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Abstract 1

The abilities of plant biologists and breeders to characterize the genetic basis of physio- 2

logical traits is limited by their abilities to obtain quantitative data representing precise 3

details of trait variation, and particularly to collect this data at a high-throughput scale 4

at low cost. Although deep learning methods have demonstrated unprecedented potential 5

to automate plant phenotyping, these methods commonly rely on large training sets that 6

can be time-consuming to generate. Intelligent algorithms have therefore been proposed 7

to enhance the productivity of these annotations and reduce human efforts. We propose 8

a high-throughput phenotyping system which features a Graphical User Interface (GUI) 9

and a novel interactive segmentation algorithm: Semantic-Guided Interactive Object 10

Segmentation (SGIOS). By providing a user-friendly interface and intelligent assistance 11

with annotation, this system offers potential to streamline and accelerate the generation 12

of training sets, reducing the effort required by the user. Our evaluation shows that our 13

proposed SGIOS model requires fewer user inputs compared to the state-of-art models 14

for interactive segmentation. As a case study in the use of the GUI applied for genetic 15

discovery in plants, we present an example of results from a preliminary genome-wide 16

association study (GWAS) of in planta regeneration in Populus trichocarpa (poplar). We 17

further demonstrate that the inclusion of semantic prior map with SGIOS can accelerate 18

the training process for future GWAS, using a sample of a dataset extracted from a 19

poplar GWAS of in vitro regeneration. The capabilities of our phenotyping system 20

surpass those of humans unassisted to rapidly and precisely phenotype our traits of 21

interest. The scalability of this system enables large-scale phenomic screens that would 22

otherwise be time-prohibitive, thereby providing increased power for GWAS, mutant 23

screens, and other studies relying on large sample sizes to characterize the genetic 24

basis of trait variation. Our user-friendly system can be used by researchers lacking a 25

computational background, thus helping to democratize the use of deep segmentation as 26

a tool for plant phenotyping. 27

Introduction 28

Advances in high-throughput genome sequencing and computation have enabled the 29

investigation of genomic variation within large populations [1–4]. In genome-wide 30

association studies (GWAS), statistical models are used to model relationships between 31

genotype and phenotype. When significant relationships appear, this can lead to the 32
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discovery of genetic markers and/or genes responsible for the phenotype of interest [3, 5]. 33

However, genomic sequencing capacity and precision has outstripped the ability to 34

produce high-quality phenomic data at scale. Phenotyping often requires individual 35

inspection of large numbers of samples, with statistical power depending on sample size; 36

for instance, as the sample size of a GWAS or mutant screen increases, the representation 37

of rare genetic markers increases along with the power of models to discover them [6–8]. 38

Sample size can be limited by the time cost of phenotyping, and both the accuracy and 39

precision of measuring complex phenotypes as are common in studies of plant growth 40

and development [9, 10]. The constraint of sample size therefore limits the insights that 41

can be gained from these studies. Furthermore, phenotyping by humans commonly 42

involves summarization of phenotypes in a manner that limits detail and subjects data 43

to potential biases of individuals performing phenotyping. For example, samples may be 44

given an ordinal or binary ”score” representing a general summary of their complex trait 45

or traits, which would be difficult to quantitatively measure in a simple and objective 46

manner. For studies similar to our case example involving plant regeneration, common 47

traits studied include callus size and quality [11], rates of callus differentiation into 48

shoot [12] and the numbers of shoots produced [13]. These are very difficult to accurately 49

measure without an annotation and imaging system, and their measurement will often 50

compromise the required sterility of in vitro cultures during sequential analyses of growth. 51

Comparable levels of complexity can be seen in populations of growing cancerous cells 52

imaged with microscopy [14,15]. 53

While deep learning has demonstrated unprecedented abilities for high-throughput 54

and precise phenotyping of complex plant traits including plant stress, disease, and 55

development of specific tissues, these methods generally require large training sets that 56

are labor-intensive to generate [16–19]. The amount of labor needed for phenotyping can 57

be greatly reduced by supervised deep learning, although not eliminated altogether due 58

to an inherent reliance on training data, which requires manual inspection and labeling 59

of some number of samples. 60

Multiple approaches have been employed to alleviate the need for large training sets 61

or to reduce the time cost of generating them. The number of training samples required 62

for desired accuracy can be reduced, for example, by employing transfer learning. With 63

this ubiquitous approach, users begin with a model trained for a similar task (often using 64

a gold-standard training set) and retrain the model using a training set for their specific 65

task. This re-training process tends to require relatively few annotated examples, whereas 66

many more would be needed if the model were not already trained for a similar task [20]. 67

Additionally, data augmentation approaches, such as those involving image rotation or 68

other linear transformations, can be used to produce multiple training samples from each 69

image [21]. Generation of training labels is particularly laborious when research designs 70

require precise segmentation of image boundaries rather than simple classification of 71

images. In a recent study, deep segmentation of healthy and cancerous tissues relied on 72

a training set with precisely drawn lines separating healthy and cancerous tissue; the 73

labor-intensive task of producing this training set was crowdsourced among 25 medical 74

doctors and students [22]. 75

As an alternative to manual drawing of segment boundaries, several established 76

methods and tools for annotation depend on drawing of boxes or polygons [23–26], 77

presenting a challenge for precisely labeling curved edges of objects such as leaves 78

and other plant tissues. Our system features a user-friendly web-based annotator tool 79

(IDEAS, Intelligent DEep Annotator for Segmentation) that applies deep segmentation 80

to detect boundaries of objects given positive and negative cues by the user and a 81

semantic prior map, thus enabling rapid and reliable labeling of objects with pixel-level 82

precision (Fig. 1). 83

Deep learning requires a massive amount of data to train a model. Generation of 84

December 9, 2012 2/27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.11.483823doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483823
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) (b) (c)

Figure 1. Annotation of an example image of a poplar stem tip undergoing
regeneration: (a) Image to be annotated. (b) Polygon-based annotation from LabelMe,
which was generated using 364 clicks precisely on the boundaries. (c) Annotation from
IDEAS, which was generated based on 25 positive marks and 49 negative marks. This
comparison demonstrates how IDEAS can be used to produce highly precise boundaries
for objects with reduced effort.

large datasets by human unassisted may prove time-prohibitive, especially for complex 85

tasks. The time cost can be mitigated by the use of intelligent annotation algorithms 86

to simplify image annotation tasks. Much research has been dedicated to building 87

intelligent algorithms for automatic image annotation and building image annotation 88

tools [27]. Nevertheless, these algorithms fail to predict well for complex structures and 89

require a considerable amount of user effort to correct the incorrect model predictions. 90

Hence, there is a need for an efficient tool for image segmentation using an intelligent 91

algorithm that requires minimal user interaction and can label datasets belonging to 92

any distribution of data. Our system, IDEAS, facilitates labeling highly precise curved 93

objects with minimal labor and works well for segmenting previously unseen classes. 94

For the backend algorithm used in IDEAS, we propose to utilize semantic probability 95

maps as a prior that acts as an additional guide to our interactive object segmentation 96

model. The availability of strong prior information helps to guide the neural network 97

in producing accurate boundaries and reduces the level of user interaction needed in 98

providing positive and negative markers. Semantic segmentation has made tremendous 99

progress in the last few years and is now among the fastest and most mature algorithms 100

in deep learning. With state-of-the-art architectures such as DeepLab [28], PSPNet [29], 101

and RefineNet [30] delivering strong performance on challenging benchmarks, obtaining 102

semantic results for images is no longer difficult. Considering the potential for transfer 103

learning to reduce the amount of training data needed, we hypothesize that the user 104

effort required in providing clicks to guide segmentation can be reduced if segmentation 105

is guided by a prior generated by a model trained on a partial dataset. 106

Leveraging semantic information to guide the main task has been previously followed in 107

object detection [31,32], dense object reconstruction [33] and interactive co-segmentation 108

[34] tasks. However, to the best of our knowledge, our method is the first to apply this 109

strategy for interactive object segmentation. We performed a benchmark experiment to 110

evaluate the time cost advantage of using a semantic prior map along with the user click 111

inputs, and found that use of the semantic prior map provides a substantial improvement 112

over the use of user inputs alone. 113

The nature of our overall system as a web-based tool offers advantages for collaborative 114

annotation and system administration. Multiple users can log into the system online from 115

personal computers, working on a server with IDEAS installed and managed centrally 116

by an administrator. Users benefit from the flexibility of being able to work from any 117

computer with internet access, while the computationally intensive task of generating 118

labels is assigned to a GPU on the server. Furthermore, users without a computational 119

background benefit from an ability to apply the system without installing and updating 120

software or otherwise interacting with the command line, as these tasks are handled 121
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centrally by an administrator. 122

After completion of a training set with IDEAS, a neural network is trained and used 123

for semantic segmentation of large numbers of images that could not be practically 124

annotated by humans. We use the state-of-the-art PSPNet architecture [29], notable for 125

a global pyramid pooling module that enhances model accuracy. Finally, traits computed 126

from segmented images provide quantitative measures of growth of distinct plant tissues. 127

These measures include the relative areas and counts of specific tissues, thus providing 128

an array of statistics biologists may choose from to represent tissue development in 129

downstream statistical models. 130

Materials and methods 131

Figure 2. Screenshot of IDEAS with one annotated image in a web browser

IDEAS (Fig. 2) features separate front-end and back-end components. The front-end, 132

accessible to the user through a web browser, contains all user-facing, interactive modules. 133

These modules cooperate with each other to support the workflow and are implemented 134

through HTML, JavaScript, and jQuery. On the back-end, the Python Flask web frame- 135

work is used to receive requests from the front-end and return the generated object mask 136

for the object being annotated. IDEAS is deployed at https://ideas.eecs.oregonstate.edu 137

and is accessible to the public. 138

The development of IDEAS enables the collection of ground truth segmentation masks, 139

to be used as training labels, for various types of plant images. A semantic segmentation 140

model can then be trained using the collected annotations to compute masks for large 141

sets of unseen images. Below, we introduce features of front-end, back-end, and auxiliary 142

functions on IDEAS. 143
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IDEAS: Front-end Interactive Modules 144

The front-end interface of IDEAS features seven different modules(Fig 3): 145

1○ Object and Class Panels: Our system allows the user to customize the 146

identity of objects and the classes they include. Fig 4(a) shows the unfolded class 147

panel and object panel. The class panel displays a list of classes to be annotated. 148

Using the object panel, the user can define objects and their nested classes by 149

either 1) adding multiple classes to an object when defining the object on the 150

object panel, or 2) using the button ’add to’ on the class panel to add classes to 151

a specified object one-by-one. The intuitive design of object and class hierarchy 152

is influenced by applications that involve analysis of multiple, distinct parts of 153

given objects (e.g. distinct plant tissues such as callus or shoot, growing in each 154

individual sample on a petri dish (Fig.4(b))). 155

2○ Toolkit: Point-and-click tools for user annotation of images include: 1) Two 156

types of pens, for drawing positive and negative strokes inside and outside of a 157

desired segment, respectively, which are used by the back-end to generate the object 158

mask; 2) A bounding box tool to specify a local window around a specific object 159

the user desires to interact with, accelerating computation time by limiting mask 160

computation to pixels within the box. An alert is generated recommending the 161

use of this tool when annotating images larger than 512 × 512; and 3) drop-down 162

menus allowing the user to select line width for marks drawn and to choose between 163

manual annotation and a deep algorithm for intelligent boundary detection. 164

3○ Mask Upload: This tool allows the user to upload a semantic mask to provide 165

prior information to the classifier, which can reduce the number of user clicks 166

required for strong performance in our deep interactive model, SGIOS. If no mask 167

is uploaded, the algorithm utilizes a blank mask and produces results equivalent 168

to those from interactive segmentation without a semantic prior map. 169

4○ Canvas: The central editor, implemented as an HTML5 canvas element, 170

provides a space for the user to apply tools from the toolkit (rectangle and 171

positive/negative strokes) on a given image. Zooming functions can be used to 172

assist in fine-scale drawing or to provide a broad overview of an image. The user 173

begins interaction with the canvas first by selecting a nested class for an object 174

of interest (from the object panel), then draws positive and negative strokes and 175

clicks the ’process’ button in the toolkit module. For quick and efficient labeling, 176

these strokes are usually drawn as short lines. Each pixel in a stroke is considered 177

an example of a pixel inside (positive strokes) or outside (negative strokes) the 178

segment of interest. The user-provided marks are sent to the back-end, which 179

detects boundaries and returns a mask to be superimposed over the segment of 180

interest in the graphical front-end. This superimposed mask appears with a white 181

line on boundaries, with inner pixels visualized with a user-selected level of opacity 182

(set using the opacity ranger), allowing the user to see both masks and underlying 183

objects. If the mask does not provide an adequate fit for the desired segment, 184

the user can provide additional positive and negative strokes and again click the 185

’process’ button to generate a new mask. 186

5○ History Panel: A history panel is integrated into the annotator to help the 187

user recognize and correct errors. Users can view independent steps of annotation 188

in this panel and correct mistakes with undo and redo functions. The history panel 189

also provides a ’clear’ button to erase all operations and return to the initial state. 190

Three additional buttons allow the user to undo specific toolkit actions. These 191

include ’clearPositivePoints’ and ’clearNegativePoints’ buttons to erase all ’posPen’ 192
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and ’negPen’ marks, as well as a ’clearRectangle’ button to remove the bounding 193

box set with the rectangle tool. 194

6○ File Gallery: A file gallery is displayed underneath the canvas, providing an 195

overview of all uploaded images. Images can be uploaded by two methods: first, 196

through the image upload prompt seen when logging into IDEAS, or alternatively, 197

using the ’addImage’ button to add images as annotation is ongoing. Using either 198

method, images can be uploaded either independently or in batches and their 199

thumbnails are displayed in the file gallery. To switch the image being annotated 200

in the ’Canvas’ panel, the user can simply click the thumbnail of another image. 201

To remove all uploaded images from the gallery, the user clicks the ’clear gallery’ 202

button. 203

7○ Importing and Exporting: Upon completing annotation for a given image, 204

the user can save the labels (generated mask) as a PNG image file with labels 205

recorded in any of three formats: with segments colored by either their class or 206

object, or both. An example is shown in Fig.4(c)-(e). The customized class and 207

object hierarchy information can be exported as a .txt file and re-imported during 208

later annotation sessions, a quick and simple means of maintaining consistent 209

settings over the course of an experiment. Furthermore, the user has an option to 210

import or export a .txt file containing the entire annotation environment, including 211

all user actions and generated masks. This feature enables the user to restore the 212

environment to update annotations at a later time. 213

Figure 3. Front-end modules in IDEAS

IDEAS: Back-end deep interactive algorithm 214

When the user clicks the ’process’ button, the front-end collects user inputs including 215

positive and negative strokes, the prior mask, and the bounding box, along with the 216

image and any pre-existing labels, and sends this data to the back-end. The back-end 217

then generates a mask using one of two algorithms, as selected via the ’mode’ drop-down 218

menu under toolkit. In manual mode, the pointer is used to mark every pixel of the 219

desired segment. Annotating whole images by this method can be difficult and time- 220

consuming, as the user is required to draw a label covering the segment of interest and 221
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(a)

(b) (c)

(d) (e)

Figure 4. One annotation example: (a) Customized configuration of class and object
hierarchy. (b) RGB image. (c) (e) RGB images with superimposed labels for class (c),

object (d), and nested object-class (e).

has no assistance in accurately drawing boundaries. Contrarily, the DL-ObjectSelect 222

mode which uses SGIOS provides a rapid means of automatically segmenting the selected 223

object when the user provides a small number of positive and negative strokes. We 224

demonstrate that this latter method is fast and efficient, minimizing the required inputs 225

and time commitment from the user. Thus, the manual mode is rarely used in practice. 226

SGIOS (Semantic-guided Interactive Object Segmentation). Segmentation 227

annotation of images presents a challenge in that every pixel must be labeled for each 228

training image, which could be a time-consuming process, especially in plants where 229

the boundaries usually cannot be expressed with simple geometric shapes. Intelligent 230

algorithms are needed to reduce the human effort required to produce these labels. 231

Here, we propose an interactive segmentation algorithm utilizing a semantic probability 232

map as prior information to guide the segmentation while the user provides inputs of 233

positive and negative clicks. The use of prior information is a strategy to guide the 234

deep convolutional network and provide context for the object of interest, reducing the 235

number of user inputs required for desired performance. 236

Figure 5. Pipeline of the Semantic-Guided Interactive Object Segmentation Algorithm
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Fig. 5 illustrates the pipeline for computing object masks after an object of interest 237

is labeled. The image, user-interaction pairs (positive and negative marks), and semantic 238

information are used as inputs for a fully convolutional network (FCN), which is trained 239

with the bootstrapped cross-entropy loss function to predict a binary mask of the 240

object. On the user interaction guided map, we calculate the pixel value ux,y at 241

location (x, y)as the minimum Euclidean distance between (x, y) and the set of marks. 242

In other words, given a set of points P = {(i, j)}, where (i, j) is the point location, 243

ux,y = min(i,j)∈P (i− x)2 + (j − y)2 244

Most CNN networks [35] for interactive object selection are trained non-iteratively, 245

despite the often iterative nature of refining results with additional clicks by the user. 246

Following the iterative training strategy proposed by ITIS [36], we choose to train our 247

model iteratively. Simulated initial user clicks are updated with the corrective clicks 248

based on the mask obtained in the previous iteration, and this information is sent to the 249

FCN as an input to predict the refined mask. Interactive clicks are further simulated 250

until the desired mask is finally obtained. Below we describe the key components in 251

training our interactive model, SGIOS, with simulated user clicks. 252

• Initial click sampling: To make our model flexible and not depend on the 253

location or the number of clicks, we randomly sample n positive and m negative 254

clicks until a total of 20 clicks are placed. To sample the positive clicks, we begin 255

by identifying points in the center of the object and randomly sample a point from 256

these. All positive sampled points lie on the object of interest and are dstep away 257

from the previously sampled positive points. We first sample negative clicks on 258

other objects close to or touching our object of interest, and the remaining clicks 259

are sampled around the object. When the number of negative clicks sampled is 260

zero, we send a blank mask for the negative clicks and a positive click encoded 261

mask with clicks only on the object of interest. 262

• Iterative click sampling on incorrect prediction: Our iterative click sampling 263

strategy is similar to that proposed by ITIS [36], with modifications in the erroneous 264

region selection and click placement on each iteration. Below we describe the steps 265

for generating the correction clicks while training. 266

– The output prediction from the last step is compared with the ground truth 267

mask for the object of interest, and the incorrect pixels are grouped into 268

multiple clusters using the connected components. 269

– Instead of selecting the largest cluster on each iteration as is done with 270

ITIS [36], we sample R regions where the clicks should be placed from the 271

distribution of all regions. The distribution of regions is weighted by the 272

probability proportional to the number of pixels in each region. 273

– K points are randomly sampled from the R selected erroneous regions, where 274

K>=R and the total number of clicks is thresholded to 20. 275

– The selected clicks are encoded similarly as the initial clicks, using a Gaussian 276

distribution. An example of iterative click sampling is shown in Fig. 6. 277

• Semantic Prior Maps: The semantic prior maps were generated from an offline 278

semantic segmentation model. For example, in our case study, we used a Deeplabv3+ 279

[37] model trained on plant images for segmenting a image into three categories 280

(stem, callus, and shoot) along with background. The multi-channel output before 281

the final sigmoid layer in the semantic segmentation model was output as the 282

semantic probability maps featuring one channel for each class. Since the semantic 283

prior maps are floating-point numbers on each pixel, we saved them in TIFF 284

format. To be noted, the users can use a pre-trained semantic model that was 285
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trained for the categories of interest to generate these prior maps. IDEAS does 286

not support online semantic model training or generating TIFF files. Users should 287

handle this outside of the system. 288

– The appropriate semantic channel is selected based on the semantic category 289

or categories of positive clicks. With the assumption that the user will 290

always place at least one positive click on the object of interest, we obtain 291

the semantic probability map corresponding to the category with maximal 292

probability at the given pixel locations. Using this approach, we can adapt to 293

semantic segmentation tasks with any number of categories. With inclusion 294

of the semantic prior map, we are often able to obtain adequate results for 295

interactive object segmentation with only a single positive click on the object. 296

– When no semantic prior map is provided, interactive object segmentation 297

proceeds without this information, using a blank mask. This approach is 298

most appropriate when producing a training set for an initial model, which 299

can be used for producing the semantic prior maps for the remaining dataset. 300

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 6. Iterative click sampling on incorrect predictions. (a) Initial
prediction when two clicks are placed on the object of interest (b)
Prediction after an additional click is sampled in the right error region (c)
Prediction after one click is sampled in each of the remaining two error
regions

IDEAS: Auxiliary functions 301

Beyond the fundamental workflow introduced above, we emphasize the following features 302

in IDEAS to enhance precision, usability and annotation speed: 303

• Positive/Negative Strokes We incorporated a feature to allow the user to 304

provide groups of positive or negative markers as strokes as an alternative to 305

providing single markers one click at a time. Rather than only clicking to provide 306

individual points as positive and negative marks, the user can move the mouse 307

while holding the click, drawing strokes to mark multiple pixels along a path. The 308

ability of the user to quickly provide many marks is valuable because segmentation 309

accuracy depends on the number of marks drawn. 310

• Quality improvement by adding more ’posPen’ or ’negPen’ strokes: We 311

enhanced the semantic-guided interactive object segmentation by adding a feature 312

that enables the user to improve the returned object mask by adding additional 313

positive and negative strokes and again pressing the ’process’ button. This ”refine- 314

ment” process is integrated into IDEAS. As shown in Fig.7, the accuracy of object 315

mask boundaries improves as additional positive/negative strokes are given by the 316
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user. This provides an easy and robust means for the user to produce annotations 317

with desired boundaries precisely labeled. 318

• Lock/Unlock the labeled objects: The user can lock or unlock each single 319

labeled nested class for an object by double-clicking it on the object panel. As 320

Fig.8 shows, the labeled objects cannot be modified while locked. Unlocking is 321

necessary before the given object can be edited again. This locking function allows 322

the user to annotate objects without affecting previously drawn labels of other 323

objects. This is particularly useful when small objects are annotated prior to 324

larger, nearby objects. The former objects can be locked as additional objects are 325

labeled, then unlocked and edited again at a later time. 326

(a) (b) (c)

Figure 7. Demo of the ”refinement” process: (a) The labels from given ’posPen’ and
’negPen’ strokes is errant along the boundary. (b) User adds more strokes and the
precision of the predicted labels is highly improved. (c) Finalized label for the object of
interest.

(a) (b) (c)

Figure 8. Demo of lock/unlock functions. (a) The classes callus (blue) and shoot
(green) have been already labeled. (b) If callus and shoot are locked, annotation of the
new object, stem (red) cannot change their labels. (c) If callus and shoot are unlocked,
annotation of stem changes their labels.

Results 327

In this section, we first showed the efficiency and accuracy of SGIOS on the Pascal 328

VOC [38] dataset and the Computer Vision Problems in Plants Phenotyping (CVPPP) 329

leaf segmentation challenge (LSC) dataset [39, 40]. Then we showed the performance 330

of IDEAS with conducting a preliminary study with the help of an expert biologist, 331

who helped perform annotations using our GUI. Finally, we presented an application of 332

IDEAS for high-throughput phenotyping as part of a GWAS to identify genes controlling 333

regeneration in poplar. 334
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Semantic-guided Interactive Object Segmentation 335

Implementation detail: We used the model architecture proposed by ITIS [36] with the 336

modification of adding a semantic probability map input. To benchmark this approach, 337

we simulated the user clicks in training using the previously described strategies for 338

initial click sampling and iterative click sampling on incorrect predictions. 339

Training SGIOS on the augmented Pascal VOC dataset: We used the augmented 340

Pascal VOC [38] dataset with additional annotation from the Semantic Boundaries 341

Dataset (SBD) [41], which consists a total of 10,582 images for around 25,000 objects 342

belonging to 20 different classes in the training subset. The validation subset consists 343

of 3,500 object instances and was used for testing. We finetuned the SGIOS model for 344

50 epochs with a training batch size of 5 with an initial learning rate of 1e − 4. The 345

learning rate varied between the epochs using an exponential decay schedule with a 346

decay rate of 0.9 every 5 epochs and was capped to 5e− 7. To make the model flexible 347

and avoid over-fitting to the semantic prior map, we randomly reset this prior map to a 348

blank mask containing all zeros in the training stage. 349

Figure 9. Mean IoU vs Number of clicks on Pascal VOC (Thresholded to 20)

Comparison with the state of the art models: We used the same methodologies 350

used in prior work [36,42] to evaluate our model’s effectiveness on Pascal VOC. 351

1). The average number of clicks required to reach the IoU threshold 85% on Pascal 352

VOC. For each object, we compute the number of clicks used until obtaining a 353

segmentation with intersection-over-union (IoU) larger or equal to 85%. If the 354

desired IoU was not reached for any object within 20 clicks, we thresholded the 355

number of clicks to 20. The average number of clicks was computed over all objects 356

in the validation dataset. Table 1a reports the result, SGIOS achieves the best 357

number of clicks at 3.1. 358

2). The mIoU with different numbers of clicks. Fig. 9 shows the mIoU using different 359

numbers of clicks over the objects in the validation dataset. This shows the benefit 360

of using a semantic prior map is most apparent when a smaller number of clicks is 361

provided. With a single click, SGIOS reaches an IoU of 74.7% and outperforms 362

all other models by a considerable margin, demonstrating that the use of SGIOS 363

reduces the number of clicks required for strong performance, thus mitigating 364

the time cost of annotation. Figures S1 to S3 show several example predictions 365

obtained on Pascal VOC using a single click, two clicks, and three clicks. 366
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Method Pascal VOC
@85%

Graph cut [43] 15.0
Geodesic matting [44] 14.7
Random walker [45] 11.3

iFCN [35] 6.8
RIS-Net [46] 5.1
DEXTR [47] 4.0
ITIS [36] 3.8

SGIOS (Ours) 3.1

(a)

Method LSC
@85%

SGIOS (Without) 16.14
SGIOS (With) 15.40

(b)

Table 1. (a) Comparison of interactive models to find the number of clicks required to
reach a threshold IoU (85%) on Pascal VOC. (b) Number of clicks required by SGIOS
to reach a threshold IoU (85%) on the LSC dataset with and without using the
semantic prior map.

Testing on the LSC dataset: We tested our SGIOS model on plant segmentation 367

using the LSC dataset [39, 40]. We used 276 LSC images with object mask labels out of 368

the 347 images provided in the original dataset. We considered every leaf to be a single 369

object and obtain 3152 object instances from the 276 images. Table 1b demonstrates 370

that using the semantic prior map provides a marginal benefit. The LSC dataset presents 371

a particular challenge for instance segmentation because the leaves are in very close 372

proximity and often obscure one another. Figures S4 and S5 shows some example 373

predictions obtained on this dataset using two and three clicks, respectively. Please note 374

that we used the model trained on Pascal VOC to test on this dataset. 375

IoU when semantic information is not present: We tested our model’s performance 376

in the absence of semantic prior map by passing a blank mask to the semantic mask 377

channel input. The average number of clicks required to reach the threshold of 85% for 378

this subset is 3.5. This experiment confirms that the model is flexible to the semantic 379

information and can perform reasonably well even if the semantic information is not 380

present. 381

A study on annotation using IDEAS 382

We conducted a preliminary study with the help of an expert biologist who helped 383

perform annotations using our GUI. The study was performed to evaluate the advantage 384

of using the semantic prior map for interactive image segmentation task. In particular, 385

the study was designed to determine whether the use of a semantic prior map helps to 386

save time to annotate an image. 387

Design of the study: A set of ten in vitro poplar tissue culture images were selected for 388

annotation using IDEAS. These images were randomly divided into two counterbalanced 389

groups as follows: 390

• Group 1 - The operator annotates five images without using the semantic prior 391

map first and then annotates the same set of images using the semantic prior map. 392

• Group 2 - The annotator annotates five images using the semantic prior map first 393

and then annotates the same set of images without using the semantic prior map. 394

The study took place in four sessions, with two sessions for each group. Each 395

session took close to two hours to complete and was conducted over two days. The 396

counterbalancing scheme was designed to control for the risk of bias from the learning 397

effect when the operator annotates a given image twice and may recall details from 398
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the first annotation. Annotations were performed by an expert in plant issue culture. 399

The participant was briefly introduced to how to use the system and was given time to 400

practice using the system for a day before beginning the study. Time taken to annotate 401

each individual explant on each plate was recorded. 402

Collected images: The images used were sourced from an ongoing study of in vitro 403

regeneration in poplar (Fig. 4), a departure from our use of in planta samples presented 404

for the earlier GWAS demonstration (Fig. 1, 2, 3). The complete dataset features a 405

total of 1,278 genotypes, each represented by four plates with twelve stem explants. Two 406

plates of each were subjected to an indirect regeneration treatment (callus induction 407

media followed by shoot induction media) and a direct regeneration treatment (shoot 408

induction with no pre-incubation on callus induction media). 409

Prepare the offline model for compute semantic prior map: We first randomly 410

sampled 100 images from the collected dataset and annotated them on IDEAS with 411

no semantic prior map, in which the default SGIOS model trained on Pascal VOC is 412

used. We then fine-tuned the model Deeplabv3+ [28] for semantic segmentation. We use 413

the data augmentation strategies (including random rotation, random flipping, random 414

cropping) to bring a performance boost. The model was fine-tuned for 25,000 iterations 415

using an SGD optimizer with a learning rate of 1e− 3 and batch size of 4. Afterwards, 416

this trained model was used to generate semantic prior maps to assist further annotation 417

using SGIOS, thus enabling accelerated expansion of the training set beyond the initial 418

100 images. 419

Figure 10. Histogram of difference in time with and without using the semantic mask,
with time shown in seconds
Timing of annotation: We recorded the time taken to annotate individual explants 420

on the plate with and without semantic prior maps. The study consisted of annotating 421

ten plates where each plate had 12 explants, yielding a total of 120 paired data points. 422

We next performed statistical analysis to inform whether the difference in annotation 423

speed results from an advantage of SGIOS, or is due to random chance. We converted 424

the recorded time into seconds and checked the difference in time for normality using 425

the Shapiro-Wilk test. By observing the histogram of the difference in Fig. 10 and the 426

p-value from the Shapiro test equal to 1.868e− 12, we concluded that the data violates 427

the normality assumption. Thus, we conducted a non-parametric test, the Wilcoxon 428

signed-rank test, on the paired data. The Wilcoxon signed-rank test indicated that 429

significantly less time was needed for annotation when semantic information was used, (V 430

= 1954.5, p-value = 9.168e− 06, Wilcoxon signed-rank test). Boxplots for both groups 431
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Figure 11. Time taken to annotate with and without the semantic mask (in seconds)

are shown in Fig. 11. The mean time taken to annotate an explant using a semantic 432

map is 19.99% (27.66 +/- 8.15 secs, n=120) less than the time taken to annotate an 433

explant without using it. 434

A high-throughput phenotyping system with IDEAS 435

We applied our system, IDEAS, as part of a GWAS of in planta regeneration in Populus 436

trichocarpa (poplar). In this experiment, we applied our phenotyping system toward 437

discovering genes that contribute to variable regeneration response. Plant materials 438

phenotyped included 1206 clones that represent genetic diversity from California to 439

British Columbia and have been propagated at a field trial location in Corvallis, OR. 440

Plant cuttings from a wide variety of natural genotypes [48] underwent a regeneration- 441

promoting hormone treatment at the cut surface while rooting in water, then were 442

imaged to provide RGB data for analysis. A subset of these images was annotated 443

using IDEAS to build a training set. A semantic segmentation model was trained and 444

then used to segment the remaining, unseen images. Using image processing techniques, 445

we calculated statistics summarizing the segmentation outputs. These statistics were 446

used to represent phenotypes in GWAS, revealing genetic markers associated with these 447

phenotypes. 448

Phenotype data collection and summarization: 449

• Imaging. The stem cuttings were collected from the field and incubated at 4◦ C 450

for 2-4 weeks. Dormant stem cuttings were placed in 50mL Falcon tubes with 451

water for five weeks. Once-per-week from the second week onward, the cut tip 452

of each stem was treated with a droplet containing the plant growth regulator 453

thidiazuron at 0.5mg/mL in water. Stem tips were imaged at weekly timepoints 454

by conventional photography using a consumer-grade camera held over plants by 455

a mount. As phenotyping all cuttings at once would have been impractical with 456

limited resources, cuttings were divided into seven groups of up to 400 cuttings 457

each, with groups undergoing this process one after another. This process was 458

performed for up to 400 cuttings at a time. The first group was the only one to 459

include images at the first week and did not include images for fourth and fifth 460

weeks. The third group was missing data for the fourth week. From the fourth 461

December 9, 2012 14/27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.11.483823doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483823
http://creativecommons.org/licenses/by-nc-nd/4.0/


group onward, plants were studied in replicates of two and the computed values 462

used for GWAS are the average of values for each replicate. 463

• Annotating. We collected 4896 phenotype images as described, then randomly 464

selected 249 images and annotated them using IDEAS. Fig. 12 shows some examples 465

of the annotated labels. Images were annotated to divide plant tissue into segments 466

yet to undergo regeneration (stem) or one of two stages of regenerated tissue (callus 467

or shoot). These annotated images were then randomly split into the validation 468

set and the training set with 24 and 225 images, respectively. In Table 2, we 469

summarized the content of the labeled dataset. 470

Items analysis result
Distribution over weeks 1∼5 12.8%, 19.0%, 27.7%, 16.9%, 23.6%
Avg. percentage of annotated pixels Shoot: 0.14%, Callus: 2.59%, Stem: 1.94%
Avg. number of isolated clusters Shoot: 0.14, Callus: 3.00, Stem: 3.72

Table 2. Distribution of annotated images

Figure 12. Examples of annotated ground truth labels overlapped with the RGB
image: callus is in red, shoot is in green, and stem is in blue.

Plant Segmentation: We then trained a semantic segmentation model with the 471

annotated images for computing biological traits. The details of this step are below. 472

• PSPNet [29]. PSPNet is among the state-of-the-art architectures used for semantic 473

segmentation. We adopted PSPNet as the deep segmentation model and used 474
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ResNet-50 as its backbone network in our work and employed the following training 475

protocol to train the model to segment the images: We set the initial learning rate 476

to 0.002 and decreased it using a polynomial learning rate schedule with power 477

at 0.9 in each epoch. The training set was augmented with 1) random scaling to 478

different sizes with scales 0.55 ∼ 1.0, 2) flipping horizontally with probability at 479

0.5, (3) random rotation with angle between −10◦ ∼ 10◦ . We trained the model 480

for 60 epochs with batch size of 4 and weight decay of 4e−4. To be noted, PSPNet 481

can be replaced with other semantic segmentation model without affecting the 482

phenotyping system pipeline. 483

• Metric. To verify the performance on semantic segmentation, we apply the IoU 484

(intersection over union) metric, which is computed as Pred ∩ GT
Pred ∪ GT

. Here, we report 485

the IoU for each class as well as the mean IoU over all classes. 486

• Experiment 1. Our research dataset of images of regenerating plants features 487

a relatively small number of classes (stem, callus and shoot) found in a limited 488

number of contexts, unlike highly complex datasets that dominate DNN research. 489

Considering this together with reported successes of random forest in segment- 490

ing plant tissues [49, 50], we compared the performance of random forests and 491

PSPNet [29] in segmenting our plant images. PSPNet [29] outperformed random 492

forests by a margin of approximately 30% IoU for each class of interest in the vali- 493

dation dataset (Table3). Furthermore, PSPNet yields a lesser difference between 494

training and validation IoU than was seen with random forests, suggesting that 495

the deep architecture of PSPNet [29] better captures high-level features and avoids 496

overfitting. 497

• Experiment 2. To gain insight into an appropriate number of training samples for 498

use in our workflow, we explored the relationship between the number of training 499

examples and the quality of segmentation. We trained six different models using 20, 500

40, 60, 80, 100, and 120 images randomly selected from our training set and tested 501

each model’s performance using the same validation set of 20 images. As shown in 502

Fig.13, the Mean IoU increased significantly as the training sample size increased 503

to 40, 60, and 80. As the sample size increases to 100 and further, additional 504

increases in Mean IoU become markedly diminished but may remain significant 505

and valuable for applications that benefit from high precision. In summary, the 506

deep learning models’ performance relies heavily on the size of the training set, 507

and the inclusion of additional images can almost always be expected to improve 508

the quality of segmentation results. These results demonstrate the importance of 509

a substantial training set for semantic segmentation, underscoring the value in 510

developing efficient and intelligent interactive image segmentation algorithms and 511

annotation tools such as IDEAS. 512

Method Dataset Background Stem Callus Shoot mIOU

RF [50] train. 94.62% 69.83% 38.75% 40.82% 61.00%
RF [50] val. 93.83% 57.67% 20.92% 39.36% 52.95%

PSPNet [29] train. 99%.35 89.76% 73.96% 74.36% 84.36%
PSPNet [29] val. 99.36% 88.14% 61.95% 67.40% 79.21%

Table 3. Segmentation IoU score (in %) on the training and validation
dataset.

Biological traits: After the semantic segmentation model was trained on the collected
training set, we used it to predict labels given unseen images. Next, we calculate the
statistic, relative area, which represents the development of specific tissues in each image,
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Figure 13. The Mean IoU for different number of training examples.

and used these in our downstream models for GWAS. Computation of relative area is
shown in eq.2:

Areac =
∑

x,y

1{c}(I(x, y)) (1)

RAreac =
Areac∑
c Areac

(2)

Where I is the semantic segmentation from the PSPNet [29] and c is the category of the 513

tissue for which relative area is being calculated. 514

Association mapping: We present results from GWAS for a key trait of interest, the 515

area of shoot grown at the final timepoint (fifth week). In this analysis, we apply a mixed 516

linear model approach that is commonly used for GWAS of continuous phenotypes and 517

assumes normality of residuals. To avoid a severe violation of this assumption, genotypes 518

labeled by the model as having zero values (no shoot) were dropped and the remaining 519

phenotype data underwent a natural logarithm transformation. The population analyzed 520

in this case study consists of 326 clones for which genotype data was available and 521

phenotype data is nonzero. 522

Genotype data used for analysis was obtained from the Bioenergy Science Center at 523

Oak Ridge National Laboratory (https://cbi.ornl.gov/data) and filtered for minor allele 524

frequency and missing rates using PLINK [51]. The filtered dataset used for analysis 525

features approximately 5.3 million single-nucleotide polymorphisms (SNPs), each of 526

which are polymorphic in at least 5% of genotypes and nonmissing in at least 90%. 527

We employed Genome-wide Efficient Mixed Model Association (GEMMA) [52] as a 528

GWAS method. Mixed models are built for each SNP, explaining the phenotype as a 529

function of the given SNP and covariates. To control for potential confounding factors 530

of cutting size and population stratification, we included covariates of stem diameter, 531

a kinship matrix and three principle components derived from SNPs. Multiple-testing 532

correction performed using the Benjamini-Hochberg method was used to calculate a 533

p-value threshold with a false-discovery rate of 10% [53]. Putative associations with 534

p-values less than or equal to this threshold are reported in Fig.14 and Table.4. 535

Interrogation of putative associations: To determine genes implicated by these 536

genetic markers, we consulted a reference Populus trichocarpa genome [54] annota- 537
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tion (version 3.1 available at https://phytozome-next.jgi.doe.gov) to determine relative 538

positions of these genetic markers to gene transcripts. To identify homologs of im- 539

plicated genes in better-characterized plant species, and thus gain insight into the 540

function of these genes, we referred to a database of Smith-Waterman alignments of 541

predicted peptides between P. trichocarpa and the model plant Arabidopsis thaliana 542

(https://phytozome-next.jgi.doe.gov). 543

The two candidate genes implicated by lowest p-values are related to Arabidopsis genes 544

with known roles in regeneration (Fig.14 and Table.4). CHALCONE SYNTHASE (CHS ) 545

encodes a protein essential for a rate-limiting step of the biosynthesis of anthocyanin, 546

which may influence shoot regeneration by dual mechanisms of auxin transport regulation 547

[55] and light stress protection. Loss-of-function mutations of CHS are reported to 548

be deficient in shoot regeneration, with a light-dependent effect [56]. SALT-AND- 549

DROUGHT-INDUCED RING FINGER 1 (SDIR1 ) is an E3 ubiquitin ligase critical 550

for regulation of protein degradation downstream of the hormone abscisic acid. Loss- 551

of-function and overexpression lines of SDIR1 display enhanced and inhibited levels 552

of in vitro seedling germination, respectively [57]. Supplementation of in vitro media 553

with abscisic acid has been reported to enhance in vitro regeneration in diverse plants, 554

particularly via the route of somatic embryogenesis [58]. 555

Our third candidate (Potri.005G004700) is a gene of unknown function that invites 556

further review by biologists aiming to characterize the genetic basis of plant regeneration. 557

Smith-Waterman alignments reveal no Arabidopsis homolog of this gene. 558

Table4 shows quantitative trait loci (QTLs) with their p-values calculated by GEMMA. 559

Accession IDs of nearby gene candidates are reported, along with the distance of 560

the QTL from each gene. The most similar Arabidopsis homolog is shown for each 561

candidate gene, along with the similarity as calculated by Smith-Waterman alignment. 562

Chr14:2487581 appears between two genes and both of these possible causative genes 563

are listed. Potri.005G004700 is implicated by two significant QTLs. 564

Figure 14. This Manhattan plot shows the significance of genetic markers in models
explaining the shoot regeneration phenotype as a function of each marker. The blue line
represents a threshold for a false discovery rate of 10%, calculated by the
Benjamini-Hochburg method [53].

Discussion 565

While supervised deep learning has demonstrated great power for diverse image tasks, 566

the potential for this technology to be applied to specific tasks is constrained by the 567

abilities of users to produce sufficient training data. Moreover, for plant biology and 568
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Table 4. QTLs, implicated poplar gene candidates and related Arabidopsis homologs

QTL p-value Gene candidate Proximity
(bp)

Arabidopsis gene Similarity

Chr5:284409 5.1e-08 Potri.005G004700 692 None N/A

Chr5:284964 6.5e-08 Potri.005G004700 137 None N/A

Chr9:4459368 4.7e-08 Potri.009G034700 1,283 AT3G55530: SALT- AND DROUGHT-
INDUCED RING FINGER1

85.4%

Chr12:9509286 1.1e-07 Potri.012G070801 8,961 None N/A

Chr12:15334435 4.5e-08 Potri.012G138800 1,155 AT5G13930: CHALCONE SYNTHASE 83.0%

Chr14:2487581 5.5e-08 Potri.014G029200;
Potri.014G029300

1,924; 2,556 AT1G07700: Thioredoxin superfamily
protein; AT5G42890: STEROL CAR-
RIER PROTEIN 2

88.7%;
81.3%

other fields in which researchers commonly lack a computer science background, an 569

essential prerequisite for the broad dissemination of deep learning is the development of 570

generalizable workflows with user-friendly, high-level interfaces for annotating training 571

data and deploying models. This combination of challenges presents a need for innovation 572

both in algorithm and interface design. To this end,we created a novel annotation system 573

tailored to the needs of plant biologists engaged in phenotyping of plant tissues during 574

any stage of growth or regeneration. 575

IDEAS enables high-throughput measurement of plant tissues, and can be easily 576

applied to diverse tissue types by user annotation of features of interest. A major 577

advantage of IDEAS is the ability to accurately define tissue object boundaries that 578

are highly complex and thus ignored or misidentified by common annotation methods 579

involving polygons or bounding boxes. Manual pixel-scale annotation can produce highly 580

precise boundaries, but the labor-intensiveness of this process presents an obstacle to 581

generating sizable training sets. Our semantic-guided interactive object segmentation 582

algorithm provides high precision at high speed, delivering substantial reductions to the 583

labor cost of generating high-quality training sets for complex traits. 584

Worth emphasizing is that interactive segmentation is a more complex problem than 585

semantic segmentation, especially where user annotation involves separate instances of a 586

given type of object (class). Thus, the potential for the semantic prior maps to improve 587

interactive segmentation has several noteworthy limitations. First, in cases where there 588

exist adjacent or touching objects of the same class, the separation of these objects by 589

the user is particularly difficult, and may not be improved by the use of a semantic prior 590

maps lacking instance information. Second, the performance of semantic segmentation 591

tends to be greater for larger objects than for smaller objects. Hence, for small objects, 592

a semantic prior map may provide little or no benefit to the system. These limitations 593

considered, the effective use of a semantic prior map to guide interactive segmentation 594

must include an ability to apply the prior only when it offers a performance benefit. 595

In a preliminary study, we examined the use of prior information and conducted a 596

statistical analysis to determine whether using a semantic prior map helps to accelerate 597

annotation. The semantic prior map was found to confer a statistically significant 598

increase in annotation speed of approximately 20 percent. 599

Finally, we demonstrated our system using the case study of a GWAS of in planta 600

regeneration in poplar. Top associations from this GWAS implicate genes with Ara- 601

bidopsis homologs that have known roles in regeneration pathways. Regeneration entails 602

hormone-driven processes [59] involving hormones including auxin and abscisic acid, 603

which are regulated by genes including CHS [55] and SDIR1 [57,58], respectively. The 604

agreement between our results and established models of these genes’ roles in regeneration 605

suggests that our phenotyping system is effective in capturing the shoot regeneration 606

phenotype in our case study. Furthermore, the appearance of an unknown gene as a 607

putative association provides an example of how this system can contribute to genetic 608
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discovery. 609

Conclusion 610

We developed a robust deep segmentation phenotyping system utilizing a web-based 611

annotator, IDEAS, for generating ground truth datasets. Using the semantic-guided 612

interactive object segmentation backend, IDEAS provides an accelerated means of 613

labeling objects at pixel-scale with precise boundaries. Using labels generated by the 614

annotator, researchers can train a deep model for semantic segmentation, deploy the 615

model to make predictions over a large dataset and compute statistics summarizing 616

segments of biological interest. Downstream, GWAS revealed genetic markers associated 617

with traits phenotyped by computer vision. Our system can be used by plant biologists 618

who are interested in complex segmentation-based traits, for which generation of large 619

training sets may otherwise be time-prohibitive. 620
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Click 1

Figure S1. Example predictions on Pascal VOC dataset on a single click.

Click 1

Click 2

Figure S2. Example predictions on Pascal VOC dataset on two clicks.

Click 1

Click 2

Click 3

Figure S3. Example predictions on Pascal VOC dataset on three clicks.
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Click 1

Click 2

Figure S4. Example predictions on Leaf Segmentation Challenge (LSC)
dataset on two clicks.

Click 1

Click 2

Click 3

Figure S5. Example predictions on Leaf Segmentation Challenge (LSC)
dataset on three clicks.
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