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Abstract 

Cellular protein expression profiles within tissues are key to understanding disease 

pathology, and their spatial organisation determines cellular function. To precisely define 

molecular phenotypes in the spatial context of tissue, there is a need for unbiased, 

quantitative technology capable of mapping the expression of many hundreds to thousands 

of proteins within tissue structures. Here, we present a workflow for spatially resolved, 

quantitative proteomics of tissue that generates maps of protein expression across a tissue 

slice derived from a human atypical teratoid-rhabdoid tumour (AT/RT). We employ spatially-

aware statistical methods that do not require prior knowledge of tissue structure to 

highlight proteins and pathways with varying spatial abundance patterns. We identify novel 

aspects of AT/RT biology that map onto the brain-tumour interface. Overall, this work 

informs on methods for spatially resolved deep proteo-phenotyping of tissue heterogeneity. 

Advanced spatially resolved tissue proteomics will push the boundaries of understanding 

tissue biology and pathology at the molecular level.  
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Main 

Tissues contain various microscopic features, cell types, and phenotypically diverse 

subpopulations. The location of cells within a tissue and their spatial neighbourhood is 

crucial for determining their identity and function1–6. The cellular composition of tissue has 

substantial effects on measured coexpression signals within the molecular profiles of bulk 

tissue, and changes in cellular tissue composition can contribute to different disease 

outcomes7,8. Changes in the composition of the surrounding microenvironment could also 

contribute as signals from the microenvironment influence cell functions9. For example, in 

tumours, complex signalling occurs between tumour and normal cells that have been co-

opted to promote tumour cell function and survival10,11. Recent technology developments in 

DNA and RNA sequencing technologies now allow for the generation of near-complete 

genomes and transcriptomes. These advancements have furthered the understanding of 

many biological aspects from the level of cells through to populations in many human 

disease contexts12–14. Furthermore, the development of technologies capable of retaining 

the spatial context of these genomic and transcriptomic profiles have enabled the 

characterisation of spatial heterogeneity of these profiles within a tissue15,16. However, 

while genomic and transcriptomic alterations may act as drivers of disease, the proteins 

they code for regulate essentially all cellular processes17. 

A range of mass spectrometry (MS)-based techniques are available to map the distribution 

of proteins throughout tissues and cells. Mass spectrometry imaging (MSI) enables the 

determination of proteins or other molecules within a sample by rastering an ion source 

over a sample in a grid pattern. This approach can be untargeted, where the analytes are 

detected directly, such as matrix-assisted laser desorption/ionisation (MALDI)18,19, or 

targeted where tissue is probed with metal-tagged antibodies with detection of the metal 

isotopes, such as in imaging mass cytometry20,21. Liquid extraction surface analysis mass 

spectrometry (LESA-MS) helps address the lack of depth in untargeted MSI and prior-

knowledge requirement of targeted MSI by extracting analytes from tissue using a liquid 

microjunction22. In the case of proteins, these can be enzymatically digested and analysed 

by LC-MS to provide better depth and identification confidence23. However, LESA has 

limited resolution, typically g 500 µm and cannot accurately sample the irregular structures 

present within tissue. 
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Laser capture microdissection (LCM) is well-placed to address the limitations of the 

spatially-resolved mass spectrometry methods described above24. LCM can extract regions 

from a tissue slice ranging from single cells to square millimetres of tissue25,26. We and 

others have previously described several methods coupling LCM to LC-MS, and the approach 

has been used to investigate a wide range of tissue biology27–31. Combining LCM-Proteomics 

with automated image analysis systems could be a powerful approach. Mund et al. recently 

developed the concept of Deep Visual Proteomics by combining high-resolution imaging, 

image analysis based on machine learning, and a sensitive proteomics workflow32 classifying 

cells into subtypes using machine learning to automatically cut and capture cells based on 

their classification before proteomics analysis.  

Generally, LCM-Proteomics has been used in a 8feature-driven9 approach, where tissue 

regions are extracted based on existing knowledge such as histological features, 

immunostaining or gross morphology & macrostructures24,33–36. This feature-driven 

approach effectively investigates tissue heterogeneity. However, sampling in an unbiased 

manner, like MSI, could reveal novel insights into the spatial protein expression patterns 

within a tissue. For example, Piehowski et al. used LCM-proteomics to sample mouse 

uterine tissue in a rastered grid with a resolution of 100 µm and their custom, nanolitre-

scale nanoPOTS sample preparation platform to quantify over 2,000 proteins within the 

tissue37. 

Here, we systematically performed spatially-resolved measurements of a human brain 

tumour proteome using laser capture microdissection to a depth of over 5,000 proteins. We 

use spatially aware statistical tests to identify proteins and pathways displaying differential 

spatial expression within tissue sections. This did not require prior knowledge of tissue 

structures, features, or pathology. Furthermore, clustering of protein expression and 

inferring pathway activity reveals new, spatially defined proteo-phenotypes within the 

otherwise homogeneous macrostructure of the analysed tumour. 

Results 

We characterised how the number of protein identifications varies with the tissue area 

collected by LCM on two LC-MS/MS systems, an Orbitrap Fusion Lumos mass spectrometer 

with 60-minute gradients and a TimsTOF Pro using 17-minute gradients. We collected areas 
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from 316 µm2 to 1,000,000 µm2 (Figure S1). Both systems perform similarly, with the Lumos 

system ranging from 282 – 3480 protein groups and the timsTOF system ranging from 127 – 

3318 protein groups, comparing favourably to other LCM-proteomics work25. These 

searches were performed without match-between-runs to avoid boosting the IDs of the 

smaller areas using information from the larger areas. Areas above 316,000 µm2 result in 

diminishing returns, likely caused by approaching the maximum number of MS/MS spectra 

that can be acquired within each system9s fixed gradient times.  

Proteomic topography of a human brain tumour 

After characterising the upper and lower limits of the workflow, we sampled a 10 µm thick 

section of an atypical teratoid-rhabdoid tumour (AT/RT) block (~20 x 15 mm). The tissue was 

subdivided into 384 (24 x 16) square 8pixels9 with an area of ~694,000 µm2 (side length of 

833 µm); each pixel was isolated by LCM and processed with our LCM-SP3 protocol29 (Figure 

1). Each sample was analysed on the 17-minute timsTOF Pro setup. In total, 5,321 proteins 

were identified, with 32 – 4,741 proteins identified per sample. This range includes empty 

pixels where no tissue was visible, demonstrating a low level of contamination throughout 

the workflow. Figure S2 shows the distribution of proteins identified and quantified per 

pixel and the number of pixels with quantitative values for each protein. The quantitative 

values for each protein in each pixel can be mapped back to their original positions within 

the tissue grid. Figure 2A shows proteomic maps for four example proteins, liver glycogen 

phosphorylase (PYGL), peripherin (PRPH), haemoglobin (HBB) and histone H4 (HIST1H4A), 

where each pixel is coloured by the normalised protein intensity of that protein in that 

sample. Glycogen phosphorylase releases glucose from glycogen for entry into glycolysis, 

and its expression in cancer is associated with malignant phenotypes, hypoxia resistance 

and cancer cell survival38. Peripherin is an intermediate filament protein without a clear 

function and is highly expressed during development and after nerve injury; its expression 

pattern is consistent with the tumour growth into surrounding normal brain tissue39–41. 

We then tested the 4,306 proteins quantified in at least 9 pixels for spatial variation using 

the Moran9s I test for spatial autocorrelation42. Values of Moran9s I lie between -1 and +1, 

where positive values indicate that areas close in space tend to have similar values, negative 

values indicate that areas close in space tend to have different values, and zero indicates 

data are randomly distributed in space. The pixels containing the large region of 
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haemorrhage and the empty pixels were excluded from this and further analyses. Of the 

proteins tested, 3,212 have a q-value f 0.05. The summed and mean intensities of each pixel 

do not show significant spatial autocorrelation (I = 0.003 & 0.003, p = 0.313 & 0.317, 

respectively), showing that the sampling process worked well and is not a systemic cause of 

spatial variability (Figure S3). 

In addition to the large field of view, we also sampled a smaller region with higher spatial 

resolution from an adjacent tissue section. These proteomic maps were generated from an 

area of variability identified in the H&E staining and above proteomic maps, where a region 

of solid tumour containing neoplastic cells meets a region we termed 8brain/tumour9 

interface, which has a mixture of normal and neoplastic cells along with a large, prominent 

blood vessel. This region was sampled with 96 pixels, 350 µm x 350 µm (122,500 µm2) each 

and each pixel was analysed on the Orbitrap Fusion Lumos system using 60-minute 

gradients. In total, 3,994 proteins were quantified in at least one sample. The increased 

resolution proteomic maps for PYGL, PRPH, haemoglobin and histone H4 are shown in 

Figure 2B. Their expression is consistent with the large field-of-view data, with PYGL and 

PRPH showing opposite expression patterns across the margin between solid tumour and 

brain/tumour interface and haemoglobin co-localising with the visible blood vessels. Histone 

H4 shows even expression across the two annotated areas, with a region of lower 

expression corresponding with a visibly diffuse patch of tissue. Of the 3,050 proteins 

quantified in at least 9 pixels, 1,375 show evidence for significant spatial autocorrelation 

(Moran9s I test, q f 0.05). 

Spatial proteomics reveals PYGL, ASPH and CD45 as markers for tumour boundary 

Three candidate proteins showing significant spatial variation were selected for follow-up 

immunohistochemistry (IHC) staining: glycogen phosphorylase, aspartate beta-hydroxylase 

(ASPH) and CD45 (PTPRC) to validate the spatially resolved protein expression data 

generated above. The IHC staining images closely resemble the protein intensity 

distributions (Figure 3A,C,E) within the proteomic maps for these three proteins. Both PYGL 

and ASPH show intense IHC staining in the region of solid tumour (Figure 3B,D), and CD45 

shows intense staining in the region of tissue corresponding to the upper-left pixels in the 

proteomic map (Figure 3F).  
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Spatial proteomic mapping highlights molecular pathways underlying tissue 

heterogeneity 

As Moran9s I measures global autocorrelation, it does not indicate where the locations that 

drive the autocorrelation occur. To investigate which regions of the sampled tissue show 

similar expression, the data were clustered using hierarchical clustering and the resulting 

dendrogram was cut using the Dynamic Tree Cut method43. The generated cluster labelling 

of pixels can also be mapped back to their spatial location (Figure 4A). The clusters generally 

form contiguous regions in space, with some long-range co-clustering in smaller clusters. 

The margin between solid tumour and brain/tumour interface is well-represented by the 

border between cluster 1 (solid tumour) and cluster 3 (brain/tumour interface). In addition 

to the cluster map, the assigned clusters were plotted onto a uniform manifold 

approximation and projection (UMAP) visualisation44 (Figure 4B). The clusters visible in the 

UMAP plot correspond well to the Dynamic Tree Cut method generated clusters. 

This method generates spatially well-defined clusters, allowing for a feature-driven 

approach without prior knowledge of the histopathological details. Proteins quantified were 

tested for significantly differing intensities across the clusters using a one-way ANOVA test. 

There are 3,512 proteins with significant evidence (q f 0.05) for differential intensity 

between two or more clusters. Pairwise Tukey post-hoc tests were used to generate fold-

change estimates between pairs of clusters, and these fold-changes were used as the input 

for gene set enrichment analysis. Functional analysis of clusters 1 & 3 indicates that proteins 

and processes involved in protein translation and modification, extracellular matrix 

organisation, energy pathways, mRNA processing, steroid synthesis, neuronal cell adhesion, 

and neuronal differentiation are differentially abundant between the region of solid tumour 

and brain/tumour interface (Figure 4C). 

Applying the same clustering method to the high-resolution maps results in a cluster map 

that is broadly consistent with the low-resolution map (Figure 5A). There are generally 

contiguous clusters that represent the solid tumour (cluster 1), the brain/tumour interface 

(cluster 3), the margin between (clusters 2 & 5), and blood vessels (cluster 6). A volcano plot 

between cluster 3 and cluster 1 reflects what is generally seen in the proteomic maps, with 

large fold-changes in the abundance of PYGL, ASPH and PRPH (Figure 5B). Functional 

analysis of clusters 1 & 3 indicates that proteins involved in extracellular matrix, cell 
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adhesion & motility, angiogenesis, immune processes, epidermis function, and neuronal 

development are differentially abundant between solid tumour and brain/tumour interface 

(Figure 5C). These functional differences are broadly consistent between this high-resolution 

and lower-resolution sampling described above. 

We investigated the expression of other immune cell-marker proteins because of the 

discovered differences above in immune processes and highly localised CD45 abundance 

and staining (Figure 6A). In general, their proteomic maps show localisation to the upper-

left of the sampled region, consistent with the CD45 patterns. Marker proteins for 

neutrophils, neutrophil cytosolic factor 2 & 4 (NCF2 & NCF4), are present along with marker 

proteins for pro-tumour M2 macrophages, CD163 & mannose receptor C-type 1 (CD163 & 

MRC1)44,45. These proteins' peak expression locations correspond with clusters 13 and 6 for 

the neutrophil and macrophage markers, respectively. A functional analysis between these 

two clusters shows increased abundance for many proteins involved in neutrophil function 

and other immune-related processes such as B-cell differentiation and the JNK cascade 

within cluster 13. Within cluster 6, proteins involved in cell death, the cell cycle, 

morphogenesis, hedgehog signalling, collagen, and cytoskeletal organisation show increased 

abundance (Figure 6B). 

MALDI imaging visualises lipid profiles that reflect immune cell infiltration 

In addition to spatially mapping protein expression with the tissue, we also performed mass 

spectrometry imaging to investigate the spatial distribution of lipids within the tissue on an 

adjacent section using MALDI (Figure 6C). Bisecting K-means clustering of the MALDI 

imaging pixels derived from 498 molecular ions broadly reflects the proteomic and cluster 

maps' patterns, but with higher spatial resolution (20 µm). The upper-left region is a distinct 

cluster, and the boundary between the solid tumour and brain/tumour interface is visible. 

The ion image of haeme can be used as a proxy to visualise the vascularisation of the tissue. 

This also shows variability across the tissue, potentially indicating areas of nutrient gradients 

and availability in different regions of the solid tumour. Plotting the ion image of the 689.56 

m/z ion that corresponds to the cholesterol ester46 (18:1) [M+K]+ ion shows the highest 

intensity in the region of the tissue that corresponds to the area of high macrophage marker 

expression (cluster 6) in the proteomic maps. 
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Discussion 

The presented spatial analytics workflow addresses the need to generate highly 

multiplexed, quantitative, spatially resolved measurements of proteins within tissue to 

understand the spatial organisation of molecular pathways in health and pathology. We 

demonstrate methods for the systematic sampling of tissue sub-sections using laser capture 

microdissection (LCM), sample preparation, liquid chromatography-mass spectrometry and 

advanced statistical analysis of topographic data. 

We optimised methodology to negotiate detected proteome depth versus spatial resolution 

(Figure S1) and demonstrate the detection of proteins and pathways with spatially variable 

abundance within a rare paediatric tumour - atypical teratoid/rhabdoid tumour – and 

surrounding tumour-infiltrated normal tissue. We applied spatially aware data analysis and 

statistics to pinpoint biological processes with deep molecular resolution without prior 

knowledge of the tissue composition, thus creating an objective, unbiased way of deep 

phenotyping pathological tissue in its biological context. 

A growing number of studies are currently focused on feature-driven LCM-coupled 

proteomics. In contrast, here, we propose an unbiased, systematic approach, which allows 

the creation of comprehensive proteomic maps at the individual protein or pathway level. 

These maps can fulfil the requirements for feature-driven analysis by reconstituting features 

from systematic sampling and allow the discovery of new proteo-phenotypes without 

visually identifiable parameters. Furthermore, the method performs excellently compared 

to general high-sensitivity proteomic workflows for tissue analysis and other spatial 

proteomic methods performed in this resolution range. 

Through our generation of proteomic maps, we have demonstrated the presence of 

molecular heterogeneity at multiple scales within tumour tissue sections, revealing 

proteomic differences between areas of tissue that appear visually homogeneous. These 

proteomic measurements show good agreement with immunohistochemistry staining of 

adjacent tissue sections. Additionally, we demonstrate that this approach can also generate 

information on immune cell infiltration and state within the tissue by the detection of 

neutrophil and pro-tumour M2 macrophage markers towards the periphery but at different 

distances from the solid tumour. In addition to characterising the proteomic spatial 
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heterogeneity across the tissue, we also show that the lipidomic fingerprint varies similarly 

and detect evidence of the same immune cell infiltration. 

The work we present here has several avenues for future improvement to generate more 

comprehensive information about biological structures. Integrating multiple data modalities 

and patient data is critical to the complete understanding of disease processes, and the 

correct integration relies on advanced bioinformatics tools47,48. The full integration of 

spatially resolved proteomic, metabolic, lipidomic and transcriptomic data, along with high-

resolution imaging, has the potential to reveal further insights into the spatial dimension of 

biological processes. Further development of data analysis and statistical methods that can 

use the spatial relationships between samples is also required to maximise the utility of 

spatially resolved proteomics. One aspect of this is the handling of missing values. The 

spatial information retained when the spatial context of samples is known could be used to 

aid data imputation methods capable of taking samples' spatial relationships into 

account49,50. 

However, the spatial resolution should be balanced with the expectation for a meaningful 

depth to cover pathways of interest and technical limitations for sensitivity and throughput. 

For example, an increase of spatial resolution towards the single-cell level (1-10um/pixel) 

with current LC-MS workflows would reduce the detected depth of the proteome to 100s of 

proteins, limiting the conclusions to be drawn about the fine spatial resolution of the 

proteome in such tissues. Several single-cell proteomic methods have been recently 

described, but they do not yet use cells collected by LCM51–53. Novel high-throughput LC-MS 

platforms can now robustly analyse 1000s of samples relatively quickly54–56. However, 

increasing the spatial resolution demonstrated here towards the single-cell level and 

covering comparable areas would be a formidable analytical challenge, further escalating 

when analysing tissue in three dimensions57. 

Another limitation is based on the samples analysed here still having properties of bulk 

tissue, but with a lower number of cells than usually analysed in bulk biopsies, even if 

mapped to physiological features or areas. This bulk property means that the data still 

suffers from missing values which can confound spatial pathway level analysis. Future 

approaches are bound to use systematic spatial proteomic analysis, possibly compromising 

spatial resolution but incorporating an element of machine learning to use orthogonal 
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higher resolution omics and imaging data to infer protein abundance towards individual cell 

resolution, as can be done on spatial transcriptomics data58–61. In addition, with the 

detection of LCM-based and cell-type resolved deep proteomes, these data will be highly 

complementary to current imaging technologies and increase the understanding of spatially 

resolved biological and pathological processes at the molecular level29,32,57. 

 

Acknowledgements 

SD acknowledges support from the Nuffield Department of Medicine. SD, PDC, BMK & RF 

acknowledge support from the Chinese Academy of Medical Sciences Medical Sciences 

2018-I2M-2-002. PDC was supported by Pfizer funding awarded to BMK. 

We acknowledge the Oxford Brain Bank, supported by the Medical Research Council (MRC, 

MR/L022656/1) and Brains for Dementia Research (BDR) (Alzheimer Society and Alzheimer 

Research UK). This research project was funded by the NIHR Oxford Biomedical Research 

Centre (to OA, BRC-1215-20008). The views expressed are those of the authors and not 

necessarily those of the NHS, the NIHR, or the Department of Health. This work uses data 

provided by patients and collected by the NHS as part of their care and support and would 

not have been possible without access to this data. The NIHR recognises and values the role 

of patient data, securely accessed and stored, both in underpinning and leading to 

improvements in research and care. 

Competing interests.  

J.O is an employee of Bruker Daltonics GmbH & Co. KG. All other authors have no competing 

interests. 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.485119doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485119
http://creativecommons.org/licenses/by-nc/4.0/


References 

1. Asp, M. et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the 

Developing Human Heart. Cell 179, 1647-1660.e19 (2019). 

2. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, 

cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020). 

3. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell 

RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. 

Biotechnol. 38, 333–342 (2020). 

4. Shah, S., Lubeck, E., Zhou, W. & Cai, L. In Situ Transcription Profiling of Single Cells 

Reveals Spatial Organization of Cells in the Mouse Hippocampus. Neuron 92, 342–357 

(2016). 

5. Thrane, K., Eriksson, H., Maaskola, J., Hansson, J. & Lundeberg, J. Spatially resolved 

transcriptomics enables dissection of genetic heterogeneity in stage III cutaneous 

malignant melanoma. Cancer Res. 78, 5970–5979 (2018). 

6. Berglund, E. et al. Spatial maps of prostate cancer transcriptomes reveal an 

unexplored landscape of heterogeneity. Nat. Commun. 9, 1–13 (2018). 

7. Keren, L. et al. A Structured Tumor-Immune Microenvironment in Triple Negative 

Breast Cancer Revealed by Multiplexed Ion Beam Imaging. Cell 174, 1373–1387 

(2018). 

8. Farahbod, M. & Pavlidis, P. Untangling the effects of cellular composition on 

coexpression analysis. Genome Res. 30, 849–859 (2020). 

9. Bloom, A. B. & Zaman, M. H. Influence of the microenvironment on cell fate 

determination and migration. Physiological Genomics vol. 46 309–314 (2014). 

10. De Palma, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour 

angiogenesis. Nature Reviews Cancer vol. 17 457–474 (2017). 

11. Balkwill, F. R., Capasso, M. & Hagemann, T. The tumor microenvironment at a glance. 

J. Cell Sci. 125, 5591–5596 (2012). 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.485119doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485119
http://creativecommons.org/licenses/by-nc/4.0/


12. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. 

Genet. 19, 299–310 (2018). 

13. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: A revolutionary tool for 

transcriptomics. Nature Reviews Genetics vol. 10 57–63 (2009). 

14. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: Ten years of next-

generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016). 

15. Mamlouk, S. et al. DNA copy number changes define spatial patterns of heterogeneity 

in colorectal cancer. Nat. Commun. 8, 14093 (2017). 

16. Marek, S. et al. Spatial and Temporal Organization of the Individual Human 

Cerebellum. Neuron 100, 977–993 (2018). 

17. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and 

function. Nature 537, 347–355 (2016). 

18. Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular Imaging of Biological Samples: 

Localization of Peptides and Proteins Using MALDI-TOF MS. Anal. Chem. 69, 4751–

4760 (1997). 

19. Todd, P. J., Gregory Schaaff, T., Chaurand, P. & Caprioli, R. M. Organic ion imaging of 

biological tissue with secondary ion mass spectrometry and matrix-assisted laser 

desorption/ionization. J. Mass Spectrom. 36, 355–369 (2001). 

20. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 

20, 436–442 (2014). 

21. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular 

resolution by mass cytometry. Nat. Methods 11, 417–422 (2014). 

22. Kertesz, V. & Van Berkel, G. J. Fully automated liquid extraction-based surface 

sampling and ionization using a chip-based robotic nanoelectrospray platform. J. 

Mass Spectrom. 45, 252–260 (2010). 

23. Ryan, D. J. et al. Protein identification in imaging mass spectrometry through spatially 

targeted liquid micro-extractions. Rapid Commun. Mass Spectrom. 32, 442–450 

(2018). 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.485119doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485119
http://creativecommons.org/licenses/by-nc/4.0/


24. De Marchi, T. et al. The advantage of laser-capture microdissection over whole tissue 

analysis in proteomic profiling studies. Proteomics 16, 1474–1485 (2016). 

25. Zhu, Y. et al. Spatially Resolved Proteome Mapping of Laser Capture Microdissected 

Tissue with Automated Sample Transfer to Nanodroplets. Mol. Cell. Proteomics 17, 

1864–1874 (2018). 

26. Buczak, K. et al. Spatial tissue proteomics quantifies inter- and intratumor 

heterogeneity in hepatocellular carcinoma (HCC). Mol. Cell. Proteomics 17, 810–825 

(2018). 

27. Longuespée, R. et al. A laser microdissection-based workflow for FFPE tissue 

microproteomics: Important considerations for small sample processing. Methods 

104, 154–162 (2016). 

28. Zhu, Y. et al. Development of a laser capture microscope-based single-cell-type 

proteomics tool for studying proteomes of individual cell layers of plant roots. Hortic. 

Res. 3, (2016). 

29. Davis, S., Scott, C., Ansorge, O. & Fischer, R. Development of a Sensitive, Scalable 

Method for Spatial, Cell-Type-Resolved Proteomics of the Human Brain. J. Proteome 

Res. 18, 1787–1795 (2019). 

30. Coscia, F. et al. A streamlined mass spectrometry–based proteomics workflow for 

large‐scale FFPE tissue analysis. J. Pathol. 251, 100–112 (2020). 

31. Griesser, E. et al. Quantitative Profiling of the Human Substantia Nigra Proteome 

from Laser-capture Microdissected FFPE Tissue. Mol. Cell. Proteomics 19, 839–851 

(2020). 

32. Mund, A. et al. AI-driven Deep Visual Proteomics defines cell identity and 

heterogeneity. bioRxiv 2021.01.25.427969 (2021) doi:10.1101/2021.01.25.427969. 

33. Waanders, L. F. et al. Quantitative proteomic analysis of single pancreatic islets. Proc. 

Natl. Acad. Sci. U. S. A. 106, 18902–7 (2009). 

34. Clair, G. et al. Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser 

Capture Microdissected Alveolar Tissue Samples. Sci. Rep. 6, 39223 (2016). 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.485119doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485119
http://creativecommons.org/licenses/by-nc/4.0/


35. Eckert, M. A. et al. Proteomics reveals NNMT as a master metabolic regulator of 

cancer-associated fibroblasts. Nature 569, 723–728 (2019). 

36. Herrera, J. A. et al. Laser capture microdissection coupled mass spectrometry (LCM-

MS) for spatially resolved analysis of formalin-fixed and stained human lung tissues. 

Clin. Proteomics 17, 24 (2020). 

37. Piehowski, P. D. et al. Automated mass spectrometry imaging of over 2000 proteins 

from tissue sections at 100-μm spatial resolution. Nat. Commun. 11, 1–12 (2020). 

38. Favaro, E. et al. Glucose Utilization via Glycogen Phosphorylase Sustains Proliferation 

and Prevents Premature Senescence in Cancer Cells. Cell Metab. 16, 751–764 (2012). 

39. Porlier, M. M., de Néchaud, B. & Gros, F. Peripherin, a new member of the 

intermediate filament protein family. Dev. Neurosci. 6, 335–344 (1983). 

40. Yuan, A. et al. Peripherin is a subunit of peripheral nerve neurofilaments: Implications 

for differential vulnerability of cns and peripheral nervous system axons. J. Neurosci. 

32, 8501–8508 (2012). 

41. Troy, C. M., Brown, K., Greene, L. A. & Shelanski, M. L. Ontogeny of the neuronal 

intermediate filament protein, peripherin, in the mouse embryo. Neuroscience 36, 

217–237 (1990). 

42. Moran, P. A. P. Notes on Continuous Stochastic Phenomena. Biometrika 37, 17–23 

(1950). 

43. Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster 

tree: The Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008). 

44. Orecchioni, M., Ghosheh, Y., Pramod, A. B. & Ley, K. Macrophage Polarization: 

Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS–) vs. Alternatively 

Activated Macrophages. Front. Immunol. 10, (2019). 

45. Hu, J. M. et al. CD163 as a marker of M2 macrophage, contribute to predict 

aggressiveness and prognosis of Kazakh esophageal squamous cell carcinoma. 

Oncotarget 8, 21526–21538 (2017). 

46. Guerrini, V. & Gennaro, M. L. Foam Cells: One Size Doesn9t Fit All. Trends Immunol. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.485119doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485119
http://creativecommons.org/licenses/by-nc/4.0/


40, 1163–1179 (2019). 

47. Santos, A. et al. A knowledge graph to interpret clinical proteomics data. Nat. 

Biotechnol. (2022) doi:10.1038/s41587-021-01145-6. 

48. Subramanian, I., Verma, S., Kumar, S., Jere, A. & Anamika, K. Multi-omics Data 

Integration, Interpretation, and Its Application. Bioinform. Biol. Insights 14, (2020). 

49. Li, Z., Song, T., Yong, J. & Kuang, R. Imputation of spatially-resolved transcriptomes by 

graph-regularized tensor completion. PLoS Comput. Biol. 17, e1008218 (2021). 

50. Boluki, S., Zamani Dadaneh, S., Qian, X. & Dougherty, E. R. Optimal clustering with 

missing values. BMC Bioinformatics 20, 1–10 (2019). 

51. Specht, H. et al. Single-cell proteomic and transcriptomic analysis of macrophage 

heterogeneity using SCoPE2. Genome Biol. 22, 50 (2021). 

52. Brunner, A. et al. Ultra‐high sensitivity mass spectrometry quantifies single‐cell 

proteome changes upon perturbation. Mol. Syst. Biol. 18, (2022). 

53. Ctortecka, C. et al. An automated workflow for multiplexed single-cell proteomics 

sample preparation at unprecedented sensitivity. bioRxiv (2022) 

doi:10.1101/2021.04.14.439828. 

54. Bache, N. et al. A novel LC system embeds analytes in pre-formed gradients for rapid, 

ultra-robust proteomics. Mol. Cell. Proteomics 17, 2284–2296 (2018). 

55. Bian, Y. et al. Robust, reproducible and quantitative analysis of thousands of 

proteomes by micro-flow LC–MS/MS. Nat. Commun. 11, 1–12 (2020). 

56. Messner, C. B. et al. Ultra-fast proteomics with Scanning SWATH. Nat. Biotechnol. 39, 

846–854 (2021). 

57. Bhatia, H. S. et al. Proteomics of spatially identified tissues in whole organs. bioRxiv 

(2021) doi:10.1101/2021.11.02.466753. 

58. Pang, M., Su, K. & Li, M. Leveraging information in spatial transcriptomics to predict 

super-resolution gene expression from histology images in tumors. bioRxiv 

2021.11.28.470212 (2021) doi:10.1101/2021.11.28.470212. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.485119doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485119
http://creativecommons.org/licenses/by-nc/4.0/


59. Monjo, T., Koido, M., Nagasawa, S., Suzuki, Y. & Kamatani, Y. Efficient prediction of a 

spatial transcriptomics profile better characterizes breast cancer tissue sections 

without costly experimentation. Sci. Rep. 12, 4133 (2022). 

60. Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. 

Nat. Biotechnol. (2021) doi:10.1038/s41587-021-01075-3. 

61. He, B. et al. Integrating spatial gene expression and breast tumour morphology via 

deep learning. Nat. Biomed. Eng. 4, 827–834 (2020). 

62. Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead 

technology. Mol. Syst. Biol. 10, 757 (2014). 

63. Sielaff, M. et al. Evaluation of FASP, SP3 and iST Protocols for Proteomic Sample 

Preparation in the Low Microgram Range. J. Proteome Res. 16, 4060–4072 (2017). 

64. Sandow, J., Infusini, G., Dagley, L., Larsen, R. & Webb, A. Simplified high-throughput 

methods for deep proteome analysis on the timsTOF Pro. bioRxiv 657908 (2019) 

doi:10.1101/657908. 

65. Cox, J. et al. Accurate Proteome-wide Label-free Quantification by Delayed 

Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cell. 

Proteomics 13, 2513–2526 (2014). 

66. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass 

spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016). 

67. Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local 

indicators of spatial association. TEST 27, 716–748 (2018). 

68. Bivand, R. S., Pebesma, E. J., Gomez-Rubio, V. & Pebesma, E. J. Applied spatial data 

analysis with R. vol. 2 (Springer, 2013). 

69. Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2020). 

70. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold 

Approximation and Projection. J. Open Source Softw. 3, 861 (2018). 

71. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R Package for Comparing 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.485119doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485119
http://creativecommons.org/licenses/by-nc/4.0/


Biological Themes Among Gene Clusters. Omi. A J. Integr. Biol. 16, 284–287 (2012). 

72. Deutskens, F., Yang, J. & Caprioli, R. M. High spatial resolution imaging mass 

spectrometry and classical histology on a single tissue section. J. Mass Spectrom. 46, 

568–571 (2011). 

73. Ly, A. et al. Site-to-Site Reproducibility and Spatial Resolution in MALDI–MSI of 

Peptides from Formalin-Fixed Paraffin-Embedded Samples. Proteomics - Clin. Appl. 

13, 1800029 (2019). 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.485119doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485119
http://creativecommons.org/licenses/by-nc/4.0/


Methods 

Tissue retrieval and processing 

Post-mortem brain tissue was retrieved by the Oxford Brain Bank; a research ethics 

committee (REC) approved and HTA regulated research tissue bank (REC reference 

15/SC/0639). The retrieved brain was sectioned into 1 cm thick coronal sections starting at 

the level of the mammillary bodies. Due to its large size, tumour tissue was present within 

multiple of these coronal slices. The tumour tissue was dissected from the first coronal and 

second posterior coronal slices (P1 and P2). The tumour from the P2 slice was split into 

quadrants. Cryosections were taken from all pieces to determine the tissue block with the 

best morphological and cellular preservation. Cryosections were stained with H&E (see 

below) and examined by a Neuropathologist (OA). The upper-right quadrant from the P2 

coronal slice was selected for use in further experiments.  

Relevant tissue blocks of the AT/RT tumour were acclimatised to -20 °C and mounted onto a 

cryostat block using OCT Compound (Cell Path, ARG1180). Careful consideration was taken 

to ensure cut sections were not contaminated with OCT. Sections were cut at 10 µm and 

mounted onto UV irradiated (254 nm, 30 minutes) 1.0 PEN membrane slides (Zeiss) at -18 °C 

for LCM or Superfrost glass slides for histology. Sections were then air-dried for several 

minutes and placed onto a Shandon Linistain for automated H&E staining. Sections were 

fixed in 70 % denatured alcohol, hydrated, stained with Harris9 Haematoxylin, incubated in 

0.4 % acid alcohol, placed in Scot9s tap water, and stained with Eosin containing 0.25 % 

acetic acid with regular washing steps in between. Stained sections were then dehydrated in 

increasing concentrations of denatured alcohol and air-dried without coverslips and stored 

at -80 °C until processing by laser-capture microdissection. 

Laser capture microdissection 

Areas of tissue analysed were annotated and isolated from the prepared slides using a laser-

capture microscope equipped with laser pressure catapulting (PALM Microbeam, Zeiss). 

Cutting and capturing the annotated tissue areas were performed automatically and used 

the 10x objective lens. The settings in the control software for cutting were Energy: 43, 

Focus: 55; and for capturing were Energy 20, Focus -15. Samples were collected into 20 µL 
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RIPA buffer (Pierce #89900) in the cap of 200 µL PCR tubes or PCR-cap strips of 8. Collected 

samples were immediately placed in dry ice. Samples were stored at -80 °C until further use. 

Proteomic sample processing 

Samples were thawed, incubated at room temperature for 30 minutes and briefly 

centrifuged. Caps were rinsed with 20 µL of RIPA buffer (#89900, Pierce) containing 25 units 

of Benzonase (E1014, Merck)  to collect any remaining tissue and briefly centrifuged, 

followed by incubation at room temperature for 30 minutes to degrade DNA and RNA. 

Proteins were reduced by adding DTT to 5 mM and incubated at room temperature for 30 

minutes, followed by the addition of iodoacetamide to 20 mM and incubation at room 

temperature for 30 minutes. 

Paramagnetic SP3 beads (GE45152105050250 & GE65152105050250, Cytiva) were prepared 

as described by Hughes et al. and processed by a modified SP3 protocol 29,62,63. Three µL of 

SP3 beads were mixed with the samples, and acetonitrile added to a final concentration of 

70 % (v/v). Samples were mixed with 1000 rpm orbital shaking for 18 minutes, followed by 

bead immobilisation on a magnet for 2 minutes. The supernatant was discarded, and beads 

were washed twice with 70 % (v/v) ethanol in water and once with 100 % acetonitrile 

without removal from the magnet. Beads were resuspended in 50 mM ammonium 

bicarbonate containing 25 ng of Trypsin (V5111, Promega) and digested overnight at 37 °C. 

After digestion, the beads were resuspended by bath sonication. Acetonitrile was added to 

the samples to 95 % (v/v) and shaken at 1000 rpm for 18 minutes. Beads were immobilised 

on a magnet for 2 minutes, and the supernatant discarded. Beads were resuspended in 2 % 

acetonitrile and immobilised on a magnet for 5 minutes. Peptides were transferred to glass 

LC-MS vials or 96-well PCR plates containing formic acid in water, resulting in a final formic 

acid concentration of 0.1 %. 

LC-MS/MS 

Peptides from 833 µm resolution samples were analysed by LC-MS/MS using a Dionex 

Ultimate 3000 (Thermo Scientific) coupled to a timsTOF Pro (Bruker) using a 75 μm x 150 

mm C18 column with 1.6 μm particles (IonOpticks) at a flow rate of 400 nL/min. A 17-

minute linear gradient from 2 % buffer B to 30 % buffer B (A: 0.1 % formic acid in water. B: 

0.1 % formic acid in acetonitrile) was used64. The TimsTOF Pro was operated in PASEF mode. 
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The TIMS accumulation and ramp times were set to 100 ms, and mass spectra were 

recorded from 100 – 1700 m/z, with a 0.85 – 1.30 Vs/cm2 ion mobility range. Precursors 

were selected for fragmentation from an area of the full TIMS-MS scan that excludes most 

ions with a charge state of 1+. Those selected precursors were isolated with an ion mobility 

dependent collision energy, increasing linearly from 27 – 45 eV over the ion mobility range. 

Three PASEF MS/MS scans were collected per full TIMS-MS scan, giving a duty cycle of 0.53 

s. Ions were included in the PASEF MS/MS scan if they met the target intensity threshold of 

2000 and were sampled multiple times until a summed target intensity of 10000 was 

reached. A dynamic exclusion window of 0.015 m/z by 0.015 Vs/cm2 was used, and sampled 

ions were excluded from reanalysis for 24 seconds.  

Peptides from 350 µm resolution samples were analysed by nano-UPLC-MS/MS using a 

Dionex Ultimate 3000 coupled to an Orbitrap Fusion Lumos (Thermo Scientific) using a 75 

µm x 500 mm C18 EASY-Spray Columns with 2 µm particles (Thermo Scientific) at a flow rate 

of 250 nL/min. A 60-minute linear gradient from 2 % buffer B to 35 % buffer B (A: 5 % 

DMSO, 0.1 % formic acid in water. B: 5 % DMSO, 0.1 % formic acid in acetonitrile). MS1 

scans were acquired in the Orbitrap between 400 and 1500 m/z with a resolution of 120,000 

and an AGC target of 4 x 105. Precursor ions between charge state 2+ and 7+ and above the 

intensity threshold of 5 x 103 were selected for HCD fragmentation at a normalised collision 

energy of 28 %, an AGC target of 4 x 103, a maximum injection time of 80 ms and a dynamic 

exclusion window of 30 s. MS/MS spectra were acquired in the ion trap using the rapid scan 

mode. 

Proteomic data analysis 

Raw data files were searched against the Uniprot human database (Retrieved 17/01/2017, 

92527 sequences) using MaxQuant version 1.6.14.0, allowing for tryptic specificity with up 

to 2 missed cleavages. Cysteine carbamidomethylation was set as a fixed modification. 

Methionine oxidation and protein N-terminal acetylation were set as variable modifications 

and the <match between runs (MBR)= option was used (MBR was not used for tissue 

titration data). All other settings were left as default. Label-free quantification was 

performed using the MaxLFQ algorithm within MaxQuant65,66. Protein and peptide false 

discovery rate (FDR) levels were set to 1 %. 
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Spatial data analysis 

The spatial analysis uses functions within the spdep and raster R packages67–69. MaxQuant9s 

protein level output files (8proteingroups.txt9) were filtered to remove reverse hits, 8Only 

identified by site9 hits and potential contaminants. The 8LFQ intensity9 columns were log2 

transformed and then normalised by median subtraction. Protein groups that did not meet 

a cut-off of having at least 9 pixels with normalised LFQ values are not taken forward for 

further analysis. The following steps occur independently for each protein group. 

Normalised LFQ intensities were then coerced into a matrix reflecting the rastered pattern 

of sample acquisition. The quantification matrix was converted into a raster object and then 

to a polygon object using the raster R package. From this polygon object, a neighbour list 

was built for each pixel of the raster using the 8Queen9s Case9 where cells are considered 

neighbours if they share an edge or a vertex. The neighbour list was then supplemented 

with a spatial weights matrix using a binary coding scheme where neighbours are given a 

weighting of 819 and non-neighbours a weighting of 809 in the spatial weights matrix. The 

raster object and the weighted neighbour list were then used as inputs to a permutation 

test for the Moran9s I statistic, calculated using 999 random spatial permutations of the 

raster object to calculate pseudo-p-values. Moran9s I statistics and the associated p-values 

are collected for every protein group. The p-values were then corrected for multiple testing 

using the Benjamini-Hochberg FDR method. 

Immunohistochemistry 

Sections were cut as above and were mounted to superfrost glass slides for IHC and air-

dried. Slides were fixed in ice-cold acetone for 10 minutes, washed twice with TBS/T (20 mM 

Tris, 150 mM NaCl, 0.05 % Tween 20) and blocked with 10 % goat serum in TBS/T for 60 

minutes at room temperature. Primary antibodies were diluted in 5 % goat serum in TBS/T 

and incubated at RT for 60 minutes or 4 °C overnight. Sections were washed three times 

with TBS/T. Staining visualisation was performed by incubating with a cocktail of anti-mouse 

and anti-rabbit secondary antibodies conjugated to horseradish peroxidase (Envision Kit, 

Agilent) for 60 minutes at room temperature. Sections were then washed with TBS/T three 

times and incubated with 2 % 3,3'-diaminobenzidine for 5 minutes, immersed in water and 

then counterstained with Harris9 Haematoxylin for 1 minute. Primary antibodies used and 

dilutions: rabbit anti-PYGL, 1:100, 4 °C overnight, HPA000962 (Atlas Antibodies); rabbit anti-
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ASPH, 1:1000, RT 60 minutes, NBP2-34125 (Novus Biologicals); mouse anti-CD45 (PD7/26 + 

2B11), 1:200, RT 60 minutes, ab781 (Abcam). 

Clustering 

Empty pixels and pixels covering the large region of haemorrhage were not included. A 

distance matrix was built containing the Euclidean distance between each pixel9s set of 

protein LFQ values. Hierarchical clustering of the distance matrix was performed in R using 

the <average= agglomeration method. Dendrograms were cut using the Dynamic Tree Cut 

method at a height setting of 10043. 

A complete input matrix is required for UMAP visualisation70, so proteins with fewer than 70 

% valid values across the experiment were removed. The remaining missing values were 

imputed in on a per-sample basis by random draws from a normal distribution using a width 

of 0.3 and a downshift of 1.8. UMAP dimensionality reduction was performed on this 

imputed data with default settings, and the first two embedding components plotted, and 

samples coloured according to their cluster assigned by Dynamic Tree Cut at a height of 100. 

Pathway Analysis 

A one-way ANOVA test was performed in R to test for differences in means between the 

clusters generated by Dynamic Tree Cut at a height of 100. A pairwise post-hoc correction 

was applied using Tukey9s Honestly Significant Difference method. The resulting pairwise 

comparisons were used as inputs to ClusterProfiler9s gene set enrichment analysis to test for 

enrichment of Gene Ontology Biological Process terms using a Fisher9s exact test with a 5 % 

FDR threshold71. 

Lipid MALDI imaging 

Vacuum dried sections were washed according to a Carnoy procedure as described in 

Deutskens et al. and dried again under vacuum for at least 30 min72. The slides were 

scanned with a TissueScout scanner at 3200 dpi (Bruker) to generate a reference image for 

later position teaching. Trypsin was applied using a TM-sprayer (HTX Technologies) as 

described in Ly et al. and digested for 2 h at 50 °C73. Dihydroxybenzoic acid (DHB) was 

dissolved at a concentration of 15 mg/ml in 90 % ACN, 0.1 % TFA and sprayed on top of the 

AT/RT sections using a TM-sprayer (HTX Technologies). The matrix was applied in a criss-

cross pattern with 3 mm track spacing at a 1200 mm/min nozzle velocity. Fourteen layers 
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were sprayed at a 0.125 ml/ml flow rate using 50 % ACN as the liquid phase at 10 psi 

pressure. The nozzle temperature was set to 60 °C and the distance of the nozzle to the 

section was 40 mm. All imaging data were acquired on a timsTOF fleX instrument (Bruker) 

which is equipped with a dual ESI and MALDI source in positive Q-TOF mode. External 

calibration was performed using red phosphorous which was spotted next to the section. 

The laser was operated in beam scan mode, ablating an area of 15x15 µm resulting in a pixel 

size of 20 µm. The repetition rate of the laser was set to 10 kHz and 400 laser shots were 

acquired per pixel.  Data were acquired in the mass range 300-1400 m/z. 

The software SCiLS Lab (version 2020a; Bruker) was used for MALDI Imaging data analysis. 

All data were root-mean-square (RMS) normalised. After importing the data, an 

unsupervised segmentation was calculated using the bisecting k-means algorithm and a 

peak list containing 302 m/z-intervals with correlation used as a distance metric.  The 

resulting segmentation map was split into several clusters that resemble the histopathology 

of the tumour section. 

Data availability 

The mass spectrometry proteomics data will be deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository and made available to reviewers upon 

submission.  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.485119doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485119
http://creativecommons.org/licenses/by-nc/4.0/


Figures 

 

Figure 1 – Overview of the spatially resolved proteomics workflow 

Tissue is segmented into a regular grid shape, and each element of the grid is isolated by 

laser capture microdissection (LCM). Proteins from each individually lysed sample are 

digested before analysis by LC-MS/MS. The quantitative information for each protein can be 

mapped back to its location within the gridded tissue and visualised in a topographic protein 

map, with one map per protein quantified. 
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Figure 2 – Spatial proteomic maps of AT/RT tumour tissue 

Normalised protein intensity of four example proteins mapped back to the original spatial 

positions within the atypical teratoid-rhabdoid tumour (AT/RT) tumour tissue at a resolution 
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of 833 µm (A) and 350 µm (B) with their corresponding Moran9s Index of spatial 
autocorrelation (I). Box in (A) represents the area analysed in an adjacent tissue section (B). 

Scale bar = 1 mm. Normalised protein intensities are scaled separately for each protein. 

Gray = missing value.  
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Figure 3 - Immunohistochemistry validation of AT/RT proteomic maps 

Proteomic maps of proteins targeted for follow-up IHC staining and IHC images. (A,C,E) 

Normalised protein intensity maps with their corresponding Moran9s Index of spatial 
autocorrelation (I). Normalised protein intensities are scaled separately for each protein. 

Gray = not quantified. Rectangles depict the approximate location displayed in IHC images. 

(B,D,F) AT/RT tissue stained and visualised by IHC. All scale bars = 1 mm. 
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Figure 4 - Clustering and functional analysis of AT/RT proteomic maps 

(A) Map of cluster assignment based on hierarchical clustering and the dynamic tree cut 

algorithm. White pixels represent excluded empty regions and regions of haemorrhage (B) 

UMAP embedding of data coloured by cluster assignment in (A). (C) GSEA of clusters 1 & 3 

from (A). Gene set membership is indicated by colouring the cell with that protein9s log2 

fold-change. 
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Figure 5 - High-resolution proteomic map clustering 

(A) Map of cluster assignment based on hierarchical clustering and the dynamic tree cut 

algorithm. Cluster 3 corresponds to brain/tumour interface. Cluster 1 corresponds to solid 

tumour. Clusters 2 & 5 correspond to the transition between solid tumour and 

brain/tumour interface (B) Volcano plot of clusters 3 against cluster 1 from (A). The 
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horizontal dashed line represents an FDR of 5 %. The vertical dashed line represents -/+ 2-

fold-change. (C) GSEA of clusters 1 & 3 from (A). Gene set membership is indicated by 

colouring the cell with that protein9s log2 fold-change. 
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Figure 6 - Immune cell infiltration and lipid heterogeneity in AT/RT brain tumour 

(A) Proteomic maps of immune cell-marker proteins at 833 µm resolution. Normalised 

protein intensities are scaled separately for each protein. (B) GSEA of clusters 6 & 13 from 

Figure 4A. Gene set membership is indicated by colouring the cell with that protein9s log2 
fold-change. (C) MALDI imaging of AT/RT lipids at 20 µm resolution. H&E image acquired 

after MALDI imaging (upper left) Bisecting K-means clusters of MALDI imaging pixels are 

indicated by colour (upper right). m/z images for ions corresponding to the mass of haeme 
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(bottom left) and cholesterol ester (18:1) (bottom right). Ion intensities are scaled 

separately for each ion.  
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Supplementary Figures 

 

Figure S1 – Tissue area titration across two LC-MS/MS systems 

The number of proteins identified from a titration of AT/RT tissue area on two LC-MS/MS 

systems. 
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Figure S2 – Distribution of identified and quantified proteins at 833 µm resolution 

(A) Violin plots showing distributions of identified and quantified proteins per pixel. Solid 

vertical lines represent the median value. Dashed vertical lines represent upper and lower 

quartiles. (B) Histogram of quantified pixels per protein map. 
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Figure S3 – Aggregate intensity distributions 

Maps of the log2 transformed (A) summed and (B) mean intensities of each pixel. Pixels 

corresponding to empty or haemorrhage pixels were removed (white). 
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