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Abstract

Cellular protein expression profiles within tissues are key to understanding disease
pathology, and their spatial organisation determines cellular function. To precisely define
molecular phenotypes in the spatial context of tissue, there is a need for unbiased,
guantitative technology capable of mapping the expression of many hundreds to thousands
of proteins within tissue structures. Here, we present a workflow for spatially resolved,
guantitative proteomics of tissue that generates maps of protein expression across a tissue
slice derived from a human atypical teratoid-rhabdoid tumour (AT/RT). We employ spatially-
aware statistical methods that do not require prior knowledge of tissue structure to
highlight proteins and pathways with varying spatial abundance patterns. We identify novel
aspects of AT/RT biology that map onto the brain-tumour interface. Overall, this work
informs on methods for spatially resolved deep proteo-phenotyping of tissue heterogeneity.
Advanced spatially resolved tissue proteomics will push the boundaries of understanding

tissue biology and pathology at the molecular level.


https://doi.org/10.1101/2022.03.21.485119
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.21.485119; this version posted March 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Main

Tissues contain various microscopic features, cell types, and phenotypically diverse
subpopulations. The location of cells within a tissue and their spatial neighbourhood is
crucial for determining their identity and function'™®. The cellular composition of tissue has
substantial effects on measured coexpression signals within the molecular profiles of bulk
tissue, and changes in cellular tissue composition can contribute to different disease
outcomes’®. Changes in the composition of the surrounding microenvironment could also
contribute as signals from the microenvironment influence cell functions®. For example, in
tumours, complex signalling occurs between tumour and normal cells that have been co-
opted to promote tumour cell function and survival'®!l. Recent technology developments in
DNA and RNA sequencing technologies now allow for the generation of near-complete
genomes and transcriptomes. These advancements have furthered the understanding of
many biological aspects from the level of cells through to populations in many human
disease contexts!?~!4, Furthermore, the development of technologies capable of retaining
the spatial context of these genomic and transcriptomic profiles have enabled the
characterisation of spatial heterogeneity of these profiles within a tissue'>'¢, However,
while genomic and transcriptomic alterations may act as drivers of disease, the proteins

they code for regulate essentially all cellular processes?’.

A range of mass spectrometry (MS)-based techniques are available to map the distribution
of proteins throughout tissues and cells. Mass spectrometry imaging (MSI) enables the
determination of proteins or other molecules within a sample by rastering an ion source
over a sample in a grid pattern. This approach can be untargeted, where the analytes are
detected directly, such as matrix-assisted laser desorption/ionisation (MALDI)*1°, or
targeted where tissue is probed with metal-tagged antibodies with detection of the metal
isotopes, such as in imaging mass cytometry?%2, Liquid extraction surface analysis mass
spectrometry (LESA-MS) helps address the lack of depth in untargeted MSI and prior-
knowledge requirement of targeted MSI by extracting analytes from tissue using a liquid
microjunction??. In the case of proteins, these can be enzymatically digested and analysed
by LC-MS to provide better depth and identification confidence?. However, LESA has
limited resolution, typically 2 500 um and cannot accurately sample the irregular structures

present within tissue.
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Laser capture microdissection (LCM) is well-placed to address the limitations of the
spatially-resolved mass spectrometry methods described above?*. LCM can extract regions
from a tissue slice ranging from single cells to square millimetres of tissue?>?°, We and
others have previously described several methods coupling LCM to LC-MS, and the approach
has been used to investigate a wide range of tissue biology?’~3!. Combining LCM-Proteomics
with automated image analysis systems could be a powerful approach. Mund et al. recently
developed the concept of Deep Visual Proteomics by combining high-resolution imaging,
image analysis based on machine learning, and a sensitive proteomics workflow3? classifying
cells into subtypes using machine learning to automatically cut and capture cells based on

their classification before proteomics analysis.

Generally, LCM-Proteomics has been used in a ‘feature-driven’ approach, where tissue
regions are extracted based on existing knowledge such as histological features,
immunostaining or gross morphology & macrostructures?#33-36, This feature-driven
approach effectively investigates tissue heterogeneity. However, sampling in an unbiased
manner, like MSI, could reveal novel insights into the spatial protein expression patterns
within a tissue. For example, Piehowski et al. used LCM-proteomics to sample mouse
uterine tissue in a rastered grid with a resolution of 100 um and their custom, nanolitre-
scale nanoPOTS sample preparation platform to quantify over 2,000 proteins within the

tissued’.

Here, we systematically performed spatially-resolved measurements of a human brain
tumour proteome using laser capture microdissection to a depth of over 5,000 proteins. We
use spatially aware statistical tests to identify proteins and pathways displaying differential
spatial expression within tissue sections. This did not require prior knowledge of tissue
structures, features, or pathology. Furthermore, clustering of protein expression and
inferring pathway activity reveals new, spatially defined proteo-phenotypes within the

otherwise homogeneous macrostructure of the analysed tumour.

Results

We characterised how the number of protein identifications varies with the tissue area
collected by LCM on two LC-MS/MS systems, an Orbitrap Fusion Lumos mass spectrometer

with 60-minute gradients and a TimsTOF Pro using 17-minute gradients. We collected areas
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from 316 pm? to 1,000,000 um? (Figure S1). Both systems perform similarly, with the Lumos
system ranging from 282 — 3480 protein groups and the timsTOF system ranging from 127 —
3318 protein groups, comparing favourably to other LCM-proteomics work?. These
searches were performed without match-between-runs to avoid boosting the IDs of the
smaller areas using information from the larger areas. Areas above 316,000 um? result in
diminishing returns, likely caused by approaching the maximum number of MS/MS spectra

that can be acquired within each system’s fixed gradient times.

Proteomic topography of a human brain tumour

After characterising the upper and lower limits of the workflow, we sampled a 10 um thick
section of an atypical teratoid-rhabdoid tumour (AT/RT) block (~20 x 15 mm). The tissue was
subdivided into 384 (24 x 16) square ‘pixels’ with an area of ~694,000 um? (side length of
833 um); each pixel was isolated by LCM and processed with our LCM-SP3 protocol®® (Figure
1). Each sample was analysed on the 17-minute timsTOF Pro setup. In total, 5,321 proteins
were identified, with 32 — 4,741 proteins identified per sample. This range includes empty
pixels where no tissue was visible, demonstrating a low level of contamination throughout
the workflow. Figure S2 shows the distribution of proteins identified and quantified per
pixel and the number of pixels with quantitative values for each protein. The quantitative
values for each protein in each pixel can be mapped back to their original positions within
the tissue grid. Figure 2A shows proteomic maps for four example proteins, liver glycogen
phosphorylase (PYGL), peripherin (PRPH), haemoglobin (HBB) and histone H4 (HIST1H4A),
where each pixel is coloured by the normalised protein intensity of that protein in that
sample. Glycogen phosphorylase releases glucose from glycogen for entry into glycolysis,
and its expression in cancer is associated with malignant phenotypes, hypoxia resistance
and cancer cell survival®®. Peripherin is an intermediate filament protein without a clear
function and is highly expressed during development and after nerve injury; its expression

pattern is consistent with the tumour growth into surrounding normal brain tissue3°41,

We then tested the 4,306 proteins quantified in at least 9 pixels for spatial variation using
the Moran’s | test for spatial autocorrelation*?. Values of Moran’s / lie between -1 and +1,
where positive values indicate that areas close in space tend to have similar values, negative
values indicate that areas close in space tend to have different values, and zero indicates

data are randomly distributed in space. The pixels containing the large region of
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haemorrhage and the empty pixels were excluded from this and further analyses. Of the
proteins tested, 3,212 have a g-value < 0.05. The summed and mean intensities of each pixel
do not show significant spatial autocorrelation (/= 0.003 & 0.003, p =0.313 & 0.317,
respectively), showing that the sampling process worked well and is not a systemic cause of

spatial variability (Figure S3).

In addition to the large field of view, we also sampled a smaller region with higher spatial
resolution from an adjacent tissue section. These proteomic maps were generated from an
area of variability identified in the H&E staining and above proteomic maps, where a region
of solid tumour containing neoplastic cells meets a region we termed ‘brain/tumour’
interface, which has a mixture of normal and neoplastic cells along with a large, prominent
blood vessel. This region was sampled with 96 pixels, 350 um x 350 um (122,500 um?) each
and each pixel was analysed on the Orbitrap Fusion Lumos system using 60-minute
gradients. In total, 3,994 proteins were quantified in at least one sample. The increased
resolution proteomic maps for PYGL, PRPH, haemoglobin and histone H4 are shown in
Figure 2B. Their expression is consistent with the large field-of-view data, with PYGL and
PRPH showing opposite expression patterns across the margin between solid tumour and
brain/tumour interface and haemoglobin co-localising with the visible blood vessels. Histone
H4 shows even expression across the two annotated areas, with a region of lower
expression corresponding with a visibly diffuse patch of tissue. Of the 3,050 proteins
qguantified in at least 9 pixels, 1,375 show evidence for significant spatial autocorrelation

(Moran’s | test, g < 0.05).

Spatial proteomics reveals PYGL, ASPH and CD45 as markers for tumour boundary
Three candidate proteins showing significant spatial variation were selected for follow-up
immunohistochemistry (IHC) staining: glycogen phosphorylase, aspartate beta-hydroxylase
(ASPH) and CD45 (PTPRC) to validate the spatially resolved protein expression data
generated above. The IHC staining images closely resemble the protein intensity
distributions (Figure 3A,C,E) within the proteomic maps for these three proteins. Both PYGL
and ASPH show intense IHC staining in the region of solid tumour (Figure 3B,D), and CD45
shows intense staining in the region of tissue corresponding to the upper-left pixels in the

proteomic map (Figure 3F).
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Spatial proteomic mapping highlights molecular pathways underlying tissue
heterogeneity

As Moran’s | measures global autocorrelation, it does not indicate where the locations that
drive the autocorrelation occur. To investigate which regions of the sampled tissue show
similar expression, the data were clustered using hierarchical clustering and the resulting
dendrogram was cut using the Dynamic Tree Cut method*. The generated cluster labelling
of pixels can also be mapped back to their spatial location (Figure 4A). The clusters generally
form contiguous regions in space, with some long-range co-clustering in smaller clusters.
The margin between solid tumour and brain/tumour interface is well-represented by the
border between cluster 1 (solid tumour) and cluster 3 (brain/tumour interface). In addition
to the cluster map, the assigned clusters were plotted onto a uniform manifold
approximation and projection (UMAP) visualisation** (Figure 4B). The clusters visible in the

UMAP plot correspond well to the Dynamic Tree Cut method generated clusters.

This method generates spatially well-defined clusters, allowing for a feature-driven
approach without prior knowledge of the histopathological details. Proteins quantified were
tested for significantly differing intensities across the clusters using a one-way ANOVA test.
There are 3,512 proteins with significant evidence (g < 0.05) for differential intensity
between two or more clusters. Pairwise Tukey post-hoc tests were used to generate fold-
change estimates between pairs of clusters, and these fold-changes were used as the input
for gene set enrichment analysis. Functional analysis of clusters 1 & 3 indicates that proteins
and processes involved in protein translation and modification, extracellular matrix
organisation, energy pathways, mRNA processing, steroid synthesis, neuronal cell adhesion,
and neuronal differentiation are differentially abundant between the region of solid tumour

and brain/tumour interface (Figure 4C).

Applying the same clustering method to the high-resolution maps results in a cluster map
that is broadly consistent with the low-resolution map (Figure 5A). There are generally
contiguous clusters that represent the solid tumour (cluster 1), the brain/tumour interface
(cluster 3), the margin between (clusters 2 & 5), and blood vessels (cluster 6). A volcano plot
between cluster 3 and cluster 1 reflects what is generally seen in the proteomic maps, with
large fold-changes in the abundance of PYGL, ASPH and PRPH (Figure 5B). Functional

analysis of clusters 1 & 3 indicates that proteins involved in extracellular matrix, cell
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adhesion & motility, angiogenesis, immune processes, epidermis function, and neuronal
development are differentially abundant between solid tumour and brain/tumour interface
(Figure 5C). These functional differences are broadly consistent between this high-resolution

and lower-resolution sampling described above.

We investigated the expression of other immune cell-marker proteins because of the
discovered differences above in immune processes and highly localised CD45 abundance
and staining (Figure 6A). In general, their proteomic maps show localisation to the upper-
left of the sampled region, consistent with the CD45 patterns. Marker proteins for
neutrophils, neutrophil cytosolic factor 2 & 4 (NCF2 & NCF4), are present along with marker
proteins for pro-tumour M2 macrophages, CD163 & mannose receptor C-type 1 (CD163 &
MRC1)*% These proteins' peak expression locations correspond with clusters 13 and 6 for
the neutrophil and macrophage markers, respectively. A functional analysis between these
two clusters shows increased abundance for many proteins involved in neutrophil function
and other immune-related processes such as B-cell differentiation and the JNK cascade
within cluster 13. Within cluster 6, proteins involved in cell death, the cell cycle,
morphogenesis, hedgehog signalling, collagen, and cytoskeletal organisation show increased

abundance (Figure 6B).

MALDI imaging visualises lipid profiles that reflect immune cell infiltration

In addition to spatially mapping protein expression with the tissue, we also performed mass
spectrometry imaging to investigate the spatial distribution of lipids within the tissue on an
adjacent section using MALDI (Figure 6C). Bisecting K-means clustering of the MALDI
imaging pixels derived from 498 molecular ions broadly reflects the proteomic and cluster
maps' patterns, but with higher spatial resolution (20 um). The upper-left region is a distinct
cluster, and the boundary between the solid tumour and brain/tumour interface is visible.
The ion image of haeme can be used as a proxy to visualise the vascularisation of the tissue.
This also shows variability across the tissue, potentially indicating areas of nutrient gradients
and availability in different regions of the solid tumour. Plotting the ion image of the 689.56
m/z ion that corresponds to the cholesterol ester®® (18:1) [M+K]* ion shows the highest
intensity in the region of the tissue that corresponds to the area of high macrophage marker

expression (cluster 6) in the proteomic maps.
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Discussion

The presented spatial analytics workflow addresses the need to generate highly
multiplexed, quantitative, spatially resolved measurements of proteins within tissue to
understand the spatial organisation of molecular pathways in health and pathology. We
demonstrate methods for the systematic sampling of tissue sub-sections using laser capture
microdissection (LCM), sample preparation, liquid chromatography-mass spectrometry and

advanced statistical analysis of topographic data.

We optimised methodology to negotiate detected proteome depth versus spatial resolution
(Figure S1) and demonstrate the detection of proteins and pathways with spatially variable
abundance within a rare paediatric tumour - atypical teratoid/rhabdoid tumour — and
surrounding tumour-infiltrated normal tissue. We applied spatially aware data analysis and
statistics to pinpoint biological processes with deep molecular resolution without prior
knowledge of the tissue composition, thus creating an objective, unbiased way of deep

phenotyping pathological tissue in its biological context.

A growing number of studies are currently focused on feature-driven LCM-coupled
proteomics. In contrast, here, we propose an unbiased, systematic approach, which allows
the creation of comprehensive proteomic maps at the individual protein or pathway level.
These maps can fulfil the requirements for feature-driven analysis by reconstituting features
from systematic sampling and allow the discovery of new proteo-phenotypes without
visually identifiable parameters. Furthermore, the method performs excellently compared
to general high-sensitivity proteomic workflows for tissue analysis and other spatial

proteomic methods performed in this resolution range.

Through our generation of proteomic maps, we have demonstrated the presence of
molecular heterogeneity at multiple scales within tumour tissue sections, revealing
proteomic differences between areas of tissue that appear visually homogeneous. These
proteomic measurements show good agreement with immunohistochemistry staining of
adjacent tissue sections. Additionally, we demonstrate that this approach can also generate
information on immune cell infiltration and state within the tissue by the detection of
neutrophil and pro-tumour M2 macrophage markers towards the periphery but at different

distances from the solid tumour. In addition to characterising the proteomic spatial
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heterogeneity across the tissue, we also show that the lipidomic fingerprint varies similarly

and detect evidence of the same immune cell infiltration.

The work we present here has several avenues for future improvement to generate more
comprehensive information about biological structures. Integrating multiple data modalities
and patient data is critical to the complete understanding of disease processes, and the
correct integration relies on advanced bioinformatics tools*”*. The full integration of
spatially resolved proteomic, metabolic, lipidomic and transcriptomic data, along with high-
resolution imaging, has the potential to reveal further insights into the spatial dimension of
biological processes. Further development of data analysis and statistical methods that can
use the spatial relationships between samples is also required to maximise the utility of
spatially resolved proteomics. One aspect of this is the handling of missing values. The
spatial information retained when the spatial context of samples is known could be used to
aid data imputation methods capable of taking samples' spatial relationships into

account?®9°0,

However, the spatial resolution should be balanced with the expectation for a meaningful
depth to cover pathways of interest and technical limitations for sensitivity and throughput.
For example, an increase of spatial resolution towards the single-cell level (1-10um/pixel)
with current LC-MS workflows would reduce the detected depth of the proteome to 100s of
proteins, limiting the conclusions to be drawn about the fine spatial resolution of the
proteome in such tissues. Several single-cell proteomic methods have been recently
described, but they do not yet use cells collected by LCM>'7>3. Novel high-throughput LC-MS
platforms can now robustly analyse 1000s of samples relatively quickly>*~>°. However,
increasing the spatial resolution demonstrated here towards the single-cell level and
covering comparable areas would be a formidable analytical challenge, further escalating

when analysing tissue in three dimensions®’.

Another limitation is based on the samples analysed here still having properties of bulk
tissue, but with a lower number of cells than usually analysed in bulk biopsies, even if
mapped to physiological features or areas. This bulk property means that the data still
suffers from missing values which can confound spatial pathway level analysis. Future
approaches are bound to use systematic spatial proteomic analysis, possibly compromising

spatial resolution but incorporating an element of machine learning to use orthogonal
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higher resolution omics and imaging data to infer protein abundance towards individual cell
resolution, as can be done on spatial transcriptomics data®®%. In addition, with the
detection of LCM-based and cell-type resolved deep proteomes, these data will be highly
complementary to current imaging technologies and increase the understanding of spatially

resolved biological and pathological processes at the molecular level?®3%57,
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Methods

Tissue retrieval and processing

Post-mortem brain tissue was retrieved by the Oxford Brain Bank; a research ethics
committee (REC) approved and HTA regulated research tissue bank (REC reference
15/SC/0639). The retrieved brain was sectioned into 1 cm thick coronal sections starting at
the level of the mammillary bodies. Due to its large size, tumour tissue was present within
multiple of these coronal slices. The tumour tissue was dissected from the first coronal and
second posterior coronal slices (P1 and P2). The tumour from the P2 slice was split into
guadrants. Cryosections were taken from all pieces to determine the tissue block with the
best morphological and cellular preservation. Cryosections were stained with H&E (see
below) and examined by a Neuropathologist (OA). The upper-right quadrant from the P2

coronal slice was selected for use in further experiments.

Relevant tissue blocks of the AT/RT tumour were acclimatised to -20 °C and mounted onto a
cryostat block using OCT Compound (Cell Path, ARG1180). Careful consideration was taken
to ensure cut sections were not contaminated with OCT. Sections were cut at 10 um and
mounted onto UV irradiated (254 nm, 30 minutes) 1.0 PEN membrane slides (Zeiss) at -18 °C
for LCM or Superfrost glass slides for histology. Sections were then air-dried for several
minutes and placed onto a Shandon Linistain for automated H&E staining. Sections were
fixed in 70 % denatured alcohol, hydrated, stained with Harris’ Haematoxylin, incubated in
0.4 % acid alcohol, placed in Scot’s tap water, and stained with Eosin containing 0.25 %
acetic acid with regular washing steps in between. Stained sections were then dehydrated in
increasing concentrations of denatured alcohol and air-dried without coverslips and stored

at -80 °C until processing by laser-capture microdissection.

Laser capture microdissection

Areas of tissue analysed were annotated and isolated from the prepared slides using a laser-
capture microscope equipped with laser pressure catapulting (PALM Microbeam, Zeiss).
Cutting and capturing the annotated tissue areas were performed automatically and used
the 10x objective lens. The settings in the control software for cutting were Energy: 43,

Focus: 55; and for capturing were Energy 20, Focus -15. Samples were collected into 20 L


https://doi.org/10.1101/2022.03.21.485119
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.21.485119; this version posted March 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

RIPA buffer (Pierce #89900) in the cap of 200 uL PCR tubes or PCR-cap strips of 8. Collected

samples were immediately placed in dry ice. Samples were stored at -80 °C until further use.

Proteomic sample processing

Samples were thawed, incubated at room temperature for 30 minutes and briefly
centrifuged. Caps were rinsed with 20 pL of RIPA buffer (#89900, Pierce) containing 25 units
of Benzonase (E1014, Merck) to collect any remaining tissue and briefly centrifuged,
followed by incubation at room temperature for 30 minutes to degrade DNA and RNA.
Proteins were reduced by adding DTT to 5 mM and incubated at room temperature for 30
minutes, followed by the addition of iodoacetamide to 20 mM and incubation at room

temperature for 30 minutes.

Paramagnetic SP3 beads (GE45152105050250 & GE65152105050250, Cytiva) were prepared
as described by Hughes et al. and processed by a modified SP3 protocol 226263, Three pL of
SP3 beads were mixed with the samples, and acetonitrile added to a final concentration of
70 % (v/v). Samples were mixed with 1000 rpm orbital shaking for 18 minutes, followed by
bead immobilisation on a magnet for 2 minutes. The supernatant was discarded, and beads
were washed twice with 70 % (v/v) ethanol in water and once with 100 % acetonitrile
without removal from the magnet. Beads were resuspended in 50 mM ammonium
bicarbonate containing 25 ng of Trypsin (V5111, Promega) and digested overnight at 37 °C.
After digestion, the beads were resuspended by bath sonication. Acetonitrile was added to
the samples to 95 % (v/v) and shaken at 1000 rpm for 18 minutes. Beads were immobilised
on a magnet for 2 minutes, and the supernatant discarded. Beads were resuspended in 2 %
acetonitrile and immobilised on a magnet for 5 minutes. Peptides were transferred to glass
LC-MS vials or 96-well PCR plates containing formic acid in water, resulting in a final formic

acid concentration of 0.1 %.

LC-MS/MS

Peptides from 833 um resolution samples were analysed by LC-MS/MS using a Dionex
Ultimate 3000 (Thermo Scientific) coupled to a timsTOF Pro (Bruker) using a 75 um x 150
mm C18 column with 1.6 um particles (lonOpticks) at a flow rate of 400 nL/min. A 17-
minute linear gradient from 2 % buffer B to 30 % buffer B (A: 0.1 % formic acid in water. B:

0.1 % formic acid in acetonitrile) was used®*. The TimsTOF Pro was operated in PASEF mode.
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The TIMS accumulation and ramp times were set to 100 ms, and mass spectra were
recorded from 100 — 1700 m/z, with a 0.85 — 1.30 Vs/cm2 ion mobility range. Precursors
were selected for fragmentation from an area of the full TIMS-MS scan that excludes most
ions with a charge state of 1+. Those selected precursors were isolated with an ion mobility
dependent collision energy, increasing linearly from 27 — 45 eV over the ion mobility range.
Three PASEF MS/MS scans were collected per full TIMS-MS scan, giving a duty cycle of 0.53
s. lons were included in the PASEF MS/MS scan if they met the target intensity threshold of
2000 and were sampled multiple times until a summed target intensity of 10000 was
reached. A dynamic exclusion window of 0.015 m/z by 0.015 Vs/cm2 was used, and sampled

ions were excluded from reanalysis for 24 seconds.

Peptides from 350 um resolution samples were analysed by nano-UPLC-MS/MS using a
Dionex Ultimate 3000 coupled to an Orbitrap Fusion Lumos (Thermo Scientific) using a 75
um x 500 mm C18 EASY-Spray Columns with 2 um particles (Thermo Scientific) at a flow rate
of 250 nL/min. A 60-minute linear gradient from 2 % buffer B to 35 % buffer B (A: 5%
DMSO, 0.1 % formic acid in water. B: 5 % DMSO, 0.1 % formic acid in acetonitrile). MS1
scans were acquired in the Orbitrap between 400 and 1500 m/z with a resolution of 120,000
and an AGC target of 4 x 10°. Precursor ions between charge state 2+ and 7+ and above the
intensity threshold of 5 x 103 were selected for HCD fragmentation at a normalised collision
energy of 28 %, an AGC target of 4 x 103, a maximum injection time of 80 ms and a dynamic
exclusion window of 30 s. MS/MS spectra were acquired in the ion trap using the rapid scan

mode.

Proteomic data analysis

Raw data files were searched against the Uniprot human database (Retrieved 17/01/2017,
92527 sequences) using MaxQuant version 1.6.14.0, allowing for tryptic specificity with up
to 2 missed cleavages. Cysteine carbamidomethylation was set as a fixed modification.
Methionine oxidation and protein N-terminal acetylation were set as variable modifications
and the “match between runs (MBR)” option was used (MBR was not used for tissue
titration data). All other settings were left as default. Label-free quantification was
performed using the MaxLFQ algorithm within MaxQuant®>®. Protein and peptide false

discovery rate (FDR) levels were set to 1 %.
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Spatial data analysis

The spatial analysis uses functions within the spdep and raster R packages®’—®°. MaxQuant’s
protein level output files (‘proteingroups.txt’) were filtered to remove reverse hits, ‘Only
identified by site’ hits and potential contaminants. The ‘LFQ intensity’ columns were log>
transformed and then normalised by median subtraction. Protein groups that did not meet
a cut-off of having at least 9 pixels with normalised LFQ values are not taken forward for
further analysis. The following steps occur independently for each protein group.
Normalised LFQ intensities were then coerced into a matrix reflecting the rastered pattern
of sample acquisition. The quantification matrix was converted into a raster object and then
to a polygon object using the raster R package. From this polygon object, a neighbour list
was built for each pixel of the raster using the ‘Queen’s Case’ where cells are considered
neighbours if they share an edge or a vertex. The neighbour list was then supplemented
with a spatial weights matrix using a binary coding scheme where neighbours are given a
weighting of ‘1’ and non-neighbours a weighting of ‘0’ in the spatial weights matrix. The
raster object and the weighted neighbour list were then used as inputs to a permutation
test for the Moran’s / statistic, calculated using 999 random spatial permutations of the
raster object to calculate pseudo-p-values. Moran’s [ statistics and the associated p-values
are collected for every protein group. The p-values were then corrected for multiple testing

using the Benjamini-Hochberg FDR method.

Immunohistochemistry

Sections were cut as above and were mounted to superfrost glass slides for IHC and air-
dried. Slides were fixed in ice-cold acetone for 10 minutes, washed twice with TBS/T (20 mM
Tris, 150 mM NaCl, 0.05 % Tween 20) and blocked with 10 % goat serum in TBS/T for 60
minutes at room temperature. Primary antibodies were diluted in 5 % goat serum in TBS/T
and incubated at RT for 60 minutes or 4 °C overnight. Sections were washed three times
with TBS/T. Staining visualisation was performed by incubating with a cocktail of anti-mouse
and anti-rabbit secondary antibodies conjugated to horseradish peroxidase (Envision Kit,
Agilent) for 60 minutes at room temperature. Sections were then washed with TBS/T three
times and incubated with 2 % 3,3'-diaminobenzidine for 5 minutes, immersed in water and
then counterstained with Harris’ Haematoxylin for 1 minute. Primary antibodies used and

dilutions: rabbit anti-PYGL, 1:100, 4 °C overnight, HPA0O00962 (Atlas Antibodies); rabbit anti-
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ASPH, 1:1000, RT 60 minutes, NBP2-34125 (Novus Biologicals); mouse anti-CD45 (PD7/26 +
2B11), 1:200, RT 60 minutes, ab781 (Abcam).

Clustering

Empty pixels and pixels covering the large region of haemorrhage were not included. A
distance matrix was built containing the Euclidean distance between each pixel’s set of
protein LFQ values. Hierarchical clustering of the distance matrix was performed in R using
the “average” agglomeration method. Dendrograms were cut using the Dynamic Tree Cut

method at a height setting of 100%.

A complete input matrix is required for UMAP visualisation’, so proteins with fewer than 70
% valid values across the experiment were removed. The remaining missing values were
imputed in on a per-sample basis by random draws from a normal distribution using a width
of 0.3 and a downshift of 1.8. UMAP dimensionality reduction was performed on this
imputed data with default settings, and the first two embedding components plotted, and

samples coloured according to their cluster assigned by Dynamic Tree Cut at a height of 100.

Pathway Analysis

A one-way ANOVA test was performed in R to test for differences in means between the
clusters generated by Dynamic Tree Cut at a height of 100. A pairwise post-hoc correction
was applied using Tukey’s Honestly Significant Difference method. The resulting pairwise
comparisons were used as inputs to ClusterProfiler’s gene set enrichment analysis to test for
enrichment of Gene Ontology Biological Process terms using a Fisher’s exact test with a5 %

FDR threshold”?.

Lipid MALDI imaging

Vacuum dried sections were washed according to a Carnoy procedure as described in
Deutskens et al. and dried again under vacuum for at least 30 min’2. The slides were
scanned with a TissueScout scanner at 3200 dpi (Bruker) to generate a reference image for
later position teaching. Trypsin was applied using a TM-sprayer (HTX Technologies) as
described in Ly et al. and digested for 2 h at 50 °C”3. Dihydroxybenzoic acid (DHB) was
dissolved at a concentration of 15 mg/ml in 90 % ACN, 0.1 % TFA and sprayed on top of the
AT/RT sections using a TM-sprayer (HTX Technologies). The matrix was applied in a criss-

cross pattern with 3 mm track spacing at a 1200 mm/min nozzle velocity. Fourteen layers
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were sprayed at a 0.125 ml/ml flow rate using 50 % ACN as the liquid phase at 10 psi
pressure. The nozzle temperature was set to 60 °C and the distance of the nozzle to the
section was 40 mm. All imaging data were acquired on a timsTOF fleX instrument (Bruker)
which is equipped with a dual ESI and MALDI source in positive Q-TOF mode. External
calibration was performed using red phosphorous which was spotted next to the section.
The laser was operated in beam scan mode, ablating an area of 15x15 um resulting in a pixel
size of 20 um. The repetition rate of the laser was set to 10 kHz and 400 laser shots were

acquired per pixel. Data were acquired in the mass range 300-1400 m/z.

The software SCiLS Lab (version 2020a; Bruker) was used for MALDI Imaging data analysis.
All data were root-mean-square (RMS) normalised. After importing the data, an
unsupervised segmentation was calculated using the bisecting k-means algorithm and a
peak list containing 302 m/z-intervals with correlation used as a distance metric. The
resulting segmentation map was split into several clusters that resemble the histopathology

of the tumour section.

Data availability
The mass spectrometry proteomics data will be deposited to the ProteomeXchange
Consortium via the PRIDE partner repository and made available to reviewers upon

submission.
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Figure 1 — Overview of the spatially resolved proteomics workflow

Tissue is segmented into a regular grid shape, and each element of the grid is isolated by
laser capture microdissection (LCM). Proteins from each individually lysed sample are
digested before analysis by LC-MS/MS. The quantitative information for each protein can be

mapped back to its location within the gridded tissue and visualised in a topographic protein
map, with one map per protein quantified.
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Figure 2 — Spatial proteomic maps of AT/RT tumour tissue
Normalised protein intensity of four example proteins mapped back to the original spatial
positions within the atypical teratoid-rhabdoid tumour (AT/RT) tumour tissue at a resolution
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of 833 um (A) and 350 um (B) with their corresponding Moran’s Index of spatial
autocorrelation (/). Box in (A) represents the area analysed in an adjacent tissue section (B).
Scale bar =1 mm. Normalised protein intensities are scaled separately for each protein.
Gray = missing value.
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Figure 3 - Immunohistochemistry validation of AT/RT proteomic maps

Proteomic maps of proteins targeted for follow-up IHC staining and IHC images. (A,C,E)
Normalised protein intensity maps with their corresponding Moran’s Index of spatial
autocorrelation (/). Normalised protein intensities are scaled separately for each protein.
Gray = not quantified. Rectangles depict the approximate location displayed in IHC images.
(B,D,F) AT/RT tissue stained and visualised by IHC. All scale bars =1 mm.
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Figure 4 - Clustering and functional analysis of AT/RT proteomic maps

(A) Map of cluster assignment based on hierarchical clustering and the dynamic tree cut
algorithm. White pixels represent excluded empty regions and regions of haemorrhage (B)
UMAP embedding of data coloured by cluster assignment in (A). (C) GSEA of clusters 1 & 3
from (A). Gene set membership is indicated by colouring the cell with that protein’s log>
fold-change.
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Figure 5 - High-resolution proteomic map clustering

(A) Map of cluster assignment based on hierarchical clustering and the dynamic tree cut
algorithm. Cluster 3 corresponds to brain/tumour interface. Cluster 1 corresponds to solid
tumour. Clusters 2 & 5 correspond to the transition between solid tumour and
brain/tumour interface (B) Volcano plot of clusters 3 against cluster 1 from (A). The
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horizontal dashed line represents an FDR of 5 %. The vertical dashed line represents -/+ 2-
fold-change. (C) GSEA of clusters 1 & 3 from (A). Gene set membership is indicated by
colouring the cell with that protein’s log, fold-change.


https://doi.org/10.1101/2022.03.21.485119
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.21.4851109; this version posted March 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

A B

Neutrophil cytosolic factor 4 Neutrophil cytosolic factor 2
W W) TR e

jma 100 %

1
i | IE
o e 1 H = BE

50 %

0 %

Normalised protein intensity

Cluster 6 Cluster 13
up-regulated up-regulated

. . TNXB OLFM4
C Bisecting K-means CTTN

H&E Clustering oy G}%A
NUM

17

m

' 0.

0.

<
I

IR0 NAL> D
1
N A O ®

PSMB2 [ ElE -4

7329

log, Fold Change
(cluster 13 - cluster 6)
D
39
>
log, Fold Change
(cluster 13 - cluster 6)

3w
22
NON.

CE(18:1) [M+K]*

[
T

>.

=

Zz O
cr32
3520
352

n
w
—~T002_3>
e

o
]
=
>
=

I
|

111
=

0o
—=S;

=
>
2
>
oMr>IRT
»2 -
5
SZe0
QFZIc:

jocytosis

a
Positive regulation of JND?can:ado

ge
cell
Phi

)
v,
—
o
<
B cell diff :ﬁ":ﬂ‘!ﬂg

616.1745 m/z £ 15 ppm 689.5607 m/z £ 15 ppm APPPELé .
L 217% —_— 282% PSMAG
& A A A PSMA7
0% 100% 0% 100%

tata
ell Death

tosis
itotic
M
ed t
n depolymerization

Apo
Cell Cyclsp, rﬁ
agen organization
in gor X
ans
Hedgez‘ ‘ror’n\
Proqramm
tel

growth
Regulation of pro

Collagen fibril

Figure 6 - Immune cell infiltration and lipid heterogeneity in AT/RT brain tumour

(A) Proteomic maps of immune cell-marker proteins at 833 um resolution. Normalised
protein intensities are scaled separately for each protein. (B) GSEA of clusters 6 & 13 from
Figure 4A. Gene set membership is indicated by colouring the cell with that protein’s log2
fold-change. (C) MALDI imaging of AT/RT lipids at 20 um resolution. H&E image acquired
after MALDI imaging (upper left) Bisecting K-means clusters of MALDI imaging pixels are
indicated by colour (upper right). m/z images for ions corresponding to the mass of haeme
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(bottom left) and cholesterol ester (18:1) (bottom right). lon intensities are scaled
separately for each ion.
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Figure S1 — Tissue area titration across two LC-MS/MS systems
The number of proteins identified from a titration of AT/RT tissue area on two LC-MS/MS
systems.
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Figure S2 — Distribution of identified and quantified proteins at 833 um resolution
(A) Violin plots showing distributions of identified and quantified proteins per pixel. Solid
vertical lines represent the median value. Dashed vertical lines represent upper and lower

guartiles. (B) Histogram of quantified pixels per protein map.
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corresponding to empty or haemorrhage pixels were removed (white).
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