1.

B. Quantification of the prevalence of SS4+ variants of the three neurexins in the indicated brain regions. Data are means \pm SEM ($n = 3$).

Figure S3: Analyses of the region-specific expression patterns of Cbln1 and Cbln2 using single-molecule RNA *in situ* hybridization (A & B)

A & B. Single-molecule in-situ hybridization analysis of Cbln1 (A) and Cbln2 mRNAs (B) reveals highly restricted expression patterns in brain (left, overview of horizontal mouse brain sections hybridized for Cbln1 or Cbln2 mRNAs; right, representative images for Cbln1 and Cbln2 in the cerebellum (i), hippocampal formation (ii), and mPFC (iii)). Note that Cbln1 is highly expressed only in the cerebellum, whereas Cbln2 is most abundant in the subiculum and mPFC (abbreviations used: RSA, retrosplenial agranular cortex; IC, inferior colliculus; PPT, posterior pretectal nucleus; sm, stria medullaris; Au1, primary auditory area; S1 & S2, primary and secondary somatosensory cortex; OB, olfactory bulb; gr, granular layer; mo, molecular layer; pcl, purkinje cell layer; S, subiculum; PrS, presubiculum; Pas, parasubiculum; CA1, 2, 3, cornu ammonis 1, 2, 3; DG, dentate gyrus; CPu, caudate putamen (striatum); cg, cingulum; IL, infralimbic cortex; VO, ventro orbital cortex; MO, medial orbital cortex; PrL, prelimbic cortex).