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21 Abstract
22 Classroom is the primary site for learning. One important feature of classroom learning
23 is its organization into different disciplines. While disciplinary differences could
24 substantially influence students’ learning processes, little is known about the neural
25 mechanism underlying successful disciplinary learning. In the present study, wearable
26 EEG devices were used to record a group of high school students during their classes
27  of a soft (Chinese) and a hard (Math) discipline throughout one semester. The students
28  with higher learning outcomes in Chinese were found to have better inter-brain neural
29  couplings with their excellent peers, whereas the students with higher Math outcomes
30 were found to have better couplings with the class average. Moreover, the inter-brain
31 couplings showed distinct dominant frequencies for the two disciplines. Our results
32 illustrate disciplinary differences in successful learning from an inter-brain perspective
33 and suggest the neural activities of excellent peers and class average as exemplars for
34 soft and hard disciplines.
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42 Introduction

43 Classroom learning, where dozens of students learn together under the guidance of
44 a teacher in a classroom, is the primary scenario for human beings’ formal learning.
45 Due to its practical importance for personal development, classroom learning has drawn
46  consistent attention from the fields of education and psychology'. It has also been
47  considered an ideal starting point for real-world neuroscience In recent years for its
48  widely-existence and semi-controlled structures®.

49 One important feature of classroom learning in educational practice is its
50  organization into different disciplines (e.g., Math, history, physics, or language
51  courses). It is widely acknowledged that disciplinary differences could substantially
52  influence classroom learning. The hard-soft dimension is possibly one of the most
53  influential frameworks regarding disciplinary differences’. Hard disciplines (e.g., math,
54  natural science, and engineering) are known for the relatively hierarchical, linear
55  knowledge structure and straightforward, uncontentious learning contents. Soft
56  disciplines are usually associated with loose-structured, non-linear knowledge and
57  contents that require more constructive and interpretative activity (e.g., history,
58  philosophy, and language courses)’’. The differences in the disciplinary knowledge
59  have been proven to influence teachers’ teaching goals and correspondingly shape
60  students’ learning processes towards success®. For instance, it has been proposed that
61  students prioritize fixed knowledge from teachers when learning hard disciplines over
62  their soft counterparts'®. Nevertheless, it should be noted that disciplinary differences
63  in the successful learning process have mainly been inferred based on indirect data such
64  as expert evaluation, retrospective self-reports, and learning outcomes.”!%!1, There is a
65  dearth of empirical studies directly addressing the learning process itself!2.

66 The emerging inter-brain coupling analysis has demonstrated its potential as a
67  powerful tool to directly capture the learning process. The inter-brain coupling
68  approach identifies neural correlates of interests by computing one’s inter-brain
69  coupling to other people who are situated in the same learning environment or share
70  the same learning tasks (e.g., attending lectures or videos in a classroom)*!3-1®, Recent
71  studies have reported that the average inter-brain coupling from one student to all their
72 peers or classmates (termed as ‘student-class coupling’ in the following) during the
73  learning process was positively correlated with students’ engagement®, memory
74 retention performance'®, and their final-term exam scores'4. These findings suggest that
75  student-class coupling is capable of characterizing one’s moment-to-moment learning
76 process*!4. At the same time, it should be noted that in these studies, the disciplines
77  investigated are hard ones, such as biology, computer science, and physics*!3-16. As the
78  learning of hard disciplines is straightforward and non-ambiguous (e.g., the application
79  of fixed mathematical rules)!’, it is plausible to assume that similar neural activities
80  responding to the learning contents could emerge among classmates during the learning
81  process. Hereby, averaging might facilitate the extraction of the neural activity shared
82  across students that could effectively represent the ‘desired’ learning process as
83  intended by the courses. Therefore, it seemed promising to consider the ‘class average’
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84  neural activity for representing a successful learning process in hard disciplines.
85  However, since creative ideation and personalized construction are cherished in soft
86  disciplines, the differences in teaching goals might lead to a different learning process
87  for students to meet teachers’ requirements’. Accordingly, the possibly different
88  learning processes towards success might undermine the importance of ‘class average’
89  inthe context of soft disciplines. Nevertheless, no single inter-brain study has addressed
90  the issue of disciplinary differences.
91 Excellent peers could serve as a candidate exemplar to represent a successful
92 learning process in soft disciplines. Here, excellent peers (termed as ‘excellence’ in the
93  following) refer to the students in a class with top learning outcomes. As good learning
94  outcomes have long been associated with an effective learning process!®, it is
95  reasonable to take the neural activities of excellence to represent the learning process
96  towards success. Compared to the ‘class average’, the excellence could be a better
97  candidate for a successful learning process of soft disciplines, given a potentially
98  different learning goal. While comparing these two representatives (i.e., ‘class average’
99  vs. excellence) for successful learning could be challenging with conventional single-
100  brain-based methods, the inter-brain approach enables us to compare them directly.
101  Specifically, it is straightforward to compute student-class coupling and student-
102 excellence coupling similarly. Comparing the student-class coupling and student-
103 excellence coupling during the learning of soft and hard disciplines may give us insights
104  into disciplinary differences in successful learning.
105 The real-world classroom is expected to serve as an ideal site to investigate the
106  disciplinary differences in successful learning. Compared to the conventional
107  laboratory-based studies that have mainly focused on strictly-controlled, parametric
108  experimental designs (i.e., based on contrasts across simplified learning tasks to isolate
109  targeted factors in disciplinary differences) to remotely resemble real-world learning!®-
110 2!, classroom-based studies are advantageous for their high ecological validity since
111 they could directly reflect the complex and dynamic disciplinary learning process that
112 happens every day. The recent development of wearable electroencephalogram (EEG)
113 devices has enabled researchers to track students’ learning processes in real-classroom
114 settings®* 2. For instance, the EEG device in the form of a headband could support the
115  easy acquisition of EEG data from an entire class of students for its portability, usability,
116 low purchase, and running cost. Wearable EEG devices have been proved to be
117  effective in tracking students’ sustained attention, situational interests, and engagement

118  during their classroom learning processes*2%%’

. The ecologically naturalistic paradigm
119  with wearable neuroimaging technologies is expected to provide insights into
120 understanding the disciplinary differences ‘in the wild’ and offer a possible  ‘fast
121  lane’ to apply neuroscience findings into educational theoretical construction and
122 practical application?>-28,

123 Therefore, the present study aimed to investigate disciplinary differences in the
124 successful learning process by recording EEGs from a group of high-school students in

125  China during their regular classroom courses for a whole semester. Math and Chinese
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126 (the mother tongue learning in China) were chosen as representative courses for the
127  hard discipline and soft discipline, respectively, as they are two of the most important
128 compulsory courses before college in China. Based on the state-of-the-art

41415 " we hypothesized that the ‘class average’

129  understanding of disciplinary learning
130  might effectively represent the successful learning process during Math courses (a hard
131  discipline). In contrast, excellent peers could effectively represent the successful
132  learning process of Chinese (a soft discipline). Correspondingly, the student-class
133 coupling was expected to be correlated with the learning outcome of Math courses, and
134  the student-excellence coupling was expected to be correlated with the learning
135  outcome of Chinese courses. No clear hypothesis regarding the specifically involved
136 frequency band was formulated due to limited evidence. Any discovery would promote
137  our understanding of the neural mechanism behind the successful disciplinary learning
138  process in the classroom.

139

140  Result

141

Student No.

wARAL Ay | Fpl

40 minutes

142

143 Fig.1: Experiment paradigm. a, An illustration of the experimental setup for students wearing an
144 EEG headband during their regular classroom learning; b, An illustration of the recorded EEG signal
145 during a session; EEGs were recorded at Fpl and Fp2 for all the students for 40 minutes during a

146 session.

147

148  Real-world classroom setting-up and inter-brain analysis

149 As demonstrated in Fig.1a, thirty-four students from the same class (thirty-seven
150  students in total) from grade 10 of a high school in Beijing volunteered to join the study.
151  Wearable EEG headbands with two dry electrodes covering Fpl/2 were chosen to
152 record students’ brain signals during their regular Math and Chinese sessions in the
153 classroom throughout one semester. While the EEG headbands have demonstrated their
154  effectiveness in tracking brain states in tasks such as resting-state, sudoku games, and
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2933 their signal quality was also validated here with a 2-minute eye-

155  surgery
156  closed/open task. Twenty-two students out of the same class participated in this task in
157  their classroom environment. Supplementary Fig.S1 shows the signal quality validation
158  results: compared to the eye-open condition, an expected spectral peak in the alpha
159  range (8-13 Hz) was observed in the eye-closed condition, demonstrating the reliability
160  of the headband for EEG recordings in the classroom.

161 The data collection lasted for four months to cover the whole semester. Each month,
162  students’ EEG signals were acquired during Chinese and Math sessions for one week
163  (one or two sessions per day) following the regular curriculum. The total number of
164  sessions was 38, with 18 sessions for Chinese and 20 sessions for Math. The Math
165  course included the introduction of planar vectors, cubic geometry, plural, statistics,
166  and probability. The Chinese courses included reading ancient and modern poems,
167  essays, and novels, and an introduction to writing. Each session lasted for 40 minutes.
168  The students’ final-term exam scores for Chinese and Math at the end of this semester
169  were taken to indicate their learning outcomes. Compared with the specially-designed
170  quiz, final-term exams were expected to boost the ecological validity as they were
171  derived from the highly-developed evaluation system in the daily educational practice.
172 The final exams covered the contents of the whole semester.
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175 Fig 2: A schematic illustration of the inter-brain coupling analysis. a, Computations of

176 pairwise total interdependence (TI) matrix for each pair of students (i, j) for each session, at
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177 the frequency bands of theta, alpha, low-beta, and high-beta. The TI values were then

178 normalized within each session and averaged across sessions to obtain an inter-brain coupling
179 value for each pair of students. b, Student-class coupling was obtained by averaging TI values
180 over all possible pairwise combinations between one student and the rest of the class. ¢,

181 Student-excellence coupling was computed by averaging TI values over all possible pairwise
182 combinations between one student and all the excellences in the class, except for this student
183 himself/herself if the student was one of the excellences.

184 The total interdependence (TI) method has been employed in the present study to

185  calculate the inter-brain coupling by computing the magnitude squared coherence
186  between brain signals simultaneously recorded from two students*!®**, Recent inter-
187  brain studies have validated the efficiency of TI methods in tracking individuals’
188  engagement and valence levels in naturalistic scenarios such as a classroom and a
189  concert hall**°. Then, to test our hypothesis, student-class coupling and student-
190  excellence coupling were calculated for each student as indicators of the disciplinary
191  learning process for the whole semester, as shown in Fig.3b, c¢. Then, Pearson’s
192 correlations between individuals’ student-class coupling (or student-excellence
193 coupling) and their corresponding final exam scores were calculated separately for soft
194  and hard disciplines to identify neural correlates of successful learning. For student-
195  class coupling, all students were included in the correlation analysis. However, for
196  student-excellence coupling, the excellences themselves were excluded during the
197  correlation analysis between student-excellence coupling and final exam scores. For
198  example, if individuals’ student-excellence coupling was computed with the top
199 N students, the top Ny students’ coupling values, as well as their final exam scores,
200  would be removed. The number of students used to conduct the correlation analysis
201 would then be the number of students left after subtracting the top N students from
202 the total number of N students (N — N). Theta (4-8 Hz), alpha (8-13 Hz), low-beta
203  (13-18 Hz), and high-beta (18-30 Hz) bands were calculated separately in the inter-
204  brain coupling analysis.

205  Theta-band student-class coupling reflects successful classroom learning for

206  Math
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Fig.3: Correlations between theta-band student-excellence/class coupling with one’s

final exam score for Chinese and Math. a, Scatter plots between theta-band student-

excellence coupling (left, excellence number = 4) and theta-band student-class

coupling (right) and the final exam scores of Math. b, Correlation r values as a

function of the number of excellences included in the calculation of student-

excellence coupling. ¢, Scatter plots between theta-band student-excellence coupling

(left, excellence number = 4) and theta-band student-class coupling (right) and the

final exam scores of Chinese. d, Correlation r values as a function of the number of

excellences included in the calculation of student-excellence coupling. Note that the

excellences themselves were not included in the correlation analysis. The star

indicates a significant (p < 0.05) correlation.

Here, no significant correlations were observed between theta-band inter-brain

coupling and the final exam scores for Chinese, neither in student-excellence coupling

nor in student-class coupling (Fig.3a, b; student-excellence coupling: » = 0.178, p =
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0.347, n = 30, excellence number = 4; student-class coupling: »=0.110, p = 0.534, n =
34). On the other hand, theta-band student-class coupling during Math sessions was
found to be positively correlated with the final exam scores for Math (Fig.3¢, d): the

students with higher learning outcomes in Math were found to have better inter-brain
couplings with other classmates (» = 0.339, p = 0.0498, n = 34). No significant

correlations between theta-band student-excellence coupling and Math scores were

found, with the number of excellences included in the calculation of student-excellence

coupling varying from 2 up to 6.
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Fig.4: Correlations between alpha-band student-excellence/class coupling with one’s
final exam score of Chinese and Math. a, Scatter plots between alpha-band student-
excellence coupling (left, excellence number = 4) and alpha-band student-class
coupling (right) and the final exam score of Chinese. b, Correlation r values as a
function of the number of excellences included in the calculation of student-excellence
coupling. ¢, Scatter plots between alpha-band student-excellence coupling (left,
excellence number = 4) and alpha-band student-class coupling (right) and the final
exam scores of Math. d, Correlation r values as a function of the number of excellences
included in the calculation of student-excellence coupling. Note that the excellences
themselves were not included in the correlation analysis. Stars indicate significant (p

< 0.05) correlation and the cross indicates a marginal significant (p <0.10) correlation.

Alpha-band student-excellence coupling reflects successful classroom learning
for Chinese

Alpha-band student-excellence coupling during Chinese sessions was significantly
correlated with the final exam scores for Chinese (Fig.4a): the students with higher
learning outcomes in Chinese were found to have better inter-brain couplings with their
excellent peers (r = 0.433, p = 0.017, n = 30, excellence number = 4). The correlation
remained significant or marginally significant when the number of excellences included
in the calculation of student-excellence coupling varied from 2 to 6 (Fig.4b). No
significant correlations between alpha-band student-class coupling and the final exam
scores of Chinese were found (= 0.077, p = 0.665, n = 34). Moreover, no significant
correlations were observed between alpha-band inter-brain coupling and the final exam
scores of Math, neither in student-excellence coupling nor in student-class coupling
(Fig.4c, d; student-excellence coupling: = 0.266, p = 0.156, n = 30, excellence number
=4; student-class coupling: » =0.195, p = 0.270, n = 34).

Frequency-specificity of outcome-related inter-brain coupling

Fig.5 further showed the overall inter-brain coupling results in four frequency
bands (theta, alpha, low-beta, and high-beta). Inter-brain coupling in the theta and alpha
bands was found to correlate with the final exam scores (as shown above) significantly.
In contrast, the inter-brain coupling at the low-beta and high-beta bands failed to reach
significance. We also conducted a similar inter-brain coupling analysis but focused on
1-20 Hz as several previous studies*!®. The results were shown in Supplementary
Fig.S2: No significant correlations were found between 1-20 Hz inter-brain coupling
and the final exam scores, demonstrating the value of separating different frequency
bands.
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To explore the discipline-specificity of the inter-brain coupling results, the
correlations between the final exam scores and inter-brain coupling were re-computed
by switching the disciplinary scores (i.e., computing the correlation between inter-brain
coupling during Math sessions and the final exam scores of Chinese and vice versa).
As shown in Fig. 6b, theta-band student-class coupling during Chinese sessions is
significantly correlated with the final exam scores of Math (student-class coupling: » =
0.345, p = 0.045, n = 34). No other correlations reached a significant level after

switching.
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Fig.6: Results of correlation analysis by switching the discipline scores, i.c.,
correlating inter-brain coupling in Math sessions with the final exam scores of Chinese
(a) and vice versa (c). b, Scatter plots between theta-band student-class coupling
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Fig.7: The correlation between the single brain’s relative frequency power in the theta,
alpha, low-beta, and high beta band with one’s final exam scores of Chinese (a) and
Math (¢). No significance was found in any of the frequency bands. b, Scatter plots
between relative power in the theta band and the final exam scores of Chinese (the
highest correlation for Chinese). d, Scatter plots between the relative power in the

high-beta band and the final exam scores of Math (the highest correlation for Math).
Single-brain features fail to reflect successful learning

Additionally, we conducted similar correlational analyses between single-brain
EEG features and the final exam scores. The relative power of the four frequency bands
from each student was taken as the single-brain EEG features. As shown in Fig.7, the
single-brain analysis reveals no significant correlations with the disciplinary final exam
scores (Fig.7b; the highest correlation for Chinese in the theta band: » = -0.180, p =
0.307, n = 34; Fig.7d; the highest correlation for Math in the high-beta band: »=-0.141,
p=0.425,n=34).

Discussion

In the present study, the learning processes of high school students while taking a
soft (Chinese) and a hard (Math) discipline in their real classroom were recorded by
wearable EEG devices for a whole semester. By taking their final-term exam scores as
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learning outcomes, students with higher Chinese outcomes were found to be associated
with better inter-brain neural couplings with their excellent peers during the Chinese
courses, whereas students with higher Math outcomes were found to be associated with
better couplings with other classmates during both the Chinese and the Math courses.
Moreover, the neural couplings showed different dominant frequencies for the two
disciplines. While the outcome-related inter-brain coupling for Math was found in the
theta-band, the importance of the alpha-band was highlighted in the successful learning
for Chinese courses. No significant correlation was found between the single brain’s
relative power and final exam scores in either discipline. Our results demonstrate the
feasibility of inter-brain coupling to eval students’ successful learning process for both
soft and hard disciplines. More importantly, the present study provides insights into
understanding the disciplinary differences ‘in the wild’ from an inter-brain perspective,
suggesting the neural activities of excellent peers and class average as exemplars for
successful classroom learning in soft and hard disciplines, respectively.

The correlation between individuals’ student-class coupling and their learning
outcomes for Math verified and extended previous findings of neural mechanisms
underlying the learning process. By investigating hard disciplines such as physics,
biology, and computer science, recent studies have demonstrated student-class coupling
as a useful tool to evaluate the learning process'*~'°. Our results about Math, another
representative hard discipline, are in line with these studies, where student-class
coupling was also found to be correlated with students’ learning outcomes. Moreover,
after decomposing data into different frequency bands, our results extended previous
findings by showing the importance of the frontal theta-band activity during real-
classroom learning. Frontal theta activity has been reported to reflect cognitive
processes such as cognitive control*®-38, sustained attention®”, and working memory*-
42 and has been found to increase in the arithmetic-related tasks*’. During the learning
of hard disciplines, the emphasis on the development of a capacity to master and apply
the accepted scientific viewpoints would require the students to align with the course
material®. Hereby, the theta-band brain activity shared across classmates could reflect
students’ continuous engagement with the course content. Then, theta-band student-
class coupling could imply the extent to which each student attended the course
content*!>, or the extent to which each student interpreted the course content!*.
Therefore, better learning outcomes for Math are found to be associated with better
inter-brain coupling with other classmates in the theta band.

The positive correlation between theta-band student-class coupling during the
Chinese sessions and the learning outcomes of Math further suggested that the class-
level frontal theta-band activity could reflect the required cognitive processes shared
across the two disciplines. The learning process of Chinese would also rely on cognitive
control, sustained attention, and working memory, which allowed students to attend the
courses. Nevertheless, the non-significant correlation between theta-band student-class
coupling and the Chinese final exam scores in the present study might also suggest the
relatively loose link between these cognitive processes and the learning outcomes of
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Chinese. This finding is similar to a previous study where students’ studiousness and
continuous engagement have been suggested to be beneficial for both the learning of
Math and German. However, they are more important for the learning outcomes of
Math*,

The positive correlation between alpha-band student-excellence coupling during
the Chinese sessions and the students’ Chinese final exam scores provides evidence of
the critical neural correlates of successful learning in soft disciplines. The distinct
frequency band (alpha) compared to Math (theta) suggests that successful learning of
Chinese and Math relies on substantially different cognitive processes. Despite the lack
of neuroscience evidence on soft-discipline learning, the frontal alpha-band activity

39.45 and was found to be

46,47

could be related to the inhibition of stimulus-driven attention
involved in tasks with high internal processing demands such as creative ideation
and imagination®. At the same time, student-excellence coupling rather than student-
class coupling was informative about the learning outcomes in Chinese, highlighting
the neural activities of excellent peers as exemplars for successful learning in soft
disciplines. Although different excellence might have different internal interpretations
of the course contents, they could share the similar temporal dynamics of the
interpretation process. For instance, while learning an ancient poem, two top students
could immerse in the aesthetic experience simultaneously when imagining different
scenarios in their minds. Note that EEG recording techniques used in our study are
advantageous for capturing the temporal dynamics of the learning process rather than
the fine-grained representation of the learning content. Taken together, it is plausible to
assume that the temporal dynamics of the frontal alpha activity shared across
excellences might represent an internal processing state for interpretation construction,
which is critical for the learning of Chinese. Moreover, unlike the responses to external
stimuli (course contents), this internal state may not necessarily share across classmates,
which results in positive results of student-excellence coupling rather than student-class
coupling.

It is necessary to distinguish between the excellent peers found in this study and
the experts that have been often referred to in the field of education. In educational
practice, the expert-like mastery of knowledge has been regarded as the target of
students’ learning and has been linked to good learning outcomes®. For example, the
performances of emergency medicine trainees were found to improve in the crisis
resource management tasks when their cognitive processes were more expert-like®’. A
recent functional magnetic resonance imaging (fMRI) study also reported that one’s
neural alignment (coupling) to the experts could positively predict the final-term exam
score of their computer science course'4. While experts have been regarded as a well-
established exemplar for successful learning, our results suggest that excellences also
serve as an alternative reference in soft disciplines. Moreover, compared with experts
who may learn qualitatively different from students due to their broader understanding
of the field!*, excellences with similar prior knowledge about the to-be-learned content
may be particularly efficient as an exemplar for the learning process starting as a novice.
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It should also be noted that the results of non-significant student-excellence-
coupling-based correlation for the learning outcomes of Math did not necessarily
undermine the potential importance of excellence for successful Math learning. On the
one hand, the correlation coefficients between the Math-session student-excellence
coupling and the Math final exam scores still reached a positive value of >0.2 at the
alpha band (Fig. 4d). On the other hand, the students of Math excellence might not
adequately express their optimal learning processes during the Math sessions.
Specifically, since the classroom teaching was designed to meet the need of the majority
of the class®! 3, there might be a lack of challenge for Math excellence. Consequently,
the possible boredom might demotivate the excellence to follow the lectures®* and
eliminate the possibly-existing correlations. By contrast, the teaching of soft disciplines
such as Chinese emphasizes constructive and interpretative activity, which is expected
to be similarly challenging for students at different proficiency levels.

As the first study investigating the disciplinary differences in students’ successful
learning process in real-classroom settings, several limitations must be noted. First, the
present ecologically valid paradigm posed a challenge to strictly-controlled contrasts
between disciplines. Multiple factors (e.g., learning contents, learning goals and
learning difficulties) could lead to the distinct outcome-related inter-brain coupling
patterns in soft and hard disciplines. While this is how disciplinary differences manifest
in everyday learning processes, future work will be needed to clarify the unique
contributions of these factors. Second, the present effect sizes are relatively small
compared with previous inter-brain studies (the correlation between inter-brain
coupling and learning outcomes for Chinese: R-squared = 0.187; for Math: R-squared
=0.115). In a recent fMRI study focused on the neural correlates of successful learning,
R-squared values were found to be influenced by the brain regions, varying from 0.168
to 0.563 across brain regions!'*. While the dual-channel EEG devices in the present
study provide convenience for daily longitudinal acquisition, the relatively few
channels might fail to fully capture the learning-related brain activities. For instance,
the development of portable EEGs with larger coverage areas* and portable functional
near-infrared spectroscopy (fNIRS) devices®® could be a plausible solution in the near
future. Third, while Chinese and Math have been chosen to represent soft and hard
disciplines here, more disciplines were needed to be investigated to verify the
framework of hard/soft disciplines thoroughly. Specifically, as our findings indicated
that some cognitive processes might share across the learning of different disciplines,
the involvement of more disciplines will facilitate a deeper understanding of the
domain-specific process and domain-general process across disciplines during real-
world learning activity>®.

Methods

Participants
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Thirty-six students (16 females; age: 15-16 years old) from the same class (37
students in total) in grade 10 of a high school in Beijing volunteered to wear a headband
EEG device during their regular Math and Chinese sessions throughout one semester.
The study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the ethics committee of the Department of Psychology,
Tsinghua University (THU201708). All the participants and their legal guardians gave
their written informed consent.

Procedure and Data Recording

In the present study, a dual-channel headband with dry electrodes was used to
record EEG at Fpl and Fp2 over the forehead at a sampling rate of 250 Hz (Brainno,
SOSO H&C, Korea). The reference electrode was placed on the right ear lobe with a
ground at Fpz. The EEG device has been used previously in monitoring brain state
during resting state, sudoku games, and surgery® 3. The signal quality of the headband
was also tested in the present study by using an eye-closed/open task with 22 out of the
same 36 students in their classroom environment.

The data collection lasted for four months to cover the whole semester. For each
month, students’ EEG signals during Chinese sessions and Math sessions were
recorded for one week (one session or two sessions per day) following the regular
curriculum. The total number of sessions was 39, with 19 sessions for Chinese and 20
sessions for Math. Before Chinese or Math sessions began, students wore headbands
with the help of experimenters, and the headbands were taken off after each session.
Each session lasted for 40 minutes. There was one Chinese session when EEG devices
failed to record any data due to technical issues. Two students were omitted from the
analysis due to the consistently poor quality of EEG data across sessions. A total of 34
students in 18 sessions for Chinese and 20 sessions for Math were included in the
following analysis.

During the Chinese and Math sessions, the learning content was taught according
to the arrangement of the school. The Math sessions include the introduction of planar
vectors, cubic geometry, plural, statistics, and probability; the Chinese sessions include
reading ancient and modern poems, essays, and novels and the introduction to writing.

The students’ final exam scores in Chinese and Math were taken as indicators of
their learning outcomes. The final exams covered the contents of the whole semester.
Both exams were scored out of 100. The median of the students’ Math scores was 73,
ranging from 33 to 95, and the median of the students’ Chinese scores was 69, ranging
from 40 to 79. The scores were sufficiently diverse to characterize students’ differences
in learning outcomes. These scores were normalized to [0, 1] using a min-max
transformation for the following analysis.

Data Preprocessing

Since EEG data were recorded in a regular classroom environment and students
were instructed to attend Chinese and Math sessions as usual, more artifacts were
expected as compared to conventional, highly-controlled laboratory settings. In the
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present study, there were three types of prominent artifacts: 1) a high value indicating
signal saturation possibly due to losing contact with the headband; 2) slow drifts related
to extensive head or body movements; 3) ocular artifacts related to eye movements.

The recorded EEG data were segmented into non-overlapping 30-sec epochs for
preprocessing. As shown in Supplementary Fig. S3, ratios for saturated samples per
epoch illustrated a 2-tailed distribution that most epochs containing saturated samples
for less than 10% or more than 90%. Therefore, 50% was chosen as a threshold
empirically. One epoch would be rejected if it contained saturated samples for more
than 50%. The remaining epochs were then processed to remove the slow drifts with
the NoiseTools toolbox 7 under Matlab (MathWorks, USA). The removal of the slow
drifts was achieved by using the nt detrending() function. By estimating the position
of the glitch, this function could perform a weighted polynomial fit and achieve a better
fit to the non-glitch parts. The processed epochs were further band-pass filtered
between 0.1 Hz and 40 Hz with 1-s zero-padding at both ends. Afterward, the ocular
artifacts were attenuated with the MSDL (multi-scale dictionary learning) toolbox,
which was efficient in ocular artifacts removal for single-channel EEG signals®®.
Epochs were decomposed into neuronal and non-neuronal sources with dictionary
learning. Then, the coefficients of non-neuronal sources were set to zero to achieve
artifact reduction with the seq MSDL() function. Supplementary Fig.S4 and S5
illustrated representative examples before and after the artifacts rejection procedure.
Finally, epochs were rejected automatically if any samples in any channels exceeded a
+150 pV threshold. With the above preprocessing procedure, 57.2+1.85 % epochs
were retained per student, ranging from 31.2% to 76.7%. The data retention rate was
comparable with previous EEG studies in classroom settings*!6. The number of
retained epochs per session per student was shown in Supplementary Fig.S6.

Data Processing

Inter-brain coupling between all possible student pairs was computed using the
total interdependence (TI) method as its efficacy in capturing the temporal relationship
between two time series**. TI was estimated by computing the magnitude squared
coherence using the Welch method when clean 30-s epochs were available at the same
moments from both students. For X;, a 30-s epoch from a certain student { and X;, an
overlapping epoch from another student j, TI value was calculated as follows.

2
Tly,x; = = 7 Zm=11n(1 = C§ x, (MAf))AS (1)

_ _ I
Af = 2(M—-1) 2)

Here, Cy,x;0 is the magnitude squared coherence calculation, f; is the sampling

rate, M is the number of desired frequency points in the interval between 0 and the
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Nyquist frequency % The Af is the frequency resolution. Theta, alpha, and low-beta

and high-beta TI were computed by summing the coherence values within 4-8 Hz, 8-
13 Hz, 13-18 Hz, and 18-30 Hz, respectively.

TI for one pair of students for each session was obtained by averaging TI values
across all epochs and the two recording electrodes. A minimum of 6 artifact-free
common epochs for paired students were included for further analysis. The lower limit
was empirically chosen to get a comparable minimum data amount for each pair of
students with the previous studies*!¢. 96.6% of TI values for each pair and each epoch
remained for the following analysis. A N * N pairwise TI matrix (N is the number
of students) could be obtained for each session. TI values within the matrix were then
normalized to [0,1] for each session, following the practice in previous studies +!. Then,
the matrixes were averaged across K sessions to obtain an averaged inter-brain
coupling for each pair of students for a specific discipline (K = 18 for Chinese and K =
20 for Math).

Then, student-class coupling for student i was obtained by averaging TI values
over all possible pairwise combinations between the student i and the rest of the class.
Student-excellence coupling for student i was computed by averaging TI values over
all possible pairwise combinations between the student i and the excellences except
themselves if included. Therefore, for each student, there would be a student-class
coupling value and a student-excellence coupling value as indicators of disciplinary
learning process for the whole semester for each frequency band.

Furthermore, Pearson’s correlations between individuals’ student-class coupling
(or student-excellence coupling) and their corresponding learning outcomes were
calculated for soft and hard disciplines separately. For student-class coupling, all
students were included in the correlation analysis. For student-excellence coupling,
however, the excellences themselves were not included during the correlation analysis
between student-excellence coupling and learning outcomes. For example, if
individuals’ student-excellence coupling was computed with the top Ng students, then
the top Ng students’ coupling values, as well as their learning outcomes, would be
removed, leaving (N — N;) out of the N students for conducting correlations. The
effect of excellence number on the relationship between student-excellence coupling
and learning outcomes was analyzed.

Additionally, we conducted similar correlational analyses between single-brain
EEG features and the final exam scores for comparison. The relative power of each
frequency band of interest (theta, alpha, and low-beta and high-beta) was obtained by
dividing the power in the 1-40 Hz band after a fast Fourier transform for each 30-second
epoch. Then, values of the relative power of each frequency band of interest were
averaged across all epochs and all sessions within each discipline for each student as
the single-brain EEG features. Finally, Pearson’s correlations between individuals’
single-brain EEG features and corresponding learning outcomes were calculated
separately for soft and hard disciplines.
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Fig.S1: The signal quality validation of EEG headbands in a 2-minute eye-closed/open
task. Twenty-two students out of the same class volunteered to participate in this task.
Students were required to open and close eyes for two minutes respectively when sitting
in their classroom. Then, fast Fourier transform was conducted to compare the
frequency spectral characteristics of EEG signals between conditions. a, The frequency
spectra for a representative student at Fpl. The solid line represents the eye-closed
condition, and the dashed lines represent the eye-open condition. b, The frequency
spectra for the same student at Fp2. ¢, Relative amplitudes of the alpha band (8-13 Hz)
in the eye-open and eye-closed conditions for all the students. Errorbar indicates
standard deviation. The amplitudes were averaged across Fpl and Fp2; d, Percent of
relative amplitude differences (eye-closed minus eye-open) at the alpha band for each
student. The amplitudes were averaged across Fpl and Fp2.
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Fig.S2. The correlations between student-excellence/class coupling with one’s final
exam score of Chinese and Math at 1-20 Hz. a, Scatter plots between student-
excellence coupling (left, excellence number = 4) and student-class coupling (right)
and the final exam score of Chinese at 1-20 Hz. b, Correlation r values as a function
of the number of excellences included in the calculation of student-excellence
coupling. ¢, Scatter plots between student-excellence coupling (left, excellence
number = 4) and student-class coupling (right) and the final exam scores of Math at 1-
20 Hz. d, Correlation r values as a function of the number of excellences included in
the calculation of student-excellence coupling. Note that the excellences themselves
were not included in the correlation analysis.
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Fig.S3: The distribution of the artifacts ratios per epoch for (a) Fpl and (b) Fp2. The
ratios for saturated samples per epoch illustrated a 2-tailed distribution.
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Fig.S4: An illustration of a representative EEG epoch before and after the detrending
procedure with the Noisetool toolbox (a, b) at Fp1; (¢, d) at Fp2. The lines with a lighter
color indicated the condition before detrending. The lines with a darker color indicated
the condition after detrending. The slow drift was removed after the detrending
procedure.
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Fig.S5: An illustration of a representative EEG epoch before and after the ocular
artifact removal procedure with the MSDL toolbox (a) at Fpl; (b) at Fp2. The lines
with a lighter color indicated the condition before ocular artifact removal. The lines
with a darker color indicated the condition after ocular artifact removal. The ocular
artifact was removed after the procedure.

Epoch number Epoch number
a
u ]
-
I | ! i I - 70
]
Nyl | I || 60
|
| | i & = J l | 50
S r S i =
E i Zz i 40
c
2 | | o 1 I -
2 I % p 2 30
$ | § S 3 g
)] ™ 20
R | Soll" | |
| B 10
0
5 10 15 20 25 30
Student No. Student No.

Fig.S6: The number of retained epochs per session per student (a) at Fpl; (b) at Fp2
after the preprocessing procedure. The colorbar indicated the number of retained epochs.



