

Complex regulatory role of DNA methylation in caste- and age-specific expression of a termite.

Authors:

Mark C. Harrison^{1*} ORCID: 0000-0003-3095-019X

Elias Dohmen¹ ORCID: 0000-0002-7203-2314

Simon George²

David Sillam-Dussès³ ORCID: 0000-0001-5027-8703

Sarah Séité^{4,5}

Mireille Vasseur-Cognet^{4,5,6*} ORCID: 0000-0001-6963-4114

Affiliations

¹ Institute for Evolution and Biodiversity, University of Münster, Münster, Germany; ² Bio-campus, CNRS, INSERM, Montpellier, France; ³ University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology UR4443, Villejuif, France; ⁴ UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAE 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France;

⁵ University of Paris-Est, Créteil, France;

⁶ INSERM, Paris, France.

*Corresponding authors: m.harrison@uni-muenster.de

Keywords: DNA methylation; termites; caste-biased expression; alternative splicing; ageing; fertility

Abstract

The reproductive castes of eusocial insects are often characterised by extreme lifespans and reproductive output, indicating an absence of the fecundity/longevity trade-off. The role of DNA methylation in the regulation of caste- and age-specific gene expression in eusocial insects is controversial. While some studies find a clear link to caste formation in honeybees and ants, others find no correlation when replication is increased across independent colonies. Although recent studies have identified transcription patterns involved in the maintenance of high reproduction throughout the long lives of queens, the role of DNA methylation in the regulation of these genes is unknown. We carried out a comparative analysis of DNA methylation in the regulation of caste-specific transcription and its importance for the regulation of fertility and longevity in queens of the higher termite, *Macrotermes natalensis*. We found evidence for significant, well-regulated changes in DNA methylation in mature compared to young queens, especially in several genes related to ageing and fecundity in mature queens. We also found a strong link between methylation and caste-specific alternative splicing. This study reveals a complex regulatory role of fat body DNA methylation both in the division of labour in termites, and during the reproductive maturation of queens.

1 Introduction

2 DNA methylation, the epigenetic modification of DNA, is widespread among eukaryotes and
3 is known to be important for transcriptional regulation of genes and repression of transposable
4 elements (Zemach *et al.*, 2010). Age-related changes in DNA methylation levels and an increased
5 variability known as epigenetic drift have been recognised as an important hallmark of ageing in
6 mammals (Issa *et al.*, 2014; López-Otín *et al.*, 2013). DNA methylation has garnered consider-
7 able attention within social insects with an apparent role in the regulation of sterile and fertile
8 castes in honey bees (Lyko *et al.*, 2010) and in ants (Bonasio *et al.*, 2012). A more recent study
9 found a significant role of methylation in the task division of worker bees (de Souza Araujo
10 and Arias, 2021). However, there remains considerable debate surrounding the universality of
11 the role of DNA methylation in the transcriptional regulation of caste-specific genes in eusocial
12 insects (Herb *et al.*, 2012; Patalano *et al.*, 2015; Libbrecht *et al.*, 2016). In bumble bees, DNA
13 methylation appears to be more important for worker reproduction (Amarasinghe *et al.*, 2014)
14 than for caste differentiation (Marshall *et al.*, 2019). Two studies found no influence of DNA

methylation on the formation of behavioural castes in a wasp (Patalano *et al.*, 2015) and an ant (Patalano *et al.*, 2015; Libbrecht *et al.*, 2016) that live in simple societies. In fact, the authors of the latter study claimed previous evidence for the role of DNA methylation in the division of labour was weak and that further studies required more robust methodology, especially greater replication (Libbrecht *et al.*, 2016). Most of these studies have concentrated on social Hymenoptera (ants, bees and wasps), with the exception of two studies on the role of DNA methylation in the division of labour in adult termites. The first of these studies investigated whole-body methylation patterns for the lower, drywood termite *Zootermopsis nevadensis* (Glastad *et al.*, 2016), which forms simple colonies, in which workers retain the possibility to become fertile (Weil *et al.*, 2007). In the second study, head methylomes of the subterranean termite, *Reticulitermes speratus*, were investigated, a species with an intermediate level of social complexity (Shigenobu *et al.*, 2022). While the first study found large differences between castes in *Z. nevadensis* (Glastad *et al.*, 2016), Shigenobu *et al.* (2022) found very strong correlations in DNA methylation patterns between castes of *R. speratus*. However, in the first study, limited replication was performed within one single colony, while in the second study non-replicated castes were sampled from different colonies, so that the effect of colony-specific variation, inherent in previous studies (Libbrecht *et al.*, 2016), could not be excluded in either of these studies. The general role of DNA methylation in the transcriptional regulation of termite castes is therefore still unclear, especially in higher termites that form complex colonies with lifelong sterile worker castes.

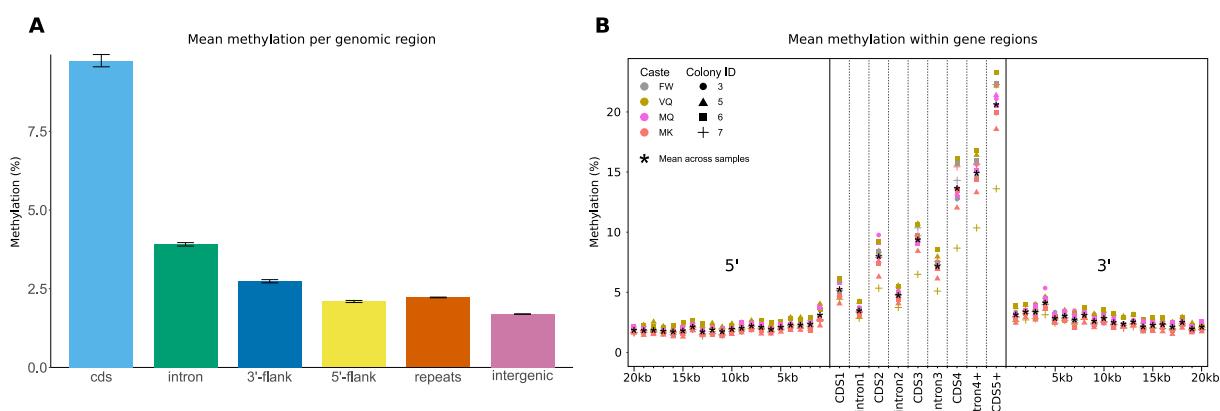
Beside reproductive division of labour, the eusocial insects are also characterised by extreme longevity among fertile castes, indicating an apparent absence of the fecundity-longevity trade-off attributed to non-social insects (Korb *et al.*, 2021). Several, recent studies have presented evidence for the transcriptional regulation of specific gene co-expression modules associated with old but highly fertile queens in ants (Harrison *et al.*, 2021), bees (Séguret *et al.*, 2021) and termites (Lin *et al.*, 2021; Séité *et al.*, 2022). However, the role of DNA methylation in this absence of the longevity-fecundity trade-off in eusocial insects is so far unknown.

In this study, we investigated caste- and age-specific DNA methylation profiles to make inferences on the regulation of genes important for the extreme longevity and high fecundity of reproductives in the higher termite, *Macrotermes natalensis*. This foraging, fungus-farming ter-

45 mite is characterised by large colonies and sterile workers. Kings and queens can live for over 20
46 years (Keller, 1998), with the highly fertile queen laying thousands of eggs per day (Kaib *et al.*,
47 2001). The mature *Macrotermes* queens are characterised by a hypertrophic abdomen, as well
48 as several further metabolic and physiological differences compared to virgin queens, such as
49 enlarged corpora allata (Sieber and Leuthold, 1982), increased DNA content and major changes
50 in insulin signalling and fat storage (Séité *et al.*, 2022).

51 We carried out reduced representation bisulfite sequencing (RRBS) on four phenotypes (short-
52 lived, sterile female workers, young virgin queens, 20-year-old queens, and 20-year-old kings),
53 replicated across three independent colonies from this higher termite and related DNA methy-
54 lation patterns to caste- and age-specific gene expression. This was performed on the fat body,
55 since we recently showed the importance of this tissue for the long reproductive life of the
56 reproductive termite castes (Séité *et al.*, 2022).

57 Results and Discussion

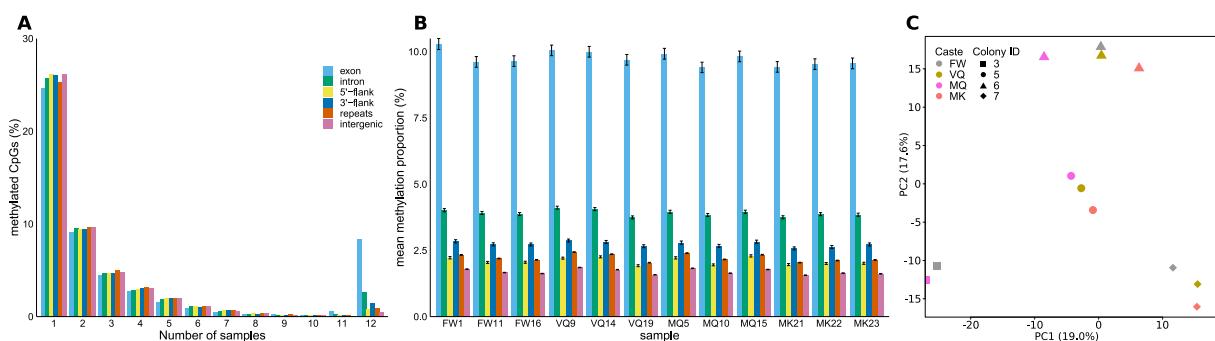

58 RRBS is a robust method for determining genomic methylation patterns in termites

59 For each of the four phenotypes, female workers (FW), virgin queens (VQ), mature queens
60 (MQ) and mature kings (MK), we aimed to produce reduced representation bisulfite sequencing
61 (RRBS) for 3 replicates from independent colonies. An accurate estimation of methylation levels
62 relies heavily on an efficient conversion rate of unmethylated sites with the bisulfite treatment.
63 To measure the erroneous, non-conversion rates, each sample was supplemented with a non-
64 methylated lambda spike-in control (see methods). We kept only those samples with a non-
65 conversion rate lower than 2% (Table S1). We generated between 32.1M and 61.4M bisulfite
66 treated reads per sample (Table S1). These reads were mapped to the genome (mapping rate:
67 67.3%-71.2%; Table S1) to quantify methylation levels, and for each sample only CpGs to which
68 at least 5 reads mapped were included in analyses. We were able to quantify methylation levels
69 (at least 5 reads) of 6.29 million CpG sites (19.1% of all genomic CpGs). For each phenotype
70 most CpGs were sequenced for all 3 replicates, ranging from 2.8M to 3.6M CpGs per phenotype
71 (Fig. S1A-D). In support for the reliability of the RRBS method, a large proportion of the CpGs
72 (1.97M, 31.3%) were sequenced consistently within all 12 samples (4 phenotypes x 3 replicates),

73 which was by far the largest intersection of the 12 sets of sequenced CpGs (Fig. S1E). All
74 subsequent analyses are based on this subset of 1.97M CpGs.

75 *High gene body methylation*

76 Within the subset of 1.97M CpGs that were sequenced within all 12 individuals, we found de-
77 tectable methylation at 49.0% (FDR corrected binomial p-value < 0.05, based on non-conversion
78 rate) of sites in at least one sample. For each of the 12 samples, methylation level was calcu-
79 lated for each sequenced CpG as the proportion of mapped reads that were putatively methylated
80 (non-converted cytosines). To estimate overall genomic methylation levels, we calculated means
81 across the 12 samples at each CpG. Methylation levels varied throughout the genome, with high-
82 est rates within coding regions (mean 9.74% per CpG, standard error: 0.20) and lowest rates
83 within intergenic regions (mean: 1.70%, SE: 0.01; Fig. 1A). In repetitive regions, methylation
84 was higher than in intergenic regions (mean: 2.22%, SE: 0.01), indicating that transposable
85 elements (TEs) may be targeted by DNA methylation. Similar to findings for the lower termite,
86 *Z. nevadensis* (Glastad *et al.*, 2016), methylation was relatively high in introns (mean: 3.91%,
87 SE: 0.05 Fig. 1). In support of findings for *Z. nevadensis* (Glastad *et al.*, 2016) but in contrast
88 to Hymenoptera (Bonasio *et al.*, 2012; Patalano *et al.*, 2015), we found that, for all samples,
89 methylation levels increased along the gene body, with highest levels at 3' exons (13.6-23.3%
90 among 5th to last exons) and introns (10.4-16.8% among 4th to last introns; Fig. 1B), suggesting
91 this gene body methylation pattern may be widespread among termites.


Figure 1: Genomic variation in methylation. In **A.** mean methylation proportions among all 12 samples are shown for 6 categories of genome regions. Error bars are standard error. Flanks are defined as 10kb up- or downstream of coding regions. **B.** Mean methylation (%) within gene bodies (exons and introns) and in twenty 1kb bins at 5'- and 3'-flanking regions of genes. Each dot represents mean methylation for one of twelve samples across all sequenced CpGs within the region of interest. The four phenotypes (FW, VQ, MQ, MK) are represented by colour; the colonies, from which replicates originated, are represented by shape. Stars show means across all 12 samples.

92 *Greater variation in methylation between colonies than between phenotypes*

93 We detected high individual variation in methylation patterns, with 24.7% to 26.2% of CpGs
94 methylated in only 1 of the 12 samples, while only 9.1% to 9.7% were methylated in 2 individu-
95 als. Interestingly, as previously found in the clonal raider ant, *Dinoponera quadriceps* (Libbrecht
96 *et al.*, 2016), we found a substantial number of CpGs (8.4%) within coding sequence and in-
97 trons (2.7%) that were robustly methylated within all 12 samples (Fig. 2A). These robustly
98 methylated CpGs were situated in genes enriched for GO-terms related to cell differentiation,
99 cell adhesion and regulation of cellular processes (Table S2). Interestingly, robustly methylated
100 genes (containing at least one CpG methylated in all 12 samples) were more frequently differ-
101 entially expressed between phenotypes (89.6%), compared to other genes (64.9%), suggesting
102 an important role of DNA methylation in the regulation of gene transcription. Furthermore,
103 methylation patterns (proportion of methylated reads per CpG), correlated strongly and uni-
104 formly between all samples (Pearson's r : 0.600-0.781; p -value = 0), especially within coding
105 sequence (0.889-0.960), indicating little differentiation between castes, similar to findings for the
106 subterranean termite, *R. speratus* (Shigenobu *et al.*, 2022). The slightly lower correlations we
107 report here compared to those found for *R. speratus* may be linked to a number of differences in

108 this current study, such as colony replication, RRBS rather than whole genome BS-sequencing,
109 or may be related to species-specific patterns. Furthermore, the high correlations we found be-
110 tween VQ and MQ (0.663-0.778) suggest DNA methylation patterns are well maintained with
111 age in termite queens. This apparent lack of epigenetic drift, at least for DNA methylation, may
112 help to explain the recently documented, well-regulated transcription of anti-ageing genes in *M.*
113 *natalensis* queens (Séité *et al.*, 2022).

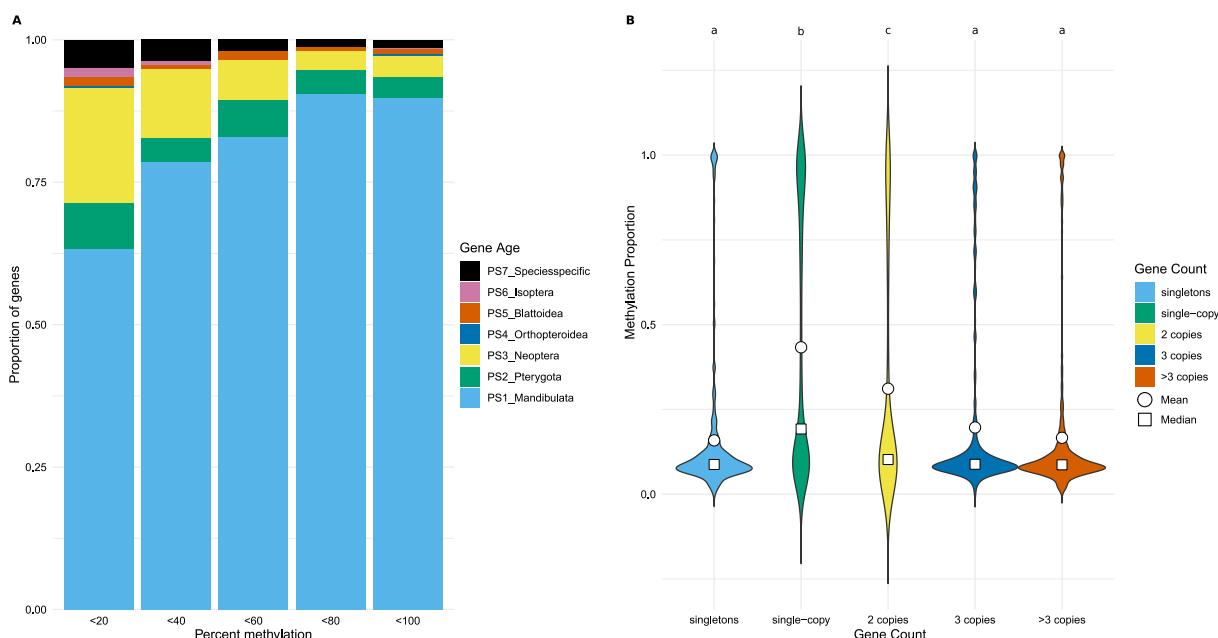

114 Methylation levels (proportion of methylated reads) also varied among individuals, with coding
115 methylation ranging from mean 9.41% (\pm 0.20 standard error) in the mature queen from colony
116 5 (sample ID: MQ10) to 10.29% (\pm 0.21 SE) in the female worker sample from colony 3 (FW1;
117 Fig. 2B). Intergenic CpGs, on the other hand, were most highly methylated in the VQ sample
118 from colony 5 (VQ9; mean: 1.85% \pm 0.01 SE) and lowest in the MK sample from colony 5
119 (MK21; mean: 1.56% \pm 0.01 SE). A principal component analysis revealed that methylation
120 patterns vary more between colonies than between castes (Fig. 2C) as previously found for the
121 ants, *Cerapachys biroi* (Libbrecht *et al.*, 2016) and *Dinoponera quadriceps*, and the paper wasp,
122 *Polistes canadensis* (Patalano *et al.*, 2015). This highlights the importance of replication across
123 independent colonies in methylation studies as previously reported (Libbrecht *et al.*, 2016), thus
124 raising the question of whether caste-specific methylation patterns detected within a single colony
125 for the lower termite *Z. nevadensis* were species- or colony-specific (Glastad *et al.*, 2016). High
126 colony variation is confirmed by a 3-way ANOVA among the 10 000 most variable sites, in which
127 colony ($F(3,1.20 \times 10^5) = 843.2$, $p = 0.0$) has an effect size (generalised eta squared[ges]=0.021)
128 larger than that of phenotype ($F(3,1.20 \times 10^5) = 492.1$, $p = 7.70 \times 10^{-318}$, ges=0.012), while genomic
129 region (exon, intron, 5'-flank, 3'-flank, repeats, intergenic) was an even stronger predictor of
130 methylation level ($F(5,1.20 \times 10^5) = 720.0$, $p = 0$, ges = 0.029). However, significant interactions
131 existed between all three factors, indicating differing effects of each combination of phenotype,
132 colony membership and genomic region on methylation level.

Figure 2: Individual variation in methylation. **A.** Proportions of CpGs that are methylated (FDR < 0.05) in varying numbers of 12 samples within 6 genomic regions. **B.** Mean proportions of methylated reads across all CpGs for each of the 12 samples (4 phenotypes x 3 replicates). **C.** Principal component analysis of methylation at 1000 most variable CpGs in 12 samples, spanning four phenotypes, represented by colour (FW, VQ, MQ and MK), from four colonies, represented by shape. The first two principal components are displayed on the x- and y-axes with variance explained in brackets.

133 *Conserved, single-copy genes are more highly methylated*

134 We performed two analyses which confirmed higher methylation levels for conserved genes. We
135 first analysed gene age by determining the broadest phylogenetic taxon for which a gene ortholog
136 could be found, ranging from species-specific to Mandibulata. The proportion of highly con-
137 served genes, found in the oldest category, Mandibulata, was highest among genes with methy-
138 lation levels greater than 80%, while species-specific genes were proportionally most abundant
139 among lowly methylated genes (Fig. 3A). In further support for greater methylation of conserved
140 genes, we found significantly higher methylation levels among single-copy ortholog genes (single
141 copy in *M. natalensis* with orthology in other insects) than in multi-copy genes (> 2 paralogs).
142 Similarly, for singletons (single-copy, species-specific genes), which are likely evolutionarily novel
143 compared to orthologs, methylation levels were lower than in single-copy orthologs and did not
144 differ from multi-copy genes. The methylation of 2-copy genes were intermediate between single-
145 copy and multi-copy genes (Fig. 3B).

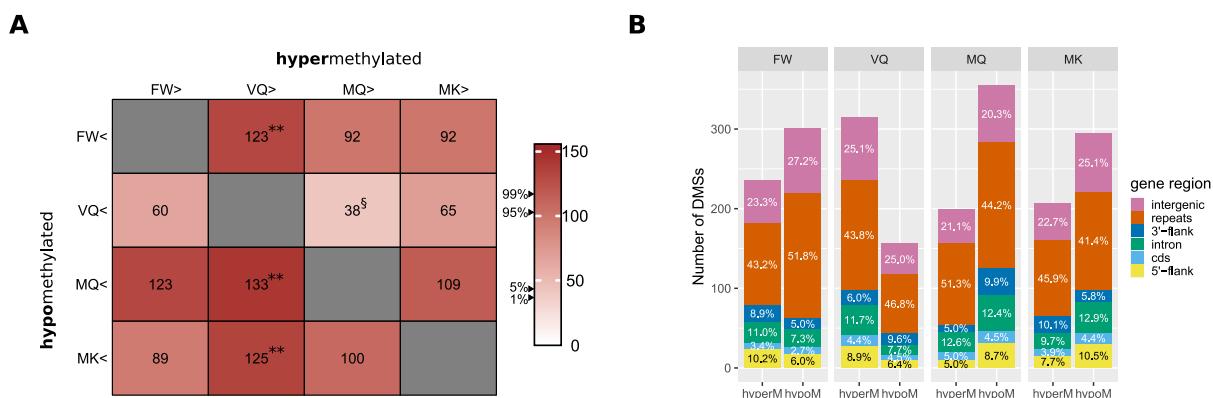
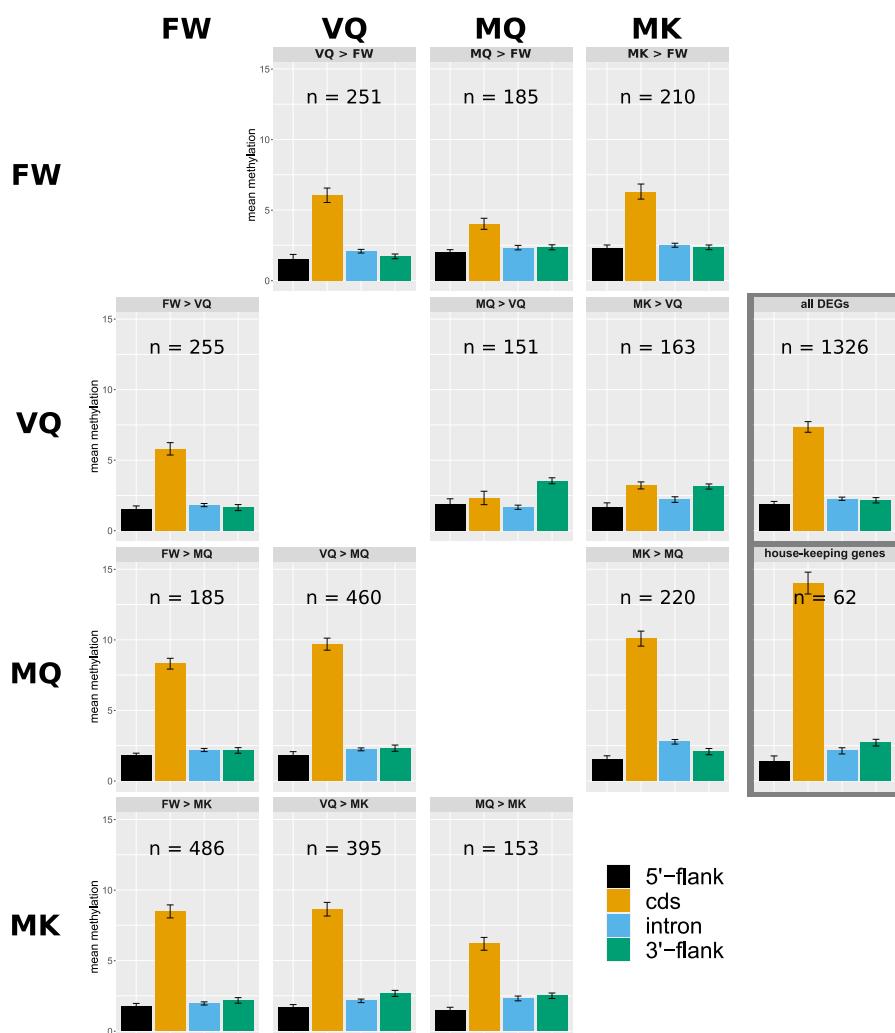


Figure 3: Methylation and gene conservation. A. Proportions of gene age categories within 5 categories of methylation level. B. Methylation level within genes with varying numbers of copies. Singleton = no paralogs or orthologs; single-copy = no paralogs but with orthologs in other species; other gene groups have varying numbers of paralogs.

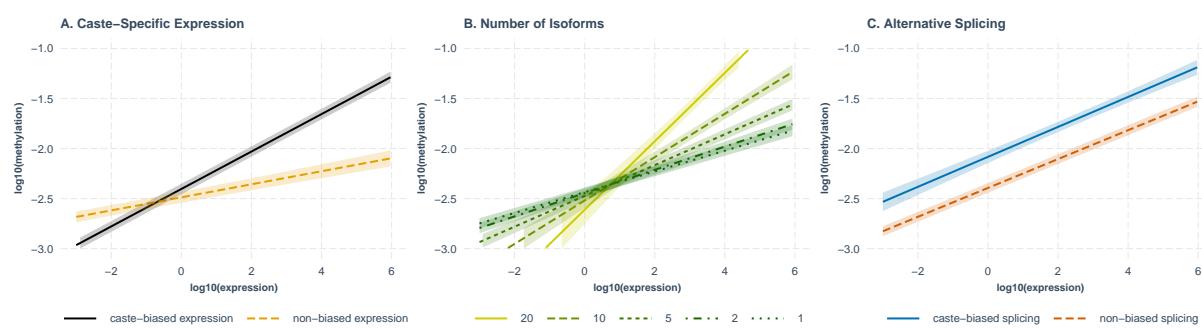
146 *Ageing and fertility genes hypomethylated in mature queens*


147 Despite the larger variation between colonies, we found 1344 CpG sites to be significantly differ-
148 entially methylated (DMS) between phenotypes. We tested whether these numbers of DMS are
149 greater or smaller than can be expected between two groups of three randomly assigned samples
150 (1000 bootstraps; 95% confidence interval: [45-102]; 99% confidence interval: [40-114]). In this
151 manner, we found a significant number of DMS that were hypermethylated in VQ compared to
152 each of the other castes (> 95%). In MQ, on the other hand, there were significant numbers
153 of DMS that were hypomethylated compared to other castes (> 95%; Fig. 4A). The num-
154 bers of unique DMS varied among phenotypes and genomic regions, and were enriched within
155 coding regions (2.7-5.0%) compared to the proportion of total sequenced CpGs within coding
156 regions (1.2%). Interestingly, the largest category of DMS were those hypomethylated in MQ
157 (365 unique sites) while the smallest category contained sites hypomethylated in VQ (163) (Fig.
158 4B). Of the 1291 DMS, 386 lay within 261 genes (DMGs), of which 111 genes contained sites

159 hypomethylated in MQ, while 87 genes contained sites hypermethylated in VQ. These striking
 160 results indicate a major shift in methylation patterns occurs during queen maturation for a
 161 subset of genes.

Figure 4: Differentially methylated sites. **A.** Numbers of CpG sites hyper- (columns) and hypomethylated (rows) between pairs of phenotypes. Bootstrapping was carried out based on numbers of significant sites in 1000 comparisons between randomised 3x3 samples; 95% confidence interval: [45-102]; 99% confidence interval: [40-114]. ** > 0.99 ; * > 0.95 ; § < 0.05 . **B.** Proportions of DMSs per genomic region for each phenotype. Unique DMSs were counted from all pairwise comparisons between the four phenotypes.

162 Several of the genes with significantly decreased methylation in MQ compared to VQ have
 163 important roles in ageing, including 2 regulators of Notch signalling, 2 genes involved in Wnt
 164 signalling, a Sirtuin, a sphingomyelinase, important for cellular stress, and a gene responsible
 165 for the regulation of misfolded proteins (Table S3). Further genes are related to fertility such
 166 as Vitellogenin and an ecdysone receptor (Table S3). In a previous study on this species, the
 167 major importance of insulin signalling in the fat body during the maturation process of queens
 168 was highlighted (Séité *et al.*, 2022). It is therefore striking that *chico*, the substrate of insulin
 169 receptors in the insulin signalling pathway, and *daw*, with known functions in insulin regulation,
 170 are hypomethylated and differentially expressed in MQ compared to VQ (Table S3). A large
 171 proportion of the 44 genes containing sites hypomethylated in MQ compared to VQ, were also
 172 differentially expressed: 6 were over-expressed in MQ (13.6%), 14 genes were lower expressed in
 173 MQ (31.8%) compared to VQ, while 24 (54.5%) did not differ in expression. These proportions
 174 of differentially expressed genes are significantly higher than those found in all genes (10.6% and
 175 15.8%, respectively; χ^2 : 9.64, df = 2, p-value = 0.008), indicating an important role of DNA
 176 methylation in the regulation of age-specific expression.


Figure 5: Mean methylation level per gene region for groups of differentially expressed genes. HKG = house-keeping genes, defined as non-differentially expressed genes, with expression counts greater than median expression.

177 Furthermore, we found that differentially expressed genes (DEGs: significantly up- or down-
178 regulated between pairs of phenotypes) had unique, phenotype-independent methylation sig-
179 natures (Fig. 5). For instance, while the full set of DEGs have a mean methylation level of
180 7.4% in coding regions, genes with over-expression in MQ or MK compared to VQ, or in MQ
181 versus FW, have very low coding region methylation (2.3, 3.2% and 4.0%, respectively). Genes
182 overexpressed in MQ and MK compared to VQ also have high methylation in 3'-flanks (3.5 and
183 3.1%, respectively), compared to all DEGs (2.2%) (Fig. 5). Surprisingly, within each of these

184 DEG groups, variation among phenotypes was low, with standard deviation among samples
185 ranging from 0.10 to 0.53. These patterns point towards a complex relationship between DNA
186 methylation and caste- or age-specific gene expression in *M. natalensis*.

187 *Variation in gene body methylation influenced by expression level, caste-specific expression*
188 *and alternative splicing*

189 To better understand the variation in methylation levels among genes, we first investigated the
190 influence of expression level. We found a significant positive correlation between methylation
191 level of coding sites and expression level, which ranged from 0.208 (p-value = 2.0×10^{-176}) to
192 0.254 (p-value = 6.9×10^{-265} ; spearman's rank correlation) per sample. This confirms previous
193 findings for Hymenoptera (Bonasio *et al.*, 2012; Patalano *et al.*, 2015; Libbrecht *et al.*, 2016)
194 and a termite (Glastad *et al.*, 2016). Among genes whose expression differed significantly among
195 phenotypes (DEGs), we found a significant positive interaction with expression, with a linear
196 regression predicting higher methylation for DEGs compared to nonDEGs for expression levels
197 greater than the 4th percentile (Fig. 6A). We also found that methylation level increases with
198 the number of isoforms per gene, when controlling for expression level, with methylation level
199 predicted to be higher for multiple isoform genes at expression levels greater than the 17th
200 percentile (Fig. 6B). For genes which are putatively differentially spliced among phenotypes
201 (significant differential exon expression), a linear regression predicts significantly higher methy-
202 lation regardless of expression level (Fig. 6C). These results suggest an important role of DNA
203 methylation in the regulation of gene expression level, especially when regulating caste- and
204 age-specific transcription and splicing. The regulation of caste-specific splicing via DNA methy-
205 lation may be universal in eusocial insects since similar evidence has been found in honeybees
206 (Lyko *et al.*, 2010), ants (Bonasio *et al.*, 2012; Libbrecht *et al.*, 2016), and the lower termite, *Z.*
207 *nevadensis* (Glastad *et al.*, 2016).

Figure 6: Linear models, relating differential gene and isoform expression to methylation level. **A.** Differentially expressed genes are more highly methylated when accounting for expression level. **B.** Methylation increases with increasing number of isoforms, relative to expression level. **C.** Genes that show age- and caste-specific alternative splicing are more highly methylated, regardless of expression. Models have the form: $\log_{10}(\text{methylation level}) \sim \log_{10}(\text{expression level}) * \text{variable} + (1|\text{sample})$.

208 Conclusions

209 We report a strong correlation of DNA methylation patterns with caste- and age-specific gene
210 expression and alternative splicing in the fat body of the higher termite, *M. natalensis*. These
211 results offer further support for the importance of fat body transcription (Séité *et al.*, 2022) and
212 its regulation for the extreme longevity and fecundity of termite queens. We also confirm the
213 importance of replication in methylation analyses due to higher variation in methylation between
214 colonies than between castes, a point of contention among previous studies in Hymenoptera (Lib-
215 brecht *et al.*, 2016). Furthermore, and importantly, we present evidence for unique methylation
216 signatures which are stable between phenotypes but differ especially between groups of genes
217 with age-biased expression. For example, genes with higher expression in mature reproductives
218 (MQ and MK) than in young reproductives (VQ) have relatively low coding region methylation
219 but high methylation in 3'-flanks among all phenotypes compared to other DEGs. We believe
220 this is the first time such a methylation pattern has been presented for social insects and suggests
221 its generality should be tested on further species. We show for the first time, how DNA methy-
222 lation may be responsible for regulating genes which are central to termite queens maintaining
223 high fertility at extreme ages. For the 20-year old, highly fertile queens, we present evidence
224 for well-maintained DNA methylation, in support of an apparent lack of epigenetic drift, a well
225 established hallmark of ageing (López-Otín *et al.*, 2013). Several genes with important roles

226 in ageing and fertility, on the other hand, contain sites with significantly reduced methylation
227 levels in mature queens compared to young, virgin queens, many of which have significantly
228 different expression levels in old compared to young queens.

229 **Methods**

230 *DNA extractions and sequencing*

231 Total genomic DNA from the 12 termite samples (female workers, young virgin queens, mature
232 queens and kings; see Table S1 and Séité *et al.* 2022 for sampling) was extracted from fat body
233 using DNeasy Blood and Tissue kit (Qiagen), including RNase A treatment (Qiagen), accord-
234 ing to the manufacturer's instructions. Library construction was performed using the Premium
235 Reduced Representation Bisulfite Sequencing kit (Diagenode). Briefly, for each sample, 100
236 ng of genomic DNA were digested using MspI for 12 hours at 37°C. DNA ends were repaired
237 and Diagenode indexed adaptors were ligated to each end of the repaired DNA. Each ligated
238 DNA was quantified by qPCR using the Kapa Library quantification kit (Kapabiosystems) on
239 a LightCycler 480 (Roche Life Science) prior to pooling (4, 5 or 6 samples per pool). Each pool
240 was subjected to bisulfite conversion and desalting. Optimal PCR cycle number was determined
241 by qPCR (Kapa Library quantification kit, Kapabiosystems) before the final enrichment PCR.
242 Once purified using magnetic beads (AMPure XP, Beckman Coulter), library pools were veri-
243 fied on Fragment Analyzer (AATI) and precisely quantified by qPCR using the Kapa Library
244 quantification kit (Kapabiosystems). Each pool was denatured, diluted and spiked with a 10%
245 phiX Illumina library before clustering. Clustering and sequencing were performed in single
246 read 100 nt, 1 lane per pool, according to the manufacturer's instructions on a Hiseq2500 us-
247 ing Rapid V2 clustering and SBS reagents. Base calling was performed using the Real-Time
248 Analysis Software and demultiplexing was performed using the bcl2fastq software, both from
249 Illumina. Non-conversion rate of bisulfite treatment was estimated with a spike-in control, and
250 only samples with a non-conversion rate lower than 5% were kept for further analysis.

251 *Preparation of RRBS data*

252 The RRBS reads were prepared by following the BISMARK protocol (Krueger and Andrews,
253 2011). This included adapter trimming with TRIM GALORE, v.0.4.4-dev (<https://github.com/FelixKrueger/TrimGalore>) at default settings with the additional –rrbs argument. Sub-
254 sequently, BISMARK was used to analyse methylation states. The *M. natalensis* genome (Poulsen
255 *et al.*, 2014) was indexed using the bismark_genome_preparation command, then sequenced reads
256 were mapped to the genome using bowtie2, version 2.3.4.3 (Langmead and Salzberg, 2012). Oth-
257 erwise, standard parameters were implemented for the BISMARK pipeline.

259 *Methylation analyses*

260 We extracted methylation and read coverage information from the thus produced bam files
261 with the BISMARK_METHYLATION_EXTRACTOR command, with the arguments –scaffolds and
262 –bedGraph. We only considered sites to which at least 5 reads mapped. Based on the non-
263 conversion rate of a spike-in control, a binomial test was carried out to confirm the significance
264 of a measured proportion of non-converted, and therefore putatively methylated, reads, as pre-
265 viously performed by Glastad *et al.* (Glastad *et al.*, 2016). P-values were FDR corrected,
266 and only corrected p-values < 0.05 were deemed methylated, and were otherwise counted as
267 non-methylated. Sequenced cytosines (≥ 5 reads) were annotated with gene features - exons,
268 introns, 10kb flanking regions, repetitive regions - based on information stored in two GFF files,
269 containing protein coding and repeat element annotations (Harrison *et al.*, 2018; Poulsen *et al.*,
270 2014).

271 *Principal component analysis (PCA)*

272 The PCA analysis was performed in R, version 4.0.2 (R Core Team, 2016). For each CpG site
273 that was covered by at least 5 reads in all 12 samples, we measured variance in methylation
274 among samples and selected the 1000 most variable sites. The PCA was computed on these
275 top variable sites with the PRCOMP function and the first two PCs were plotted with ggplot2
276 (Wickham *et al.*, 2016).

277 *Regression models*

278 For each gene, average methylation level was calculated per feature type (exons, introns, 5'-
279 flank and 3'-flank) and per sample. All regression analyses were performed on this data set.
280 The following variables were considered:

Methylation:	average proportion of methylated reads in %	continuous 0-100
Expression:	normalised expression level, taken from (Séité <i>et al.</i> , 2022)	continuous ≥ 0
Feature:	genic region	categorical (exon, intron, 5'-flank, 3'-flank)
Caste:		categorical (FW, VQ, MQ, MK)
281 Transcripts:	number of transcripts per locus	continuous, positive integers
Colony:		categorical (3, 5, 6, 7)
DE:	division of genes into DEG and nonDEG (Séité <i>et al.</i> , 2022)	categorical (DE, nonDE)
DMG:	whether gene contains differentially methylated CpGs	categorical (DMG, nonDMG)
AS:	whether gene has differential exon expression between castes	categorical (AS, nonAS)

282 ANOVAs and ANCOVAs were also performed in R with the ANOVA_TEST function from the
283 rstatix library (Kassambara, 2021). For graphical representations, we used the LMER function
284 from the lme4 package (Bates *et al.*, 2015) to create the model and INTERACT_PLOT from the
285 interactions package (Long, 2019) for plotting. In each case, we log-transformed expression and
286 modelled non-liner regression of methylation with the POLY function, using as many polynomials
287 as were significant. The following variables were included as co-factors: number of transcripts per
288 gene, caste membership, genomic feature (exon, intron, 5'-flank, 3'-flank), differential expression;
289 with colony membership as the random effects term. For example, to relate methylation to
290 expression by caste and differential expression, while controlling for colony membership:

#model:

```
lmer(log(expression+0.01) ~ poly(Methylation, 2) * Caste * de + (1|Colony),  
data = na.omit(meth[meth$Feature == "cds",]))  
  
#plot:  
interact_plot(expr.lmer, pred = Methylation, modx = Caste, \  
modx2 = de, interval = T)
```

291 *Detecting differential methylation*

292 To detect significant differences in methylation between phenotypes, we used the R package
293 methylKit, version 1.11.1 (Akalin *et al.*, 2012). We analysed differential methylation between all
294 pairs of the four phenotypes (FW, VQ, MQ, MK) and for each of these comparisons only included
295 CpGs, for which at least 10 reads existed for all 6 samples (3 replicates x 2 phenotypes). A
296 difference in methylation was only considered significant if it were at least 25 percentage points
297 and with an adjusted p-value < 0.05. Each CpG, which was significant within any of these
298 comparisons, was considered a differentially methylated site (DMS). To validate the numbers of
299 DMS between pairs of castes, we repeated this analysis for 1000 random pairings of 3 samples,
300 sampled without replacement, and recorded the frequency of DMS in each case.

301 *GO term enrichment of robustly methylated genes*

302 We extracted the unique list of genes which contained CpGs methylated in all 12 samples (Fig.
303 2A). A GO-term enrichment test was performed on this list of genes with topGO (version
304 2.34.075) (Alexa *et al.*, 2010), using the classic algorithm. Node size was set to 5, Fisher exact
305 tests were applied, and we only kept GO terms that matched with 2 genes at least and with a
306 and FDR-value < 0.2.

307 *Alternative splicing*

308 Alternative splicing was estimated for each gene by measuring differential exon expression with
309 the package DEXseq (Li *et al.*, 2015). This pipeline involves first formatting the gff and then
310 extracting exon read counts from sam files. These sam files had been created in a previous study

311 by mapping RNAseq reads to the *M. natalensis* genome (Séité *et al.*, 2022). The DEXseq pipeline
312 was followed at default settings and for each of the four castes compared to the other three castes,
313 we determined genes containing significantly differentially expressed exons (adjusted p-value
314 < 0.05) relative to whole gene expression. These genes were considered putatively alternatively
315 spliced.

316 Additionally, we assembled a genome-guided transcriptome from RNAseq data (accessions:
317 SAMN17088123-SAMN17088147) (Séité *et al.*, 2022), using the new tuxedo protocol (Pertea
318 *et al.*, 2016). Raw reads were trimmed using Trimmomatic (v0.38) (Bolger *et al.*, 2014) with
319 parameters TRAILING:25 LEADING:25 SLIDINGWINDOW:4:20 AVGQUAL:20 MINLEN:50.
320 Only reads with both pairs after trimming were used for the further analysis. The trimmed
321 RNAseq reads were mapped to the genome with Hisat2 (v2.1.0) (Kim *et al.*, 2019) at default
322 settings for each library. Individual transcriptomes were assembled and merged into one with
323 StringTie (v1.3.4) (Pertea *et al.*, 2016). Numbers of transcripts per annotated gene were then
324 extracted from the resulting gff.

325 *Differential expression*

326 All data on gene expression levels and caste- and age-biased expression were obtained from Séité
327 *et al.* (2022).

328 **Availability of data and material**

329 RRBS sequences have been deposited on NCBI, available under the accession PR-
330 JNA742659. Scripts and detailed methods are available on the github repository
331 https://github.com/MCH74/Mnat_Methylation.

332 **Competing interests**

333 The authors declare that they have no competing interests.

334 **Funding**

335 This study was supported by the International Human Frontier Science Program RGP0060/2018
336 to M.V.-C. SS was also supported by a fellowship from Université Paris Est-Créteil (UPEC).

337 **Authors' contributions**

338 M.V.-C. conceived the project and provided biological materials. D.S.D and M.V.-C. collected
339 wild samples. S.G. carried out RRBS services. M.C.H. & E.D. carried out all bioinformat-
340 ics analyses. M.C.H., S.S. & M.V.-C. interpreted data. M.C.H. wrote the manuscript with
341 contributions from all authors.

342 **Acknowledgements**

343 We are grateful for valuable guidance and input from Erich Bornberg-Bauer and to Alain Robert
344 for field assistance.

345 **References**

346 Akalin, A., Kormaksson, M., Li, S., Garrett-Bakelman, F. E., Figueroa, M. E., Melnick, A., and
347 Mason, C. E. (2012). methylkit: a comprehensive R package for the analysis of genome-wide
348 DNA methylation profiles. *Genome biology*, 13(10):1–9.

349 Alexa, A., Rahnenfuhrer, J., et al. (2010). topGo: enrichment analysis for gene ontology. *R*
350 *package version*, 2(0):2010.

351 Amarasinghe, H. E., Clayton, C. I., and Mallon, E. B. (2014). Methylation and worker repro-
352 duction in the bumble-bee (*Bombus terrestris*). *Proceedings of the Royal Society B: Biological*
353 *Sciences*, 281(1780):20132502.

354 Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models
355 using lme4. *Journal of Statistical Software*, 67(1):1–48.

356 Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
357 sequence data. *Bioinformatics*, 30(15):2114–2120.

358 Bonasio, R., Li, Q., Lian, J., Mutti, N. S., Jin, L., Zhao, H., Zhang, P., Wen, P., Xiang, H., Ding,
359 Y., et al. (2012). Genome-wide and caste-specific DNA methylomes of the ants *Camponotus*
360 *floridanus* and *Harpegnathos saltator*. *Current Biology*, 22(19):1755–1764.

361 de Souza Araujo, N. and Arias, M. C. (2021). Gene expression and epigenetics reveal species-
362 specific mechanisms acting upon common molecular pathways in the evolution of task division
363 in bees. *Scientific reports*, 11(1):1–16.

364 Glastad, K. M., Gokhale, K., Liebig, J., and Goodisman, M. A. (2016). The caste-and sex-specific
365 DNA methylome of the termite *Zootermopsis nevadensis*. *Scientific Reports*, 6(1):1–14.

366 Harrison, M. C., Jongepier, E., Robertson, H. M., Arning, N., Bitard-Feildel, T., Chao, H.,
367 Childers, C. P., Dinh, H., Doddapaneni, H., Dugan, S., et al. (2018). Hemimetabolous genomes
368 reveal molecular basis of termite eusociality. *Nature ecology & evolution*, 2(3):557–566.

369 Harrison, M. C., Niño, L. M. J., Rodrigues, M. A., Ryll, J., Flatt, T., Oettler, J., and Bornberg-
370 Bauer, E. (2021). Gene coexpression network reveals highly conserved, well-regulated anti-
371 ageing mechanisms in old ant queens. *Genome biology and evolution*, 13(6):evab093.

372 Herb, B. R., Wolschin, F., Hansen, K. D., Aryee, M. J., Langmead, B., Irizarry, R., Amdam,
373 G. V., and Feinberg, A. P. (2012). Reversible switching between epigenetic states in honeybee
374 behavioral subcastes. *Nature neuroscience*, 15(10):1371–1373.

375 Issa, J.-P. et al. (2014). Aging and epigenetic drift: a vicious cycle. *The Journal of clinical
376 investigation*, 124(1):24–29.

377 Kaib, M., Hacker, M., and Brandl, R. (2001). Egg-laying in monogynous and polygynous
378 colonies of the termite macrotermes michaelseni (isoptera, macrotermitidae). *Insectes Sociaux*,
379 48(3):231–237.

380 Kassambara, A. (2021). *rstatix: Pipe-Friendly Framework for Basic Statistical Tests*. R package
381 version 0.7.0.

382 Keller, L. (1998). Queen lifespan and colony characteristics in ants and termites. *Insectes
383 Sociaux*, 45(3):235–246.

384 Kim, D., Paggi, J. M., Park, C., Bennett, C., and Salzberg, S. L. (2019). Graph-based
385 genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nature biotechnology*,
386 37(8):907–915.

387 Korb, J., Meusemann, K., Aumer, D., Bernadou, A., Elsner, D., Feldmeyer, B., Foitzik, S.,
388 Heinze, J., Libbrecht, R., Lin, S., et al. (2021). Comparative transcriptomic analysis of the
389 mechanisms underpinning ageing and fecundity in social insects. *Philosophical Transactions
390 of the Royal Society B*, 376(1823):20190728.

391 Krueger, F. and Andrews, S. R. (2011). Bismark: a flexible aligner and methylation caller for
392 bisulfite-seq applications. *bioinformatics*, 27(11):1571–1572.

393 Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with bowtie 2. *Nature
394 methods*, 9(4):357–359.

395 Li, Y., Rao, X., Mattox, W. W., Amos, C. I., and Liu, B. (2015). RNA-seq analysis of differential
396 splice junction usage and intron retentions by DEXSeq. *PLoS one*, 10(9):e0136653.

397 Libbrecht, R., Oxley, P. R., Keller, L., and Kronauer, D. J. C. (2016). Robust DNA methylation
398 in the clonal raider ant brain. *Current Biology*, 26(3):391–395.

399 Lin, S., Werle, J., and Korb, J. (2021). Transcriptomic analyses of the termite, *Cryptotermes se-
400 cundus*, reveal a gene network underlying a long lifespan and high fecundity. *Communications
401 biology*, 4(1):1–12.

402 Long, J. A. (2019). *interactions: Comprehensive, User-Friendly Toolkit for Probing Interactions*.
403 R package version 1.1.0.

404 López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The
405 hallmarks of aging. *Cell*, 153(6):1194–1217.

406 Lyko, F., Foret, S., Kucharski, R., Wolf, S., Falckenhayn, C., and Maleszka, R. (2010). The
407 honey bee epigenomes: differential methylation of brain DNA in queens and workers. *PLoS
408 Biol*, 8(11):e1000506.

409 Marshall, H., Lonsdale, Z. N., and Mallon, E. B. (2019). Methylation and gene expression
410 differences between reproductive and sterile bumblebee workers. *Evolution Letters*, 3(5):485–
411 499.

412 Patalano, S., Vlasova, A., Wyatt, C., Ewels, P., Camara, F., Ferreira, P. G., Asher, C. L.,
413 Jurkowski, T. P., Segonds-Pichon, A., Bachman, M., et al. (2015). Molecular signatures of
414 plastic phenotypes in two eusocial insect species with simple societies. *Proceedings of the*
415 *National Academy of Sciences*, 112(45):13970–13975.

416 Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., and Salzberg, S. L. (2016). Transcript-level
417 expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. *Nature*
418 *protocols*, 11(9):1650–1667.

419 Poulsen, M., Hu, H., Li, C., Chen, Z., Xu, L., Otani, S., Nygaard, S., Nobre, T., Klaubauf, S.,
420 Schindler, P. M., et al. (2014). Complementary symbiont contributions to plant decomposition
421 in a fungus-farming termite. *Proceedings of the National Academy of Sciences*, 111(40):14500–
422 14505.

423 R Core Team (2016). *R: A Language and Environment for Statistical Computing*. R Foundation
424 for Statistical Computing, Vienna, Austria.

425 Séguret, A., Stolle, E., Fleites-Ayil, F. A., Quezada-Euán, J. J. G., Hartfelder, K., Meuse-
426 mann, K., Harrison, M. C., Soro, A., and Paxton, R. J. (2021). Transcriptomic signatures
427 of ageing vary in solitary and social forms of an orchid bee. *Genome biology and evolution*,
428 13(6):evab075.

429 Séité, S., Harrison, M. C., Sillam-Dussès, D., Lupoli, R., Van Dooren, T. J., Robert, A., Pois-
430 sonnier, L.-A., Lemainque, A., Renault, D., Acket, S., et al. (2022). Lifespan prolonging
431 mechanisms and insulin upregulation without fat accumulation in long-lived reproductives of
432 a higher termite. *Communications biology*, 5(1):1–16.

433 Shigenobu, S., Hayashi, Y., Watanabe, D., Tokuda, G., Hojo, M. Y., Toga, K., Saiki, R., Yaguchi,
434 H., Masuoka, Y., Suzuki, R., et al. (2022). Genomic and transcriptomic analyses of the

435 subterranean termite *Reticulitermes speratus*: Gene duplication facilitates social evolution.

436 *Proceedings of the National Academy of Sciences*, 119(3).

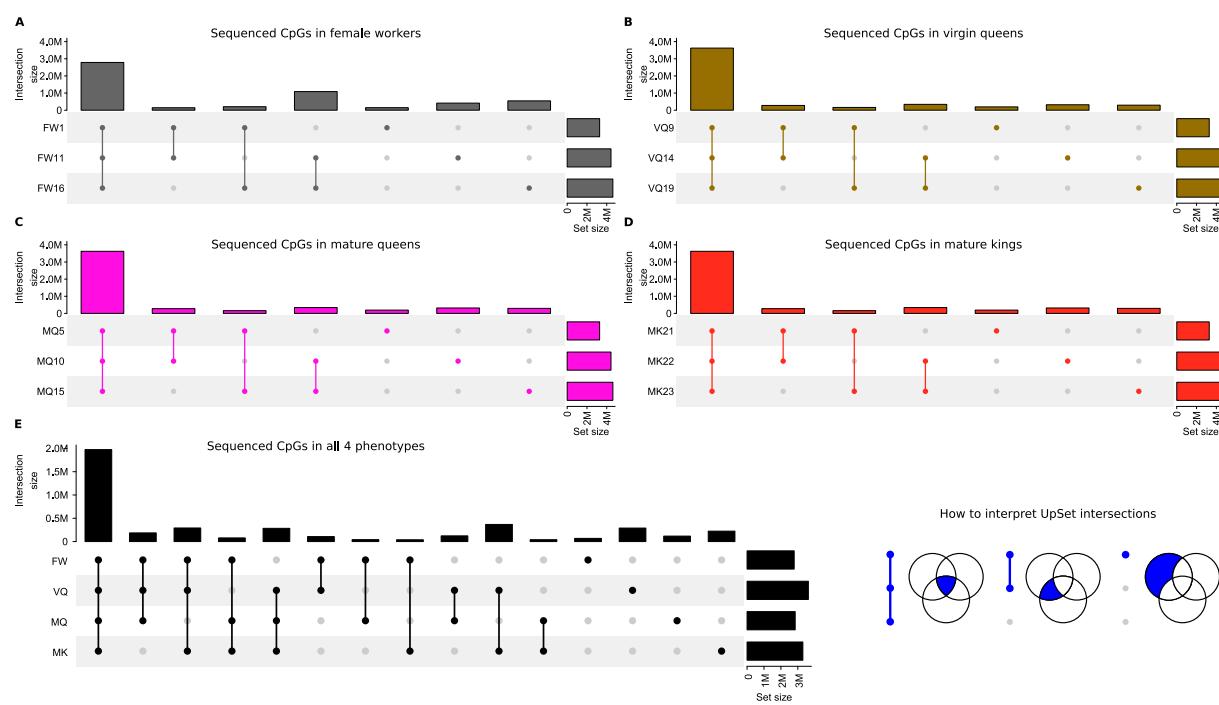
437 Sieber, R. and Leuthold, R. (1982). Development of physogastry in the queen of the fungus-

438 growing termite *Macrotermes michaelseni* (Isoptera: Macrotermitinae). *Journal of Insect*

439 *Physiology*, 28(12):979–985.

440 Weil, T., Rehli, M., and Korb, J. (2007). Molecular basis for the reproductive division of labour

441 in a lower termite. *BMC genomics*, 8(1):1–9.


442 Wickham, H. et al. (2016). *Elegant graphics for data analysis*. Springer, New York.

443 Zemach, A., McDaniel, I. E., Silva, P., and Zilberman, D. (2010). Genome-wide evolutionary

444 analysis of eukaryotic DNA methylation. *Science*, 328(5980):916–919.

445 **Supplementary Material**

446 *Supplementary Figures*

Figure S1: RRBS coverage across 4 phenotypes and 3 replicates. The UpSet plots in visualise sizes of intersections between sets. The central matrix in each shows with joined, coloured dots, which sets are included in the intersections (see inset at bottom right), the vertical columns show the size of these intersections and the horizontal bars show the set sizes. Specifically, **A.-D.** show numbers of sequenced CpGs for each of the three replicates (horizontal bars) and their overlaps between replicates (vertical bars) in female workers (FW), virgin queens (VQ), mature queens (MQ) and mature kings (MK), respectively. **E.** shows total numbers of sequenced CpGs covered by all four phenotypes (FW, VQ, MQ, MK), and how they overlap between phenotypes. In **E.**, sets are comprised of those CpGs which were sequenced in all three replicates represented by left-most vertical bar in plots **A.-D..**

⁴⁴⁷ *Supplementary Tables*

Table S1: Summary of the sampling design and sequencing results.

This table contains the origin of the fat body obtained from the 4 *Macrotermes natalensis* phenotypes (female worker, FW; virgin queens, VQ; mature queens, MQ; mature kings, MK) analysed in this study. These termites were collected from field colonies (colony ID) in 2016 in Southern Africa as described in (Séité *et al.*, 2022). The number of individuals pooled per sample, the bisulfite non-conversion rates, total numbers of sequenced reads, and mapping rates are indicated.

The same fat body samples were used to prepare total RNA for transcriptomes (Séité *et al.*, 2022) and for genomic DNA for methylome analyses presented in this manuscript.

Sample-ID	Phenotype	Colony-ID	Nr. pooled individuals	non-conversion rate	Nr. reads	mapping rate
1	FW	3	85	0.9	32.1M	67.3%
11	FW	6	85	0.7	47.4M	68.3%
16	FW	7	85	0.8	57.4M	68.4%
9	VQ	5	10	0.9	47.7M	69.9%
14	VQ	6	10	1.1	59.4M	70.1%
19	VQ	7	10	1.4	48.9M	71.2%
5	MQ	3	1	0.6	35.2M	70.5%
10	MQ	5	1	0.6	61.4M	70.8%
15	MQ	6	1	0.9	45.5M	70.3%
21	MK	5	1	1.1	47.3M	69.8%
22	MK	6	1	0.7	51.7M	70.5%
23	MK	7	1	0.9	40.1M	69.3%

Table S2: GO-terms significantly enriched among genes containing robustly methylated CpGs, i.e. in all 12 samples. Shown are all terms with an FDR < 0.2.

	GO.ID	Description	p-value	FDR
1	GO:0030154	cell differentiation	5.2E-04	0.033
2	GO:0048869	cellular developmental process	5.2E-04	0.033
3	GO:0006265	DNA topological change	3.0E-03	0.128
4	GO:0007155	cell adhesion	5.6E-03	0.143
5	GO:0022610	biological adhesion	5.6E-03	0.143
6	GO:0050794	regulation of cellular process	0.011	0.166
7	GO:0050789	regulation of biological process	0.013	0.166
8	GO:0007156	homophilic cell adhesion via plasma membrane adhesion molecules	0.013	0.166
9	GO:0098609	cell-cell adhesion	0.013	0.166
10	GO:0098742	cell-cell adhesion via plasma-membrane adhesion molecules	0.013	0.166
11	GO:0065007	biological regulation	0.016	0.183
12	GO:0007264	small GTPase mediated signal transduction	0.017	0.183

Table S3: Genes containing significantly differentially methylated sites between young, virgin queens and mature queens. Dmel & Hsap: ortholog in *Drosophila melanogaster* and *Homo sapiens*. DE: differential expression between VQ & MQ (Séité *et al.*, 2022).

Gene	feature	Dmel	Hsap	PFAM	putative function	DE VQ vs MQ
VQ < MQ						
Mnat_03252	5'-flank	NA	NA	NA	unknown	nonDE
Mnat_04370	5'-flank	Ddc	DDC	Pyridoxal_deC	Copa decarboxylase, lifespan ^{fb}	VQ
Mnat_09467	CDS1	CG32447	NA	7tm_3	class C G-protein-coupled receptor ^{pf}	MQ
Mnat_11641	CDS2	Peritrophin-A	NA	CBM_14	chitin-binding, reproduction ^{fb}	VQ
Mnat_15310	intron1	NA	NA	NA	unknown	nonDE
Mnat_10547	intron3	NA	UGT2B7	UDPGT	UDP-glucuronosyltransferase ^{up}	VQ
Mnat_16506	intron6	NA	SLC9B2	Na ₊ -Exchanger	Na ₊ /H ₊ antiporter ^{up}	nonDE
Mnat_10733	intron6	NA	NA	EAT	unknown	nonDE
Mnat_05311	3'-flank	NA	NA	NA	unknown	nonDE
VQ > MQ						
Mnat_00142	5'-flank	side-VI	NA	Ig_3	unknown	nonDE
Mnat_00644	5'-flank	stj	CACNA2D3	VWA_N, VWA_2, VGCC_alpha2	voltage-gated calcium channel ^{fb}	VQ
Mnat_00686	5'-flank	noc	ZNF503	NA	negative regulation of notch signalling ^{fb}	nonDE
Mnat_01940	5'-flank	NA	NA	DDE_Tnp_1_7	transposon ^{up}	nonDE
Mnat_08254	5'-flank	CG15533	NA	Metallophos	sphingomyelinase activity ^{fb}	MQ
Mnat_10196	5'-flank	fl(2)d	WTAP	Wtap	WMM complex, mRNA methylation and splicing ^{fb}	nonDE
Mnat_10965	5'-flank	NA	NA	NA	nonDE	
Mnat_11142	5'-flank	Fkbp14	FKBP14	FKBP_C, EF-hand_7	immunophilin, interacts with Notch pathway ^{fb}	MQ
Mnat_12594	5'-flank	NA	NA	NA	unknown	nonDE
Mnat_15090	5'-flank	CG12581	NA	NA	unknown	VQ
Mnat_17923	5'-flank	scramb1	PLSCR1	Scramblase	scramblase: neurotransmission, apoptosis ^{fb}	VQ
Mnat_00686	CDS2	noc	ZNF503	NA	negative regulation of notch signalling ^{fb}	nonDE
Mnat_11151	CDS3	NA	APCDD1	APCDDC	Negative regulator of Wnt signalling ^{up}	nonDE
Mnat_16530	CDS4	Sytbeta	NA	C2	Synaptotagmin, several cellular functions ^{fb}	VQ
Mnat_03908	CDS6	NA	NA	NA	unknown	VQ
Mnat_03066	CDS10	CG31075	NA	Aldedh	Aldehyde dehydrogenase ^{fb}	VQ
Mnat_00817	intron1	NA	NA	C2-set_2	unknown	nonDE
Mnat_02242	intron1	daw	MSTN	TGFb-propeptide, TGF_beta	tricarboxylic acid cycle in fat body and insulin regulation ^{fb}	MQ
Mnat_03015	intron1	Elk	KCNH8	PAS_9_Ion_trans	voltage-gated potassium channel activity ^{fb}	MQ
Mnat_05460	intron1	NA	NA	CTNNB1_binding	Wnt signalling ^{pf}	nonDE
Mnat_08353	intron1	NA	NA	ANF_receptor	receptor ^{pf}	VQ
Mnat_08440	intron1	NA	NA	NA	unknown	nonDE
Mnat_09896	intron1	CG5160	NA	Ras	GTPase activity ^{fb}	nonDE
Mnat_12275	intron2	tai	NCOA2	HLH, PAS_11	ecdysone receptor co-activator ^{fb}	VQ
Mnat_03394	intron3	Sirt6	SIRT6	SIR2	Sirtuin6 ^{fb} , lifespan	nonDE
Mnat_09845	intron3	NA	NA	7tm_1	G protein-coupled receptor ^{pf}	nonDE
Mnat_14320	intron5	Skeletor	NA	DM13, DOMON	cell cycle regulation ^{fb}	VQ
Mnat_00511	intron8	NA	NA	Vitellogenin_N, DUF1943, VWD	Vitellogenin ^{pf} , fertility	MQ
Mnat_04048	intron10	Rab11	RAB11A	Ras, Lactamase_B, Lactamase_B-2	Ras-like GTPase ^{fb}	MQ
Mnat_05339	intron12	NA	NA	NA	unknown	nonDE
Mnat_01396	intron14	shg	NA	Cadherin, Laminin_G_2, Cadherin_C	cadherin ^{fb}	VQ
Mnat_12633	intron18	Pde11	PDE5A	GAF, PDEase_I	Phosphodiesterase 11, signalling ^{fb}	VQ
Mnat_11129	intron140	bt	TTN	I-set, Pkinase	Projectin, muscle protein ^{fb}	VQ
Mnat_01803	3'-flank	CG8405	TMEM259	Membralin	regulation of misfolded proteins ^{up}	nonDE
Mnat_02376	3'-flank	NA	NA	LRR_8	unknown	nonDE
Mnat_02952	3'-flank	NA	NA	NA	unknown	nonDE
Mnat_05525	3'-flank	CIC_c	CLCN3	Voltage_CLC, CBS	chloride channel ^{fb}	VQ
Mnat_06053	3'-flank	1(2)37Cc	PHB	Band_7	larval metabolism ^{fb}	nonDE
Mnat_07417	3'-flank	NA	NA	NA	unknown	nonDE
Mnat_10837	3'-flank	NA	NA	zf-met, zf-C2H2_6, P zf-C2H2	DNA/RNA-binding, transcriptional regulation ^{pf}	nonDE
Mnat_13326	3'-flank	chico	NA	NA	substrate of InR in IIS pathway ^{fb}	VQ
Mnat_13488	3'-flank	NA	NA	DDE_3	endonuclease ^{fb}	nonDE
Mnat_14386	3'-flank	NA	NA	DUF4817, DDE_3	DNA-binding and endonuclease ^{pf}	nonDE
Mnat_14747	3'-flank	NA	NA	NA	unknown	nonDE
Mnat_16347	3'-flank	NA	NA	7tm_6	odorant receptor ^{pf}	nonDE

