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Abstract

Metabolite-level regulation of enzyme activity is important for coping with environmental
shifts in bacteria. Improved understanding of such regulation could guide attempts to
engineer more efficient strains for biochemical production. Recently developed proteomics
methods allow for mapping of post-translational interactions, including metabolite-protein
interactions, that may be relevant for quickly regulating pathway activity. While feed-back
and feed-forward regulation in glycolysis has been investigated, there is relatively little study
of metabolite-level regulation in the Calvin cycle, particularly in bacteria. Here, we applied
limited proteolysis small molecule mapping (LiP-SMap) to identify and compare
metabolite-protein interactions in four potential metabolic engineering host that fix CO, using
the Calvin cycle, including two photoautotrophs (cyanobacteria) and two chemoautotrophs.
Species-specific interactions were observed, such as interactions with glucose-6-phosphate
in the chemoautotroph Cupriavidus necator and interactions with glyoxylate in the
cyanobacteria Synechocystis sp. PCC 6803, which suggests that metabolite-level regulation
could be adapted to a certain metabolic capacity or lifestyle of these bacteria. Identified
metabolite interactions with Calvin cycle enzymes
fructose-1,6/sedoheptulose-1,7-bisphosphatase (F/SBPase) and transketolase were tested
for effects on catalytic activity using kinetic assays. GAP increased the activity of both
Synechocystis and Cupriavidus F/ISBPase, which may act as a feed-forward activation
mechanism in the Calvin cycle. A kinetic model incorporating regulations on F/SBPase
generally enhanced flux control of ATP and NADPH supply over the cycle. We show that
LiP-SMap is a promising technique to explore and uncover novel post-translational metabolic
regulation, although the method could benefit from improved sensitivity and specificity.
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Abbreviations

20G 2-oxoglutarate

2PG 2-phosphoglycolate

3PGA 3-phosphoglycerate

6PG 6-phosphogluconate

AcCoA Acetyl-CoA

ADP Adenosine diphosphate

AGPase ADP-glucose synthase (EC 2.7.7.27)

AMP Adenosine monophosphate

ATP Adenosine triphosphate

cAMP Cyclic adenosine monophosphate

Cit Citrate

DAHPS 3-Deoxy-D-arabinoheptulosonate 7-phosphate synthase (EC 2.5.1.54)
dPGM 2,3-diphosphoglycerate-dependent phosphoglycerate mutase (EC 5.4.2.11)
ENO Enolase (EC 4.2.1.11)

FBA Fructose-bisphosphate aldolase (EC 4.1.2.13)

FBP Fructose-1,6-bisphosphate

FBPase Fructose-1,6-bisphosphatase (EC 3.1.3.11)

F/SBPase Bifunctional fructose-1,6/sedoheptulose-1,7-bisphosphatase (EC 3.1.3.11)
G6P Glucose-6-phosphate

G6PDH Glucose-6-phosphate dehydrogenase (EC 1.1.1.49)

GAP Glyceraldehyde-3-phosphate

GAPDH Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12, 1.2.1.13, 1.2.1.59)
Glyc Glycolate

Glyx Glyoxylate

GPM Phosphoglucomutase (EC 5.4.2.2)

GTP Guanosine triphosphate

iPGM 2,3-diphosphoglycerate-independent phosphoglycerate mutase (EC 5.4.2.12)
KDPG 2-dehydro-3-deoxy-D-gluconate-6-phosphate

Mal Malate

NADP Nicotinamide adenine dinucleotide phosphate (oxidized)

NADPH Nicotinamide adenine dinucleotide phosphate (reduced)

PEP Phosphoenolpyruvate

PGl Phosphoglucoisomerase (EC 5.3.1.9)

PGK Phosphoglycerate kinase (EC 2.7.2.3)

Phe Phenylalanine

PRK Phosphoribulokinase (EC 2.7.1.19)

PYK Pyruvate kinase (EC 2.7.1.40)

RPE Ribulose-phosphate 3-epimerase (EC 5.1.3.1)

RPI Ribose-5-phosphate isomerase (EC 5.3.1.6)

RPPK Ribose-5-phosphate pyrophosphokinase (EC 2.7.6.1)

Ru5P Ribulose—5-phosphate

Rubisco Ribulose-bisphosphate carboxylase (EC 4.1.1.39)

RuBP Ribulose-1,5-bisphosphate

SBPase Sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37)

SerA Phosphoglycerate dehydrogenase (EC 1.1.1.95)

Suc Sucrose

TAL Transaldolase (EC 2.2.1.2)

TKT Transketolase (EC 2.2.1.1)

TPI Triose-phosphate isomerase (EC 5.3.1.1)
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Introduction

Metabolite-protein interactions are increasingly appreciated as feedback mechanisms for
adapting metabolic flux to changing conditions (Link et al., 2013; Zampieri et al., 2019), as
well as targets for metabolic engineering (Foster et al., 2022). Inference of allosteric
regulation in metabolic networks has been done through analysis of time-resolved metabolite
and proteomics datasets (Lempp et al., 2019; Link et al., 2013), fitting of multi-omics steady
state data (Hackett et al., 2016; Nishiguchi et al., 2020), as well as with interaction
proteomics techniques such as coelution of proteins and metabolites from a chromatography
column (Veyel et al. 2018; Li et al. 2010; Guerreiro et al. 2016), and changes in protein
stability during environmental perturbation (Savitski et al. 2014; Tan et al. 2018; Mateus et al.
2018; Pattanayak et al. 2020).

Limited proteolysis-coupled mass spectrometry (LiP-MS) detects changes in protease
digestion patterns of a protein that occurs when it undergoes conformational change or binds
to other proteins or effectors, without reliance on immuno-based enrichment or crosslinking
(Mateus et al., 2021). LiP-MS performed on the proteome of yeast grown on ethanol showed
that hundreds of proteins had different digestion patterns when compared to sugar-grown
cells, indicating post-translational regulation during substrate shifts (Feng et al., 2014b). A
variant of LiP-MS performs proteinase K digestion of the extracted proteome in the presence
of an added metabolite (LiP-SMap; limited proteolysis-small molecule mapping). In
LiP-SMap, interactions between proteins and metabolites are revealed by comparison of
digestion patterns with or without the added metabolite (Piazza et al., 2018).

To demonstrate and benchmark the LiP-SMap technique, Piazza et al. treated yeast and E.
coli extracts with metabolites and monitored changes in the LiP digestion patterns (Piazza et
al., 2018). Hundreds of novel metabolite-protein interactions were detected, and in many
cases the altered peptides could be mapped near the enzyme active site.

A relatively unexplored application area for interaction proteomics is the Calvin cycle,
present in diverse bacteria as well as eukaryotic algae and plants. The bacterial Calvin cycle
is of biotechnological interest as cyanobacteria and chemoautotrophic bacteria have been
modified to produce biochemicals from carbon dioxide using sunlight, electricity, or hydrogen
as energy sources (Koch et al., 2020; Krieg et al., 2018; Liu et al., 2019; Mdller et al., 2013).
An understanding of metabolite-level regulation of Calvin cycle enzymes, or metabolic
pathways where the Calvin cycle is enmeshed, could inform metabolic engineering
strategies. The Calvin cycle is susceptible to instability at branch points where intermediates
are drained, and the kinetic parameters of cycle enzymes and branching enzymes are
constrained (Barenholz et al., 2017; Janasch et al., 2019). Modulation of enzyme kinetic
parameters (Ky, K, K., Hill coefficient) such as by allosteric or competitive effectors, could
affect cycle stability. While regulation of the Calvin cycle enzymes in plants has been
extensively studied (Martin et al., 2000; Michelet et al., 2013; Raines, 2003), the Calvin cycle
in bacteria is less characterized, particularly with respect to potential post-translational
regulation. In light of the widespread distribution of the bacterial Calvin cycle, regulation may
be different across species.

The freshwater cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) is a
facultative heterotroph and is a model for studying photosynthesis. Synechococcus
elongatus PCC 7942 (Synechococcus) is an obligate photoautotroph, and a model strain for
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studying the circadian rhythm. It was found that Synechocystis contains a larger number of
isoenzymes than Synechococcus, which may be related to its metabolic versatility (Beck et
al., 2012; Jablonsky et al., 2016). The extent of post-translational regulation in the Calvin
cycle in cyanobacteria is not clear. Quantitative proteomics and fluxomics of Synechocystis
showed abundances of many Calvin cycle enzymes changed only weakly over a range of
growth rates (Jahn et al., 2018; Yu King Hing et al., 2021; Zavfel et al., 2019). Insertion of
heterologous sucrose synthesis in Synechococcus increased CO, uptake up to 30%, with
only Rubisco and carboxysomes showing increased protein abundances (Singh et al., 2022).
In contrast, insertion of ethanol biosynthesis in Synechocystis, which stimulated carbon
fixation significantly, did lead to increased abundance of multiple Calvin cycle enzymes
(Borirak et al., 2015). Comparisons of the transcriptomic response to changes in inorganic
carbon supply suggest that Synechocystis responds primarily through biochemical regulation
of enzyme fluxes, while Synechococcus responds at the transcriptional level (Jablonsky et
al., 2016; Klahn et al., 2015; Schwarz et al., 2011). Thus, central carbon metabolism in these
two species may be regulated differently, with respect to potential metabolite inhibition or
activation of enzymes.

The Calvin cycle is present in roughly 7 % of non-cyanobacterial genomes
(Asplund-Samuelsson and Hudson, 2021). Microbes harboring the Calvin cycle may have a
growth advantage in environments poor in organic substrates, due to improved cofactor
recycling, or in environments with mixed or fluctuating carbon sources (McKinlay and
Harwood 2010; Jahn et al. 2021). Nevertheless, knowledge of Calvin cycle regulation in
chemoautotrophs is limited. Cupriavidus necator (Cupriavidus) and Hydrogenophaga
pseudoflava (Hydrogenophaga) are chemoautotrophic betaproteobacteria in the order
Burkholderiales. Cupriavidus acquired the Calvin cycle on a megaplasmid, where genes
encoding all cycle enzymes are clustered as an operon. The ccb operon is duplicated on the
chromosome (Kusian and Bowien, 1997; Pohlmann et al., 2006). The Calvin cycle of
Hydrogenophaga is similarly clustered on the chromosome (Grenz et al., 2019; Meyer and
Schlegel, 1978). To date, most study on regulation of Calvin cycle activity in
chemoautotrophs has focused on transcriptional regulation, where the transcriptional
activator of the Calvin cycle operator CbbR has multiple metabolite effectors that may
depended on species (Bowien and Kusian, 2002; Dangel and Tabita, 2015).

Here, we applied the LiP-SMap technique to uncover new regulatory metabolite interactions
with central carbon metabolism enzymes in four bacterial strains containing the Calvin cycle,
Synechocystis sp. PCC 6803, Synechococcus PCC 7942, Cupriavidus necator (formerly
Ralstonia eutropha), and Hydrogenophaga pseudoflava. Species-specific interaction
patterns for several metabolites such as GAP, G6P and glyoxylate were found, which
indicates that enzyme regulation by these metabolites could differ between autotrophic
organisms. Complementary in vitro assays showed that GAP increases the catalytic activity
of both Synechocystis and Cupriavidus necator F/SBPase, suggesting a feed-forward
activation mechanism in the Calvin cycle.
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Results

Assessment of LiP-SMap method and data

The LiP-SMap protocol developed by Piazza et al. was applied in the current study with
minor modifications (Piazza et al., 2018). Extracted proteomes were first filtered to remove
endogenous metabolites and resuspended in a buffer containing 1 mM MgCl,. Metabolite
was added to four aliquots of the proteome extract, while buffer was added to another four
aliquots as negative controls. Extracts were then digested partially by proteinase K (LiP),
followed by tryptic digestion with a mixture of trypsin and LysC to enable peptide
quantification using liquid chromatography-mass spectrometry. Any peptide that was
differentially abundant (q < 0.01) in the metabolite-treated condition versus the control
condition was assigned as a metabolite interaction. Proteins with at least one
metabolite-interacting peptide were assigned as a metabolite-interacting protein (Figure 1,
Material and Methods).
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Figure 1. Workflow for interaction proteomics and validation on cyanobacteria and
lithoautotrophic bacteria. LiP-SMap: Limited proteolysis small molecule mapping (Piazza
et al., 2018).

To demonstrate the capability of LiP-SMap to detect changes in protein structure, we first
tested the effect of reducing and oxidizing agents (Dithiothreitol (DTT) and
5,5'-dithiobis-2-nitrobenzoic acid (DTNB), respectively) on the extracted proteome of
Synechocystis. Addition of DTT to 1 mM, a concentration chosen to induce specific redox
effects in extracts (Alliegro, 2000), resulted in altered peptides in 21 proteins, a small
number that indicates that Synechocystis proteome extracts are likely in a reduced state. By
contrast, addition of DTNB to 50 uM, a concentration shown to completely inhibit
cyanobacteria phosphoribulokinase (PRK) in vitro (Kobayashi et al., 2003), altered peptides
from 129 proteins, including PRK and Rubisco (Figure S1, Dataset S1). These results
indicate that LiP-SMap can detect the changes in protein structure mediated by reducing and
oxidizing agents.

The sensitivity of detecting metabolite-interacting proteins with LiP-SMap depends on the
number of detected peptides within each protein; a low peptide coverage will reduce the
number of detected interactions. A total of 8,000-15,000 peptides were detected in each
LiP-SMap experiment (Figure S2, Dataset S2), and a higher number of peptides were
detected in metabolite-interacting proteins than in non-interacting proteins (Figure S3). The
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peptide coverage of Calvin cycle enzymes was generally high, averaging 17 peptides per
enzyme (minimum 5, maximum 40), with sequence coverage approximately 50% (Figure 2).
To gauge the technical reproducibility of the LiP-SMap method, we compared the results
from two consecutive LiP-SMap procedures prepared from the same Cupriavidus cell
sample, testing three metabolite treatments: AcCoA (1 and 10 mM) and ATP (32 mM). The
agreement in detected metabolite-interacting proteins between replicates (q < 0.01) was
higher than expected by random chance, but 36-74% of the interactions were detected in
only one replicate (Figure S4). The lower reproducibility of AcCoA interactions are
presumably related to a poor trypsin digestion detected in the first LiP-SMap run. Proteins
with a high peptide coverage are more likely to be falsely assigned as a
metabolite-interacting protein, since one single falsely assigned peptide change is sufficient
to assign the whole protein as interacting. This was reflected in a larger fraction of
non-reproducible metabolite-interacting proteins among proteins with the highest number of
detected peptides (top 25%).

Metabolites were tested at one high and one low concentration (Tables S1 and S2). There
were more detected interactions from the high concentrations than at the low concentrations.
Typically > 80% of interactions from low-concentration treatment were also observed in the
high-concentration treatment, adding confidence to interactions observed from both (Figure
S$5). We did not observe strong dose effects between the two concentrations, though ATP
and GTP interactions were exceptions (Figure S6). A significantly altered peptide
degradation rate during LiP induced by a higher metabolite concentration will have a limited
impact on the quantified peptide abundance after LiP if the amount of degraded peptide is
low compared to the total amount of the peptide (protein) in the proteome extract. For
example, if the degradation of a certain peptide increases threefold from 10 to 30%, the
quantified peptide abundance will only decrease 1.3-fold, from 90 to 70%. In some cases,
insensitivity to concentration could indicate that metabolite-protein binding events are
already saturated at the low concentration (typically 1 mM).
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Figure 2. Peptide coverage of Calvin cycle enzymes was on average 50%. The figure
displays a representation (GAP and AcCoA) of LiP-SMap-detected peptides within Calvin
cycle enzymes of Synechocystis and Cupriavidus. Peptides showing a significant change in
abundance in response to added metabolite are highlighted in color, while other detected
peptides are light gray. Peptides depicted in purple were significantly changed in response to
both GAP and AcCoA treatment. For high concentration tests, 5 mM GAP or 10 mM AcCoA
was added. For low concentration tests, 0.5 mM GAP or 1 mM AcCoA was added.

Interactions of selected metabolites with Calvin cycle and surrounding
enzymes

All four bacteria use the Calvin cycle to fix CO, but differ in terms of phylogeny, energy
source, substrate utilization, and natural habitats. Conserved metabolite-induced regulation
in these microbes may therefore be important for autotrophic metabolism in general, while
differences may indicate adaptations specific to a certain microbial lifestyle or evolutionary
trajectory. To identify such regulatory features, up to 25 metabolites were screened for
interactions with proteome extracts of Synechocystis (25), Synechocococcus (21),
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Cupriavidus (23), and Hydrogenophaga (8). Metabolites were chosen based on their
potential to act as a regulatory signal or as a signal of energy, redox or metabolic status of
the cell (e.g. metabolites located in metabolic pathway branch/end points). Two
concentrations were tested for each metabolite, typically 1 mM and 10 mM (Tables S1 and
S2). The high metabolite concentrations were intended to mimic the spikes that occur during
environmental shifts and perturbations, which may require rapid regulation of enzyme
activity.

To compare metabolite-protein interactions between species, we extracted a list of all
proteins affected by any metabolite for each strain and grouped them according to KEGG
orthology groups (KOGs), including only orthology groups present in all four strains (Figure
S7). Principal component analysis (PCA) was used to cluster and compare metabolite-KOG
interaction patterns between the species. Few interactions were detected at the low
metabolite concentrations, which resulted in a relatively weak separation across species
(Figure S8-9). However, larger differences between species were observed at the high
concentrations (Figure 3). For GAP, a metabolite with more than 200 KOG interactions in all
four species, interactions in the photoautotrophs clustered apart from those in the
chemoautotrophs. Also G6P, the entering metabolite of the pentose phosphate (PP) and the
Entner-Doudoroff (ED) pathway, showed a relatively high number of interactions in
Cupriavidus that clustered apart from other species. Some metabolite-KOG interactions
were similar in all species. For example, similarity of interactions with metabolites in lower
glycolysis and in the reductive branch of the tricarboxylic acid cycle (20G, PEP and citrate)
may indicate conserved regulatory mechanisms in all species.

Interactions with AcCoA, ATP, citrate, and GTP were widespread in all four microbes (Figure
3). ATP, citrate and GTP are strong Mg?* chelators(Mg?* affinity (logK) 4.1, 3.4, 4.1,
respectively (Martell and Smith, 2013; Pecoraro et al, 1984)) and may sequester this
common metal ion ligand from proteins in extracts, inducing conformational changes not
caused by direct interactions with the metabolites. Indeed, the number of ATP interactions in
Synechocystis extracts was reduced from 172 to 19 when the Mg?* concentration in the LiP
buffer was set higher than the ATP concentration (Figure S10).
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Figure 3. Similarity of ortholog interaction patterns, high added metabolite
concentration. Principal components were calculated from the presence or absence of
interaction with each of 477 orthologs (see Materials and Methods). All data points shown
here are from the same principal component analysis, but split per organism (A) or
metabolite (B) to reduce overplotting. Percentages indicate the fraction of the total variance
captured by the principal components.

We next focused on interactions with enzymes of the Calvin cycle and major pathways that
siphon carbon out of the cycle (Figure 4, high concentrations; Figure S8, low
concentrations). Calvin cycle enzymes in these four microbes are phylogenetically diverse,
though the cyanobacteria enzymes are more closely related than to the chemoautotroph
orthologs (Figure S11). Some metabolite interactions were specific to certain species. For
example, the photorespiratory intermediate glyoxylate showed extensive interactions in
Synechocystis, even at low concentrations. Some “sink,” reactions, such as
phosphoglucomutase (GPM) and ADP-glucose pyrophosphorylase (AGPase), involved in
glycogen synthesis, had significantly more interactions in Synechocystis and Synechococcus
than in the chemoautotrophs. In contrast, Cupriavidus Calvin cycle enzymes were
particularly sensitive to intermediates of the PP and ED pathways, such as 6PG, G6P, and
KDPG, as well as 20G and RuBP. 3-Deoxy-D-arabinoheptulosonate 7-phosphate synthase
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(DAHPS), an enzyme that reacts with E4P in the shikimate synthesis pathway, showed
interactions with several metabolites primarily in Cupriavidus, at both high and low
concentrations. In summary, while there were some interactions observed in all species,
primarily AcCoA, ATP and GAP, most metabolites showed species-specific interactions with
Calvin cycle enzymes.
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Figure 4. Interactions of Calvin cycle enzymes and selected central carbon
metabolism enzymes with metabolites, high added metabolite concentration.
Interactions between metabolites (columns) at high concentration and enzymes (rows)
identified by KEGG EC number annotation are shown for each organism by tiles filled with
the corresponding color. A blank tile indicates that the interaction was not detected, while
missing protein data is explained by a symbol. A cross indicates that the particular condition
was not measured, a circle indicates that the protein was not detected, and a square
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indicates that there was no such enzyme in the corresponding genome. See Figure S8 for
interactions at low metabolite concentrations.

Validation of metabolite interactions and effect on enzyme activity

An interaction detected by LiP-SMap does not necessarily mean that the metabolite interacts
directly, or that catalytic activity is affected. To explore whether metabolite-enzyme
interactions identified by LiP-SMap tended to affect catalytic activity, we purified and assayed
F/SBPase and transketolase from Synechocystis (fopl, tktA) and Cupriavidus (fbp3, cbbTP).
F/SBPase appears to have significant control over the overall rate of CO, fixation by the
Calvin cycle in cyanobacteria (De Porcellinis et al. 2018; Liang and Lindblad 2016), as well
as in the RuMP pathway (Stolzenberger et al., 2013; Woolston et al., 2018)). Transketolase
catalyzes the transfer of a two-carbon ketol group to an aldehyde and connects metabolic
flux in the Embden-Meyerhof-Parnas (EMP) pathway with the PP pathway and the
regenerative part of the Calvin cycle. The transketolase of E. coli forms a dimer and exhibits
considerable cooperativity between monomers (Wilkinson and Dalby, 2020). The
transketolases of Synechocystis and Cupravidus have not been characterized previously.

Metabolites that altered the LiP of Synechocystis F/ISBPase (syn-F/SBPase) and
Cupriavidus F/ISBPase (cn-F/SBPase) were screened for effects on kinetics and for direct
binding by thermal shift assay (melting temperature (T,,) determination; Table 1, Table S3).
GAP (0.5 mM) stimulated syn-F/SBPase and cn-F/SBPase activity by reducing the Ky, value
(Figure 5). Syn-F/SBPase was also activated by lower GAP concentrations (0.05 and 0.15
mM), while the GAP isomer dihydroxyacetone phosphate (DHAP) did not have an effect at
concentrations up to 0.2 mM (Figure $16). GAP also caused a thermal shift of the
syn-F/SBPase enzyme at multiple Mg?* concentrations, indicating that altered LiP and
kinetics are caused by a direct conformational change mediated by GAP, and that the effect
is not due to sequestration of the required Mg** cofactor from the enzyme (Figure S17). In
contrast, no thermal shift was observed upon adding GAP to cn-F/SBPase (Figure S13).
Addition of NADPH at 3 mM reduced the maximum rate of both syn-F/SBPase and
cn-F/SBPase up to 35%, but inhibition was not significant at substrate concentrations below
Ku (Figure 5). The NADPH effect was relatively weak, as 1 mM NADPH reduced the
maximum rate of syn-F/SBPase by 10% (Figure S15). NADPH Increased the thermal
stability of cn-F/SBPase but not syn-F/SBPase (Figure $13-14). The similar kinetic effects
of NADPH and GAP on both F/SBPase variants suggest evolutionary conservation, as
syn-F/SBPase (class Il) and cn-F/SBPase (class |) have similar folds but little sequence
similarity (Brown et al., 2009; Feng et al., 2014a).

Citrate at 5 mM reduced the substrate affinity of syn-F/SBPase (Figure S18), which is
consistent with the presence of citrate in the crystal structure of Mycobacterium F/SBPase,
as well as citrate sensitivity of that enzyme (Wolf et al., 2018). However, thermal shift assays
indicated that the inhibitory effect of citrate was likely due to chelation of Mg?* from the active
site of F/SBPase (Figure S19).

We also tested enzyme sensitivity to AMP, a known inhibitor of syn-F/SBPase (ICs,= 34 uM
(Feng et al., 2014a)), although AMP did not show a LiP-SMap interaction with either
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enzyme. Due to the strong binding of AMP to syn-F/SBPase, it is possible that residual AMP
in proteome extracts after washing may mask conformational changes from externally added
AMP. The Synechococcus PCC 7942 F/SBPase, which is less sensitive to AMP inhibition
(IC50 = 260 uM (Tamoi et al., 1996)), did show an interaction with AMP. Addition of 0.25 mM
AMP completely inhibited syn-F/SBPase activity, whereas cn-F/SBPase was relatively
insensitive (Figure 5, Figure $12). AMP increased the thermal stability of both enzymes,
indicating a direct metabolite interaction and conformational change (Figure $13-14). In
contrast, ADP (1 mM) had a much smaller impact on syn-F/SBPase activity (20% decrease,
Figure S$15). ATP did not significantly alter the T, of either syn-F/SBPase nor cn-F/SBPase
(Figure S13-14).

Table 1. Validation of LiP-SMap metabolite interactions with F/SBPase in vitro. Changes in
kinetic parameters were determined by enzyme kinetic assays (Figure 5, Figure $18, Table
S3). The kinetic effect of a metabolite was considered significant for p < 0.05 (comparing
kinetic parameters) and >20% change in rate for at least two tested substrate
concentrations. Changes in melting temperature (T,,) greater than 2 °C were considered
significant.

Effector (mM) LiP-SMap interaction | Kinetics change T, change
syn-F/SBPase

AcCoA (2) Yes Not significant Not significant

AMP (0.25) No “Keat Increase

Citrate (5) Yes +Ky Decrease

GAP (0.5) Yes -Ky Increase

NADPH (3) Yes “Keat, N Not significant
cn-F/SBPase

AMP (0.25) No Not significant* Increase

GAP (0.5) Yes K, Not significant

NADPH (3) Yes “Keat, K Increase

*5 mM AMP reduced reaction rate ~40% (p-value = 0.002) at saturating substrate concentration (300
MM FBP), see Figure S12. n.;: Hill coefficient.
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Figure 5. Effect of selected metabolites on the activity of Synechocystis and
Cupriavidus FISBPase in vitro. Reaction rates were measured at different substrate
concentrations (FBP) in duplicates or triplicates (crosses). Lines represent data fit to the Hill
equation. No catalytic activity was detected for syn-F/SBPase treated with AMP. Plots for
other tested metabolites are shown in Figure S18.

The peptide resolution of LiP-SMap data indicated that GAP and NADPH affect
syn-F/SBPase at sites that are distinct from the AMP allosteric site (Figure 6). We created a
single amino acid exchange variant of syn-F/SBPase (R194H). This amino acid is located at
the enzyme surface in a 3-sheet that connects the substrate-binding site to the AMP-binding
site. This mutant lost AMP sensitivity, but retained sensitivity to both GAP activation and
NADPH inhibition (Figure S20, Figure S12).
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Figure 6. Structure of Synechocystis FISBPase showing peptide coverage and
affected peptides from LiP-SMap. Top left: F/SBPase assembles as a homotetramer
(PDB-ID: 3RPL (Feng et al., 2014a)). The substrate FBP (shown as blue sticks) is
coordinated by active site residues as well as Mg?* ions (red spheres). AMP allosteric
inhibitor molecules are located in the central interface of the tetramer (yellow sticks). Top
right: monomeric view colored according to different structural elements, showing interaction
with FBP and the AMP molecules at two adjacent interfaces with other monomers. Bottom:
Monomeric view as shown in top right panel with peptides that were not detected in any
condition shown as dark-gray ribbons. Peptides affected by the indicated metabolites (high
added concentration) are outlined as opaque ribbons in individual panels.
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The transketolases syn-TKT and cn-TKT were screened in vitro against all metabolites that
showed a LiP-SMap interaction with the enzyme in any of the four species (Table S4). The
most prominent effect was from AMP and DHAP, which reduced the activity of syn-TKT and
cn-TKT, respectively. While ATP and ADP inhibition of transketolases have been shown
(Markert et al., 2014), inhibition by AMP has not been reported. Addition of many other
metabolites also affected transketolase activity, but the effects were small (< 20% change in
rate; Figure S21-22, Table S4). None of the tested metabolites had a significant effect on
the thermal stability, although a slight thermal shift was observed upon addition of G6P to
cn-TKT (Figure $23). The results of these assays show that interactions detected by
LiP-SMap are not always relevant for catalysis.

Predicted effects of enzyme-metabolite interactions on flux control in
Synechocystis

We next evaluated the effects of the validated F/SBPase interactions in terms of flux control
using an expanded kinetic model of central metabolism (Janasch et al., 2019). Two model
variants were considered, a “base model” and a model with added F/SBPase regulations
(“Base” and “FSBPase”, respectively; Figure 7A). For each model variant, we examined
stability and flux control coefficients. This entailed generating a large set of possible
metabolic states, defined by metabolic fluxes, metabolite concentrations, and enzyme kinetic
parameters. First, a single set of steady-state fluxes was calculated, assuming
nutrient-replete autotrophic growth. Then, 5000 sets of feasible metabolite concentrations
that result in a positive driving force through each reaction step were randomly generated.
For each metabolite set, 1000 sets of kinetic parameters (V ..x, Ku, Ki, K;) were randomly
sampled in a space constrained by metabolite concentrations and metabolic fluxes. The two
resulting model ensembles (5 million models each) were used to assess and compare both
metabolic models in terms of flux control and stability.

As a first analysis step, the system stability in both models was compared. Here, stability
refers to the ability of the system to return to its metabolic state upon an infinitesimal small
perturbation of the metabolite concentrations. Generated parameter sets in the “Base” model
had a median stability of 38% over all metabolomes (min 11%, max 58%), compared to 67%
for the original Calvin cycle model (min 25%, max 93%; (Janasch et al., 2019)). The lower
stability was not surprising as expanding the system out from the intrinsically stable Calvin
cycle provides more potential for components to influence stability. The addition of regulation
on F/SBPase did not alter stability significantly (model “FSBPase” median: 40%, min: 11%,
max: 60%). The sampling of thermodynamically feasible metabolomes and the subsequent
analysis of the dynamics around the steady-state allows for the association of metabolite
concentrations with stability (Figure S24). Higher concentrations of the Rubisco-substrate
RuBP are linked to instability in both model variants, albeit less pronounced than in the
original analysis of the isolated Calvin cycle (Janasch et al. 2019). The distributions of
metabolite concentrations in stable and unstable states was similar in the Base and
FSBPase models; the added regulations on F/SBPase did not appear to affect system
stability.
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Fully parameterized kinetic models enable the quantification of flux control using metabolic
control analysis (MCA), resulting in flux control coefficients (FCCs) for each reaction over
every other reaction (“effectors,” and “targets,”; Figure 7B, Figure $25 for all FCCs). The
supply of ATP and NADPH via the light reactions, and orthophosphate showed high FCCs
for most other reactions. Furthermore, PRK had a positive FCC for many reactions, while
RubisC (carboxylation reaction of Rubisco) had positive FCCs only over reactions
downstream of the Calvin cycle towards the TCA cycle. Flux control for an enzyme was often
local, only over other enzymes in the pathway or subnetwork. ALD and F/SBPase were
among the most affected reactions. This is likely because their low steady-state fluxes
(Gopalakrishnan et al., 2018) make them highly sensitive, resulting in relatively large FCCs.
Trends in FCCs were similar in the Base and FBPase models, with some distinctions
(Figure 7C, Figure $26). In the FSBpase model, FCCs of some reactions changed sign, but
most of these were close to 0. The FCCs affecting ALD, FBPase and PYK were among the
most amplified in the FSBPase model. The increased magnitude of the FCCs means a
higher sensitivity of these target reactions to effector reactions. For example, NADPase has
a higher (negative) FCC for FBPase and ALD reactions, reflecting the impact of the added
inhibition of FBPase by NADPH. The enhanced sensitivity of PYK upon addition of
F/SBPase regulations may be because the F/SBPase substrate FBP is an allosteric activator
of PYK. The F/SBPase reaction itself had only slight changes in its FCC over other
reactions.
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Figure 7. Regulations on F/SBPase in the context of metabolism and flux control.

A) Schematic overview of the modeled metabolism showing all included biochemical
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regulations. F/SBpase interactions are included only in the F/SBPase model. Red: inhibition,
Green: activation. B) Median flux control coefficients (FCCs) and median absolute deviation
(MAD) over the whole model ensemble for both model variants. C) Difference between

medians of FCCs between model variants. +/- indicate if the median FCC changed sign.

Discussion

The chemoproteomic workflow LiP-SMap was applied to reveal new metabolite-level
regulation of enzymes within the Calvin cycle and central carbon metabolism, comparing

four autotrophic bacteria. The importance of metabolite-level regulation is high for applied
biotechnology. For example, it was recently shown that the photorespiratory metabolite 2PG
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acts as a feedback inhibitor of the Calvin cycle in Arabidopsis thaliana by inhibiting TPl and
SBPase at sub-millimolar, biologically relevant concentrations (Fligel et al., 2017). An
AMP-insensitive variant of the E. col FBPase was used to increase starch production from
formate in a recently reported in vitro enzyme cascade (Cai et al., 2021). In the context of
such works, LiP-SMap could aid in finding new regulators and guide protein engineering.

We found that some tested metabolites interacted extensively in all organisms, such as ATP,
GTP, GAP, AcCoA, and citrate. However, most metabolites showed species-specific
interaction patterns, which could indicate the importance of these as metabolic signals and
regulators in relation to a certain metabolic capacity or evolutionary adaptation. The extent of
interactions at low added metabolite concentrations (0.5-1 mM) was significantly less than at
high concentrations (5-10 mM). Metabolite control of enzyme activity is therefore likely not
prevalent at steady state in vivo concentrations (< 1 mM), but rather when metabolite levels
fluctuate or spike, such as during environmental shifts or when new metabolic pathways are
installed (Kopka et al., 2017).

GAP interacted with a high number of proteins in all species, which suggest that
post-translational regulation and signaling by GAP could be relevant for optimal and stable
flux in central metabolism in general. Clustering analysis showed that a subset of GAP
interactions in the photoautotrophs were different than in the chemoautotrophs. GAP
intersects several central pathways, such as EMP, ED, PP and the Calvin cycle, and different
utilization of these pathways between species may require specific regulation by GAP.
Variability in the abundance of GAP could potentially regulate anaplerotic flux through the
ED, PP and PGI shunt to balance and stabilize Calvin cycle flux (Makowka et al., 2020). In
contrast, the ED pathway in Cupriavidus is the main route of fructose catabolism, whereas
the EMP pathway is inactive (Alagesan et al., 2018). The preferred usage of the ED pathway
to catabolize fructose could also explain why G6P, the entering metabolite of the ED
pathway, showed significantly more interactions with Cupriavidus enzymes within the Calvin
cycle and PP pathway. Hypothetically, G6P may signal the availability of fructose in the
growth environment and play a role in the activation of sugar catabolism. The ED pathway
metabolite KDGP may also act as a post-translational regulator in Cupriavidus, as it was
found to interact more with Cuprivavidus enzymes.

Enzymes in glycogen synthesis, phosphoglucomutase (GPM) and ADP-glucose
pyrophosphorylase (AGPase), showed more interactions in Synechocystis and
Synechococcus compared to the chemoautotrophs. Distinct regulation of glycogen
metabolism in Cupriavidus could be expected, as glycogen is synthesized from
maltose-phosphate rather than ADP-glucose (Lowe et al., 2021). The photorespiration
metabolite glyoxylate interacted with both GPM and AGPase in the two cyanobacteria, which
suggests that elevated levels of glyoxylate in response to inorganic carbon limitation may
participate in the associated activation of glycogen degradation (Eisenhut et al., 2007, 2008),
though we did not test this. The GPM enzyme is potentially regulated by thioredoxin in
Synechocystis (Lindahl and Kieselbach, 2009), as well as by phosphorylation (Doello et al.,
2021). Therefore, rapid post-translational regulation of glycogen metabolism appears to be
an important feature of photoautotrophic metabolism.
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Validation of LiP-SMap-detected metabolite interactions with Synechocystis and Cupriavidus
F/SBPase showed that GAP activates both enzymes. Such feed-forward activation may
work to prevent excessive GAP accumulation and increase Calvin cycle flux in response to
up-shifts in light and CO, levels in the growth environment. Feed-forward regulation in
glycolysis and gluconeogenesis has been reported. In E. coli and red blood cells, pyruvate
kinase is stimulated by the glycolysis intermediate FBP (Kochanowski et al., 2013; Schuster
and Holzhitter, 1995). The type | FBPase in E. coli is stimulated by the gluconeogenic
substrate PYR (Hines et al., 2006; Link et al., 2013). In photosynthetic microbes, intracellular
levels of GAP, DHAP, FBP and SBP fluctuate with light, changing more than ten-fold in the
microalgae Chlamydomonas reinhardtii when shifted from darkness to light (Mettler 2014).
Synechocystis grown in a day-night regime show increased levels of Calvin cycle
intermediates during the day, which correlates with light intensity, growth rate and Calvin
cycle flux (Werner 2019, Jaiswal & Wangikar 2020). Thus, feed-forward activation of
F/SBPase by GAP may provide fithess in terms of faster growth and CO, fixation rates
during rich light and CO, conditions. Although the kinetic model revealed the influence of
added regulation of F/SBPase on flux control of many reactions, direct influence of the
feed-forward activation by GAP was not captured by this approach. The impact of such
regulatory interactions could be masked by the broad sampling range of kinetic parameters
and metabolite concentrations, which in turn could be refined by incorporating additional
experimental data (metabolomics and proteomics) and simulating multiple metabolic states
as well as dynamic changes between them.

Both syn-F/SBPase and cn-F/SBPase were inhibited by NADPH at 3 mM, a concentration
considerably higher than reported in vivo values (~200 uM, Table S1). Intracellular NADPH
levels will accumulate if production from the light reactions are greater than the consumption
by metabolic processes, which could occur in response to sudden shifts in light and nutrient
availability (Hauf et al., 2013; Holland et al., 2015; Tanaka et al., 2021). The syn-F/SBPase is
strongly activated by DTT in vitro by the disruption of disulfide bonds in its structure, which is
presumably mediated by reduced thioredoxin in vivo (Feng et al., 2014a). The relatively
weak inhibitory effect at high NADPH could be a fine-tuning regulatory mechanism to rapidly
reduce flux in the Calvin cycle and/or in glycogen synthesis upon sudden nutrient depletion
or metabolic perturbation. However, to determine the relevance of this regulation on
autotrophic metabolism, mutational studies or dynamic metabolic modeling is required.

The inhibition of syn-F/SBPase by AMP has been reported previously, though its role in
Calvin cycle regulation is not clear (Feng et al., 2014a). AMP levels have been shown to
increase above K avp during the first 30 minutes of carbon limitation, which would be
expected to inactivate F/SBPase and the Calvin cycle (Selim et al., 2018). Post-translational
inactivation of F/SBPase could facilitate a rapid downregulation of the Calvin cycle in the
early response to carbon limitation, and enable the mobilization of glycogen via the pentose
phosphate pathway towards TCA cycle intermediates. Replenishment of TCA cycle
intermediates is important for sustained amino acid synthesis that supports 2PG
detoxification via the C2 cycle (Eisenhut et al., 2008). Cn-F/SBPase was considerably less
sensitive to AMP. The proposed involvement of AMP-inhibited syn-F/SBPase during
inorganic carbon limitation is presumably less relevant in Cupriavidus, since this bacterium
can utilize a range of organic carbon substrates in its soil habitat (Park et al., 2011).
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Interactions detected by LiP-SMap are not always direct, but can arise from secondary
effects of metabolite addition, such as Mg?* chelation. Metabolite chelation of Mg?* ions likely
explains the high number of interactions observed for e.g. ATP, GTP, and citrate.
Wide-spread interactions detected for GAP could be due to its reactivity as an aldehyde,
since glyceraldehyde has been shown to form Schiff-base adducts with lysine residues on
carbonmonoxyhemoglobin in vitro (Acharya and Manning, 1980). However, covalent
modification on proteins by GAP has not been reported. Indirect effects may also occur from
enzymatic conversion of the metabolite, although the removal of endogenous cofactors from
the proteome extracts by filtration is presumed to limit such effects. Even though secondary
effects could be confounding, they may still be relevant for metabolism in vivo. For example,
excessive accumulation of citrate and ATP, which could occur during nitrogen depletion, may
inactivate ribosomes and anabolic processes. Mg®* sequestration is particularly relevant for
photosynthetic organisms, as Mg?* levels change significantly over light dark cycles (Farhat
et al., 2016; Li et al., 2020).

By quantification of individual peptides, the LiP-SMap method can provide insight into the
binding mode of metabolites to a protein, which is an extra level of information compared to
inference methods. In this respect, it may work best in tandem with other
interaction-proteomics techniques, such as thermal proteome profiling. Such information is
relevant for protein engineering strategies that seek to alter the regulatory effect of the
interaction. We demonstrated the usefulness of peptide-level data by creating an
AMP-insensitive Synechocystis F/ISBPase mutant with retained NADPH and GAP sensitivity,
by the replacement of an amino acid distant from peptides interacting with NADPH and GAP.

The qualitative assessment of the presented LiP-SMap dataset showed that the method is
capable of detecting and screening for novel metabolite-protein interactions in proteome
extracts. However, the method's sensitivity to detect existing interactions is limited by the
peptide coverage from MS. Peptide coverage could potentially be improved by optimizing
the tryptic digestion, analyzing all samples in the same MS run, and a higher degree of
chromatographic fractionation in the MS, though the latter will considerably increase the
required MS resources. The false detection rate of the current method protocol is relatively
high, as 36-74% of the interactions were not detected in repeated LiP-SMap experiments.
Lower reproducibility was observed among proteins with a high peptide coverage, which is
perhaps non-intuitive. The risk to falsely assign a protein as metabolite interacting increases
with higher peptide coverage, since a single falsely assigned interacting peptide is sufficient
to call the whole protein as interacting. It is therefore important to also improve the accuracy
of peptide quantification, and not just peptide coverage. False detections can arise if
peptides are not equally digested by proteinase K or trypsin in metabolite-treated samples
compared to control samples. Random variations in peptide digestion are difficult to avoid
due to the complexity of the protein extracts, comprising thousands of cleavage sites. A
certain degree of error is furthermore inherent to peptide quantification by MS. The influence
of random errors can be mitigated by generating a higher number of replicate pairs of
metabolite-treated and control peptide digests. Ideally, these should be generated from
separate proteome extracts and at different occasions to overcome biases. Quantification of
the effect of added metabolite over a broader concentration range can also increase
confidence in a particular interaction (Piazza et al., 2020). Furthermore, the inclusion of a
control that is not digested with proteinase K may improve the data quality because it
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enables the quantification of LiP degradations rates, which is a more direct measure of a
peptide's altered exposure after a conformational change.

Materials and methods

LiP-SMap experimental procedures

Cultivations and harvest

Cupriavidus necator strain DSMZ 428 was grown in Ralstonia Minimal Media (RMM) with
100 mM HEPES pH 7.5 under chemostat conditions in a Photon Systems Instruments
Multi-Cultivator MC-1000 OD. Each reactor tube was set up to a volume of 55 mL, ODgqq
0.05 and 3.5 g/L fructose. Once growth ceased, an inlet feed of 0.01 - 0.05 mL/min of 8 g/L
formic acid in RMM with 100 mM HEPES pH 7.5 was initiated. Cultivations were kept
running until a stable ODgy, had been observed for at least 5 doubling times.
Hydrogenophaga pseudoflava strain DSMZ 1084 were grown at 30 °C and 200 RPM in
sealed flasks of ~135 mL containing ~25 mL DSMZ media 133 and ~110 mL of gas (70% H,,
15% CO, and 15% O,) at 1 bar overpressure. Cultivations were started from overnight
pre-cultures grown on 1.5 g/L acetate and harvested during exponential growth at ODgq
~1.0. Synechocystis sp. PCC 6803 (gift from Klaas Hellingwerf, University Amsterdam) &
Synechococcus elongatus PCC7942 (from Pasteur Culture Collection, France) were grown
in BG-11 media at 1% CO, and a light intensity of ~70 pmol-s-m? in 500 mL flasks
containing 100 mL liquid until an OD,4, of ~1.0. For each microbe, four biological replicate
cultivations were performed, and immediately before harvest the replicates were pooled.
Cells were harvested by centrifugation and washed three times with cold lysis buffer before
being resuspended in a small amount of lysis buffer, snap frozen in liquid nitrogen, and
stored as aliquots in -80 °C. The cyanobacteria were exposed to light at ~ 400 ymol-s™'-m
for 5 minutes prior to snap freezing.

Proteome extraction

Frozen aliquots were thawed on ice and lysed mechanically through bead beating by a
FastPrep-24 5G lysis machine over six cycles of 45 seconds at 6.5 m/s with 30 seconds on
ice between cycles. The lysate was spun down and the supernatant was run through a Zeba
Spin Desalting Column. Protein concentration in the desalted lysate was evaluated using a
Bradford assay. The samples were kept at 4 °C throughout the procedure.

Limited proteolysis

For every experiment three sample groups were created, one with no added metabolite and
two with different concentrations of metabolite specified in Table S1. Each sample group was
prepared as four technical replicates with 1 pg/uL extracted protein. Proteinase K was
simultaneously added to all samples at a 1:100 protease to protein ratio and incubated at 25
°C for exactly 10 minutes before immediate denaturation.

Complete digestion

The protein mix was incubated at 96 °C for 3 min prior to treatment with 5% Sodium
Deoxycholate and 10 mM DTT and another 10 min at 96 °C after. The samples were then
alkylated by 10 mM lodoacetamide at RT for 30 min in the dark, after which proteases LysC
and trypsin were applied at a 1:100 protease to protein ratio and incubated at 37 °C and 400
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RPM in a thermocycler for 3 and 16 hours, respectively. Digestion was halted by addition of
formic acid to reduce pH below 2 which caused sodium deoxycholate to precipitate. Samples
were then centrifuged at 14,0009 for 10 min after which the supernatant was removed and
stored at -20 °C.

Peptide purification

Pipette tips packed with six layers of C18 matrix discs (20-200 yL; Empore SPE Discs) were
activated with acetonitrile and equilibrated with 0.1% formic acid prior to being loaded with
thawed peptide mixes. The matrix was then washed twice with one loading volume of 0.1%
formic acid before being eluted with a mixture of 4:1 ratio of acetonitrile to 0.1% formic acid.
The eluate was stored at -20 °C until analysis by LC-MS.

LC-MS analysis

Analysis was performed on a Q-exactive HF Hybrid Quadrupole-Orbitrap Mass
Spectrometer coupled with an UltiMate 3000 RSLCnano System with an EASY-Spray ion
source. 2 UL of each sample was loaded onto a C18 Acclaim PepMap 100 trap column (75
um x 2 cm, 3 um, 100 A) with a flow rate of 7 uL per min, using 3% acetonitrile, 0.1% formic
acid and 96.9% water as solvent. The samples were then separated on ES802 EASY-Spray
PepMap RSLC C18 Column (75 ym x 25 cm, 2 ym, 100A) with a flow rate of 0.7 uL per
minute for 40 minutes using a linear gradient from 1% to 32% with 95% acetonitrile, 0.1%
formic acid and 4.9% water as secondary solvent. After separation MS analysis was
performed using one full scan (resolution 30,000 at 200 m/z, mass range 300-1200 m/z)
followed by 30 MS2 DIA scans (resolution 30,000 at 200 m/z, mass range 350-1000 m/z)
with an isolation window of 10 m/z. Precursor ion fragmentation was performed with
high-energy collision-induced dissociation at an NCE of 26. The maximum injection times for
the MS1 and MS2 were 105 ms and 55 ms respectively, and the automatic gain control was
set to 3:10° and 1-10° respectively. The EncyclopeDIA and Prosit workflows were used to
generate a predicted library from a fasta file of the appropriate organisms UniProt proteome
set (C. necator: UP000008210, Synechocystis sp. PCC 6803: UP000001425,
Synechococcus elongatus sp. PCC 7942: UP000002717, H. pseudoflava: UP000293912)
against which an EncyclopeDIA search was performed to generate a list of detected
peptides.

LiP-SMap data analysis

Peptides detected in at least three replicates in every sample group were tested for
differential peptide abundance using the MSstats package (version 3.18.5) in R (version
3.6.3). For every peptide in each metabolite concentration comparison MSstats estimated
fold changes and p-values adjusted for multiple hypothesis testing (Benjamini-Hochberg
method) with a significance threshold of 0.01. A protein was considered to interact with a
metabolite supplied at low or high concentration if at least one peptide showed significant
interaction. General data and quality assessment statistics and visualizations were

generated by the pipeline available at hitps://github.com/Asplund-Samuelsson/lipsmap,
implemented in R version 4.1.1 with Tidyverse version 1.3.1.

Ortholog annotations

In order to compare metabolite-protein interaction patterns between organisms, it was
necessary to determine orthologous genes. Ortholog labels from the eggNOG database
were downloaded from UniProt (https://www.uniprot.org/) on 14 June 2021 for each protein
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in the four organisms. Version 5.0 of eggNOG was used except for proteins Q31NB2
(ENOG4108VFZ), Q31RK3 (ENOG4105KVS), and Q31RK2 (ENOG4105HKE) in
Synechococcus, which were annotated with eggNOG version 4.1. Only the 481 orthologs
found in all organisms were considered. The number of interacting proteins were counted for
each ortholog and metabolite concentration, in each organism. Furthermore, ortholog counts
were summarized into the 20 functional categories each represented by a single letter, e.qg.
“A” for “RNA processing and modification.”

Principal component analysis of interactions with orthologs

The metabolite-protein interaction patterns of orthologs were compared between metabolites
and organisms using R. The interaction per ortholog was first classified binarily so that the
interaction was 1 (one) if there was at least one interaction for the ortholog in a particular
combination of organism, metabolite, and concentration. Otherwise the interaction was
classified as 0 (zero). Orthologs without interactions were filtered out. A matrix with rows
representing organism and metabolite, and columns containing the binary interaction
classification of each ortholog, was subjected to principal component analysis (PCA; function
prcomp). The first two principal components were then plotted in order to visualize how
similar different organisms and metabolites were in terms of interaction with the full set of
orthologous genes. The PCA was performed separately for low and high metabolite
concentrations.

Clustered heatmap of interactions with orthologs

The metabolite-protein interaction patterns of orthologs, summarized per ortholog functional
category, were further inspected through visualization with a heatmap with clustered rows
and columns. The ortholog interaction counts were normalized to indicate the fraction of
interacting orthologs within each combination of functional category, organism, metabolite,
and concentration. These fractions were then used to calculate Euclidean distance (function
vegdist from library vegan) followed by clustering (ward.D2 method in function hclust), which
determined the order of functional categories (heatmap rows), and metabolites and
concentrations (heatmap columns). Organisms contributed both to row and column
clustering. Finally, the ortholog interaction fractions were plotted as heatmaps, using row and
column orders as described, with dendrograms clarifying the clustering (function ggtree from
library ggtree).

Phylogenetic analysis

We wanted to compare evolutionary relationships of Calvin cycle proteins to their interaction
patterns in the different organisms, prompting a phylogenetic analysis. Sequences for Calvin
cycle KEGG orthologs (KO) in module M00165, supplemented with transaldolase (K00616
and K13810), triose-phosphate isomerase (K01803), and ribulose-phosphate epimerase
(K01783), were downloaded from UniProt on 14 October 2021. Each set of KO sequences
were reduced in number with cd-hit version 4.8.1 (Fu et al., 2012; Li and Godzik, 2006) by
selecting the highest percent identity setting between 50% (-c 0.5) and 100% (-c 1), in 5%
steps, that resulted in fewer than 1 000 representative sequences. For each KO set, we
added any missing corresponding protein sequences in the four organisms studied here.
Sequences were aligned using mafft version 7.453 at default settings (Katoh and Standley,
2013). The alignments were then used to construct phylogenetic trees with FastTree version
2.1.11 Double precision at default settings (Price et al., 2010). NCBI taxonomy data
downloaded on 8 October 2021 was used to identify organism groups. Trees were plotted
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using phytools and ggtree in R in order to visualize the phylogenetic distribution of
sequences and metabolite interactions for the four organisms under study.
Ortholog analysis code is available at_https://github.com/Asplund-Samuelsson/lipsmap.

Cloning and transformation

The tktA gene in Synechocystis PCC 6803 and the cbbTP gene in C. necator were PCR
amplified using the primer pairs tktAF+tktAR and cbbTpF+cbbTpR respectively. The
backbone pET-28a(+) was linearized using the primer pair pETF+peTR after which the
constructs were assembled through Gibson assembly. The products were verified by
sequencing and transformed into E. coli BL21 by heat shock.

tktAF: 5-CCATTTGCTGTCCACCAGACAGTGAGGAGTTTTAAGCTTGG-3'
tktAR: 5-CCGCGCGGCAGCCATATGAACATTATGGTCGTTGCTACCC-3'
cbbTpF: 5-CCATTTGCTGTCCACCAGATCAAGCGTCCTCCAGCAG-3'
cbbTpR: 5-CCGCGCGGCAGCCATATGGAGATGAACGCACCCGAACG-3'
pETF: 5'-CATATGGCTGCCGCGCGG-3'

PETR: 5-CTGGTGGACAGCAAATGGGTCG-3'

Production and purification of recombinant F/SBPase and TKT

The mutants were cultivated in 2YT media at 37 °C and 200 RPM until OD 0.4-0.6 after
which overexpression was induced by 1 mM IPTG. The tktA gene was incubated at 37 °C for
8h after induction, whereas the cbbTP gene was incubated at 18 °C for 24 hours. Cells were
harvested by centrifugation at 4 °C and stored at -20 °C. Frozen pellets were resuspended in
3-5 mL of B-PER and incubated on a rocking table for ~30 min before centrifugation at 4,000
g. The soluble fraction was loaded onto an HisTrap Fast Flow Cytiva column (1 mL) and
washed with wash buffer (50 mM Tris-HCI, 300 mM NacCl, 20 mM imidazole, pH 7.5) prior to
elution with elution buffer (50 mM Tris-HCI, 300 mM NaCl, 500 mM imidazole, pH 7.5).
Fractions containing transketolase were combined and the buffer was exchanged to storage
buffer (50 mM Tris-HCI, pH 7.5) using a HiTrap Cytiva desalting column. The purified protein
was quantified by Bradford assay and stored at -80 °C in aliquots.

Enzyme kinetic validation of TKT metabolite interactions

Transketolase was characterized following (Brilisauer et al., 2019). The conversion of
D-ribose-5-phosphate and L-erythrulose to sedoheptulose-7-phosphate and glycolaldehyde
was measured through the consumption of NADH by alcohol dehydrogenase when reducing
glycolaldehyde to ethylene glycol. Initially, the kinetics were calculated from measurements
of reaction rates at 12 different substrate concentrations (0, 100, 200, 300, 400, 500, 600,
800, 1000, 2000, 4000, 8000 uM) in quadruplicate. Subsequently, relative comparisons of
enzyme kinetics were made as calculated from 8 different substrate concentrations (0, 100,
200, 500, 750, 1000, 2000 and 4000 pM) with and without 1 mM added metabolite. The
tested metabolites were 20G, 2PG, ATP, AMP, G6P, Citrate, Glyoxylate, Malate, NADP and
DHAP. The reaction mix contained 100 mM glycylglycine buffer pH 7.5, 5 mM MgCl, 2 mM
thiamine pyrophosphate, 0.5 mM NADH, 100 mM L-erythrulose, 10 U ADH, 2.875 ug/mL
transketolase and D-ribose-5-phosphate to a final volume of 100 uL. Absorption was
measured at 340 nm twice per minute over 30 minutes starting immediately after addition of
D-ribose-5-phosphate.

Enzyme kinetic validation of F/SBPase metabolite interactions
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To determine the effect of added metabolite on F/SBPase kinetic parameters, reaction rates
were measured at eight different substrate concentrations (0, 30, 55, 80, 110, 150, 220, 300
MM) in the presence and absence of a metabolite (+M and -M). The conversion rate of FBP
to F6P was determined from the release of inorganic phosphate over time, using a Malachite
Green (MG) assay adapted from (Vardakou et al., 2014). MG dye stock (1.55 g/L Malachite
Green oxalate salt, 3 M H,SO,) was used to prepare a fresh phosphate colorimetric
development solution prior to each experiment (400 yL MG dye stock, 125 yL ammonium
molybdate (60 mM), 10 uL Tween-20 (11% v/v)). The development solution was filtered
through a 0.2 uym syringe filter and kept in the dark. Development plates were prepared by
diluting 36 uL development solution in 100 uL buffer (50 mM Tris-Hcl, 15 mM MgCl,) in each
well. Enzyme solutions for +M and -M reaction conditions were prepared in two separate
8-tube PCR strips (VWR #732-1521 or low-protein binding) by mixing 25 L reaction buffer,
with or without metabolite (50 mM Tris-Hcl, 15 mM MgCl,, 10 mM DTT, +M/-M), with 25 uL
purified enzyme constituted in -M reaction buffer. The two strips were pre-incubated at 30 °C
for 12 minutes in a thermocycler together with two additional PCR strips containing substrate
at eight different concentrations in -M reaction buffer. Reactions were initiated by quickly
mixing 50 uL substrate with the enzyme mixture in one of the reaction strips (+M or -M),
using a multipipette. The final enzyme concentration was 0.42 and 0.15 ng/uL for
syn-F/SBPase and cn-F/SBPase, respectively. Reaction samples of 20 yL were immediately
transferred and quenched in plate wells containing development solution wells before
incubating the reaction strip at 30 °C. The initiation procedure was repeated for the second
reaction strip with a two minute delay. Samples were collected after 10, 20, and 30 minutes
after substrate addition. Each sampling event was followed by the addition of 7.5 pL sodium
citrate (34% wi/v) to stabilize the color of the development solution. Triplicate series of
phosphate standards (0-100 uM) were added to each development plate as a reference. The
plate was incubated for 20 minutes in the dark before measuring the absorbance at 620 nm
in a plate reader. For kinetic assays testing a metabolite at different concentrations, the
substrate concentration was either 60 uM (DHAP, GAP) or 300 uM (AMP, NADP), and
reaction samples were collected at the zero and 10-minute timepoints. To quantify the
amount of phosphate, background absorbance measured at time zero was first subtracted
from raw absorbance measurements. Phosphate standard series were then used to convert
absorbances to phosphate concentrations. Phosphate concentrations that were lower than
10 uM (sensitivity threshold) or that exceeded 60% of the initial substrate concentration
(10-minute time points were always kept nonetheless) were removed. Reaction rates were
calculated as the change in phosphate concentration over time using linear regression. To
determine kinetic parameters, reaction rates and substrate concentrations were fit to the Hill
equation using non-linear regression. A kinetic parameter (k.,, Ky, ny) change was
considered significant if both p < 0.05 (Student’s t-test) and a >20% change in rate was
observed in at least two of the tested substrate concentrations.

Thermal solubility shift measurements

The samples were drawn up into capillaries and inserted in a Prometheus NT.48 nanoDSF
machine set to 95% excitation power that assayed the stability of the sample while
increasing the temperature from 20 °C to 95 °C at a rate of 1 °C per minute. Transketolase
samples were prepared in 50 mM Tris-HCI pH 7.5 with 5 mM MgCl,, 2 mM TPP, 200 ng/uL
enzyme and 1 mM of metabolite. In addition, samples with and without 2 mM TPP and 10
mM DTT were also run to assay the effect of the cofactor and reductive power on protein
stability. F/SBPase samples were prepared in 50 mM Tris-HCI pH 8 with 15 mM MgCl,, 10
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mM DTT and varying concentrations of metabolite (Table 1). The effect of GAP and citrate
(0.5, and 5 mM, respectively) on syn-F/SBPase was analyzed at different MgCl,
concentrations to test whether T, changes were caused by magnesium chelation. T,
changes greater than 2 °C were considered significant.

Kinetic metabolic model

Model structure

The kinetic model for Synechocystis central carbon metabolism was based on a previous
model (Janasch et al., 2019), and expanded to cover the reactions of photorespiration,
oxidative pentose phosphate (OPP) pathway, anaplerotic reactions around acetyl-CoA and
pyruvate, as well as the TCA cycle with its forked nature. The final model contained 53
reactions connecting 57 metabolites (41 internal). Sink reactions were formulated as
irreversible Michaelis-Menten-type equations. Supply reactions followed mass action
kinetics. Two model variants were created: One base model, including only the regulatory
interactions in the previous version (Janasch et al., 2019), and one model with interactions
on F/SBPase (AMP, GAP, NADPH, CIT).

Metabolic flux distribution

The steady-state flux distribution was obtained using a genome-scale metabolic model
(GEM) of Synechocystis (Sarkar et al., 2019). All flux simulations were performed in Matlab
R2020b using the Gurobi Optimizer version 9.1.1. First, the GEM was modified by allowing
reversibility of the conversion of NADPH to NADH and replacing the two individual reactions
corresponding to Rubisco carboxylase and oxygenase by a single Rubisco reaction
representing 97% carboxylase and 3% oxygenase activity as implemented in a previous
network reconstruction (Knoop et al., 2013). Flux were constrained by ranges taken from
Gopalakrishan et al., 2018 (Gopalakrishnan et al., 2018), bicarbonate uptake was
constrained to a maximum of 3.7 mmol-gDW-"-h"' (Nogales et al., 2012). Maximizing
autotrophic growth was set as the objective function and fluxes were sampled using the
randomSampling function of the RAVEN Toolbox 2 version 2.4.3 (Wang et al., 2018) allowing
for 95% of the optimized objective value. Fluxes were manually curated to adjust the
genome-scale flux distribution to the small-scale kinetic model structure and transformed into
mM/min by multiplying with a cellular density of 434.78 g/L (E. coli, (Bennett et al., 2008)).

Metabolite concentrations

Due to the uncertainty associated with published metabolomics datasets, potential
thermodynamically feasible metabolite concentrations describing the metabolic state were
randomly sampled, as performed similarly before (Janasch et al., 2019). Metabolite
concentration ranges identified via NET analysis (Asplund-Samuelsson et al., 2018) were
adjusted to the present model structure and used as constraints for the sampling. To cover
the whole feasible solution space efficiently, a hit-and-run algorithm was employed. Starting
from a feasible metabolite concentration set (fMCS), the algorithm randomly selects a
direction and feasible step length to move through the logarithmic solution space, creating
fMCSs with each step. MDF (Noor et al., 2014) analysis followed by thermodynamic
variability analysis (Janasch et al., 2021 manuscript) was used to identify 83 fMCSs as
starting points for the random sampling. For each initial fMCS, five runs were performed with
each 1-106 steps, of which each 1000" step was recorded resulting in ~415000 fMCSs. Pool
sizes for the supply reactions were sampled in a range between 1.1x to 5x around their
corresponding metabolite concentrations, simulating fast supply (pool size close to
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metabolite concentration) and slow supply, respectively. For practical reasons 5000 fMCSs
were randomly selected to form a representative overview of the thermodynamically feasible
concentrations of the analyzed metabolic state to be used in the subsequent parameter
sampling.

Parameter Sampling

Rate equations were generally parameterized around the corresponding metabolite
concentrations by sampling the range of 0.01x to 100x metabolite concentration in
logarithmic space for Ky, values, corresponding to 99% to 1% active site saturation, as
performed previously (Janasch et al., 2019). Inhibition constants K, for the regulations
identified by LiP-SMap were sampled in a narrower range of 0.2x to 5x around the
metabolite concentrations used for the enzyme assays. For F/SBPase 50 uM, 3 mM and 5
mM were used for AMP, NADPH and CIT, respectively. For the activation of F/SBPase by
GAP, K, could maximally be reduced by 75%. Hill coefficients for FBPasewere sampled
between 1 and 2, while for SBPase the range was between 1 and 4, following the observed
difference between FBPase and SBPase reactions identified in (Feng et al., 2014a). V ax
values were calculated back from metabolite concentrations, sampled kinetic constants and
the steady-state flux distribution. For each of the 5000 fMCSs, 1000 parameter samplings
were performed, resulting in an ensemble of 5 million kinetic steady-state models to be
analyzed for stability and metabolic control.

Metabolic control analysis

The dynamic behavior of the models was analyzed by linearizing them around their
steady-state as performed previously (Janasch et al., 2019; Murabito et al., 2014), based on
(Reder, 1990), by forming the Jacobian matrix. The stability of each model in the ensemble
was evaluated by calculating the eigenvalues of the Jacobian matrix, where positive
eigenvalues cause instability. Flux control coefficients were calculated for all stable
parameter sets based on elasticities and concentration control coefficients as described in
(Janasch et al., 2019). The models and all code required to perform the kinetic modeling
analysis is available at https://github.com/MJanasch/KX_Kinetics.
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