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Abstract

Understanding the genetic architecture underpinning quantitative traits in wild populations is pivotal to
understanding the processes behind trait evolution. The ‘animal model’ is a popular method for
estimating quantitative genetic parameters such as heritability and genetic correlation and involves
fitting an estimate of relatedness between individuals in the study population. Genotypes at genome-
wide markers can be used to estimate relatedness; however, relatedness estimates vary with marker
density, potentially affecting results. Increasing density of markers is also expected to increase the
power to detect quantitative trait loci (QTL). We estimated heritability and performed genome-wide
association studies (GWAS) on five body size traits in an unmanaged population of Soay sheep using two
different SNP densities: a dataset of 37,037 genotyped SNPs, and an imputed dataset of 417,373 SNPs.
Heritability estimates did not differ between the two SNP densities, but the high-density imputed SNP
dataset revealed five new SNP-trait associations that were not found with the lower density dataset.
Conditional GWAS analyses after fitting the most significant SNPs revealed two more novel SNP-trait
associations.
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Introduction

Investigating the genetic architecture behind heritable traits is key to understanding the biological
diversity of wild populations. If we know the number of loci influencing a trait and their effect size, we
can better understand the evolutionary processes that underpin traits, improve inferences about trait
evolution (Barton and Keightley 2002), and understand micro-evolutionary dynamics that occur due to
environmental change. Most quantitative genetic research in animals is carried out in artificial
populations; either domestic, agricultural or laboratory. Such populations experience controlled
environmental conditions which make it easier to account for environmental factors when studying the
effect of genetic variants on phenotypic variation. However, given that environmental factors can
influence the phenotype of a quantitative trait (Charmantier et al. 2014), and that the presence of
genotype-by-environment interactions can cause additive genetic variance to differ between
environmental conditions, studies on artificial populations arguably cannot be fully extrapolated to wild
populations (Kruuk et al. 2008). Therefore, it is important to also study quantitative traits in wild
populations in their natural habitats. There is a wealth of quantitative genetics research in human
populations (for examples, see Manolio et al. 2009; Kang et al. 2010; Yang et al. 2010; Zaitlen et al. 2013;
Locke et al. 2015; Xia et al. 2016; Xia et al. 2021), but humans also arguably experience a more buffered
environment than wild populations.

A popular method to decompose phenotypic variation in wild populations into genetic variance and
environmental variance is the ‘animal model’, originally developed by animal breeders (Henderson
1984; Kruuk 2004; Wilson et al. 2010). As part of the model, genetic relatedness is fitted, which is often
derived from a pedigree. Pedigrees can be constructed using field observations, assigning parentage
using genetic markers, or a mixture of both (Pemberton 2008). However, wild pedigrees are often short,
incomplete, and contain errors: observational data may be inaccurate due to incorrect parent-offspring
assumptions, and if the genetic markers chosen are not sufficiently discriminatory they may result in
misassigned parentage. Erroneous pedigree links can bias results of analyses using animal models; for
example, misidentification of sires in cattle resulted in decreased heritability estimates for milk yield, fat
yield, and milk-fat ratio (Van Vleck 1970).

In place of a pedigree, genotypes at multiple polymorphic loci can be used to estimate relatedness for
use in an animal model. This has the advantage of not relying on recovering a pedigree and thus is not
affected by incomplete or incorrect familial links (though knowledge of pedigree relationships is still
valuable, for example so that maternal effects can be fitted). Relatedness estimated using genotype data
is also potentially more precise than that from pedigrees — for example, with a pedigree it is presumed
that full-sibs have a relatedness of 0.5, however the exact relationship varies depending on which DNA
segments each sib has inherited (Visscher et al. 2006). Despite this greater accuracy, genotype-based
relatedness estimates can still vary depending on which variants in the population have been
genotyped, and the density of the genotyped variants. Increasing the density of genotyped
polymorphisms means they are more likely to be in linkage disequilibrium (LD) with causal variants for
the trait of interest, either by being physically closer to the causal variants or by matching the allele
frequency of the causal variants more accurately. Thus, in species such as humans where genotyping is
commonly of unrelated individuals and LD is generally low, the estimated heritability of a trait increases
with SNP density due to an increase in the number of causal variants being in LD with genotyped SNPs
(for instance, heritability of human height was estimated to be 0.45 when using 294,831 SNPs (Yang et
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71 al. 2010) and 0.56 when using ~17 million imputed SNPs (Yang et al. 2015)). However, increasing the
72 number of genotyped markers means larger, denser genotyping arrays with prices increasing with

73 density. For commonly studied species, high-density arrays are more affordable due to high demand,
74 but for more niche species, including wild populations, large genotyping arrays are often unaffordable.
75  Genotyping-by-sequencing, e.g. ddRAD (Peterson et al. 2012) is a potentially useful alternative for

76 upscaling SNP density, though the combination of bioinformatics and samples sizes required in

77 guantitative genetic research means that this approach is not yet in widespread use.

78  As an alternative to expensive high-density genotyping, genotype imputation can be used to increase

79 the number of variants analysed (Burdick et al. 2006). Imputation involves predicting genotypes at

80  untyped SNPs in a ‘target’ population using a subset of the study population —or more generally a

81 “reference” population — genotyped at a higher density, either through a high density SNP array or by
82 genotyping-by sequencing. The genotypes at these untyped SNPs for individuals in the target population
83 are inferred using their genotypes at typed markers and taking advantage of existing linkage

84  disequilibrium (LD) between SNPs. Pedigree information can also be used to increase the accuracy of the
85 imputation by identifying haplotype blocks that are identical by descent (Burdick et al. 2006).

86

87  The Soay sheep (Ovis aries) of St Kilda are a primitive, unmanaged breed of sheep that have been the
88  focus of a longitudinal, individual-based study since 1985 (Clutton-Brock and Pemberton 2003). As part
89 of the study, life history and environmental data is collected, DNA samples are collected, and a pedigree
90 has been constructed using observation and genetic parentage inference. 7630 sheep have been

91 genotyped on the Ovine SNP50 Illlumina Beadchip, on which 37,037 SNPs are autosomal and

92 polymorphic in this population.

93  To date, quantitative genetic analyses of the Soays have been performed using either the pedigree or
94  the 50K SNP data. Bérénos et al. (2014) investigated the difference in quantitative genetic parameter
95 estimates when using the pedigree or a genomic relationship matrix (GRM) constructed from the 50K
96 SNP data. The authors estimated heritability, maternal genetic effects and genetic correlations for body
97  size traits (weight, foreleg length, hindleg length, metacarpal length and jaw length) across four age
98 groups. The additive genetic variance and the heritability estimates using the GRM were lower than
99 when using the pedigree to estimate relatedness, with the SNPs explaining 84% of the additive genetic
100  variance of the pedigree on average, though for the majority of the traits the standard errors of the
101 pedigree-based and SNP-based heritability estimates were within one standard error of each other.
102 Genetic correlations were found to differ little between analyses using the different relatedness
103 estimates. A SNP rarefaction analysis of the heritability estimates was conducted on the adult traits, and
104 it was found that heritability estimates asymptoted when 50% of the SNPs were used to estimate
105 relatedness.

106 Linkage disequilibrium is high in Soay sheep (Bérénos et al. 2014), which may explain the results of the
107 rarefaction analysis: the same causal variations can be represented by multiple genotyped SNPs, and so
108 many genotyped SNPs are not providing unique information towards the additive genetic variance.

109 However, given that heritability estimates when using SNP-based estimates of relatedness were lower
110  than when using pedigree-based estimates, it is also possible that there are variants that contribute to
111 variation in these traits that aren’t in perfect LD with the genotyped SNPs. This may be depressing

112 estimates of additive genetic variance in comparison to pedigree-based estimates. Increasing the

4
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113  density of genotyped SNPs may therefore increase the SNP-based heritability estimates of these traits to
114  closer match the pedigree-based estimates.

115 Bérénos et al. (2015) focused on the same traits as Bérénos et al. (2014) in adults only, and partitioned
116  the genetic variance for each trait, first by chromosome and then by 150 SNP windows, and performed
117 GWHAS. For the three leg length phenotypes, a disproportionately high amount of variance was explained
118 by two SNPs on chromosome 16 (s23172.1) and chromosome 19 (s74894.1). For the remaining traits,
119 the proportion of additive genetic variance explained by a chromosome was proportional to its length,
120  suggesting that variation in these traits is influenced by many genetic variants of small effect, and no
121 SNP-trait associations were discovered. The authors performed a two-step GWAS analysis; first they
122 modelled the traits by fitting fixed and random effects, and then they extracted the residuals from the
123 models and tested for association between SNPs and the residuals. Three traits (weight, foreleg length
124  and hindleg length) are measured in the same individual across multiple years — for these traits, the
125 authors analysed the mean residual values.

126 Since the studies from 2014 and 2015, 1895 more individuals have been both phenotyped and

127 genotyped on the Ovine SNP50 Illlumina Beadchip. In addition, 188 individuals were genotyped on the
128 Ovine Infinium High Density chip with 600K attempted SNPs, which has enabled the genotypes of the
129 remaining individuals to be accurately imputed to that higher density using LD and pedigree data (Stoffel
130  etal. 2021).

131 In this study we performed a direct comparison of heritability estimates and GWAS associations

132 between the lower density SNP data and the imputed high density SNP data in the Soay population
133 using an increased sample size and compared the results to the previous studies (Bérénos et al. 2014;
134 Bérénos et al. 2015). We focused on the same five traits as the previous studies in neonates, lambs and
135  adults. Unlike the 2015 study (Bérénos et al. 2015), we performed GWAS by fitting fixed and random
136  effects in the same step as testing for SNP-trait associations. This has the advantage of correctly

137 propagating error throughout the analysis, reducing the chance of false positive results. We also carried
138 out a two-step GWAS approach similar to that of Bérénos et al. 2015, focusing on the adult traits using
139  the 50K SNP data, to investigate whether any SNP-trait associations identified using our approach were
140  dueto the increased population size or due to the different methodology (single-step vs. two-step

141 GWAS).

142 Our aims were as follows:

143 1) To determine whether the increased density of SNPs changes the heritability estimates of the
144 traits using the same individuals for both the low SNP density and the high SNP density analysis.
145 Given the previous rarefaction analysis (Bérénos et al. 2014), our prediction was that there

146 would be no change.

147

148 2) To determine whether the imputed SNP data enables the identification of new SNP-trait

149 associations via GWAS. We predicted we would find more associations, either due to increased
150 power to detect small effect size SNPs through increased LD with the imputed SNPs or due to
151 tagging of new causal variants.

152

153 3) To examine how a single-step GWAS methodology compares with the two-step approach

154 previously used on the Soay population, to investigate whether any novel SNP-trait associations
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155 identified with the 50K SNP data were due to increased population size or due to the difference
156 in methods.
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157 METHODS
158  Phenotypic data

159  We focused on five body size traits in three age groups: neonates, lambs, and adults. Of the five traits,
160  three (weight, foreleg length and hindleg length) are live measures, recorded in April for neonates and in
161 August for lambs and adults. The remaining two traits (metacarpal length and jaw length) are post

162 mortem measures taken from skeletal material. The sheep are ear-tagged when they are first captured
163 which allows for reidentification for life. Both birth and August weight are measured to the nearest

164  0.1kg, whilst the remaining traits are all measured to the nearest mm. A detailed description of trait

165 measurements can be found in Beraldi et al. (2007).

166 We defined neonates as individuals who were caught and weighed between two and ten days after birth
167 - birth weight was the only trait recorded for this age group. Lambs were classed as individuals who had
168 phenotypic data recorded in the August of their birth year for the live traits, and as individuals who died
169 before 14 months of age for the post mortem measures. Individuals were classed as adults if they had
170  August phenotypic data recorded at least two years after birth, or if they died after 26 months of age for
171  post mortem measures. Unlike Bérénos et al. (2014), we chose not to analyse yearling data due to the
172 small sample sizes in comparison to the other age classes, which is due to high first winter mortality.

173
174 Genetic data

175 Most of the sheep in our study population have been genotyped using the Ovine SNP50 Illumina

176 BeadChip, which targets 54,241 SNPs across the sheep genome. After removing SNPs which failed

177 quality control standards (minor allele frequency (MAF) > 0.001, call rate > 0.99, deviation from Hardy-
178 Weinberg Equilibrium P > 1e-05), 39,368 polymorphic variants remained for 7630 individuals (3643
179  female, 3987 male). See Bérénos et al. (2014) for information on genetic sampling protocol and marker
180  characteristics).

181 Of these 7630 individuals, 188 have also been genotyped using the Ovine Infinium HD SNP BeadChip
182 which types 606,066 SNPs. This has allowed for the low density genotypes to be imputed to the higher
183 density using Alphalmpute, which combines shared haplotype and pedigree information for phasing and
184  genotype imputation (Hickey et al. 2012) (see Stoffel et al. (2021) for information on imputation). We
185 used imputed genotype “hard” calls (rather than genotype probabilities) in downstream analyses. After
186  filtering SNPs that failed quality control standards, 419,281 autosomal SNPs remained for 7621

187  individuals (3639 females, 3982 males).

188 Both the 50K SNP data and the imputed SNP data are mapped to the OAR_v3.1 genome assembly.
189
190  Narrow sense heritability estimation

191 We used animal models to partition the phenotypic variance for each trait in each age class into genetic
192  and non-genetic variance components. Fixed and random effects were fitted for all models, with the
193  effects differing between traits and age classes (Table 1). We implemented these analyses in DISSECT
194  (Canela-Xandri et al. 2015) using the following model:
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y:XB+zZTur+Wg+s
r

195  wherey is the vector of phenotypic values; X is a design matrix linking individual records with the vector
196  of fixed effects B, Z; is an incidence matrix that relates a random effect to the individual records; u, is the
197  associated vector of non-genetic random effects; g is the vector of additive genetic random effects with
198 W the incidence matrix; and € is the vector of residuals. It is assumed that g ~ MVN(0, Ma’), where o, is
199  the additive genetic variance and M is the genomic relationship matrix (GRM). For each trait in each age
200 class, we ran this model twice: first with M being a GRM calculated from the 50K genotype data, and
201  second with M being a GRM calculated from the imputed SNP genotypes. The GRMs (VanRaden 2008)
202 were computed using DISSECT (Canela-Xandri et al. 2015), and the genetic relationship between

203 individuals i and j is computed as:

1 (sie— 201 (Sjk—2p1c )
7N 2pi (1 — py)

204

205  where s; is the number of copies of the reference allele for SNP k of the individual i, py is the frequency
206  of the reference allele for the SNP k, and N is the number of SNPs.

207  The narrow sense heritability was estimated by dividing the additive genetic variance (the variance
208 explained by the GRM) by the total estimated phenotypic variance (the sum of the variance explained by
209  the GRM and other fitted random effects after fitting fixed effects).

210  Inadults, there are multiple records for August weight, foreleg length and hindleg length for the same
211 individual due to individuals being caught across multiple years. For these traits we used a repeatability
212 model in order that uncertainty was correctly propagated through all estimations (Mrode 2014). To

213 implement a repeatability model in DISSECT, we edited the input files so that each measurement had its
214  own row in the genotype and covariate files. Individual ID was replaced with a unique capture reference
215 number, and individual permanent environment was fitted as a random effect (see Supplementary

216  Methods for a more detailed explanation).

217  Sample sizes and total number of phenotypic measurements for all traits are shown in Table 1, with
218  effects fitted in all models.

219
220  Genome wide association analysis

221  Wealso conducted genome-wide association analyses using DISSECT (Canela-Xandri et al. 2015). We
222  fitted the same fixed and random effects for each trait and age class as for the heritability estimation
223 (Table 1). To account for population structure, when testing SNPs on a given chromosome for

224  association with the phenotype, a GRM calculated from the remaining autosomes (referred to as Leave
225  One Chromosome Out GRM (Yang et al. 2014)) was fitted. Input files for repeated-measure traits were
226 reformatted as above. Our significance threshold was corrected for multiple testing using the SimpleM
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227 method (Gao et al. 2008), which accounts for linkage disequilibrium between markers in order to
228  calculate the effective number of independent tests.

229  We estimated the variance explained by SNPs that passed the significance threshold using the equation
V(SNP) = 2pqa?

230  where p and g are the major and minor allele frequencies of the SNP, and a is the estimated SNP effect.
231 We then calculated the proportion of additive genetic variance explained by each SNP by dividing by the
232 total additive genetic variance estimated for that trait.

233 For any trait for which several SNPs in the same region were associated with variation in the trait and
234 thus had strong support for at least one QTL in the region, we carried out conditional analysis to

235 understand if the region could harbour potentially several independent QTL, or if further QTL could be
236 uncovered elsewhere in the genome. To that aim, the genotypes of the SNP with the smallest

237  association p value from each associated region (hereafter called the “top SNP”) were added to the

238 GWAS model as a fixed covariate and removed from the GRMs and genotype data. The GWAS analysis
239 was re-run accounting for those associations to try and reveal novel peaks either in the same regions or
240  elsewhere in the genome.

241
242 Genes in QTL regions

243 For each trait x SNP association, we investigated the genes within a 0.5Mb window either side of the top
244  SNP to identify any genes which could be contributing to trait variation. We extracted a list of genes for
245 each trait using the biomaRt package in R (Durinck et al. 2005; Durinck et al. 2009) from the OAR_v3.1
246  genome assembly and reviewed each gene against the NCBI Gene (Bethesda (MD): National Library of
247 Medicine (US) 2004 - 2022), Animal QTLdb (Hu et al. 2022), and Ensembl (Howe et al. 2020) databases to
248 examine function and expression annotations. When possible, we also compared with human and

249 mouse orthologues due to the high level of annotation data available for these two species.

250
251 Two-step GWAS analysis

252  Toinvestigate whether any novel SNP associations identified (since Bérénos et al. 2015) by performing
253 GWAS on the adult traits using the 50K SNP data were due to the increased population sample or due to
254  the change in methodology, we also performed a two-step GWAS, focusing on adults only and using the
255 50K SNP data. We performed mixed model analyses using ASReml-R (Butler et al. 2017) for each trait
256  fitting the same fixed and random effects as in our single-step analyses, including whole-genome

257 relatedness (in the form of a GRM) and, for repeated-measure traits, permanent environment. We then
258 extracted the residuals from the mixed models and performed GWAS with the residuals as the trait

259 phenotypes using DISSECT (Canela-Xandri et al. 2015). For repeated measure traits, we used the mean
260 residual value for each individual. We used the Bonferroni correction calculated in Bérénos et al. 2015 to
261 determine the significance threshold for our two-step GWAS in order to best compare with previous
262 GWAS performed on the Soay sheep.

263


https://doi.org/10.1101/2022.03.07.483376
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.07.483376; this version posted July 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

264 RESULTS
265  Heritability estimation
266 Neonates

267 In neonates, the heritability of birth weight was 0.051 (S.E. 0.020) both when using the 50K SNPs to
268 calculate relatedness, and when using the imputed SNPs (Figure 1, Supplementary Table 1). Given that
269 both estimates are identical to 3 decimal places, there is no difference between the estimates.

270 Lambs

271 In lambs, the heritability estimates for the live August measures were lower than those for the post
272 mortem measures (Figure 1, Supplementary Table 1). Across all the traits, heritability estimates were
273 similar when using the 50K SNP data and the imputed SNP data, with the biggest difference being 0.024
274  for metacarpal length. For all traits, estimates were within one standard error of each other, indicating
275  that the small differences in heritability estimates between the two SNP densities were not significant.

276  Adults

277  As observed in lambs, heritability estimates for live measures in adults were lower than those of the
278  post mortem measures. Across all traits, heritability estimates were higher in adults than in lambs.
279 Estimates obtained using the 50K SNPs and using the imputed SNPs were similar and were within one
280  standard error of each other (Figure 1, Supplementary Table 1), meaning that the imputed SNPs

281 provided no additional information to partition the variation into genetic and environmental variance.

282 Estimates for all variance components are listed in Supplementary Table 1.
283

284  GWAS

285 50K SNP data

286  To correct for multiple testing, we calculated the effective number of tests to be 20082 using the
287  SimpleM method (Gao et al. 2008), giving a genome-wide significance threshold of 2.49e™ for the 50K
288  SNP data.

289 For weight in neonates (birth weight), and lambs (August weight), no SNPs were found to have an
290  association p value smaller than this threshold, suggesting that any variants that influence weight
291  variation are either of small effect or were not tagged by SNPs in the 50K SNP data (Figure 2A,

292  Supplementary Figure 1B and 1G). For adult August weight, three SNPs had a p value lower than the
293  genome-wide significance threshold; one SNP on chromosome 6 and two SNPs on chromosome 9.

294  For all three leg length measures in lambs, we found associations with the same region on chromosome
295 16. SNP s23172.1 was the SNP with the lowest p value for lamb foreleg and hindleg, explaining 0.52%
296 and 0.69% of the genetic variance for each trait respectively (Supplementary Table 2, Supplementary
297 Figure 1C and 1D). For lamb metacarpal, SNP 22142.1 in the same chromosome 16 region had the

298 lowest p value and explained 0.97% of the genetic variance. There was also a single SNP on chromosome
299 3 (OAR3_100483326.1) and a cluster of SNPs on chromosome 19 that had p values smaller than the

300 genome-wide significance threshold and were associated with variation in lamb metacarpal length, with

10
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301 the SNP with the lowest p value from each region explaining 2.08% and 2.40% of the genetic variance
302 respectively (Supplementary Table 2, Supplementary Figure 1E).

303  Thetwo regions on chromosomes 16 and 19 that were associated with lamb metacarpal length variation
304  were also significantly associated with all three leg length measures in adults, with SNP s22142.1 on

305 chromosome 16 and SNP s74894.1 on chromosome 19 respectively explaining 0.80% and 2.04% of the
306  genetic variation in adult foreleg, 0.88% and 1.32% of the genetic variation in adult hindleg, and 0.55%
307 and 2.02% of the genetic variation in adult metacarpal length. There were other regions of the genome
308  also associated with variation in the adult leg length traits; a region on chromosome 11 was significant
309 across all three adult leg length traits, with the most significant SNP explaining 2.35%, 2.25% and 1.13%
310  of the genetic variance in adult foreleg, hindleg and metacarpal respectively (Figure 2B, Supplementary
311  Table 2, Supplementary Figure 1H and 1J). For adult foreleg, a SNP on chromosome 7 and two on

312  chromosome 9 were also associated, with the most significant SNPs in each region explaining 1.31% and
313 2.99% of the genetic variance respectively for this trait (Supplementary Table 2, Supplementary Figure
314  1H).

315 In lambs, there were no associations with jaw length found (Supplementary Figure 1F). In adults, a SNP
316 on chromosome 20 was associated with jaw length variation, explaining 2.05% of the genetic variance
317  for this trait (Supplementary Table 2, Supplementary Figure 1K).

318 In total, we identified 85 SNP-trait associations with 39 unique SNPs.
319 Imputed data

320  Using the SimpleM method (Gao et al. 2008), we calculated the number of effective tests to be 48635,
321  giving a genome-wide significance threshold of 1.03e-06.

322  When performing GWAS using the imputed SNP data, we were able to recover significant SNPs in the
323 same locations for all traits as those we found using the 50K SNP data. Of the 85 SNP-trait associations
324  that we identified with the 50K SNP data, 81 were significant using the imputed SNP data —the

325 remaining four SNPs were no longer significant due to the increased multiple testing burden (which
326 leads to a more stringent significance threshold) between the 50K SNP data and the imputed SNP data
327  (2.49€% and 1.03e™® respectively).

328 Wealso identified 795 new SNP-trait associations using the imputed SNP data with 425 unique SNPs
329 (Supplementary Table 2). The majority of new associations were in the same regions as the SNPs

330 identified using the 50K SNP data, but we also found new associations: four SNPs on chromosome 1 and
331  three SNP on chromosome 7 was associated with birth weight (Figure 2A, Supplementary Table 2), one
332 SNP on chromosome 3 was associated with adult August weight (Figure 2B, Supplementary Table 2), and
333 one SNP on chromosome 17 was associated with adult metacarpal length (Figure 2C, Supplementary
334  Table 2).

335  Manhattan and QQ plots for all traits can be found in Supplementary Figure 1.
336  Conditional analysis

337 For any trait that had at least two SNPs on the same region associated with variation in that trait, we
338 fitted the genotype of the SNP with the lowest p value in each region in the GWAS model and removed
339 the SNP from the genotype file. For traits that had multiple SNP associations on more than one
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340 chromosome, we fitted the genotypes of the SNP with the lowest p value from each associated

341  chromosome simultaneously. We performed conditional analysis on all three leg length traits in both
342  lambs and adults, as well as on birth weight, adult August weight adult jaw length (See Supplementary
343  Table 2 for all SNPs that were fitted for each trait). For all of these traits we performed the conditional
344  analysis using both the 50K SNP data and the imputed SNP data, with the exception of birth weight,
345 which did not have any significant SNP associations using the 50K data.

346  Six of the nine traits we performed conditional analysis on had significant SNPs after fitting the SNPs
347  with the lowest p value, however for four of these traits (lamb metacarpal length, adult August weight,
348  foreleg length and hindleg length), these were SNPs that were also significant in our original GWAS
349  analysis but were not fitted in the conditional analysis due to being the only SNP that was significantly
350  associated with the trait in that region (Supplementary Table 3). The remaining two traits (birth weight
351  and adult jaw length) both had a new association, both of which were on chromosome 2. For birth

352  weight, nine SNPs had p values lower than the genome-wide significance threshold, all around ~81Mb
353 (Figure 3A, Supplementary Table 3). For adult jaw length, only one SNP had a lower p value than the
354  genome-wide significance threshold, at position 137,162,126 (Figure 3B, Supplementary Table 3).

355
356 Genes in QTL regions

357  Given that all of the region-trait associations that were found to be significant with the 50K SNP data
358  were also significant with the imputed SNP data, we chose to focus on top SNPs in the imputed dataset
359 (See Supplementary Table 2 for the list of SNPs, and Supplementary Table 4 for the list of genes).

360 We found a total of 179 genes in the regions around the SNPs associated with our traits. 56 of these
361  genes were unannotated in the current sheep genome build, and of those that were annotated, three
362  did not have a listed mouse homologue and a further six had neither a mouse nor a human homologue.
363 Of the genes that did have annotation and homologue data, we found nine that are associated with

364  similar traits to our focal traits in humans and mice, suggesting that they may be contributing to the
365  genetic variation of our traits (Table 2). However, without intimate knowledge of the genes surrounding
366  the focal SNPs, it is likely that there are other genes that are also contributing. It is also worth noting
367  that the causal variant may not be in any of the genes in proximity to the SNPs we identified as being
368 associated with our traits, but instead in upstream regulatory sequences that effect expression of either
369  these or other genes.

370  Wealso compared our GWAS results with QTL from Animal QTLdb (Hu et al. 2022). We found that the
371 region on chromosome 6 that we found to be associated with adult August weight overlaps with a

372 region previously found to be associated with carcass weight and final body weight in an (Awassi x

373 Merino) x Merino backcross population (Cavanagh et al. 2010) and is ~0.5Mb upstream of a 2.5Mb

374 region that has also previously been associated with body weight in a population of Australian Merino
375 sheep (Al-Mamun et al. 2015). In addition, the region on chromosome 9 we found to be associated with
376 adult August weight is 1Mb upstream of a region previously found to be associated with live weight in a
377 population of Chinese Merino sheep, however this trait was studied in yearlings rather than adults (Zhao
378  etal. 2021).
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379 Chromosome 6 has previously been associated with adult body weight in a smaller population of Soays
380  (Beraldietal. 2007), however the markers flanking the associated region are not located close to the
381 region we identified.

382
383 Two-step GWAS

384  To compare our results using the 50K SNP data to previous GWAS of adult traits in the Soays, we also
385 performed a two-step GWAS. For our two-step analysis, we used the significance threshold previously
386 calculated in Bérénos et al. (2015) (1.35e™°).

387  Across all 5 traits, we recovered the SNP-trait associations identified by Bérénos et al. (2015). However,
388  we were unable to recover any of the novel SNP-trait associations we had found when performing our
389 single-step GWAS on the 50K SNP data, with the exception of the association between chromosome 16
390 and adult foreleg (though the authors noted that SNPs in this region approached significance in their
391  analysis). Despite the genome-wide significance threshold used by Bérénos et al. (2015) being more

392  stringent than the significance threshold we calculated using the SimpleM method for the 50K SNP data,
393  no additional associations are recovered when using our less stringent threshold

394 Our QQ plots using the two-step method also matched the QQ plots of Bérénos et al. (2015). In both,
395  the observed p values were higher than the expected p values, causing the majority of points in the
396 plots to fall below the x=y line (Supplementary Figure 3).

13


https://doi.org/10.1101/2022.03.07.483376
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.07.483376; this version posted July 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

397  DISCUSSION
398 Heritability

399 Our results corroborate previous findings that all five body size traits we studied in Soay sheep are

400 influenced by genetic variation in the population (Bérénos et al. 2014), that post mortem measures
401 (metacarpal length and jaw length) have higher heritability estimates than live measures (weight,

402 foreleg length and hindleg length), that leg measures have higher heritability than weight (Wilson et al.
403 2006; Beraldi et al. 2007; Bérénos et al. 2014), and that heritability estimates increase with age (Wilson
404 et al. 2006; Bérénos et al. 2014).

405  The heritability estimates for the 50K data were very similar to those estimated using a GRM based on
406  the 50K data in a smaller sample of the same population of sheep by Bérénos et al. (2014), with

407  estimates for the same trait falling within one standard error of each other. The biggest difference was
408  in adult metacarpal length with a heritability difference of 0.05 (estimates were 0.644 (0.047) and 0.594
409 (0.047) for our and Bérénos et al.’s results respectively). Given that we used the same models as

410  Bérénos et al., it is likely that the small differences between heritability estimates for each trait is due to
411 our increased sample sizes.

412 Comparing the heritabilities estimated using the imputed SNP data against the estimates using the 50K
413 SNP data, we found little difference between the two SNP densities in any traits in any age class. The
414  additional genotypes at the imputed SNPs do not give any additional information on additive genetic
415 variation for these traits. This result is not surprising given the previous rarefaction analysis showing that
416  the heritability of these body size traits in adults asymptoted when about half the 50K SNP data was
417 used (Bérénos et al. 2014). There is high LD between nearby SNPs in the Soay sheep genome, which
418  suggests that most, if not all, of the causal variants tagged by the imputed SNP data may have already
419 been tagged by the 50K SNPs. The high LD was reflected when calculating GWAS significance thresholds
420  — whilst the number of SNPs between the 50K SNP data and the imputed SNP data increased by a factor
421 of ten, the number of effective tests only doubled (39K SNPs, 20082 effective tests and 401K SNPs and
422 48635 effective tests respectively).

423 For some of the traits we have analysed there is still a difference in heritability estimated using SNP data
424  versus heritability estimated using pedigree — for example, the highest SNP-based heritability estimate
425  forlamb metacarpal length (the estimate using the imputed SNP data) gave an estimate 59% of Bérénos
426 et al.’s pedigree-based estimate (Bérénos et al. 2014). Given that our SNP-based heritability estimates
427 were similar when using the 50K SNP data as when using the imputed SNP data, and the results of

428 Bérénos et al.’s rarefaction analysis (Bérénos et al. 2014), we believe it is unlikely that increasing the
429  density of genotyped SNPs that are common in the population will increase heritability estimates of
430 these traits. It is possible instead that the difference in heritability estimates obtained from pedigree
431 and genomic data is due to rare familial variants that do not segregate widely in the population, as well
432 as due to dominance and epistasis.

433
434  GWAS

435 Body size traits have been the focus of many kinds of analyses in Soay sheep (Beraldi et al. 2007; Ozgul
436 et al. 2009; Bérénos et al. 2014; Bérénos et al. 2015; Pemberton et al. 2017; Regan et al. 2017; Ashraf et
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437 al. 2021), and several SNPs have already been identified as being associated with variation in these
438  traits. A 2015 study aiming to find SNP-trait associations for these body size traits in adults identified
439  QTL for leg length measures on chromosomes 16 and 19 (s23172.1 and s74894.1 respectively) (Bérénos
440  etal. 2015). A more recent study comparing genomic prediction methods in Soays using the 50K SNP
441  data identified s48811.1 on chromosome 7 and s50107.1 on chromosome 9 as having a probability
442 higher than 0.9 of having a non-zero effect on adult foreleg length in addition to the previously

443  discovered regions on chromosomes 16 and 19 (Ashraf et al. 2021). We were able to identify all four of
444  these associations in our GWAS, alongside associations that have not previously been identified in this
445 population. Use of the imputed SNP data allowed us to discover two more associations with loci that
446  were not genotyped in the 50K SNP data, suggesting that future identification of polymorphisms

447  influencing trait variation in the Soay sheep may benefit from using the imputed data.

448 Performing a two-step analysis confirmed that the novel SNP-trait associations we were able to identify
449 using the 50K SNP data were due to being able to fit the fixed and random effects for each trait whilst
450 performing GWAS all in a single step, rather than the increased population sample. Given the increase in
451 SNP-trait associations when using the single-step methodology, we suggest that a two-step GWAS is
452  redundant with the availability of software like DISSECT which is able to fit fixed and random effects

453 whilst performing GWAS. As we have shown, although DISSECT does not currently have the option to
454  automatically run a repeated measures GWAS, it is possible to modify input files to allow for repeated
455 measures.

456  The imputed SNP data revealed SNP-trait associations in four regions of the genome that were not

457 discovered using the 50K SNP data; a region on chromosome 1 and a region on chromosome 7 and birth
458  weight, a region on chromosome 3 and adult August weight, and a region on chromosome 17 and adult
459 metacarpal length. (Supplementary Table 2). When examining the Manhattan plot for the 50K data for
460  each trait (Figure 2A, 2B and 2C, Supplementary Table 2) it is clear that, with the exception of the region
461 on chromosome 1 associated with birth weight, there was a small cluster of SNPs just under the

462 significance threshold in the 50K analyses. The additional (imputed) SNPs may have matched the allele
463 frequency of the underlying causal variants more accurately, resulting in a smaller association p value.

464  We performed conditional analysis on all three leg length traits in both lambs and adults, as well as on
465 birth weight (only using the imputed SNP data), adult August weight and adult jaw length. For each trait,
466  we simultaneously fitted the genotype for the SNP with the lowest p value for any chromosome that had
467  atleast two SNPs found to be associated with the trait (see Supplementary Table 2 for a list of SNPs

468  fitted for each trait). We found that all of the SNPs that were significant in the GWAS analysis were no
469 longer significant in the conditional analysis when a significant SNP on the same chromosome was fitted
470 (Figure 3, Supplementary Table 3). We suggest that any future work looking to pinpoint the exact

471 location of the genetic variants affecting body size traits in Soay sheep primarily focus on the regions
472 around the SNPs listed in Supplementary Table 2.

473  We identified 179 genes within 0.5Mb of the top SNPs for each trait (Supplementary Table 4), and of
474  these genes, we found nine that are potential candidate genes for further analyses due to their

475  association with similar traits in other species. However, we stress that it is possible that these nine

476  genes may not be totally responsible for the associations we identified via GWAS — given that we do not
477 have intimate knowledge of genes we identified, we believe that any analyses seeking to confirm gene-
478  trait associations should not just focus on the nine genes listed in Table 2.
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479

480  Across all traits for all age classes, the QQ plots showed deviation from the expected distribution of test
481  statistics under the null hypothesis (x=y line) for a wide range of test statistics, including low values,
482 indicative of underlying population structure not accounted for by the GRMs. The first 20 genomic

483 principal components accounted for 10.68% of the variance in the genetic data, and repeating the

484  GWAS analysis fitting these first 20 genomic principal components in addition to the GRM did not

485 change the p values of the SNPs nor the QQ plots. This shows that the principal components in this case
486 were not useful in adjusting for population structure in the presence of the GRM.

487 In order to have sufficient power to detect associations between markers and a trait of interest, GWAS
488 primarily requires two factors: i) a very high density of genotyped SNPs, and ii) a large number of

489 individuals that have been genotyped and phenotyped (Santure and Garant 2018). For intensively

490  studied organisms, both are achievable; such populations tend to have more individuals accessible to
491 collect data from, high density genotyping can be done at a lower cost due to higher demand, and, as in
492 humans, data from different populations can be combined to create larger sample sizes. GWA studies of
493 humans are the most obvious example of this; studies often have study populations made up of

494  hundreds of thousands of individuals and human SNP chips commonly genotype hundreds of thousands
495  of variants (for example, see Wood et al. 2014; Ishigaki et al. 2020; Wu et al. 2021). In comparison, wild
496 study population samples are much smaller — often struggling to reach one thousand individuals —and
497  the number of SNPs genotyped is much lower (for example, see Silva et al. 2017; Malenfant et al. 2018;
498 Perrier et al. 2018). Analyses of wild populations therefore generally lack the power of more intensively
499 studied study organisms. Here, we have increased power by increasing the number of genotyped

500 markers via imputation. Despite high LD in the Soay sheep population, use of imputed data has allowed
501 us to identify four new SNP-trait associations, including an association with birth weight, which had yet
502 to be associated with any QTL in the Soay population. We have therefore shown that for a given sample
503 size, more information can be obtained by increasing the density of markers for those individuals have
504 been phenotyped. We suggest that, where possible, analyses of wild populations impute SNP data in
505 order to increase power and obtain results that may otherwise remain undiscovered.

506  Although we have discovered new SNP-trait associations, it is likely that there are still causative variants
507  that remain undetected. GWAS lacks power to detect rare causative variants and variants with very

508  small effect sizes (Yang et al. 2010). Also, GWAS power drops when the same amount of phenotypic

509 variation is a consequence of multiple variants in the same region as opposed to a single variant

510 (Nagamine et al. 2012). Regional mapping methods have been developed that partition trait variance
511 into regions by simultaneously fitting a whole genome and a regional GRM, with the regions either being
512  defined as fixed SNP windows (Nagamine et al. 2012) or haplotype blocks (Shirali et al. 2018). Such

513 methodologies have the potential to identify regions of the genome that contain variants associated

514  with a trait that are unable to be identified by GWAS either due to being rare, or individually having

515 small effects on trait variation. Genomic prediction, which simultaneously estimates all marker effects
516 drawn from multiple distributions, can also be used to study the genetic architecture of traits by

517 estimating the posterior inclusion probability of a SNP having a non-zero effect on a trait. Genomic

518 prediction has already been used on adult body size traits in Soays, and has identified several of the

519 SNPs we identified through our GWAS approach (Ashraf et al. 2021). Ultimately, we believe that it is

520 important to use a variety of methodologies when studying the genetic architecture of complex traits, as
521  different analyses have different strengths and may be able to identify different QTL.
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Age Trait No. No. Fixed effects Random effects
individuals | records
Neonate | Birth weight | 2678 2678 Sex Year of birth
Litter size Mother ID
Population size year before birth
Age of mother (quadratic)
Ordinal date of birth
Age (days)
Lamb Weight 2228 2228 Sex Year of birth
Litter size Mother ID
Population size Permanent environment
Age (days)
Foreleg 2284 2284 Sex Year of birth
Litter size Mother ID
Population size Permanent environment
Age (days)
Hindleg 2349 2349 Sex Year of birth
Litter size Mother ID
Population size Permanent environment
Age (days)
Metacarpal 2059 2059 Sex Year of birth
Litter size Mother ID
Age at death (months)
Jaw 2113 2113 Sex Year of birth
Litter size Mother ID
Age at death (months)
Adult Weight 1152 3553 Sex Year of capture
Population size Permanent environment
Age (years)
Foreleg 1121 3331 Sex Year of capture
Population size Permanent environment
Age (years)
Hindleg 1135 3444 Sex Year of capture
Population size Permanent environment
Age (years)
Metacarpal 945 945 Sex Year of birth
Age at death (years)
Jaw 991 991 Sex Year of birth
Age at death (years)

Table 1 Number of individuals and records, fixed and random effects fitted in each trait x age class
model in addition to the GRM. The same individuals and records were used for both heritability

estimates and for GWAS.
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Gene Name | Ensembl Gene ID Chr | Associated trait Effects in other species
Cytochrome | ENSOARG00000011582 | 3 Lamb metacarpal Associated with skeletal
P450 26B1 length abnormalities in humans and
zebrafish (Laue et al. 2011),
knockouts produce reduced limbs
in mice (Yashiro et al. 2004).
EXOC6B ENSOARG0O0000011607 | 3 Lamb metacarpal Associated with
length spondyloepimetaphyseal dysplasia
(resulting in short stature) in
humans (Campos-Xavier et al.
2018).
FAM13A ENSOARGO0000018727 | 6 Adult August Modulates body fat distribution
weight and adipocyte function in humans
and mice (Fathzadeh et al. 2020) as
well as adipose insulin signalling in
mice (Wardhana et al. 2018), also
linked with obesity in mice (Tang et
al. 2019)
ONECUT1 ENSOARG00000020928 | 7 Birth weight Associated with birth weight in
humans (Warrington et al. 2019).
IFT43 ENSOARGO0000002065 | 7 Adult foreleg Associated with Sensenbrenner
length syndrome (resulting in growth
retardation and dwarfism due to
femoral and humeral limb
shortening) in humans (Arts et al.
2011).
PENK ENSOARG00000020184 | 9 Adult August PENK knock-out mice found to
weight have diminished food motivation,
lower baseline body weight and
attenuated weight gain (Mendez et
al. 2015)
PTH1R ENSOARG00000006638 | 19 | Lamb metacarpal Involved in osteoblast
length, adult development in mice (Qiu et al.
foreleg length, 2015), associated with skeletal
adult hindleg disorders such as JMC {(Schipani
length, adult and Provot 2003), EKNS
metacarpal length | (Duchatelet et al. 2005) and BLC
(Schipani and Provot 2003) in
humans.
LTF ENSOARGO0000008620 | 19 | Lamb metacarpal Human LTF associated with
length, adult increased bone growth when
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metacarpal length | injected into piglets (Li et al. 2018),
found to stimulate osteoblast
proliferation (Cornish and Naot
2010). High expression levels in
human bone marrow (Fagerberg et
al. 2014).

BMP6 ENSOARG00000017264 | 20 | Adult jaw length Involved in bone development and
expressed in the jaw bone in mice
(Oralova et al. 2014).

704  Table 2 Potential candidate genes for future analyses. From left to right: gene name, Ensembl gene ID,
705 chromosome, associated trait, and evidence for association in other species.

706
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707 Figure 1 Estimates of VA/VP for body size traits in neonates, lambs, and adult Soay sheep when using a
708  GRM calculated from the 50K SNP data (blue) compared with using a GRM calculated from the imputed
709  SNP data (yellow). Error bars represent standard error estimates.

710
711

712 Figure 2 Manhattan plots for A) birth weight GWAS using 50K SNP data (left) and imputed SNP data
713 (right); B) adult August weight GWAS using 50K SNP data (left) and imputed SNP data (right); and C)
714 adult metacarpal length GWAS using 50K SNP data (left) and imputed SNP data (right). The red line

715  represents the significance threshold (2.49e-06 for the 50K SNP data and 1.03e-06 for the imputed SNP
716 data) —any SNPs above this threshold are considered to be significantly associated with variation in
717 their respective traits.

718
719

720 Figure 3 Miami plots for A) birth weight using imputed SNP data (top) and birth weight conditional

721  analysis using imputed SNP data (bottom); and B) adult jaw length GWAS using 50K SNP data (top left)
722  and imputed SNP data (top right), adult jaw length conditional analysis using 50K SNP data (bottom left)
723  and imputed SNP data (bottom right). The red line represents the significance threshold (2.49e-06 for
724 the 50K SNP data and 1.03e-06 for the imputed SNP data) —any SNPs above this threshold are

725 considered to be significantly associated with variation in their respective traits.

726
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