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Abstract

The abilities of plant biologists and breeders to characterize the genetic basis of physio-
logical traits is limited by their abilities to obtain quantitative data representing precise
details of trait variation, and particularly to collect this data at a high-throughput scale
at low cost. Although deep learning methods have demonstrated unprecedented potential
to automate plant phenotyping, these methods commonly rely on large training sets that
can be time-consuming to generate. Intelligent algorithms have therefore been proposed
to enhance the productivity of these annotations and reduce human efforts. We propose
a high-throughput phenotyping system which features a Graphical User Interface (GUI)
and a novel interactive segmentation algorithm: Semantic-Guided Interactive Object
Segmentation (SGIOS). By providing a user-friendly interface and intelligent assistance
with annotation, this system offers potential to streamline and accelerate the generation
of training sets, reducing the effort required by the user. Our evaluation shows that our
proposed SGIOS model requires fewer user inputs compared to the state-of-art models
for interactive segmentation. As a case study in the use of the GUI applied for genetic
discovery in plants, we present an example of results from a preliminary genome-wide
association study (GWAS) of in planta regeneration in Populus trichocarpa (poplar). We
further demonstrate that the inclusion of semantic prior map with SGIOS can accelerate
the training process for future GWAS, using a sample of a dataset extracted from a
poplar GWAS of in vitro regeneration. The capabilities of our phenotyping system
surpass those of humans unassisted to rapidly and precisely phenotype our traits of
interest. The scalability of this system enables large-scale phenomic screens that would
otherwise be time-prohibitive, thereby providing increased power for GWAS, mutant
screens, and other studies relying on large sample sizes to characterize the genetic
basis of trait variation. Our user-friendly system can be used by researchers lacking a
computational background, thus helping to democratize the use of deep segmentation as
a tool for plant phenotyping.

Introduction

Advances in high-throughput genome sequencing and computation have enabled the
investigation of genomic variation within large populations [IH4]. In genome-wide
association studies (GWAS), statistical models are used to model relationships between
genotype and phenotype. When significant relationships appear, this can lead to the
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discovery of genetic markers and/or genes responsible for the phenotype of interest [3,5].
However, genomic sequencing capacity and precision has outstripped the ability to
produce high-quality phenomic data at scale. Phenotyping often requires individual
inspection of large numbers of samples, with statistical power depending on sample size;
for instance, as the sample size of a GWAS or mutant screen increases, the representation
of rare genetic markers increases along with the power of models to discover them [6-8|.
Sample size can be limited by the time cost of phenotyping, and both the accuracy and
precision of measuring complex phenotypes as are common in studies of plant growth
and development [9,[10]. The constraint of sample size therefore limits the insights that
can be gained from these studies. Furthermore, phenotyping by humans commonly
involves summarization of phenotypes in a manner that limits detail and subjects data
to potential biases of individuals performing phenotyping. For example, samples may be
given an ordinal or binary ”score” representing a general summary of their complex trait
or traits, which would be difficult to quantitatively measure in a simple and objective
manner. For studies similar to our case example involving plant regeneration, common
traits studied include callus size and quality [11], rates of callus differentiation into
shoot [12] and the numbers of shoots produced [13]. These are very difficult to accurately
measure without an annotation and imaging system, and their measurement will often
compromise the required sterility of in vitro cultures during sequential analyses of growth.
Comparable levels of complexity can be seen in populations of growing cancerous cells
imaged with microscopy [14},/15].

While deep learning has demonstrated unprecedented abilities for high-throughput
and precise phenotyping of complex plant traits including plant stress, disease, and
development of specific tissues, these methods generally require large training sets that
are labor-intensive to generate [16-19]. The amount of labor needed for phenotyping can
be greatly reduced by supervised deep learning, although not eliminated altogether due
to an inherent reliance on training data, which requires manual inspection and labeling
of some number of samples.

Multiple approaches have been employed to alleviate the need for large training sets
or to reduce the time cost of generating them. The number of training samples required
for desired accuracy can be reduced, for example, by employing transfer learning. With
this ubiquitous approach, users begin with a model trained for a similar task (often using
a gold-standard training set) and retrain the model using a training set for their specific
task. This re-training process tends to require relatively few annotated examples, whereas
many more would be needed if the model were not already trained for a similar task [20].
Additionally, data augmentation approaches, such as those involving image rotation or
other linear transformations, can be used to produce multiple training samples from each
image |21]. Generation of training labels is particularly laborious when research designs
require precise segmentation of image boundaries rather than simple classification of
images. In a recent study, deep segmentation of healthy and cancerous tissues relied on
a training set with precisely drawn lines separating healthy and cancerous tissue; the
labor-intensive task of producing this training set was crowdsourced among 25 medical
doctors and students [22].

As an alternative to manual drawing of segment boundaries, several established
methods and tools for annotation depend on drawing of boxes or polygons [23-26],
presenting a challenge for precisely labeling curved edges of objects such as leaves
and other plant tissues. Our system features a user-friendly web-based annotator tool
(IDEAS, Intelligent DEep Annotator for Segmentation) that applies deep segmentation
to detect boundaries of objects given positive and negative cues by the user and a
semantic prior map, thus enabling rapid and reliable labeling of objects with pixel-level
precision (Fig. |1).

Deep learning requires a massive amount of data to train a model. Generation of
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Figure 1. Annotation of an example image of a poplar stem tip undergoing
regeneration: (a) Image to be annotated. (b) Polygon-based annotation from LabelMe,
which was generated using 364 clicks precisely on the boundaries. (¢) Annotation from
IDEAS, which was generated based on 25 positive marks and 49 negative marks. This
comparison demonstrates how IDEAS can be used to produce highly precise boundaries
for objects with reduced effort.

large datasets by human unassisted may prove time-prohibitive, especially for complex
tasks. The time cost can be mitigated by the use of intelligent annotation algorithms
to simplify image annotation tasks. Much research has been dedicated to building
intelligent algorithms for automatic image annotation and building image annotation
tools [27]. Nevertheless, these algorithms fail to predict well for complex structures and

require a considerable amount of user effort to correct the incorrect model predictions.

Hence, there is a need for an efficient tool for image segmentation using an intelligent
algorithm that requires minimal user interaction and can label datasets belonging to
any distribution of data. Our system, IDEAS, facilitates labeling highly precise curved
objects with minimal labor and works well for segmenting previously unseen classes.

For the backend algorithm used in IDEAS, we propose to utilize semantic probability
maps as a prior that acts as an additional guide to our interactive object segmentation
model. The availability of strong prior information helps to guide the neural network
in producing accurate boundaries and reduces the level of user interaction needed in
providing positive and negative markers. Semantic segmentation has made tremendous
progress in the last few years and is now among the fastest and most mature algorithms
in deep learning. With state-of-the-art architectures such as DeepLab [28], PSPNet [29],
and RefineNet [30] delivering strong performance on challenging benchmarks, obtaining
semantic results for images is no longer difficult. Considering the potential for transfer
learning to reduce the amount of training data needed, we hypothesize that the user
effort required in providing clicks to guide segmentation can be reduced if segmentation
is guided by a prior generated by a model trained on a partial dataset.

Leveraging semantic information to guide the main task has been previously followed in
object detection [31}[32], dense object reconstruction [33] and interactive co-segmentation
[34] tasks. However, to the best of our knowledge, our method is the first to apply this
strategy for interactive object segmentation. We performed a benchmark experiment to
evaluate the time cost advantage of using a semantic prior map along with the user click
inputs, and found that use of the semantic prior map provides a substantial improvement
over the use of user inputs alone.

The nature of our overall system as a web-based tool offers advantages for collaborative
annotation and system administration. Multiple users can log into the system online from
personal computers, working on a server with IDEAS installed and managed centrally
by an administrator. Users benefit from the flexibility of being able to work from any
computer with internet access, while the computationally intensive task of generating
labels is assigned to a GPU on the server. Furthermore, users without a computational
background benefit from an ability to apply the system without installing and updating
software or otherwise interacting with the command line, as these tasks are handled
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centrally by an administrator.

After completion of a training set with IDEAS, a neural network is trained and used
for semantic segmentation of large numbers of images that could not be practically
annotated by humans. We use the state-of-the-art PSPNet architecture , notable for
a global pyramid pooling module that enhances model accuracy. Finally, traits computed

from segmented images provide quantitative measures of growth of distinct plant tissues.

These measures include the relative areas and counts of specific tissues, thus providing
an array of statistics biologists may choose from to represent tissue development in
downstream statistical models.

Materials and methods

IDEAS: Intelligent DEep Annotator for Segmentation
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Figure 2. Screenshot of IDEAS with one annotated image in a web browser

IDEAS (Fig. [2)) features separate front-end and back-end components. The front-end,
accessible to the user through a web browser, contains all user-facing, interactive modules.
These modules cooperate with each other to support the workflow and are implemented
through HTML, JavaScript, and jQuery. On the back-end, the Python Flask web frame-
work is used to receive requests from the front-end and return the generated object mask
for the object being annotated. IDEAS is deployed at |https://ideas.eecs.oregonstate.edu
and is accessible to the public.

The development of IDEAS enables the collection of ground truth segmentation masks,
to be used as training labels, for various types of plant images. A semantic segmentation
model can then be trained using the collected annotations to compute masks for large
sets of unseen images. Below, we introduce features of front-end, back-end, and auxiliary
functions on IDEAS.
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IDEAS: Front-end Interactive Modules
The front-end interface of IDEAS features seven different modules(Fig [3]):

@ Object and Class Panels: Our system allows the user to customize the
identity of objects and the classes they include. Fig a) shows the unfolded class
panel and object panel. The class panel displays a list of classes to be annotated.
Using the object panel, the user can define objects and their nested classes by
either 1) adding multiple classes to an object when defining the object on the
object panel, or 2) using the button ’add to’ on the class panel to add classes to
a specified object one-by-one. The intuitive design of object and class hierarchy
is influenced by applications that involve analysis of multiple, distinct parts of
given objects (e.g. distinct plant tissues such as callus or shoot, growing in each
individual sample on a petri dish (Fig[db))).

@) Toolkit: Point-and-click tools for user annotation of images include: 1) Two
types of pens, for drawing positive and negative strokes inside and outside of a
desired segment, respectively, which are used by the back-end to generate the object
mask; 2) A bounding box tool to specify a local window around a specific object
the user desires to interact with, accelerating computation time by limiting mask
computation to pixels within the box. An alert is generated recommending the
use of this tool when annotating images larger than 512 x 512; and 3) drop-down
menus allowing the user to select line width for marks drawn and to choose between
manual annotation and a deep algorithm for intelligent boundary detection.

® Mask Upload: This tool allows the user to upload a semantic mask to provide
prior information to the classifier, which can reduce the number of user clicks
required for strong performance in our deep interactive model, SGIOS. If no mask
is uploaded, the algorithm utilizes a blank mask and produces results equivalent
to those from interactive segmentation without a semantic prior map.

(@ Canvas: The central editor, implemented as an HTML5 canvas element,
provides a space for the user to apply tools from the toolkit (rectangle and
positive/negative strokes) on a given image. Zooming functions can be used to
assist in fine-scale drawing or to provide a broad overview of an image. The user
begins interaction with the canvas first by selecting a nested class for an object
of interest (from the object panel), then draws positive and negative strokes and
clicks the ’process’ button in the toolkit module. For quick and efficient labeling,
these strokes are usually drawn as short lines. Each pixel in a stroke is considered
an example of a pixel inside (positive strokes) or outside (negative strokes) the
segment of interest. The user-provided marks are sent to the back-end, which
detects boundaries and returns a mask to be superimposed over the segment of
interest in the graphical front-end. This superimposed mask appears with a white
line on boundaries, with inner pixels visualized with a user-selected level of opacity
(set using the opacity ranger), allowing the user to see both masks and underlying
objects. If the mask does not provide an adequate fit for the desired segment,
the user can provide additional positive and negative strokes and again click the
‘process’ button to generate a new mask.

®) History Panel: A history panel is integrated into the annotator to help the
user recognize and correct errors. Users can view independent steps of annotation
in this panel and correct mistakes with undo and redo functions. The history panel
also provides a ’clear’ button to erase all operations and return to the initial state.
Three additional buttons allow the user to undo specific toolkit actions. These
include ’clearPositivePoints’ and ’clearNegativePoints’ buttons to erase all ‘posPen’
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and 'negPen’ marks, as well as a ’clearRectangle’ button to remove the bounding
box set with the rectangle tool.

®) File Gallery: A file gallery is displayed underneath the canvas, providing an
overview of all uploaded images. Images can be uploaded by two methods: first,
through the image upload prompt seen when logging into IDEAS, or alternatively,
using the ’addImage’ button to add images as annotation is ongoing. Using either
method, images can be uploaded either independently or in batches and their
thumbnails are displayed in the file gallery. To switch the image being annotated
in the ’Canvas’ panel, the user can simply click the thumbnail of another image.
To remove all uploaded images from the gallery, the user clicks the ’clear gallery’
button.

(M Importing and Exporting: Upon completing annotation for a given image,
the user can save the labels (generated mask) as a PNG image file with labels
recorded in any of three formats: with segments colored by either their class or
object, or both. An example is shown in Figc)—(e). The customized class and
object hierarchy information can be exported as a .txt file and re-imported during
later annotation sessions, a quick and simple means of maintaining consistent
settings over the course of an experiment. Furthermore, the user has an option to
import or export a .txt file containing the entire annotation environment, including
all user actions and generated masks. This feature enables the user to restore the
environment to update annotations at a later time.
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Figure 3. Front-end modules in IDEAS

IDEAS: Back-end deep interactive algorithm

When the user clicks the 'process’ button, the front-end collects user inputs including
positive and negative strokes, the prior mask, and the bounding box, along with the
image and any pre-existing labels, and sends this data to the back-end. The back-end
then generates a mask using one of two algorithms, as selected via the 'mode’ drop-down
menu under toolkit. In manual mode, the pointer is used to mark every pixel of the
desired segment. Annotating whole images by this method can be difficult and time-
consuming, as the user is required to draw a label covering the segment of interest and
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delete

delete all delete all

(a (d) (e)
Figure 4. One annotation example: (a) Customized configuration of class and object
hierarchy. (b) RGB image. (c) (¢) RGB images with superimposed labels for class (c),
object (d), and nested object-class (e).

has no assistance in accurately drawing boundaries. Contrarily, the DL-ObjectSelect
mode which uses SGIOS provides a rapid means of automatically segmenting the selected
object when the user provides a small number of positive and negative strokes. We
demonstrate that this latter method is fast and efficient, minimizing the required inputs

and time commitment from the user. Thus, the manual mode is rarely used in practice.

SGIOS (Semantic-guided Interactive Object Segmentation). Segmentation
annotation of images presents a challenge in that every pixel must be labeled for each
training image, which could be a time-consuming process, especially in plants where
the boundaries usually cannot be expressed with simple geometric shapes. Intelligent

algorithms are needed to reduce the human effort required to produce these labels.

Here, we propose an interactive segmentation algorithm utilizing a semantic probability
map as prior information to guide the segmentation while the user provides inputs of
positive and negative clicks. The use of prior information is a strategy to guide the
deep convolutional network and provide context for the object of interest, reducing the
number of user inputs required for desired performance.

RGB Image

= I0-0[

Negative Fully Convolutional
Clicks Network

b) Positive and Negative clicks
overlayed on RGB Image

a) System
Architecture

Semantic
Segmentation
Mask

RGB Image +
Interactive Maps

Figure 5. Pipeline of the Semantic-Guided Interactive Object Segmentation Algorithm
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Fig. [5illustrates the pipeline for computing object masks after an object of interest
is labeled. The image, user-interaction pairs (positive and negative marks), and semantic
information are used as inputs for a fully convolutional network (FCN), which is trained
with the bootstrapped cross-entropy loss function to predict a binary mask of the
object. On the user interaction guided map, we calculate the pixel value u,, at
location (z,y)as the minimum Euclidean distance between (z,y) and the set of marks.
In other words, given a set of points P = {(i,5)}, where (4,j) is the point location,
Ug,y = min(i,j)ep(i - x)Q + (.] - y)2

Most CNN networks [35] for interactive object selection are trained non-iteratively,
despite the often iterative nature of refining results with additional clicks by the user.
Following the iterative training strategy proposed by ITIS [36], we choose to train our
model iteratively. Simulated initial user clicks are updated with the corrective clicks
based on the mask obtained in the previous iteration, and this information is sent to the
FCN as an input to predict the refined mask. Interactive clicks are further simulated
until the desired mask is finally obtained. Below we describe the key components in
training our interactive model, SGIOS, with simulated user clicks.

e Initial click sampling: To make our model flexible and not depend on the
location or the number of clicks, we randomly sample n positive and m negative
clicks until a total of 20 clicks are placed. To sample the positive clicks, we begin
by identifying points in the center of the object and randomly sample a point from
these. All positive sampled points lie on the object of interest and are dgcp away
from the previously sampled positive points. We first sample negative clicks on
other objects close to or touching our object of interest, and the remaining clicks
are sampled around the object. When the number of negative clicks sampled is
zero, we send a blank mask for the negative clicks and a positive click encoded
mask with clicks only on the object of interest.

e Iterative click sampling on incorrect prediction: Our iterative click sampling
strategy is similar to that proposed by ITIS [36], with modifications in the erroneous
region selection and click placement on each iteration. Below we describe the steps
for generating the correction clicks while training.

— The output prediction from the last step is compared with the ground truth
mask for the object of interest, and the incorrect pixels are grouped into
multiple clusters using the connected components.

— Instead of selecting the largest cluster on each iteration as is done with
ITIS [36], we sample R regions where the clicks should be placed from the
distribution of all regions. The distribution of regions is weighted by the
probability proportional to the number of pixels in each region.

— K points are randomly sampled from the R selected erroneous regions, where
K>=R and the total number of clicks is thresholded to 20.

— The selected clicks are encoded similarly as the initial clicks, using a Gaussian
distribution. An example of iterative click sampling is shown in Fig. [6]

e Semantic Prior Maps: The semantic prior maps were generated from an offline
semantic segmentation model. For example, in our case study, we used a Deeplabv3+
[37] model trained on plant images for segmenting a image into three categories
(stem, callus, and shoot) along with background. The multi-channel output before
the final sigmoid layer in the semantic segmentation model was output as the
semantic probability maps featuring one channel for each class. Since the semantic
prior maps are floating-point numbers on each pixel, we saved them in TIFF
format. To be noted, the users can use a pre-trained semantic model that was
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trained for the categories of interest to generate these prior maps. IDEAS does
not support online semantic model training or generating TIFF files. Users should
handle this outside of the system.

— The appropriate semantic channel is selected based on the semantic category
or categories of positive clicks. With the assumption that the user will
always place at least one positive click on the object of interest, we obtain
the semantic probability map corresponding to the category with maximal
probability at the given pixel locations. Using this approach, we can adapt to
semantic segmentation tasks with any number of categories. With inclusion
of the semantic prior map, we are often able to obtain adequate results for
interactive object segmentation with only a single positive click on the object.

— When no semantic prior map is provided, interactive object segmentation
proceeds without this information, using a blank mask. This approach is
most appropriate when producing a training set for an initial model, which
can be used for producing the semantic prior maps for the remaining dataset.

o e

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3
Figure 6. Iterative click sampling on incorrect predictions. (a) Initial
prediction when two clicks are placed on the object of interest (b)
Prediction after an additional click is sampled in the right error region (c)
Prediction after one click is sampled in each of the remaining two error
regions

IDEAS: Auxiliary functions

Beyond the fundamental workflow introduced above, we emphasize the following features
in IDEAS to enhance precision, usability and annotation speed:

e Positive/Negative Strokes We incorporated a feature to allow the user to
provide groups of positive or negative markers as strokes as an alternative to
providing single markers one click at a time. Rather than only clicking to provide
individual points as positive and negative marks, the user can move the mouse
while holding the click, drawing strokes to mark multiple pixels along a path. The
ability of the user to quickly provide many marks is valuable because segmentation
accuracy depends on the number of marks drawn.

e Quality improvement by adding more ’posPen’ or 'negPen’ strokes: We
enhanced the semantic-guided interactive object segmentation by adding a feature
that enables the user to improve the returned object mask by adding additional
positive and negative strokes and again pressing the 'process’ button. This "refine-
ment” process is integrated into IDEAS. As shown in Figl7] the accuracy of object
mask boundaries improves as additional positive/negative strokes are given by the
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user. This provides an easy and robust means for the user to produce annotations
with desired boundaries precisely labeled.

e Lock/Unlock the labeled objects: The user can lock or unlock each single
labeled nested class for an object by double-clicking it on the object panel. As
Fig[§ shows, the labeled objects cannot be modified while locked. Unlocking is
necessary before the given object can be edited again. This locking function allows
the user to annotate objects without affecting previously drawn labels of other
objects. This is particularly useful when small objects are annotated prior to
larger, nearby objects. The former objects can be locked as additional objects are
labeled, then unlocked and edited again at a later time.

Figure 7. Demo of the "refinement” process: (a) The labels from given 'posPen’ and
'negPen’ strokes is errant along the boundary. (b) User adds more strokes and the
precision of the predicted labels is highly improved. (¢) Finalized label for the object of
interest.

(b) (c)

Figure 8. Demo of lock/unlock functions. (a) The classes callus (blue) and shoot
(green) have been already labeled. (b) If callus and shoot are locked, annotation of the
new object, stem (red) cannot change their labels. (c) If callus and shoot are unlocked,
annotation of stem changes their labels.

Results

In this section, we first showed the efficiency and accuracy of SGIOS on the Pascal
vOC dataset and the Computer Vision Problems in Plants Phenotyping (CVPPP)
leaf segmentation challenge (LSC) dataset . Then we showed the performance
of IDEAS with conducting a preliminary study with the help of an expert biologist,
who helped perform annotations using our GUI. Finally, we presented an application of
IDEAS for high-throughput phenotyping as part of a GWAS to identify genes controlling
regeneration in poplar.
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Semantic-guided Interactive Object Segmentation

Implementation detail: We used the model architecture proposed by ITIS [36] with the
modification of adding a semantic probability map input. To benchmark this approach,
we simulated the user clicks in training using the previously described strategies for
initial click sampling and iterative click sampling on incorrect predictions.

Training SGIOS on the augmented Pascal VOC dataset: We used the augmented
Pascal VOC [38] dataset with additional annotation from the Semantic Boundaries
Dataset (SBD) [41], which consists a total of 10,582 images for around 25,000 objects
belonging to 20 different classes in the training subset. The validation subset consists
of 3,500 object instances and was used for testing. We finetuned the SGIOS model for
50 epochs with a training batch size of 5 with an initial learning rate of le — 4. The
learning rate varied between the epochs using an exponential decay schedule with a
decay rate of 0.9 every 5 epochs and was capped to 5e — 7. To make the model flexible
and avoid over-fitting to the semantic prior map, we randomly reset this prior map to a
blank mask containing all zeros in the training stage.

1.0 A
0.9 1
0.8 1
0.7 1
0.6
3 0.5
£
041 SGIS (Ours)
0.3 ITIS
—— Graph Cut
0.2 1 — iFCN
014 — RIS
’ —— Geodesic matting
0.0 4 RandomWalker

0 2 4 6 8 10 12 14 16 18 20
Number of clicks

Figure 9. Mean IoU vs Number of clicks on Pascal VOC (Thresholded to 20)

Comparison with the state of the art models: We used the same methodologies
used in prior work [36,42| to evaluate our model’s effectiveness on Pascal VOC.

1). The average number of clicks required to reach the IoU threshold 85% on Pascal
VOC. For each object, we compute the number of clicks used until obtaining a
segmentation with intersection-over-union (IoU) larger or equal to 85%. If the
desired IoU was not reached for any object within 20 clicks, we thresholded the
number of clicks to 20. The average number of clicks was computed over all objects
in the validation dataset. Table [La| reports the result, SGIOS achieves the best
number of clicks at 3.1.

2). The mloU with different numbers of clicks. Fig. |§| shows the mloU using different
numbers of clicks over the objects in the validation dataset. This shows the benefit
of using a semantic prior map is most apparent when a smaller number of clicks is
provided. With a single click, SGIOS reaches an IoU of 74.7% and outperforms
all other models by a considerable margin, demonstrating that the use of SGIOS
reduces the number of clicks required for strong performance, thus mitigating
the time cost of annotation. Figures [S1] to[S3|show several example predictions
obtained on Pascal VOC using a single click, two clicks, and three clicks.
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Method Pascal VOC
Q@85%
Graph cut [43] 15.0
Geodesic matting [44] 14.7 Method LSC
Random walker [45] 11.3 @85%
iFCN [35] 6.8 SGIOS (Without) | 16.14
RIS-Net [46] 5.1 SGIOS (With) 15.40
DEXTR [47] 4.0
ITIS [36] 3.8 (b)
l SGIOS (Ours) ‘ 3.1 ‘
(a)

Table 1. (a) Comparison of interactive models to find the number of clicks required to
reach a threshold IoU (85%) on Pascal VOC. (b) Number of clicks required by SGIOS
to reach a threshold ToU (85%) on the LSC dataset with and without using the
semantic prior map.

Testing on the LSC dataset: We tested our SGIOS model on plant segmentation
using the LSC dataset [39,40]. We used 276 LSC images with object mask labels out of
the 347 images provided in the original dataset. We considered every leaf to be a single
object and obtain 3152 object instances from the 276 images. Table [1b| demonstrates
that using the semantic prior map provides a marginal benefit. The LSC dataset presents
a particular challenge for instance segmentation because the leaves are in very close
proximity and often obscure one another. Figures and shows some example
predictions obtained on this dataset using two and three clicks, respectively. Please note
that we used the model trained on Pascal VOC to test on this dataset.

IoU when semantic information is not present: We tested our model’s performance
in the absence of semantic prior map by passing a blank mask to the semantic mask
channel input. The average number of clicks required to reach the threshold of 85% for
this subset is 3.5. This experiment confirms that the model is flexible to the semantic
information and can perform reasonably well even if the semantic information is not
present.

A study on annotation using IDEAS

We conducted a preliminary study with the help of an expert biologist who helped
perform annotations using our GUI. The study was performed to evaluate the advantage
of using the semantic prior map for interactive image segmentation task. In particular,
the study was designed to determine whether the use of a semantic prior map helps to
save time to annotate an image.

Design of the study: A set of ten in vitro poplar tissue culture images were selected for
annotation using IDEAS. These images were randomly divided into two counterbalanced
groups as follows:

e Group 1 - The operator annotates five images without using the semantic prior

map first and then annotates the same set of images using the semantic prior map.

e Group 2 - The annotator annotates five images using the semantic prior map first
and then annotates the same set of images without using the semantic prior map.

The study took place in four sessions, with two sessions for each group. Each
session took close to two hours to complete and was conducted over two days. The
counterbalancing scheme was designed to control for the risk of bias from the learning
effect when the operator annotates a given image twice and may recall details from
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the first annotation. Annotations were performed by an expert in plant issue culture.
The participant was briefly introduced to how to use the system and was given time to
practice using the system for a day before beginning the study. Time taken to annotate
each individual explant on each plate was recorded.

Collected images: The images used were sourced from an ongoing study of in vitro
regeneration in poplar (Fig. {]), a departure from our use of in planta samples presented
for the earlier GWAS demonstration (Fig. [B). The complete dataset features a
total of 1,278 genotypes, each represented by four plates with twelve stem explants. Two
plates of each were subjected to an indirect regeneration treatment (callus induction
media followed by shoot induction media) and a direct regeneration treatment (shoot
induction with no pre-incubation on callus induction media).

Prepare the offline model for compute semantic prior map: We first randomly
sampled 100 images from the collected dataset and annotated them on IDEAS with
no semantic prior map, in which the default SGIOS model trained on Pascal VOC is
used. We then fine-tuned the model Deeplabv3+ [28] for semantic segmentation. We use
the data augmentation strategies (including random rotation, random flipping, random
cropping) to bring a performance boost. The model was fine-tuned for 25,000 iterations
using an SGD optimizer with a learning rate of 1le — 3 and batch size of 4. Afterwards,
this trained model was used to generate semantic prior maps to assist further annotation
using SGIOS, thus enabling accelerated expansion of the training set beyond the initial
100 images.

0.005
|

0.004

0.003

Density

0.002
1

= /

8 / \\

e / ﬂ

- ) T

g

= T T T T 1
-400 -200 0 200 400

Time without using a semantic mask minus time after using a semantic mask

Figure 10. Histogram of difference in time with and without using the semantic mask,
with time shown in seconds

Timing of annotation: We recorded the time taken to annotate individual explants
on the plate with and without semantic prior maps. The study consisted of annotating
ten plates where each plate had 12 explants, yielding a total of 120 paired data points.
We next performed statistical analysis to inform whether the difference in annotation
speed results from an advantage of SGIOS, or is due to random chance. We converted
the recorded time into seconds and checked the difference in time for normality using
the Shapiro-Wilk test. By observing the histogram of the difference in Fig. and the
p-value from the Shapiro test equal to 1.868¢ — 12, we concluded that the data violates
the normality assumption. Thus, we conducted a non-parametric test, the Wilcoxon
signed-rank test, on the paired data. The Wilcoxon signed-rank test indicated that
significantly less time was needed for annotation when semantic information was used, (V
= 1954.5, p-value = 9.168¢ — 06, Wilcoxon signed-rank test). Boxplots for both groups
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Figure 11. Time taken to annotate with and without the semantic mask (in seconds)

are shown in Fig. [II] The mean time taken to annotate an explant using a semantic
map is 19.99% (27.66 +/- 8.15 secs, n=120) less than the time taken to annotate an
explant without using it.

A high-throughput phenotyping system with IDEAS

We applied our system, IDEAS, as part of a GWAS of in planta regeneration in Populus
trichocarpa (poplar). In this experiment, we applied our phenotyping system toward
discovering genes that contribute to variable regeneration response. Plant materials
phenotyped included 1206 clones that represent genetic diversity from California to
British Columbia and have been propagated at a field trial location in Corvallis, OR.
Plant cuttings from a wide variety of natural genotypes [48] underwent a regeneration-
promoting hormone treatment at the cut surface while rooting in water, then were
imaged to provide RGB data for analysis. A subset of these images was annotated
using IDEAS to build a training set. A semantic segmentation model was trained and
then used to segment the remaining, unseen images. Using image processing techniques,
we calculated statistics summarizing the segmentation outputs. These statistics were
used to represent phenotypes in GWAS, revealing genetic markers associated with these
phenotypes.

Phenotype data collection and summarization:

e Imaging. The stem cuttings were collected from the field and incubated at 4° C
for 2-4 weeks. Dormant stem cuttings were placed in 50mL Falcon tubes with
water for five weeks. Once-per-week from the second week onward, the cut tip
of each stem was treated with a droplet containing the plant growth regulator
thidiazuron at 0.5mg/mL in water. Stem tips were imaged at weekly timepoints
by conventional photography using a consumer-grade camera held over plants by
a mount. As phenotyping all cuttings at once would have been impractical with
limited resources, cuttings were divided into seven groups of up to 400 cuttings
each, with groups undergoing this process one after another. This process was
performed for up to 400 cuttings at a time. The first group was the only one to
include images at the first week and did not include images for fourth and fifth
weeks. The third group was missing data for the fourth week. From the fourth
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group onward, plants were studied in replicates of two and the computed values
used for GWAS are the average of values for each replicate.

e Annotating. We collected 4896 phenotype images as described, then randomly
selected 249 images and annotated them using IDEAS. Fig. [12]shows some examples
of the annotated labels. Images were annotated to divide plant tissue into segments
yet to undergo regeneration (stem) or one of two stages of regenerated tissue (callus
or shoot). These annotated images were then randomly split into the validation
set and the training set with 24 and 225 images, respectively. In Table [2| we
summarized the content of the labeled dataset.

Items analysis result

Distribution over weeks 1~5 12.8%, 19.0%, 27.7%, 16.9%, 23.6%

Avg. percentage of annotated pixels | Shoot: 0.14%, Callus: 2.59%, Stem: 1.94%
Avg. number of isolated clusters Shoot: 0.14, Callus: 3.00, Stem: 3.72

Table 2. Distribution of annotated images

Figure 12. Examples of annotated ground truth labels overlapped with the RGB
image: callus is in red, shoot is in green, and stem is in blue.

Plant Segmentation: We then trained a semantic segmentation model with the
annotated images for computing biological traits. The details of this step are below.

e PSPNet @/ PSPNet is among the state-of-the-art architectures used for semantic
segmentation. We adopted PSPNet as the deep segmentation model and used
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ResNet-50 as its backbone network in our work and employed the following training
protocol to train the model to segment the images: We set the initial learning rate
to 0.002 and decreased it using a polynomial learning rate schedule with power
at 0.9 in each epoch. The training set was augmented with 1) random scaling to
different sizes with scales 0.55 ~ 1.0, 2) flipping horizontally with probability at
0.5, (3) random rotation with angle between —10° ~ 10° . We trained the model
for 60 epochs with batch size of 4 and weight decay of 4e — 4. To be noted, PSPNet
can be replaced with other semantic segmentation model without affecting the
phenotyping system pipeline.

Metric. To verify the performance on semantic segmentation, we apply the IoU
(intersection over union) metric, which is computed as M. Here, we report
red U GT )

the IoU for each class as well as the mean IoU over all classes.

Experiment 1. Our research dataset of images of regenerating plants features
a relatively small number of classes (stem, callus and shoot) found in a limited
number of contexts, unlike highly complex datasets that dominate DNN research.
Considering this together with reported successes of random forest in segment-
ing plant tissues [49./50], we compared the performance of random forests and
PSPNet [29] in segmenting our plant images. PSPNet [29] outperformed random
forests by a margin of approximately 30% IoU for each class of interest in the vali-
dation dataset (Tabld3)). Furthermore, PSPNet yields a lesser difference between
training and validation IoU than was seen with random forests, suggesting that
the deep architecture of PSPNet [29] better captures high-level features and avoids
overfitting.

Experiment 2. To gain insight into an appropriate number of training samples for
use in our workflow, we explored the relationship between the number of training
examples and the quality of segmentation. We trained six different models using 20,
40, 60, 80, 100, and 120 images randomly selected from our training set and tested
each model’s performance using the same validation set of 20 images. As shown in
Fig[13] the Mean IoU increased significantly as the training sample size increased
to 40, 60, and 80. As the sample size increases to 100 and further, additional
increases in Mean IoU become markedly diminished but may remain significant
and valuable for applications that benefit from high precision. In summary, the
deep learning models’ performance relies heavily on the size of the training set,
and the inclusion of additional images can almost always be expected to improve
the quality of segmentation results. These results demonstrate the importance of
a substantial training set for semantic segmentation, underscoring the value in
developing efficient and intelligent interactive image segmentation algorithms and
annotation tools such as IDEAS.

Method Dataset | Background | Stem | Callus | Shoot | mIOU
RF [50] train. 94.62% 69.83% | 38.75% | 40.82% | 61.00%
RF |50] val. 93.83% 57.67% | 20.92% | 39.36% | 52.95%
PSPNet [29) train. 99%.35 89.76% | 73.96% | 74.36% | 84.36%
PSPNet |29] val. 99.36% 88.14% | 61.95% | 67.40% | 79.21%

Table 3. Segmentation IoU score (in %) on the training and validation
dataset.

Biological traits: After the semantic segmentation model was trained on the collected
training set, we used it to predict labels given unseen images. Next, we calculate the
statistic, relative area, which represents the development of specific tissues in each image,
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Mean loU Score vs Number of training examples
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Figure 13. The Mean IoU for different number of training examples.

and used these in our downstream models for GWAS. Computation of relative area is
shown in eq[2}

Area, = Z]l{c}(l(x,y)) (1)

Area,
RArea, = S Arca, (2)
Where [ is the semantic segmentation from the PSPNet [29] and ¢ is the category of the
tissue for which relative area is being calculated.
Association mapping: We present results from GWAS for a key trait of interest, the
area of shoot grown at the final timepoint (fifth week). In this analysis, we apply a mixed
linear model approach that is commonly used for GWAS of continuous phenotypes and
assumes normality of residuals. To avoid a severe violation of this assumption, genotypes
labeled by the model as having zero values (no shoot) were dropped and the remaining
phenotype data underwent a natural logarithm transformation. The population analyzed
in this case study consists of 326 clones for which genotype data was available and
phenotype data is nonzero.

Genotype data used for analysis was obtained from the Bioenergy Science Center at
Oak Ridge National Laboratory (https://cbi.ornl.gov/data) and filtered for minor allele
frequency and missing rates using PLINK [51]. The filtered dataset used for analysis
features approximately 5.3 million single-nucleotide polymorphisms (SNPs), each of
which are polymorphic in at least 5% of genotypes and nonmissing in at least 90%.

We employed Genome-wide Efficient Mixed Model Association (GEMMA) [52] as a
GWAS method. Mixed models are built for each SNP, explaining the phenotype as a
function of the given SNP and covariates. To control for potential confounding factors
of cutting size and population stratification, we included covariates of stem diameter,
a kinship matrix and three principle components derived from SNPs. Multiple-testing
correction performed using the Benjamini-Hochberg method was used to calculate a
p-value threshold with a false-discovery rate of 10% [53]. Putative associations with
p-values less than or equal to this threshold are reported in Fig[T4] and Table[d]

Interrogation of putative associations: To determine genes implicated by these
genetic markers, we consulted a reference Populus trichocarpa genome [54] annota-
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tion (version 3.1 available at https://phytozome-next.jgi.doe.gov) to determine relative
positions of these genetic markers to gene transcripts. To identify homologs of im-
plicated genes in better-characterized plant species, and thus gain insight into the
function of these genes, we referred to a database of Smith-Waterman alignments of
predicted peptides between P. trichocarpa and the model plant Arabidopsis thaliana
(https://phytozome-next.jgi.doe.gov).

The two candidate genes implicated by lowest p-values are related to Arabidopsis genes
with known roles in regeneration (Fig[l4and Table[d). CHALCONE SYNTHASE (CHS)
encodes a protein essential for a rate-limiting step of the biosynthesis of anthocyanin,
which may influence shoot regeneration by dual mechanisms of auxin transport regulation
and light stress protection. Loss-of-function mutations of CHS are reported to
be deficient in shoot regeneration, with a light-dependent effect . SALT-AND-
DROUGHT-INDUCED RING FINGER 1 (SDIR1) is an E3 ubiquitin ligase critical
for regulation of protein degradation downstream of the hormone abscisic acid. Loss-
of-function and overexpression lines of SDIR! display enhanced and inhibited levels
of in wvitro seedling germination, respectively . Supplementation of in vitro media
with abscisic acid has been reported to enhance in vitro regeneration in diverse plants,
particularly via the route of somatic embryogenesis [58].

Our third candidate (Potri.005G004700) is a gene of unknown function that invites
further review by biologists aiming to characterize the genetic basis of plant regeneration.
Smith-Waterman alignments reveal no Arabidopsis homolog of this gene.

TableEl shows quantitative trait loci (QTLs) with their p-values calculated by GEMMA.
Accession IDs of nearby gene candidates are reported, along with the distance of
the QTL from each gene. The most similar Arabidopsis homolog is shown for each
candidate gene, along with the similarity as calculated by Smith-Waterman alignment.
Chr14:2487581 appears between two genes and both of these possible causative genes
are listed. Potri.005G004700 is implicated by two significant QTLs.

- |0910(P)

T T T T T T T T T T T T T T T T T T T T
Chr 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19

Figure 14. This Manhattan plot shows the significance of genetic markers in models
explaining the shoot regeneration phenotype as a function of each marker. The blue line
represents a threshold for a false discovery rate of 10%, calculated by the
Benjamini-Hochburg method [53).

Discussion

While supervised deep learning has demonstrated great power for diverse image tasks,
the potential for this technology to be applied to specific tasks is constrained by the
abilities of users to produce sufficient training data. Moreover, for plant biology and
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Table 4. QTLs, implicated poplar gene candidates and related Arabidopsis homologs

QTL p-value |Gene candidate Proximity Arabidopsis gene Similarity
(bp)

Chrb:284409  |5.1e-08  |Potri.005G004700 |692 None N/A

Chrb:284964  |6.5e-08  [Potri.0056G004700 (137 None N/A

Chr9:4459368 |4.7e-08 |Potri.009G034700 (1,283 AT3G55530: SALT- AND DROUGHT-85.4%

INDUCED RING FINGER1

Chr12:9509286 [1.1e-07 |Potri.012G070801 |8,961 None N/A

Chr12:15334435|4.5e-08 |Potri.012G138800 |1,155 AT5G13930: CHALCONE SYNTHASE (83.0%

Chr14:2487581 |5.5e-08 |[Potri.014G029200; |1,924; 2,556 |AT1G07700: Thioredoxin superfamily|88.7%;

: protein; AT5G42890: STEROL CARA

Potri.014G029300 PIER PROTEIN 2 81.3%

other fields in which researchers commonly lack a computer science background, an
essential prerequisite for the broad dissemination of deep learning is the development of
generalizable workflows with user-friendly, high-level interfaces for annotating training
data and deploying models. This combination of challenges presents a need for innovation
both in algorithm and interface design. To this end,we created a novel annotation system
tailored to the needs of plant biologists engaged in phenotyping of plant tissues during
any stage of growth or regeneration.

IDEAS enables high-throughput measurement of plant tissues, and can be easily
applied to diverse tissue types by user annotation of features of interest. A major
advantage of IDEAS is the ability to accurately define tissue object boundaries that
are highly complex and thus ignored or misidentified by common annotation methods
involving polygons or bounding boxes. Manual pixel-scale annotation can produce highly
precise boundaries, but the labor-intensiveness of this process presents an obstacle to
generating sizable training sets. Our semantic-guided interactive object segmentation
algorithm provides high precision at high speed, delivering substantial reductions to the
labor cost of generating high-quality training sets for complex traits.

Worth emphasizing is that interactive segmentation is a more complex problem than
semantic segmentation, especially where user annotation involves separate instances of a
given type of object (class). Thus, the potential for the semantic prior maps to improve
interactive segmentation has several noteworthy limitations. First, in cases where there
exist adjacent or touching objects of the same class, the separation of these objects by
the user is particularly difficult, and may not be improved by the use of a semantic prior
maps lacking instance information. Second, the performance of semantic segmentation
tends to be greater for larger objects than for smaller objects. Hence, for small objects,
a semantic prior map may provide little or no benefit to the system. These limitations
considered, the effective use of a semantic prior map to guide interactive segmentation
must include an ability to apply the prior only when it offers a performance benefit.
In a preliminary study, we examined the use of prior information and conducted a
statistical analysis to determine whether using a semantic prior map helps to accelerate
annotation. The semantic prior map was found to confer a statistically significant
increase in annotation speed of approximately 20 percent.

Finally, we demonstrated our system using the case study of a GWAS of in planta
regeneration in poplar. Top associations from this GWAS implicate genes with Ara-
bidopsis homologs that have known roles in regeneration pathways. Regeneration entails
hormone-driven processes [59] involving hormones including auxin and abscisic acid,
which are regulated by genes including CHS [55] and SDIR1 [57,/58], respectively. The
agreement between our results and established models of these genes’ roles in regeneration
suggests that our phenotyping system is effective in capturing the shoot regeneration
phenotype in our case study. Furthermore, the appearance of an unknown gene as a
putative association provides an example of how this system can contribute to genetic
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discovery.

Conclusion

We developed a robust deep segmentation phenotyping system utilizing a web-based
annotator, IDEAS, for generating ground truth datasets. Using the semantic-guided
interactive object segmentation backend, IDEAS provides an accelerated means of
labeling objects at pixel-scale with precise boundaries. Using labels generated by the
annotator, researchers can train a deep model for semantic segmentation, deploy the
model to make predictions over a large dataset and compute statistics summarizing
segments of biological interest. Downstream, GWAS revealed genetic markers associated
with traits phenotyped by computer vision. Our system can be used by plant biologists
who are interested in complex segmentation-based traits, for which generation of large
training sets may otherwise be time-prohibitive.
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Figure S1. Example predictions on Pascal VOC dataset on a single click.
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Figure S3. Example predictions on Pascal VOC dataset on three clicks.
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Figure S4. Example predictions on Leaf Segmentation Challenge (LSC)
dataset on two clicks.
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Figure S5. Example predictions on Leaf Segmentatlon Challenge (LSC)
dataset on three clicks.
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