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Abstract 21 

Classroom is the primary site for learning. One important feature of classroom learning 22 

is its organization into different disciplines. While disciplinary differences could 23 

substantially influence students9 learning processes, little is known about the neural 24 

mechanism underlying successful disciplinary learning. In the present study, wearable 25 

EEG devices were used to record a group of high school students during their classes 26 

of a soft (Chinese) and a hard (Math) discipline throughout one semester. The students 27 

with higher learning outcomes in Chinese were found to have better inter-brain neural 28 

couplings with their excellent peers, whereas the students with higher Math outcomes 29 

were found to have better couplings with the class average. Moreover, the inter-brain 30 

couplings showed distinct dominant frequencies for the two disciplines. Our results 31 

illustrate disciplinary differences in successful learning from an inter-brain perspective 32 

and suggest the neural activities of excellent peers and class average as exemplars for 33 

soft and hard disciplines. 34 

 35 

Teaser 36 

Successful classroom learning is associated with distinct inter-brain coupling patterns 37 

for soft and hard disciplines 38 
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Introduction 42 

Classroom learning, where dozens of students learn together under the guidance of 43 

a teacher in a classroom, is the primary scenario for human beings9 formal learning. 44 

Due to its practical importance for personal development, classroom learning has drawn 45 

consistent attention from the fields of education and psychology133. It has also been 46 

considered an ideal starting point for real-world neuroscience In recent years for its 47 

widely-existence and semi-controlled structures4. 48 

One important feature of classroom learning in educational practice is its 49 

organization into different disciplines (e.g., Math, history, physics, or language 50 

courses). It is widely acknowledged that disciplinary differences could substantially 51 

influence classroom learning. The hard-soft dimension is possibly one of the most 52 

influential frameworks regarding disciplinary differences5. Hard disciplines (e.g., math, 53 

natural science, and engineering) are known for the relatively hierarchical, linear 54 

knowledge structure and straightforward, uncontentious learning contents. Soft 55 

disciplines are usually associated with loose-structured, non-linear knowledge and 56 

contents that require more constructive and interpretative activity (e.g., history, 57 

philosophy, and language courses)537. The differences in the disciplinary knowledge 58 

have been proven to influence teachers9 teaching goals and correspondingly shape 59 

students9 learning processes towards success8,9. For instance, it has been proposed that 60 

students prioritize fixed knowledge from teachers when learning hard disciplines over 61 

their soft counterparts10. Nevertheless, it should be noted that disciplinary differences 62 

in the successful learning process have mainly been inferred based on indirect data such 63 

as expert evaluation, retrospective self-reports, and learning outcomes.7,10,11. There is a 64 

dearth of empirical studies directly addressing the learning process itself12. 65 

The emerging inter-brain coupling analysis has demonstrated its potential as a 66 

powerful tool to directly capture the learning process. The inter-brain coupling 67 

approach identifies neural correlates of interests by computing one9s inter-brain 68 

coupling to other people who are situated in the same learning environment or share 69 

the same learning tasks (e.g., attending lectures or videos in a classroom)4,13316. Recent 70 

studies have reported that the average inter-brain coupling from one student to all their 71 

peers or classmates (termed as 8student-class coupling9 in the following) during the 72 

learning process was positively correlated with students9 engagement4, memory 73 

retention performance15, and their final-term exam scores14. These findings suggest that 74 

student-class coupling is capable of characterizing one9s moment-to-moment learning 75 

process4,14. At the same time, it should be noted that in these studies, the disciplines 76 

investigated are hard ones, such as biology, computer science, and physics4,13316. As the 77 

learning of hard disciplines is straightforward and non-ambiguous (e.g., the application 78 

of fixed mathematical rules)17, it is plausible to assume that similar neural activities 79 

responding to the learning contents could emerge among classmates during the learning 80 

process. Hereby, averaging might facilitate the extraction of the neural activity shared 81 

across students that could effectively represent the 8desired9 learning process as 82 

intended by the courses. Therefore, it seemed promising to consider the 8class average9 83 
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neural activity for representing a successful learning process in hard disciplines. 84 

However, since creative ideation and personalized construction are cherished in soft 85 

disciplines,  the differences in teaching goals might lead to a different learning process 86 

for students to meet teachers9 requirements7. Accordingly, the possibly different 87 

learning processes towards success might undermine the importance of 8class average9 88 

in the context of soft disciplines. Nevertheless, no single inter-brain study has addressed 89 

the issue of disciplinary differences. 90 

Excellent peers could serve as a candidate exemplar to represent a successful 91 

learning process in soft disciplines. Here, excellent peers (termed as 8excellence9 in the 92 

following) refer to the students in a class with top learning outcomes. As good learning 93 

outcomes have long been associated with an effective learning process18, it is 94 

reasonable to take the neural activities of excellence to represent the learning process 95 

towards success. Compared to the 8class average9, the excellence could be a better 96 

candidate for a successful learning process of soft disciplines, given a potentially 97 

different learning goal. While comparing these two representatives (i.e., 8class average9 98 

vs. excellence) for successful learning could be challenging with conventional single-99 

brain-based methods, the inter-brain approach enables us to compare them directly. 100 

Specifically, it is straightforward to compute student-class coupling and student-101 

excellence coupling similarly. Comparing the student-class coupling and student-102 

excellence coupling during the learning of soft and hard disciplines may give us insights 103 

into disciplinary differences in successful learning. 104 

The real-world classroom is expected to serve as an ideal site to investigate the 105 

disciplinary differences in successful learning. Compared to the conventional 106 

laboratory-based studies that have mainly focused on strictly-controlled, parametric 107 

experimental designs (i.e., based on contrasts across simplified learning tasks to isolate 108 

targeted factors in disciplinary differences) to remotely resemble real-world learning193109 

21, classroom-based studies are advantageous for their high ecological validity since 110 

they could directly reflect the complex and dynamic disciplinary learning process that 111 

happens every day. The recent development of wearable electroencephalogram (EEG) 112 

devices has enabled researchers to track students9 learning processes in real-classroom 113 

settings22325. For instance, the EEG device in the form of a headband could support the 114 

easy acquisition of EEG data from an entire class of students for its portability, usability, 115 

low purchase, and running cost. Wearable EEG devices have been proved to be 116 

effective in tracking students9 sustained attention, situational interests, and engagement 117 

during their classroom learning processes4,26,27. The ecologically naturalistic paradigm 118 

with wearable neuroimaging technologies is expected to provide insights into 119 

understanding the disciplinary differences 8in the wild9 and offer a possible   8fast 120 

lane9 to apply neuroscience findings into educational theoretical construction and 121 

practical application23,28. 122 

Therefore, the present study aimed to investigate disciplinary differences in the 123 

successful learning process by recording EEGs from a group of high-school students in 124 

China during their regular classroom courses for a whole semester. Math and Chinese 125 
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(the mother tongue learning in China) were chosen as representative courses for the 126 

hard discipline and soft discipline, respectively, as they are two of the most important 127 

compulsory courses before college in China. Based on the state-of-the-art 128 

understanding of disciplinary learning4,14,15, we hypothesized that the 8class average9 129 

might effectively represent the successful learning process during Math courses (a hard 130 

discipline). In contrast, excellent peers could effectively represent the successful 131 

learning process of Chinese (a soft discipline). Correspondingly, the student-class 132 

coupling was expected to be correlated with the learning outcome of Math courses, and 133 

the student-excellence coupling was expected to be correlated with the learning 134 

outcome of Chinese courses. No clear hypothesis regarding the specifically involved 135 

frequency band was formulated due to limited evidence. Any discovery would promote 136 

our understanding of the neural mechanism behind the successful disciplinary learning 137 

process in the classroom. 138 

 139 

Result 140 

 141 

 142 

Fig.1: Experiment paradigm. a, An illustration of the experimental setup for students wearing an 143 

EEG headband during their regular classroom learning; b, An illustration of the recorded EEG signal 144 

during a session; EEGs were recorded at Fp1 and Fp2 for all the students for 40 minutes during a 145 

session. 146 

 147 

Real-world classroom setting-up and inter-brain analysis 148 

As demonstrated in Fig.1a, thirty-four students from the same class (thirty-seven 149 

students in total) from grade 10 of a high school in Beijing volunteered to join the study. 150 

Wearable EEG headbands with two dry electrodes covering Fp1/2 were chosen to 151 

record students9 brain signals during their regular Math and Chinese sessions in the 152 

classroom throughout one semester. While the EEG headbands have demonstrated their 153 

effectiveness in tracking brain states in tasks such as resting-state, sudoku games, and 154 
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surgery29333, their signal quality was also validated here with a 2-minute eye-155 

closed/open task. Twenty-two students out of the same class participated in this task in 156 

their classroom environment. Supplementary Fig.S1 shows the signal quality validation 157 

results: compared to the eye-open condition, an expected spectral peak in the alpha 158 

range (8-13 Hz) was observed in the eye-closed condition, demonstrating the reliability 159 

of the headband for EEG recordings in the classroom.  160 

The data collection lasted for four months to cover the whole semester. Each month, 161 

students9 EEG signals were acquired during Chinese and Math sessions for one week 162 

(one or two sessions per day) following the regular curriculum. The total number of 163 

sessions was 38, with 18 sessions for Chinese and 20 sessions for Math. The Math 164 

course included the introduction of planar vectors, cubic geometry, plural, statistics, 165 

and probability. The Chinese courses included reading ancient and modern poems, 166 

essays, and novels, and an introduction to writing. Each session lasted for 40 minutes. 167 

The students9 final-term exam scores for Chinese and Math at the end of this semester 168 

were taken to indicate their learning outcomes. Compared with the specially-designed 169 

quiz, final-term exams were expected to boost the ecological validity as they were 170 

derived from the highly-developed evaluation system in the daily educational practice. 171 

The final exams covered the contents of the whole semester. 172 

  173 

 174 

Fig 2: A schematic illustration of the inter-brain coupling analysis. a, Computations of 175 

pairwise total interdependence (TI) matrix for each pair of students (i, j) for each session, at 176 
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the frequency bands of theta, alpha, low-beta, and high-beta. The TI values were then 177 

normalized within each session and averaged across sessions to obtain an inter-brain coupling 178 

value for each pair of students. b, Student-class coupling was obtained by averaging TI values 179 

over all possible pairwise combinations between one student and the rest of the class. c, 180 

Student-excellence coupling was computed by averaging TI values over all possible pairwise 181 

combinations between one student and all the excellences in the class, except for this student 182 

himself/herself if the student was one of the excellences. 183 

The total interdependence (TI) method has been employed in the present study to 184 

calculate the inter-brain coupling by computing the magnitude squared coherence 185 

between brain signals simultaneously recorded from two students4,16,34. Recent inter-186 

brain studies have validated the efficiency of TI methods in tracking individuals9 187 

engagement and valence levels in naturalistic scenarios such as a classroom and a 188 

concert hall4,35. Then, to test our hypothesis, student-class coupling and student-189 

excellence coupling were calculated for each student as indicators of the disciplinary 190 

learning process for the whole semester, as shown in Fig.3b, c. Then, Pearson9s 191 

correlations between individuals9 student-class coupling (or student-excellence 192 

coupling) and their corresponding final exam scores were calculated separately for soft 193 

and hard disciplines to identify neural correlates of successful learning. For student-194 

class coupling, all students were included in the correlation analysis. However, for 195 

student-excellence coupling, the excellences themselves were excluded during the 196 

correlation analysis between student-excellence coupling and final exam scores. For 197 

example, if individuals9 student-excellence coupling was computed with the top 198 

�! 	students, the top �! students9 coupling values, as well as their final exam scores, 199 

would be removed. The number of students used to conduct the correlation analysis 200 

would then be the number of students left after subtracting the top �! students from 201 

the total number of � students (� 2�!). Theta (4-8 Hz), alpha (8-13 Hz), low-beta 202 

(13-18 Hz), and high-beta (18-30 Hz) bands were calculated separately in the inter-203 

brain coupling analysis. 204 

Theta-band student-class coupling reflects successful classroom learning for 205 

Math 206 
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    207 

Fig.3: Correlations between theta-band student-excellence/class coupling with one9s 208 

final exam score for Chinese and Math. a, Scatter plots between theta-band student-209 

excellence coupling (left, excellence number = 4) and theta-band student-class 210 

coupling (right) and the final exam scores of Math. b, Correlation r values as a 211 

function of the number of excellences included in the calculation of student-212 

excellence coupling. c, Scatter plots between theta-band student-excellence coupling 213 

(left, excellence number = 4) and theta-band student-class coupling (right) and the 214 

final exam scores of Chinese. d, Correlation r values as a function of the number of 215 

excellences included in the calculation of student-excellence coupling. Note that the 216 

excellences themselves were not included in the correlation analysis. The star 217 

indicates a significant (p < 0.05) correlation.  218 

 219 

 220 

Here, no significant correlations were observed between theta-band inter-brain 221 

coupling and the final exam scores for Chinese, neither in student-excellence coupling 222 

nor in student-class coupling (Fig.3a, b; student-excellence coupling: r = 0.178, p = 223 
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0.347, n = 30, excellence number = 4; student-class coupling: r = 0.110, p = 0.534, n = 224 

34). On the other hand, theta-band student-class coupling during Math sessions was 225 

found to be positively correlated with the final exam scores for Math (Fig.3c, d): the 226 

students with higher learning outcomes in Math were found to have better inter-brain 227 

couplings with other classmates (r = 0.339, p = 0.0498, n = 34). No significant 228 

correlations between theta-band student-excellence coupling and Math scores were 229 

found, with the number of excellences included in the calculation of student-excellence 230 

coupling varying from 2 up to 6.  231 

 232 

  233 

 234 
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Fig.4: Correlations between alpha-band student-excellence/class coupling with one9s 235 

final exam score of Chinese and Math. a, Scatter plots between alpha-band student-236 

excellence coupling (left, excellence number = 4) and alpha-band student-class 237 

coupling (right) and the final exam score of Chinese. b, Correlation r values as a 238 

function of the number of excellences included in the calculation of student-excellence 239 

coupling. c, Scatter plots between alpha-band student-excellence coupling (left, 240 

excellence number = 4) and alpha-band student-class coupling (right) and the final 241 

exam scores of Math. d, Correlation r values as a function of the number of excellences 242 

included in the calculation of student-excellence coupling. Note that the excellences 243 

themselves were not included in the correlation analysis. Stars indicate significant (p 244 

< 0.05) correlation and the cross indicates a marginal significant (p < 0.10) correlation.  245 

 246 

Alpha-band student-excellence coupling reflects successful classroom learning 247 

for Chinese 248 

 249 

Alpha-band student-excellence coupling during Chinese sessions was significantly 250 

correlated with the final exam scores for Chinese (Fig.4a): the students with higher 251 

learning outcomes in Chinese were found to have better inter-brain couplings with their 252 

excellent peers (r = 0.433, p = 0.017, n = 30, excellence number = 4). The correlation 253 

remained significant or marginally significant when the number of excellences included 254 

in the calculation of student-excellence coupling varied from 2 to 6 (Fig.4b). No 255 

significant correlations between alpha-band student-class coupling and the final exam 256 

scores of Chinese were found (r = 0.077, p = 0.665, n = 34). Moreover, no significant 257 

correlations were observed between alpha-band inter-brain coupling and the final exam 258 

scores of Math, neither in student-excellence coupling nor in student-class coupling 259 

(Fig.4c, d; student-excellence coupling: r = 0.266, p = 0.156, n = 30, excellence number 260 

=4; student-class coupling: r = 0.195, p = 0.270, n = 34).  261 

 262 

Frequency-specificity of outcome-related inter-brain coupling 263 

Fig.5 further showed the overall inter-brain coupling results in four frequency 264 

bands (theta, alpha, low-beta, and high-beta). Inter-brain coupling in the theta and alpha 265 

bands was found to correlate with the final exam scores (as shown above) significantly. 266 

In contrast, the inter-brain coupling at the low-beta and high-beta bands failed to reach 267 

significance. We also conducted a similar inter-brain coupling analysis but focused on 268 

1-20 Hz as several previous studies4,16. The results were shown in Supplementary 269 

Fig.S2: No significant correlations were found between 1-20 Hz inter-brain coupling 270 

and the final exam scores, demonstrating the value of separating different frequency 271 

bands. 272 

 273 

 274 



   275 

Fig.5: Correlation r values between inter-brain coupling and the final exam scores at 276 

the theta, alpha, low-beta, and high-beta bands for a, Chinese and b, Math. Bars with 277 

a lighter color indicated student-excellence-coupling-based correlations (excellence 278 

number = 4), and bars with a darker color indicated student-class-coupling-based 279 

correlations. Stars indicated a significant (p < 0.05) correlations. 280 
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 282 

Fig.6: Results of correlation analysis by switching the discipline scores, i.e., 283 

correlating inter-brain coupling in Math sessions with the final exam scores of Chinese 284 

(a) and vice versa (c). b, Scatter plots between theta-band student-class coupling 285 

during Chinese sessions and the final exam scores of Math. Bars with a lighter color 286 

indicated student-excellence-coupling-based correlations (excellence number = 4), and 287 

bars with a darker color indicated student-class-coupling-based correlations. The stars 288 

indicated a significant (p < 0.05) correlation. 289 

 290 

To explore the discipline-specificity of the inter-brain coupling results, the 291 

correlations between the final exam scores and inter-brain coupling were re-computed 292 

by switching the disciplinary scores (i.e., computing the correlation between inter-brain 293 

coupling during Math sessions and the final exam scores of Chinese and vice versa). 294 

As shown in Fig. 6b, theta-band student-class coupling during Chinese sessions is 295 

significantly correlated with the final exam scores of Math (student-class coupling: r = 296 

0.345, p = 0.045, n = 34). No other correlations reached a significant level after 297 

switching.  298 

 299 
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  301 

 302 

Fig.7: The correlation between the single brain9s relative frequency power in the theta, 303 

alpha, low-beta, and high beta band with one9s final exam scores of Chinese (a) and 304 

Math (c). No significance was found in any of the frequency bands. b, Scatter plots 305 

between relative power in the theta band and the final exam scores of Chinese (the 306 

highest correlation for Chinese). d, Scatter plots between the relative power in the 307 

high-beta band and the final exam scores of Math (the highest correlation for Math). 308 

 309 

Single-brain features fail to reflect successful learning  310 

 311 

Additionally, we conducted similar correlational analyses between single-brain 312 

EEG features and the final exam scores. The relative power of the four frequency bands 313 

from each student was taken as the single-brain EEG features. As shown in Fig.7, the 314 

single-brain analysis reveals no significant correlations with the disciplinary final exam 315 

scores (Fig.7b; the highest correlation for Chinese in the theta band: r = -0.180, p = 316 

0.307, n = 34; Fig.7d; the highest correlation for Math in the high-beta band: r = -0.141, 317 

p = 0.425, n = 34).  318 

 319 

Discussion 320 

In the present study, the learning processes of high school students while taking a 321 

soft (Chinese) and a hard (Math) discipline in their real classroom were recorded by 322 

wearable EEG devices for a whole semester. By taking their final-term exam scores as 323 
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learning outcomes, students with higher Chinese outcomes were found to be associated 324 

with better inter-brain neural couplings with their excellent peers during the Chinese 325 

courses, whereas students with higher Math outcomes were found to be associated with 326 

better couplings with other classmates during both the Chinese and the Math courses. 327 

Moreover, the neural couplings showed different dominant frequencies for the two 328 

disciplines. While the outcome-related inter-brain coupling for Math was found in the 329 

theta-band, the importance of the alpha-band was highlighted in the successful learning 330 

for Chinese courses. No significant correlation was found between the single brain9s 331 

relative power and final exam scores in either discipline. Our results demonstrate the 332 

feasibility of inter-brain coupling to eval students9 successful learning process for both 333 

soft and hard disciplines. More importantly, the present study provides insights into 334 

understanding the disciplinary differences 8in the wild9 from an inter-brain perspective, 335 

suggesting the neural activities of excellent peers and class average as exemplars for 336 

successful classroom learning in soft and hard disciplines, respectively. 337 

The correlation between individuals9 student-class coupling and their learning 338 

outcomes for Math verified and extended previous findings of neural mechanisms 339 

underlying the learning process. By investigating hard disciplines such as physics, 340 

biology, and computer science, recent studies have demonstrated student-class coupling 341 

as a useful tool to evaluate the learning process13315. Our results about Math, another 342 

representative hard discipline, are in line with these studies, where student-class 343 

coupling was also found to be correlated with students9 learning outcomes. Moreover, 344 

after decomposing data into different frequency bands, our results extended previous 345 

findings by showing the importance of the frontal theta-band activity during real-346 

classroom learning. Frontal theta activity has been reported to reflect cognitive 347 

processes such as cognitive control36338, sustained attention39, and working memory403348 

42, and has been found to increase in the arithmetic-related tasks43. During the learning 349 

of hard disciplines, the emphasis on the development of a capacity to master and apply 350 

the accepted scientific viewpoints would require the students to align with the course 351 

material6. Hereby, the theta-band brain activity shared across classmates could reflect 352 

students9 continuous engagement with the course content. Then, theta-band student-353 

class coupling could imply the extent to which each student attended the course 354 

content4,15, or the extent to which each student interpreted the course content14. 355 

Therefore, better learning outcomes for Math are found to be associated with better 356 

inter-brain coupling with other classmates in the theta band.  357 

The positive correlation between theta-band student-class coupling during the 358 

Chinese sessions and the learning outcomes of Math further suggested that the class-359 

level frontal theta-band activity could reflect the required cognitive processes shared 360 

across the two disciplines. The learning process of Chinese would also rely on cognitive 361 

control, sustained attention, and working memory, which allowed students to attend the 362 

courses. Nevertheless, the non-significant correlation between theta-band student-class 363 

coupling and the Chinese final exam scores in the present study might also suggest the 364 

relatively loose link between these cognitive processes and the learning outcomes of 365 



Chinese. This finding is similar to a previous study where students9 studiousness and 366 

continuous engagement have been suggested to be beneficial for both the learning of 367 

Math and German. However, they are more important for the learning outcomes of 368 

Math44.  369 

The positive correlation between alpha-band student-excellence coupling during 370 

the Chinese sessions and the students9 Chinese final exam scores provides evidence of 371 

the critical neural correlates of successful learning in soft disciplines. The distinct 372 

frequency band (alpha) compared to Math (theta) suggests that successful learning of 373 

Chinese and Math relies on substantially different cognitive processes. Despite the lack 374 

of neuroscience evidence on soft-discipline learning, the frontal alpha-band activity 375 

could be related to the inhibition of stimulus-driven attention39,45 and was found to be 376 

involved in tasks with high internal processing demands such as creative ideation46,47 377 

and imagination48. At the same time, student-excellence coupling rather than student-378 

class coupling was informative about the learning outcomes in Chinese, highlighting 379 

the neural activities of excellent peers as exemplars for successful learning in soft 380 

disciplines. Although different excellence might have different internal interpretations 381 

of the course contents, they could share the similar temporal dynamics of the 382 

interpretation process. For instance, while learning an ancient poem, two top students 383 

could immerse in the aesthetic experience simultaneously when imagining different 384 

scenarios in their minds. Note that EEG recording techniques used in our study are 385 

advantageous for capturing the temporal dynamics of the learning process rather than 386 

the fine-grained representation of the learning content. Taken together, it is plausible to 387 

assume that the temporal dynamics of the frontal alpha activity shared across 388 

excellences might represent an internal processing state for interpretation construction, 389 

which is critical for the learning of Chinese. Moreover, unlike the responses to external 390 

stimuli (course contents), this internal state may not necessarily share across classmates, 391 

which results in positive results of student-excellence coupling rather than student-class 392 

coupling.  393 

It is necessary to distinguish between the excellent peers found in this study and 394 

the experts that have been often referred to in the field of education. In educational 395 

practice, the expert0like mastery of knowledge has been regarded as the target of 396 

students9 learning and has been linked to good learning outcomes49. For example, the 397 

performances of emergency medicine trainees were found to improve in the crisis 398 

resource management tasks when their cognitive processes were more expert-like50. A 399 

recent functional magnetic resonance imaging (fMRI) study also reported that one9s 400 

neural alignment (coupling) to the experts could positively predict the final-term exam 401 

score of their computer science course14. While experts have been regarded as a well-402 

established exemplar for successful learning, our results suggest that excellences also 403 

serve as an alternative reference in soft disciplines. Moreover, compared with experts 404 

who may learn qualitatively different from students due to their broader understanding 405 

of the field14, excellences with similar prior knowledge about the to-be-learned content 406 

may be particularly efficient as an exemplar for the learning process starting as a novice. 407 



It should also be noted that the results of non-significant student-excellence-408 

coupling-based correlation for the learning outcomes of Math did not necessarily 409 

undermine the potential importance of excellence for successful Math learning. On the 410 

one hand, the correlation coefficients between the Math-session student-excellence 411 

coupling and the Math final exam scores still reached a positive value of >0.2 at the 412 

alpha band (Fig. 4d). On the other hand, the students of Math excellence might not 413 

adequately express their optimal learning processes during the Math sessions. 414 

Specifically, since the classroom teaching was designed to meet the need of the majority 415 

of the class51353, there might be a lack of challenge for Math excellence. Consequently, 416 

the possible boredom might demotivate the excellence to follow the lectures54 and 417 

eliminate the possibly-existing correlations. By contrast, the teaching of soft disciplines 418 

such as Chinese emphasizes constructive and interpretative activity, which is expected 419 

to be similarly challenging for students at different proficiency levels.  420 

As the first study investigating the disciplinary differences in students9 successful 421 

learning process in real-classroom settings, several limitations must be noted. First, the 422 

present ecologically valid paradigm posed a challenge to strictly-controlled contrasts 423 

between disciplines. Multiple factors (e.g., learning contents, learning goals and 424 

learning difficulties) could lead to the distinct outcome-related inter-brain coupling 425 

patterns in soft and hard disciplines. While this is how disciplinary differences manifest 426 

in everyday learning processes, future work will be needed to clarify the unique 427 

contributions of these factors. Second, the present effect sizes are relatively small 428 

compared with previous inter-brain studies (the correlation between inter-brain 429 

coupling and learning outcomes for Chinese: R-squared = 0.187; for Math: R-squared 430 

= 0.115). In a recent fMRI study focused on the neural correlates of successful learning, 431 

R-squared values were found to be influenced by the brain regions, varying from 0.168 432 

to 0.563 across brain regions14. While the dual-channel EEG devices in the present 433 

study provide convenience for daily longitudinal acquisition, the relatively few 434 

channels might fail to fully capture the learning-related brain activities. For instance, 435 

the development of portable EEGs with larger coverage areas4 and portable functional 436 

near-infrared spectroscopy (fNIRS) devices55 could be a plausible solution in the near 437 

future. Third, while Chinese and Math have been chosen to represent soft and hard 438 

disciplines here, more disciplines were needed to be investigated to verify the 439 

framework of hard/soft disciplines thoroughly. Specifically, as our findings indicated 440 

that some cognitive processes might share across the learning of different disciplines, 441 

the involvement of more disciplines will facilitate a deeper understanding of the 442 

domain-specific process and domain-general process across disciplines during real-443 

world learning activity56.  444 

 445 

Methods 446 

 447 

Participants 448 



Thirty-six students (16 females; age: 15-16 years old) from the same class (37 449 

students in total) in grade 10 of a high school in Beijing volunteered to wear a headband 450 

EEG device during their regular Math and Chinese sessions throughout one semester. 451 

The study was conducted in accordance with the Declaration of Helsinki, and the 452 

protocol was approved by the ethics committee of the Department of Psychology, 453 

Tsinghua University (THU201708). All the participants and their legal guardians gave 454 

their written informed consent. 455 

Procedure and Data Recording  456 

In the present study, a dual-channel headband with dry electrodes was used to 457 

record EEG at Fp1 and Fp2 over the forehead at a sampling rate of 250 Hz (Brainno, 458 

SOSO H&C, Korea). The reference electrode was placed on the right ear lobe with a 459 

ground at Fpz. The EEG device has been used previously in monitoring brain state 460 

during resting state, sudoku games, and surgery29333. The signal quality of the headband 461 

was also tested in the present study by using an eye-closed/open task with 22 out of the 462 

same 36 students in their classroom environment. 463 

The data collection lasted for four months to cover the whole semester. For each 464 

month, students9 EEG signals during Chinese sessions and Math sessions were 465 

recorded for one week (one session or two sessions per day) following the regular 466 

curriculum. The total number of sessions was 39, with 19 sessions for Chinese and 20 467 

sessions for Math. Before Chinese or Math sessions began, students wore headbands 468 

with the help of experimenters, and the headbands were taken off after each session. 469 

Each session lasted for 40 minutes. There was one Chinese session when EEG devices 470 

failed to record any data due to technical issues. Two students were omitted from the 471 

analysis due to the consistently poor quality of EEG data across sessions. A total of 34 472 

students in 18 sessions for Chinese and 20 sessions for Math were included in the 473 

following analysis. 474 

During the Chinese and Math sessions, the learning content was taught according 475 

to the arrangement of the school. The Math sessions include the introduction of planar 476 

vectors, cubic geometry, plural, statistics, and probability; the Chinese sessions include 477 

reading ancient and modern poems, essays, and novels and the introduction to writing.  478 

The students9 final exam scores in Chinese and Math were taken as indicators of 479 

their learning outcomes. The final exams covered the contents of the whole semester. 480 

Both exams were scored out of 100. The median of the students9 Math scores was 73, 481 

ranging from 33 to 95, and the median of the students9 Chinese scores was 69, ranging 482 

from 40 to 79. The scores were sufficiently diverse to characterize students9 differences 483 

in learning outcomes. These scores were normalized to [0, 1] using a min-max 484 

transformation for the following analysis. 485 

 486 

Data Preprocessing 487 

Since EEG data were recorded in a regular classroom environment and students 488 

were instructed to attend Chinese and Math sessions as usual, more artifacts were 489 

expected as compared to conventional, highly-controlled laboratory settings. In the 490 



present study, there were three types of prominent artifacts: 1) a high value indicating 491 

signal saturation possibly due to losing contact with the headband; 2) slow drifts related 492 

to extensive head or body movements; 3) ocular artifacts related to eye movements.  493 

The recorded EEG data were segmented into non-overlapping 30-sec epochs for 494 

preprocessing. As shown in Supplementary Fig. S3, ratios for saturated samples per 495 

epoch illustrated a 2-tailed distribution that most epochs containing saturated samples 496 

for less than 10% or more than 90%. Therefore, 50% was chosen as a threshold 497 

empirically. One epoch would be rejected if it contained saturated samples for more 498 

than 50%. The remaining epochs were then processed to remove the slow drifts with 499 

the NoiseTools toolbox 57 under Matlab (MathWorks, USA). The removal of the slow 500 

drifts was achieved by using the nt_detrending() function. By estimating the position 501 

of the glitch, this function could perform a weighted polynomial fit and achieve a better 502 

fit to the non-glitch parts. The processed epochs were further band-pass filtered 503 

between 0.1 Hz and 40 Hz with 1-s zero-padding at both ends. Afterward, the ocular 504 

artifacts were attenuated with the MSDL (multi-scale dictionary learning) toolbox, 505 

which was efficient in ocular artifacts removal for single-channel EEG signals58. 506 

Epochs were decomposed into neuronal and non-neuronal sources with dictionary 507 

learning. Then, the coefficients of non-neuronal sources were set to zero to achieve 508 

artifact reduction with the seq_MSDL() function. Supplementary Fig.S4 and S5 509 

illustrated representative examples before and after the artifacts rejection procedure. 510 

Finally, epochs were rejected automatically if any samples in any channels exceeded a 511 

±150 ¿V threshold. With the above preprocessing procedure, 57.2±1.85 % epochs 512 

were retained per student, ranging from 31.2% to 76.7%. The data retention rate was 513 

comparable with previous EEG studies in classroom settings4,16. The number of 514 

retained epochs per session per student was shown in Supplementary Fig.S6. 515 

 516 

Data Processing 517 

Inter-brain coupling between all possible student pairs was computed using the 518 

total interdependence (TI) method as its efficacy in capturing the temporal relationship 519 

between two time series34. TI was estimated by computing the magnitude squared 520 

coherence using the Welch method when clean 30-s epochs were available at the same 521 

moments from both students. For �!, a 30-s epoch from a certain student � and �", an 522 

overlapping epoch from another student �, TI value was calculated as follows.  523 

 524 
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Here, ���,��
() is the magnitude squared coherence calculation, �,	is the sampling 528 

rate, M is the number of desired frequency points in the interval between 0 and the 529 



Nyquist frequency 
$!

#
. The &� is the frequency resolution. Theta, alpha, and low-beta 530 

and high-beta TI were computed by summing the coherence values within 4-8 Hz, 8-531 

13 Hz, 13-18 Hz, and 18-30 Hz, respectively.  532 

TI for one pair of students for each session was obtained by averaging TI values 533 

across all epochs and the two recording electrodes. A minimum of 6 artifact-free 534 

common epochs for paired students were included for further analysis. The lower limit 535 

was empirically chosen to get a comparable minimum data amount for each pair of 536 

students with the previous studies4,16. 96.6% of TI values for each pair and each epoch 537 

remained for the following analysis. A � 7 �  pairwise TI matrix (� is the number 538 

of students) could be obtained for each session. TI values within the matrix were then 539 

normalized to [0,1] for each session, following the practice in previous studies 4,16. Then, 540 

the matrixes were averaged across �  sessions to obtain an averaged inter-brain 541 

coupling for each pair of students for a specific discipline (� = 18	for Chinese and	 � =542 

20 for Math). 543 

Then, student-class coupling for student � was obtained by averaging TI values 544 

over all possible pairwise combinations between the student � and the rest of the class. 545 

Student-excellence coupling for student � was computed by averaging TI values over 546 

all possible pairwise combinations between the student � and the excellences except 547 

themselves if included. Therefore, for each student, there would be a student-class 548 

coupling value and a student-excellence coupling value as indicators of disciplinary 549 

learning process for the whole semester for each frequency band.  550 

Furthermore, Pearson9s correlations between individuals9 student-class coupling 551 

(or student-excellence coupling) and their corresponding learning outcomes were 552 

calculated for soft and hard disciplines separately. For student-class coupling, all 553 

students were included in the correlation analysis. For student-excellence coupling, 554 

however, the excellences themselves were not included during the correlation analysis 555 

between student-excellence coupling and learning outcomes. For example, if 556 

individuals9 student-excellence coupling was computed with the top �! 	students, then 557 

the top �! 	students9 coupling values, as well as their learning outcomes, would be 558 

removed, leaving (� 2�!) out of the � students for conducting correlations. The 559 

effect of excellence number on the relationship between student-excellence coupling 560 

and learning outcomes was analyzed. 561 

Additionally, we conducted similar correlational analyses between single-brain 562 

EEG features and the final exam scores for comparison. The relative power of each 563 

frequency band of interest (theta, alpha, and low-beta and high-beta) was obtained by 564 

dividing the power in the 1-40 Hz band after a fast Fourier transform for each 30-second 565 

epoch. Then, values of the relative power of each frequency band of interest were 566 

averaged across all epochs and all sessions within each discipline for each student as 567 

the single-brain EEG features. Finally, Pearson9s correlations between individuals9 568 

single-brain EEG features and corresponding learning outcomes were calculated 569 

separately for soft and hard disciplines. 570 
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 782 

 783 

Fig.S1: The signal quality validation of EEG headbands in a 2-minute eye-closed/open 784 

task. Twenty-two students out of the same class volunteered to participate in this task. 785 

Students were required to open and close eyes for two minutes respectively when sitting 786 

in their classroom. Then, fast Fourier transform was conducted to compare the 787 

frequency spectral characteristics of EEG signals between conditions. a, The frequency 788 

spectra for a representative student at Fp1. The solid line represents the eye-closed 789 

condition, and the dashed lines represent the eye-open condition. b, The frequency 790 

spectra for the same student at Fp2. c, Relative amplitudes of the alpha band (8-13 Hz) 791 

in the eye-open and eye-closed conditions for all the students. Errorbar indicates 792 

standard deviation. The amplitudes were averaged across Fp1 and Fp2; d, Percent of 793 

relative amplitude differences (eye-closed minus eye-open) at the alpha band for each 794 

student. The amplitudes were averaged across Fp1 and Fp2.  795 
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 797 

  798 

 799 

Fig.S2. The correlations between student-excellence/class coupling with one9s final 800 

exam score of Chinese and Math at 1-20 Hz. a, Scatter plots between student-801 

excellence coupling (left, excellence number = 4) and student-class coupling (right) 802 

and the final exam score of Chinese at 1-20 Hz. b, Correlation r values as a function 803 

of the number of excellences included in the calculation of student-excellence 804 

coupling. c, Scatter plots between student-excellence coupling (left, excellence 805 

number = 4) and student-class coupling (right) and the final exam scores of Math at 1-806 

20 Hz. d, Correlation r values as a function of the number of excellences included in 807 

the calculation of student-excellence coupling. Note that the excellences themselves 808 

were not included in the correlation analysis.  809 
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 811 

Fig.S3: The distribution of the artifacts ratios per epoch for (a) Fp1 and (b) Fp2. The 812 

ratios for saturated samples per epoch illustrated a 2-tailed distribution. 813 

 814 

Fig.S4: An illustration of a representative EEG epoch before and after the detrending 815 

procedure with the Noisetool toolbox (a, b) at Fp1; (c, d) at Fp2. The lines with a lighter 816 

color indicated the condition before detrending. The lines with a darker color indicated 817 

the condition after detrending. The slow drift was removed after the detrending 818 

procedure.  819 
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 821 

Fig.S5: An illustration of a representative EEG epoch before and after the ocular 822 

artifact removal procedure with the MSDL toolbox (a) at Fp1; (b) at Fp2. The lines 823 

with a lighter color indicated the condition before ocular artifact removal. The lines 824 

with a darker color indicated the condition after ocular artifact removal. The ocular 825 

artifact was removed after the procedure. 826 

  827 

 828 

 829 

Fig.S6: The number of retained epochs per session per student (a) at Fp1; (b) at Fp2 830 

after the preprocessing procedure. The colorbar indicated the number of retained epochs. 831 
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