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Abstract 15 

Understanding the genetic architecture underpinning quantitative traits in wild populations is pivotal to 16 

understanding the processes behind trait evolution. The ‘animal model’ is a popular method for 17 

estimating quantitative genetic parameters such as heritability and genetic correlation and involves 18 

fitting an estimate of relatedness between individuals in the study population. Genotypes at genome-19 

wide markers can be used to estimate relatedness; however, relatedness estimates vary with marker 20 

density, potentially affecting results. Increasing density of markers is also expected to increase the 21 

power to detect quantitative trait loci (QTL). We estimated heritability and performed genome-wide 22 

association studies (GWAS) on five body size traits in an unmanaged population of Soay sheep using two 23 

different SNP densities: a dataset of 37,037 genotyped SNPs, and an imputed dataset of 417,373 SNPs. 24 

Heritability estimates did not differ between the two SNP densities, but the high-density imputed SNP 25 

dataset revealed five new SNP-trait associations that were not found with the lower density dataset. 26 

Conditional GWAS analyses after fitting the most significant SNPs revealed two more novel SNP-trait 27 

associations.  28 
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Introduction 29 

Investigating the genetic architecture behind heritable traits is key to understanding the biological 30 

diversity of wild populations. If we know the number of loci influencing a trait and their effect size, we 31 

can better understand the evolutionary processes that underpin traits, improve inferences about trait 32 

evolution (Barton and Keightley 2002), and understand micro-evolutionary dynamics that occur due to 33 

environmental change. Most quantitative genetic research in animals is carried out in artificial 34 

populations; either domestic, agricultural or laboratory. Such populations experience controlled 35 

environmental conditions which make it easier to account for environmental factors when studying the 36 

effect of genetic variants on phenotypic variation. However, given that environmental factors can 37 

influence the phenotype of a quantitative trait (Charmantier et al. 2014), and that the presence of 38 

genotype-by-environment interactions can cause additive genetic variance to differ between 39 

environmental conditions, studies on artificial populations arguably cannot be fully extrapolated to wild 40 

populations (Kruuk et al. 2008). Therefore, it is important to also study quantitative traits in wild 41 

populations in their natural habitats. There is a wealth of quantitative genetics research in human 42 

populations (for examples, see Manolio et al. 2009; Kang et al. 2010; Yang et al. 2010; Zaitlen et al. 2013; 43 

Locke et al. 2015; Xia et al. 2016; Xia et al. 2021), but humans also arguably experience a more buffered 44 

environment than wild populations. 45 

A popular method to decompose phenotypic variation in wild populations into genetic variance and 46 

environmental variance is the ‘animal model’, originally developed by animal breeders (Henderson 47 

1984; Kruuk 2004; Wilson et al. 2010). As part of the model, genetic relatedness is fitted, which is often 48 

derived from a pedigree. Pedigrees can be constructed using field observations, assigning parentage 49 

using genetic markers, or a mixture of both (Pemberton 2008). However, wild pedigrees are often short, 50 

incomplete, and contain errors: observational data may be inaccurate due to incorrect parent-offspring 51 

assumptions, and if the genetic markers chosen are not sufficiently discriminatory they may result in 52 

misassigned parentage. Erroneous pedigree links can bias results of analyses using animal models; for 53 

example, misidentification of sires in cattle resulted in decreased heritability estimates for milk yield, fat 54 

yield, and milk-fat ratio (Van Vleck 1970).   55 

In place of a pedigree, genotypes at multiple polymorphic loci can be used to estimate relatedness for 56 

use in an animal model. This has the advantage of not relying on recovering a pedigree and thus is not 57 

affected by incomplete or incorrect familial links (though knowledge of pedigree relationships is still 58 

valuable, for example so that maternal effects can be fitted). Relatedness estimated using genotype data 59 

is also potentially more precise than that from pedigrees – for example, with a pedigree it is presumed 60 

that full-sibs have a relatedness of 0.5, however the exact relationship varies depending on which DNA 61 

segments each sib has inherited (Visscher et al. 2006). Despite this greater accuracy, genotype-based 62 

relatedness estimates can still vary depending on which variants in the population have been 63 

genotyped, and the density of the genotyped variants. Increasing the density of genotyped 64 

polymorphisms means they are more likely to be in linkage disequilibrium (LD) with causal variants for 65 

the trait of interest, either by being physically closer to the causal variants or by matching the allele 66 

frequency of the causal variants more accurately. Thus, in species such as humans where genotyping is 67 

commonly of unrelated individuals and LD is generally low, the estimated heritability of a trait increases 68 

with SNP density due to an increase in the number of causal variants being in LD with genotyped SNPs 69 

(for instance, heritability of human height was estimated to be 0.45 when using 294,831 SNPs (Yang et 70 
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al. 2010) and 0.56 when using ~17 million imputed SNPs (Yang et al. 2015)). However, increasing the 71 

number of genotyped markers means larger, denser genotyping arrays with prices increasing with 72 

density. For commonly studied species, high-density arrays are more affordable due to high demand, 73 

but for more niche species, including wild populations, large genotyping arrays are often unaffordable. 74 

Genotyping-by-sequencing, e.g. ddRAD (Peterson et al. 2012) is a potentially useful alternative for 75 

upscaling SNP density, though the combination of bioinformatics and samples sizes required in 76 

quantitative genetic research means that this approach is not yet in widespread use. 77 

As an alternative to expensive high-density genotyping, genotype imputation can be used to increase 78 

the number of variants analysed (Burdick et al. 2006). Imputation involves predicting genotypes at 79 

untyped SNPs in a ‘target’ population using a subset of the study population – or more generally a 80 

<reference= population – genotyped at a higher density, either through a high density SNP array or by 81 

genotyping-by sequencing. The genotypes at these untyped SNPs for individuals in the target population 82 

are inferred using their genotypes at typed markers and taking advantage of existing linkage 83 

disequilibrium (LD) between SNPs. Pedigree information can also be used to increase the accuracy of the 84 

imputation by identifying haplotype blocks that are identical by descent (Burdick et al. 2006). 85 

 86 

The Soay sheep (Ovis aries) of St Kilda are a primitive, unmanaged breed of sheep that have been the 87 

focus of a longitudinal, individual-based study since 1985 (Clutton-Brock and Pemberton 2003). As part 88 

of the study, life history and environmental data is collected, DNA samples are collected, and a pedigree 89 

has been constructed using observation and genetic parentage inference. 7630 sheep have been 90 

genotyped on the Ovine SNP50 Illumina Beadchip, on which 37,037 SNPs are autosomal and 91 

polymorphic in this population.  92 

To date, quantitative genetic analyses of the Soays have been performed using either the pedigree or 93 

the 50K SNP data. Bérénos et al. (2014) investigated the difference in quantitative genetic parameter 94 

estimates when using the pedigree or a genomic relationship matrix (GRM) constructed from the 50K 95 

SNP data. The authors estimated heritability, maternal genetic effects and genetic correlations for body 96 

size traits (weight, foreleg length, hindleg length, metacarpal length and jaw length) across four age 97 

groups. The additive genetic variance and the heritability estimates using the GRM were lower than 98 

when using the pedigree to estimate relatedness, with the SNPs explaining 84% of the additive genetic 99 

variance of the pedigree on average, though for the majority of the traits the standard errors of the 100 

pedigree-based and SNP-based heritability estimates were within one standard error of each other. 101 

Genetic correlations were found to differ little between analyses using the different relatedness 102 

estimates. A SNP rarefaction analysis of the heritability estimates was conducted on the adult traits, and 103 

it was found that heritability estimates asymptoted when 50% of the SNPs were used to estimate 104 

relatedness. 105 

Linkage disequilibrium is high in Soay sheep (Bérénos et al. 2014), which may explain the results of the 106 

rarefaction analysis: the same causal variations can be represented by multiple genotyped SNPs, and so 107 

many genotyped SNPs are not providing unique information towards the additive genetic variance. 108 

However, given that heritability estimates when using SNP-based estimates of relatedness were lower 109 

than when using pedigree-based estimates, it is also possible that there are variants that contribute to 110 

variation in these traits that aren’t in perfect LD with the genotyped SNPs. This may be depressing 111 

estimates of additive genetic variance in comparison to pedigree-based estimates. Increasing the 112 
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density of genotyped SNPs may therefore increase the SNP-based heritability estimates of these traits to 113 

closer match the pedigree-based estimates. 114 

Bérénos et al. (2015) focused on the same traits as Bérénos et al. (2014)  in adults only, and partitioned 115 

the genetic variance for each trait, first by chromosome and then by 150 SNP windows, and performed 116 

GWAS. For the three leg length phenotypes, a disproportionately high amount of variance was explained 117 

by two SNPs on chromosome 16 (s23172.1) and chromosome 19 (s74894.1). For the remaining traits, 118 

the proportion of additive genetic variance explained by a chromosome was proportional to its length, 119 

suggesting that variation in these traits is influenced by many genetic variants of small effect, and no 120 

SNP-trait associations were discovered. The authors performed a two-step GWAS analysis; first they 121 

modelled the traits by fitting fixed and random effects, and then they extracted the residuals from the 122 

models and tested for association between SNPs and the residuals. Three traits (weight, foreleg length 123 

and hindleg length) are measured in the same individual across multiple years – for these traits, the 124 

authors analysed the mean residual values. 125 

Since the studies from 2014 and 2015, 1895 more individuals have been both phenotyped and 126 

genotyped on the Ovine SNP50 Illumina Beadchip. In addition, 188 individuals were genotyped on the 127 

Ovine Infinium High Density chip with 600K attempted SNPs, which has enabled the genotypes of the 128 

remaining individuals to be accurately imputed to that higher density using LD and pedigree data (Stoffel 129 

et al. 2021).  130 

In this study we performed a direct comparison of heritability estimates and GWAS associations 131 

between the lower density SNP data and the imputed high density SNP data in the Soay population 132 

using an increased sample size and compared the results to the previous studies (Bérénos et al. 2014; 133 

Bérénos et al. 2015). We focused on the same five traits as the previous studies in neonates, lambs and 134 

adults. Unlike the 2015 study (Bérénos et al. 2015), we performed GWAS by fitting fixed and random 135 

effects in the same step as testing for SNP-trait associations. This has the advantage of correctly 136 

propagating error throughout the analysis, reducing the chance of false positive results. We also carried 137 

out a two-step GWAS approach similar to that of Bérénos et al. 2015, focusing on the adult traits using 138 

the 50K SNP data, to investigate whether any SNP-trait associations identified using our approach were 139 

due to the increased population size or due to the different methodology (single-step vs. two-step 140 

GWAS). 141 

Our aims were as follows: 142 

1) To determine whether the increased density of SNPs changes the heritability estimates of the 143 

traits using the same individuals for both the low SNP density and the high SNP density analysis. 144 

Given the previous rarefaction analysis (Bérénos et al. 2014), our prediction was that there 145 

would be no change.  146 

 147 

2) To determine whether the imputed SNP data enables the identification of new SNP-trait 148 

associations via GWAS. We predicted we would find more associations, either due to increased 149 

power to detect small effect size SNPs through increased LD with the imputed SNPs or due to 150 

tagging of new causal variants.  151 

 152 

3) To examine how a single-step GWAS methodology compares with the two-step approach 153 

previously used on the Soay population, to investigate whether any novel SNP-trait associations 154 
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identified with the 50K SNP data were due to increased population size or due to the difference 155 

in methods.  156 
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METHODS 157 

Phenotypic data 158 

We focused on five body size traits in three age groups: neonates, lambs, and adults. Of the five traits, 159 

three (weight, foreleg length and hindleg length) are live measures, recorded in April for neonates and in 160 

August for lambs and adults. The remaining two traits (metacarpal length and jaw length) are post 161 

mortem measures taken from skeletal material. The sheep are ear-tagged when they are first captured 162 

which allows for reidentification for life. Both birth and August weight are measured to the nearest 163 

0.1kg, whilst the remaining traits are all measured to the nearest mm. A detailed description of trait 164 

measurements can be found in Beraldi et al. (2007). 165 

We defined neonates as individuals who were caught and weighed between two and ten days after birth 166 

– birth weight was the only trait recorded for this age group. Lambs were classed as individuals who had 167 

phenotypic data recorded in the August of their birth year for the live traits, and as individuals who died 168 

before 14 months of age for the post mortem measures. Individuals were classed as adults if they had 169 

August phenotypic data recorded at least two years after birth, or if they died after 26 months of age for 170 

post mortem measures. Unlike Bérénos et al. (2014), we chose not to analyse yearling data due to the 171 

small sample sizes in comparison to the other age classes, which is due to high first winter mortality. 172 

 173 

Genetic data 174 

Most of the sheep in our study population have been genotyped using the Ovine SNP50 Illumina 175 

BeadChip, which targets 54,241 SNPs across the sheep genome. After removing SNPs which failed 176 

quality control standards (minor allele frequency (MAF) > 0.001, call rate > 0.99, deviation from Hardy-177 

Weinberg Equilibrium P > 1e-05), 39,368 polymorphic variants remained for 7630 individuals (3643 178 

female, 3987 male). See Bérénos et al. (2014) for information on genetic sampling protocol and marker 179 

characteristics). 180 

Of these 7630 individuals, 188 have also been genotyped using the Ovine Infinium HD SNP BeadChip 181 

which types 606,066 SNPs. This has allowed for the low density genotypes to be imputed to the higher 182 

density using AlphaImpute, which combines shared haplotype and pedigree information for phasing and 183 

genotype imputation (Hickey et al. 2012) (see Stoffel et al. (2021) for information on imputation). We 184 

used imputed genotype <hard= calls (rather than genotype probabilities) in downstream analyses. After 185 

filtering SNPs that failed quality control standards, 419,281 autosomal SNPs remained for 7621 186 

individuals (3639 females, 3982 males).  187 

Both the 50K SNP data and the imputed SNP data are mapped to the OAR_v3.1 genome assembly. 188 

 189 

Narrow sense heritability estimation  190 

We used animal models to partition the phenotypic variance for each trait in each age class into genetic 191 

and non-genetic variance components. Fixed and random effects were fitted for all models, with the 192 

effects differing between traits and age classes (Table 1). We implemented these analyses in DISSECT 193 

(Canela-Xandri et al. 2015) using the following model: 194 
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y �  Xβ � � Z�

�

u�  �  Wg �  ε 

where y is the vector of phenotypic values; X is a design matrix linking individual records with the vector 195 

of fixed effects β, Zr is an incidence matrix that relates a random effect to the individual records; ur is the 196 

associated vector of non-genetic random effects; g is the vector of additive genetic random effects with 197 

W the incidence matrix; and ε is the vector of residuals. It is assumed that g ~ MVN(0, Mσg
2), where σg

2
 is 198 

the additive genetic variance and M is the genomic relationship matrix (GRM). For each trait in each age 199 

class, we ran this model twice: first with M being a GRM calculated from the 50K genotype data, and 200 

second with M being a GRM calculated from the imputed SNP genotypes. The GRMs (VanRaden 2008) 201 

were computed using DISSECT (Canela-Xandri et al. 2015), and the genetic relationship between 202 

individuals i and j is computed as:  203 


�� � 1�  � ����– 2�������– 2�� �
2���1 � ���

�

��1

  
 204 

where sik is the number of copies of the reference allele for SNP k of the individual i, pk is the frequency 205 

of the reference allele for the SNP k, and N is the number of SNPs. 206 

The narrow sense heritability was estimated by dividing the additive genetic variance (the variance 207 

explained by the GRM) by the total estimated phenotypic variance (the sum of the variance explained by 208 

the GRM and other fitted random effects after fitting fixed effects).  209 

In adults, there are multiple records for August weight, foreleg length and hindleg length for the same 210 

individual due to individuals being caught across multiple years. For these traits we used a repeatability 211 

model in order that uncertainty was correctly propagated through all estimations (Mrode 2014). To 212 

implement a repeatability model in DISSECT, we edited the input files so that each measurement had its 213 

own row in the genotype and covariate files. Individual ID was replaced with a unique capture reference 214 

number, and individual permanent environment was fitted as a random effect (see Supplementary 215 

Methods for a more detailed explanation).  216 

Sample sizes and total number of phenotypic measurements for all traits are shown in Table 1, with 217 

effects fitted in all models.  218 

 219 

Genome wide association analysis 220 

We also conducted genome-wide association analyses using DISSECT (Canela-Xandri et al. 2015). We 221 

fitted the same fixed and random effects for each trait and age class as for the heritability estimation 222 

(Table 1). To account for population structure, when testing SNPs on a given chromosome for 223 

association with the phenotype, a GRM calculated from the remaining autosomes (referred to as Leave 224 

One Chromosome Out GRM (Yang et al. 2014)) was fitted. Input files for repeated-measure traits were 225 

reformatted as above. Our significance threshold was corrected for multiple testing using the SimpleM 226 
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method (Gao et al. 2008), which accounts for linkage disequilibrium between markers in order to 227 

calculate the effective number of independent tests.  228 

We estimated the variance explained by SNPs that passed the significance threshold using the equation 229 

������ � 2����
 

where p and q are the major and minor allele frequencies of the SNP, and α is the estimated SNP effect. 230 

We then calculated the proportion of additive genetic variance explained by each SNP by dividing by the 231 

total additive genetic variance estimated for that trait. 232 

For any trait for which several SNPs in the same region were associated with variation in the trait and 233 

thus had strong support for at least one QTL in the region, we carried out conditional analysis to 234 

understand if the region could harbour potentially several independent QTL, or if further QTL could be 235 

uncovered elsewhere in the genome. To that aim, the genotypes of the SNP with the smallest 236 

association p value from each associated region (hereafter called the <top SNP=) were added to the 237 

GWAS model as a fixed covariate and removed from the GRMs and genotype data. The GWAS analysis 238 

was re-run accounting for those associations to try and reveal novel peaks either in the same regions or 239 

elsewhere in the genome. 240 

 241 

Genes in QTL regions 242 

For each trait x SNP association, we investigated the genes within a 0.5Mb window either side of the top 243 

SNP to identify any genes which could be contributing to trait variation. We extracted a list of genes for 244 

each trait using the biomaRt package in R (Durinck et al. 2005; Durinck et al. 2009) from the OAR_v3.1 245 

genome assembly and reviewed each gene against the NCBI Gene (Bethesda (MD): National Library of 246 

Medicine (US) 2004 - 2022), Animal QTLdb (Hu et al. 2022), and Ensembl (Howe et al. 2020) databases to 247 

examine function and expression annotations. When possible, we also compared with human and 248 

mouse orthologues due to the high level of annotation data available for these two species.  249 

 250 

Two-step GWAS analysis 251 

To investigate whether any novel SNP associations identified (since Bérénos et al. 2015) by performing 252 

GWAS on the adult traits using the 50K SNP data were due to the increased population sample or due to 253 

the change in methodology, we also performed a two-step GWAS, focusing on adults only and using the 254 

50K SNP data. We performed mixed model analyses using ASReml-R (Butler et al. 2017) for each trait 255 

fitting the same fixed and random effects as in our single-step analyses, including whole-genome 256 

relatedness (in the form of a GRM) and, for repeated-measure traits, permanent environment. We then 257 

extracted the residuals from the mixed models and performed GWAS with the residuals as the trait 258 

phenotypes using DISSECT (Canela-Xandri et al. 2015). For repeated measure traits, we used the mean 259 

residual value for each individual. We used the Bonferroni correction calculated in Bérénos et al. 2015 to 260 

determine the significance threshold for our two-step GWAS in order to best compare with previous 261 

GWAS performed on the Soay sheep. 262 

 263 
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RESULTS 264 

Heritability estimation 265 

Neonates 266 

In neonates, the heritability of birth weight was 0.051 (S.E. 0.020) both when using the 50K SNPs to 267 

calculate relatedness, and when using the imputed SNPs (Figure 1, Supplementary Table 1). Given that 268 

both estimates are identical to 3 decimal places, there is no difference between the estimates.  269 

Lambs 270 

In lambs, the heritability estimates for the live August measures were lower than those for the post 271 

mortem measures (Figure 1, Supplementary Table 1). Across all the traits, heritability estimates were 272 

similar when using the 50K SNP data and the imputed SNP data, with the biggest difference being 0.024 273 

for metacarpal length. For all traits, estimates were within one standard error of each other, indicating 274 

that the small differences in heritability estimates between the two SNP densities were not significant.  275 

Adults 276 

As observed in lambs, heritability estimates for live measures in adults were lower than those of the 277 

post mortem measures. Across all traits, heritability estimates were higher in adults than in lambs. 278 

Estimates obtained using the 50K SNPs and using the imputed SNPs were similar and were within one 279 

standard error of each other (Figure 1, Supplementary Table 1), meaning that the imputed SNPs 280 

provided no additional information to partition the variation into genetic and environmental variance.  281 

Estimates for all variance components are listed in Supplementary Table 1. 282 

 283 

GWAS 284 

50K SNP data 285 

To correct for multiple testing, we calculated the effective number of tests to be 20082 using the 286 

SimpleM method (Gao et al. 2008), giving a genome-wide significance threshold of 2.49e-06 for the 50K 287 

SNP data.  288 

For weight in neonates (birth weight), and lambs (August weight), no SNPs were found to have an 289 

association p value smaller than this threshold, suggesting that any variants that influence weight 290 

variation are either of small effect or were not tagged by SNPs in the 50K SNP data (Figure 2A, 291 

Supplementary Figure 1B and 1G). For adult August weight, three SNPs had a p value lower than the 292 

genome-wide significance threshold; one SNP on chromosome 6 and two SNPs on chromosome 9. 293 

For all three leg length measures in lambs, we found associations with the same region on chromosome 294 

16. SNP s23172.1 was the SNP with the lowest p value for lamb foreleg and hindleg, explaining 0.52% 295 

and 0.69% of the genetic variance for each trait respectively (Supplementary Table 2, Supplementary 296 

Figure 1C and 1D). For lamb metacarpal, SNP 22142.1 in the same chromosome 16 region had the 297 

lowest p value and explained 0.97% of the genetic variance. There was also a single SNP on chromosome 298 

3 (OAR3_100483326.1) and a cluster of SNPs on chromosome 19 that had p values smaller than the 299 

genome-wide significance threshold and were associated with variation in lamb metacarpal length, with 300 
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the SNP with the lowest p value from each region explaining 2.08% and 2.40% of the genetic variance 301 

respectively (Supplementary Table 2, Supplementary Figure 1E). 302 

The two regions on chromosomes 16 and 19 that were associated with lamb metacarpal length variation 303 

were also significantly associated with all three leg length measures in adults, with SNP s22142.1 on 304 

chromosome 16 and SNP s74894.1 on chromosome 19 respectively explaining 0.80% and 2.04% of the 305 

genetic variation in adult foreleg, 0.88% and 1.32% of the genetic variation in adult hindleg, and 0.55% 306 

and 2.02% of the genetic variation in adult metacarpal length. There were other regions of the genome 307 

also associated with variation in the adult leg length traits; a region on chromosome 11 was significant 308 

across all three adult leg length traits, with the most significant SNP explaining 2.35%, 2.25% and 1.13% 309 

of the genetic variance in adult foreleg, hindleg and metacarpal respectively (Figure 2B, Supplementary 310 

Table 2, Supplementary Figure 1H and 1J). For adult foreleg, a SNP on chromosome 7 and two on 311 

chromosome 9 were also associated, with the most significant SNPs in each region explaining 1.31% and 312 

2.99% of the genetic variance respectively for this trait (Supplementary Table 2, Supplementary Figure 313 

1H).   314 

In lambs, there were no associations with jaw length found (Supplementary Figure 1F). In adults, a SNP 315 

on chromosome 20 was associated with jaw length variation, explaining 2.05% of the genetic variance 316 

for this trait (Supplementary Table 2, Supplementary Figure 1K). 317 

In total, we identified 85 SNP-trait associations with 39 unique SNPs. 318 

Imputed data  319 

Using the SimpleM method (Gao et al. 2008), we calculated the number of effective tests to be 48635, 320 

giving a genome-wide significance threshold of 1.03e-06. 321 

When performing GWAS using the imputed SNP data, we were able to recover significant SNPs in the 322 

same locations for all traits as those we found using the 50K SNP data. Of the 85 SNP-trait associations 323 

that we identified with the 50K SNP data, 81 were significant using the imputed SNP data – the 324 

remaining four SNPs were no longer significant due to the increased multiple testing burden (which 325 

leads to a more stringent significance threshold) between the 50K SNP data and the imputed SNP data 326 

(2.49e-06 and 1.03e-06 respectively).  327 

We also identified 795 new SNP-trait associations using the imputed SNP data with 425 unique SNPs 328 

(Supplementary Table 2). The majority of new associations were in the same regions as the SNPs 329 

identified using the 50K SNP data, but we also found new associations: four SNPs on chromosome 1 and 330 

three SNP on chromosome 7 was associated with birth weight (Figure 2A, Supplementary Table 2), one 331 

SNP on chromosome 3 was associated with adult August weight (Figure 2B, Supplementary Table 2), and 332 

one SNP on chromosome 17 was associated with adult metacarpal length (Figure 2C, Supplementary 333 

Table 2). 334 

Manhattan and QQ plots for all traits can be found in Supplementary Figure 1. 335 

Conditional analysis 336 

For any trait that had at least two SNPs on the same region associated with variation in that trait, we 337 

fitted the genotype of the SNP with the lowest p value in each region in the GWAS model and removed 338 

the SNP from the genotype file. For traits that had multiple SNP associations on more than one 339 
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chromosome, we fitted the genotypes of the SNP with the lowest p value from each associated 340 

chromosome simultaneously. We performed conditional analysis on all three leg length traits in both 341 

lambs and adults, as well as on birth weight, adult August weight adult jaw length (See Supplementary 342 

Table 2 for all SNPs that were fitted for each trait). For all of these traits we performed the conditional 343 

analysis using both the 50K SNP data and the imputed SNP data, with the exception of birth weight, 344 

which did not have any significant SNP associations using the 50K data. 345 

Six of the nine traits we performed conditional analysis on had significant SNPs after fitting the SNPs 346 

with the lowest p value, however for four of these traits (lamb metacarpal length, adult August weight, 347 

foreleg length and hindleg length), these were SNPs that were also significant in our original GWAS 348 

analysis but were not fitted in the conditional analysis due to being the only SNP that was significantly 349 

associated with the trait in that region (Supplementary Table 3). The remaining two traits (birth weight 350 

and adult jaw length) both had a new association, both of which were on chromosome 2. For birth 351 

weight, nine SNPs had p values lower than the genome-wide significance threshold, all around ~81Mb 352 

(Figure 3A, Supplementary Table 3). For adult jaw length, only one SNP had a lower p value than the 353 

genome-wide significance threshold, at position 137,162,126 (Figure 3B, Supplementary Table 3). 354 

 355 

Genes in QTL regions 356 

Given that all of the region-trait associations that were found to be significant with the 50K SNP data 357 

were also significant with the imputed SNP data, we chose to focus on top SNPs in the imputed dataset 358 

(See Supplementary Table 2 for the list of SNPs, and Supplementary Table 4 for the list of genes). 359 

We found a total of 179 genes in the regions around the SNPs associated with our traits. 56 of these 360 

genes were unannotated in the current sheep genome build, and of those that were annotated, three 361 

did not have a listed mouse homologue and a further six had neither a mouse nor a human homologue.  362 

Of the genes that did have annotation and homologue data, we found nine that are associated with 363 

similar traits to our focal traits in humans and mice, suggesting that they may be contributing to the 364 

genetic variation of our traits (Table 2). However, without intimate knowledge of the genes surrounding 365 

the focal SNPs, it is likely that there are other genes that are also contributing. It is also worth noting 366 

that the causal variant may not be in any of the genes in proximity to the SNPs we identified as being 367 

associated with our traits, but instead in upstream regulatory sequences that effect expression of either 368 

these or other genes.  369 

We also compared our GWAS results with QTL from Animal QTLdb (Hu et al. 2022). We found that the 370 

region on chromosome 6 that we found to be associated with adult August weight overlaps with a 371 

region previously found to be associated with carcass weight and final body weight in an (Awassi x 372 

Merino) x Merino backcross population (Cavanagh et al. 2010) and is ~0.5Mb upstream of a 2.5Mb 373 

region that has also previously been associated with body weight in a population of Australian Merino 374 

sheep (Al-Mamun et al. 2015). In addition, the region on chromosome 9 we found to be associated with 375 

adult August weight is 1Mb upstream of a region previously found to be associated with live weight in a 376 

population of Chinese Merino sheep, however this trait was studied in yearlings rather than adults (Zhao 377 

et al. 2021). 378 
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Chromosome 6 has previously been associated with adult body weight in a smaller population of Soays 379 

(Beraldi et al. 2007), however the markers flanking the associated region are not located close to the 380 

region we identified. 381 

 382 

Two-step GWAS 383 

To compare our results using the 50K SNP data to previous GWAS of adult traits in the Soays, we also 384 

performed a two-step GWAS. For our two-step analysis, we used the significance threshold previously 385 

calculated in Bérénos et al. (2015) (1.35e−6). 386 

Across all 5 traits, we recovered the SNP-trait associations identified by Bérénos et al. (2015). However, 387 

we were unable to recover any of the novel SNP-trait associations we had found when performing our 388 

single-step GWAS on the 50K SNP data, with the exception of the association between chromosome 16 389 

and adult foreleg (though the authors noted that SNPs in this region approached significance in their 390 

analysis). Despite the genome-wide significance threshold used by Bérénos et al. (2015) being more 391 

stringent than the significance threshold we calculated using the SimpleM method for the 50K SNP data, 392 

no additional associations are recovered when using our less stringent threshold 393 

 Our QQ plots using the two-step method also matched the QQ plots of Bérénos et al. (2015). In both, 394 

the observed p values were higher than the expected p values, causing the majority of points in the 395 

plots to fall below the x=y line (Supplementary Figure 3).  396 
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DISCUSSION 397 

Heritability 398 

Our results corroborate previous findings that all five body size traits we studied in Soay sheep are 399 

influenced by genetic variation in the population (Bérénos et al. 2014), that post mortem measures 400 

(metacarpal length and jaw length) have higher heritability estimates than live measures (weight, 401 

foreleg length and hindleg length), that leg measures have higher heritability than weight (Wilson et al. 402 

2006; Beraldi et al. 2007; Bérénos et al. 2014), and that heritability estimates increase with age (Wilson 403 

et al. 2006; Bérénos et al. 2014).  404 

The heritability estimates for the 50K data were very similar to those estimated using a GRM based on 405 

the 50K data in a smaller sample of the same population of sheep by Bérénos et al. (2014), with 406 

estimates for the same trait falling within one standard error of each other. The biggest difference was 407 

in adult metacarpal length with a heritability difference of 0.05 (estimates were 0.644 (0.047) and 0.594 408 

(0.047) for our and Bérénos et al.’s results respectively). Given that we used the same models as 409 

Bérénos et al., it is likely that the small differences between heritability estimates for each trait is due to 410 

our increased sample sizes. 411 

Comparing the heritabilities estimated using the imputed SNP data against the estimates using the 50K 412 

SNP data, we found little difference between the two SNP densities in any traits in any age class. The 413 

additional genotypes at the imputed SNPs do not give any additional information on additive genetic 414 

variation for these traits. This result is not surprising given the previous rarefaction analysis showing that 415 

the heritability of these body size traits in adults asymptoted when about half the 50K SNP data was 416 

used (Bérénos et al. 2014). There is high LD between nearby SNPs in the Soay sheep genome, which 417 

suggests that most, if not all, of the causal variants tagged by the imputed SNP data may have already 418 

been tagged by the 50K SNPs. The high LD was reflected when calculating GWAS significance thresholds 419 

– whilst the number of SNPs between the 50K SNP data and the imputed SNP data increased by a factor 420 

of ten, the number of effective tests only doubled (39K SNPs, 20082 effective tests and 401K SNPs and 421 

48635 effective tests respectively). 422 

For some of the traits we have analysed there is still a difference in heritability estimated using SNP data 423 

versus heritability estimated using pedigree – for example, the highest SNP-based heritability estimate 424 

for lamb metacarpal length (the estimate using the imputed SNP data) gave an estimate 59% of Bérénos 425 

et al.’s pedigree-based estimate (Bérénos et al. 2014). Given that our SNP-based heritability estimates 426 

were similar when using the 50K SNP data as when using the imputed SNP data, and the results of 427 

Bérénos et al.’s rarefaction analysis (Bérénos et al. 2014), we believe it is unlikely that increasing the 428 

density of genotyped SNPs that are common in the population will increase heritability estimates of 429 

these traits. It is possible instead that the difference in heritability estimates obtained from pedigree 430 

and genomic data is due to rare familial variants that do not segregate widely in the population, as well 431 

as due to dominance and epistasis. 432 

 433 

GWAS 434 

Body size traits have been the focus of many kinds of analyses in Soay sheep (Beraldi et al. 2007; Ozgul 435 

et al. 2009; Bérénos et al. 2014; Bérénos et al. 2015; Pemberton et al. 2017; Regan et al. 2017; Ashraf et 436 
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al. 2021), and several SNPs have already been identified as being associated with variation in these 437 

traits. A 2015 study aiming to find SNP-trait associations for these body size traits in adults identified 438 

QTL for leg length measures on chromosomes 16 and 19 (s23172.1 and s74894.1 respectively) (Bérénos 439 

et al. 2015). A more recent study comparing genomic prediction methods in Soays using the 50K SNP 440 

data identified s48811.1 on chromosome 7 and s50107.1 on chromosome 9 as having a probability 441 

higher than 0.9 of having a non-zero effect on adult foreleg length in addition to the previously 442 

discovered regions on chromosomes 16 and 19 (Ashraf et al. 2021). We were able to identify all four of 443 

these associations in our GWAS, alongside associations that have not previously been identified in this 444 

population. Use of the imputed SNP data allowed us to discover two more associations with loci that 445 

were not genotyped in the 50K SNP data, suggesting that future identification of polymorphisms 446 

influencing trait variation in the Soay sheep may benefit from using the imputed data. 447 

Performing a two-step analysis confirmed that the novel SNP-trait associations we were able to identify 448 

using the 50K SNP data were due to being able to fit the fixed and random effects for each trait whilst 449 

performing GWAS all in a single step, rather than the increased population sample. Given the increase in 450 

SNP-trait associations when using the single-step methodology, we suggest that a two-step GWAS is 451 

redundant with the availability of software like DISSECT which is able to fit fixed and random effects 452 

whilst performing GWAS. As we have shown, although DISSECT does not currently have the option to 453 

automatically run a repeated measures GWAS, it is possible to modify input files to allow for repeated 454 

measures. 455 

The imputed SNP data revealed SNP-trait associations in four regions of the genome that were not 456 

discovered using the 50K SNP data; a region on chromosome 1 and a region on chromosome 7 and birth 457 

weight, a region on chromosome 3 and adult August weight, and a region on chromosome 17 and adult 458 

metacarpal length. (Supplementary Table 2). When examining the Manhattan plot for the 50K data for 459 

each trait (Figure 2A, 2B and 2C, Supplementary Table 2) it is clear that, with the exception of the region 460 

on chromosome 1 associated with birth weight, there was a small cluster of SNPs just under the 461 

significance threshold in the 50K analyses. The additional (imputed) SNPs may have matched the allele 462 

frequency of the underlying causal variants more accurately, resulting in a smaller association p value.  463 

We performed conditional analysis on all three leg length traits in both lambs and adults, as well as on 464 

birth weight (only using the imputed SNP data), adult August weight and adult jaw length. For each trait, 465 

we simultaneously fitted the genotype for the SNP with the lowest p value for any chromosome that had 466 

at least two SNPs found to be associated with the trait (see Supplementary Table 2 for a list of SNPs 467 

fitted for each trait). We found that all of the SNPs that were significant in the GWAS analysis were no 468 

longer significant in the conditional analysis when a significant SNP on the same chromosome was fitted 469 

(Figure 3, Supplementary Table 3). We suggest that any future work looking to pinpoint the exact 470 

location of the genetic variants affecting body size traits in Soay sheep primarily focus on the regions 471 

around the SNPs listed in Supplementary Table 2. 472 

We identified 179 genes within 0.5Mb of the top SNPs for each trait (Supplementary Table 4), and of 473 

these genes, we found nine that are potential candidate genes for further analyses due to their 474 

association with similar traits in other species. However, we stress that it is possible that these nine 475 

genes may not be totally responsible for the associations we identified via GWAS – given that we do not 476 

have intimate knowledge of genes we identified, we believe that any analyses seeking to confirm gene-477 

trait associations should not just focus on the nine genes listed in Table 2. 478 
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 479 

Across all traits for all age classes, the QQ plots showed deviation from the expected distribution of test 480 

statistics under the null hypothesis (x=y line) for a wide range of test statistics, including low values,  481 

indicative of underlying population structure not accounted for by the GRMs. The first 20 genomic 482 

principal components accounted for 10.68% of the variance in the genetic data, and repeating the 483 

GWAS analysis fitting these first 20 genomic principal components in addition to the GRM did not 484 

change the p values of the SNPs nor the QQ plots. This shows that the principal components in this case 485 

were not useful in adjusting for population structure in the presence of the GRM. 486 

In order to have sufficient power to detect associations between markers and a trait of interest, GWAS 487 

primarily requires two factors: i) a very high density of genotyped SNPs, and ii) a large number of 488 

individuals that have been genotyped and phenotyped (Santure and Garant 2018). For intensively 489 

studied organisms, both are achievable; such populations tend to have more individuals accessible to 490 

collect data from, high density genotyping can be done at a lower cost due to higher demand, and, as in 491 

humans, data from different populations can be combined to create larger sample sizes. GWA studies of 492 

humans are the most obvious example of this; studies often have study populations made up of 493 

hundreds of thousands of individuals and human SNP chips commonly genotype hundreds of thousands 494 

of variants (for example, see Wood et al. 2014; Ishigaki et al. 2020; Wu et al. 2021). In comparison, wild 495 

study population samples are much smaller – often struggling to reach one thousand individuals – and 496 

the number of SNPs genotyped is much lower (for example, see Silva et al. 2017; Malenfant et al. 2018; 497 

Perrier et al. 2018). Analyses of wild populations therefore generally lack the power of more intensively 498 

studied study organisms. Here, we have increased power by increasing the number of genotyped 499 

markers via imputation. Despite high LD in the Soay sheep population, use of imputed data has allowed 500 

us to identify four new SNP-trait associations, including an association with birth weight, which had yet 501 

to be associated with any QTL in the Soay population. We have therefore shown that for a given sample 502 

size, more information can be obtained by increasing the density of markers for those individuals have 503 

been phenotyped. We suggest that, where possible, analyses of wild populations impute SNP data in 504 

order to increase power and obtain results that may otherwise remain undiscovered. 505 

Although we have discovered new SNP-trait associations, it is likely that there are still causative variants 506 

that remain undetected. GWAS lacks power to detect rare causative variants and variants with very 507 

small effect sizes (Yang et al. 2010). Also, GWAS power drops when the same amount of phenotypic 508 

variation is a consequence of multiple variants in the same region as opposed to a single variant 509 

(Nagamine et al. 2012). Regional mapping methods have been developed that partition trait variance 510 

into regions by simultaneously fitting a whole genome and a regional GRM, with the regions either being 511 

defined as fixed SNP windows (Nagamine et al. 2012) or haplotype blocks (Shirali et al. 2018). Such 512 

methodologies have the potential to identify regions of the genome that contain variants associated 513 

with a trait that are unable to be identified by GWAS either due to being rare, or individually having 514 

small effects on trait variation. Genomic prediction, which simultaneously estimates all marker effects 515 

drawn from multiple distributions, can also be used to study the genetic architecture of traits by 516 

estimating the posterior inclusion probability of a SNP having a non-zero effect on a trait. Genomic 517 

prediction has already been used on adult body size traits in Soays, and has identified several of the 518 

SNPs we identified through our GWAS approach (Ashraf et al. 2021). Ultimately, we believe that it is 519 

important to use a variety of methodologies when studying the genetic architecture of complex traits, as 520 

different analyses have different strengths and may be able to identify different QTL. 521 

522 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.03.07.483376doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.483376
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

References 523 

 524 

Al-Mamun HA, Kwan P, Clark SA, Ferdosi MH, Tellam R, Gondro C. 2015. Genome-wide association study 525 

of body weight in australian merino sheep reveals an orthologous region on oar6 to human and 526 

bovine genomic regions affecting height and weight. Genetics, selection, evolution : GSE. 527 

47(1):66. 528 

Arts HH, Bongers EM, Mans DA, van Beersum SE, Oud MM, Bolat E, Spruijt L, Cornelissen EA, Schuurs-529 

Hoeijmakers JH, de Leeuw N et al. 2011. C14orf179 encoding ift43 is mutated in sensenbrenner 530 

syndrome. Journal of medical genetics. 48(6):390-395. 531 

Ashraf B, Hunter DC, Bérénos C, Ellis PA, Johnston SE, Pilkington JG, Pemberton JM, Slate J. 2021. 532 

Genomic prediction in the wild: A case study in soay sheep. Molecular Ecology. 1– 15. 533 

Barton NH, Keightley PD. 2002. Understanding quantitative genetic variation. Nature reviews Genetics. 534 

3(1):11-21. 535 

Beraldi D, McRae AF, Gratten J, Slate J, Visscher PM, Pemberton JM. 2007. Mapping quantitative trait 536 

loci underlying fitness-related traits in a free-living sheep population. 61(6):1403-1416. 537 

Bérénos C, Ellis PA, Pilkington JG, Lee SH, Gratten J, Pemberton JM. 2015. Heterogeneity of genetic 538 

architecture of body size traits in a free-living population. 24(8):1810-1830. 539 

Bérénos C, Ellis PA, Pilkington JG, Pemberton JM. 2014. Estimating quantitative genetic parameters in 540 

wild populations: A comparison of pedigree and genomic approaches. 23(14):3434-3451. 541 

Ncbi gene. 2004 - 2022. [accessed 11/02/2022]. https://www.ncbi.nlm.nih.gov/gene/. 542 

Burdick JT, Chen W-M, Abecasis GR, Cheung VG. 2006. In silico method for inferring genotypes in 543 

pedigrees. Nature genetics. 38(9):1002-1004. 544 

Butler DG, Cullis BR, Gilmour AR, G. GB, R. T. 2017. Asreml-r reference manual version 4. Hemel 545 

Hempstead, HP1 1ES, UK.: VSN International Ltd. 546 

Campos-Xavier B, Rogers RC, Niel-Bütschi F, Ferreira C, Unger S, Spranger J, Superti-Furga A. 2018. 547 

Confirmation of spondylo-epi-metaphyseal dysplasia with joint laxity, exoc6b type. 548 

176(12):2934-2935. 549 

Canela-Xandri O, Law A, Gray A, Woolliams JA, Tenesa A. 2015. A new tool called dissect for analysing 550 

large genomic data sets using a big data approach. Nature Communications. 6(1):10162. 551 

Cavanagh CR, Jonas E, Hobbs M, Thomson PC, Tammen I, Raadsma HW. 2010. Mapping quantitative trait 552 

loci (qtl) in sheep. Iii. Qtl for carcass composition traits derived from ct scans and aligned with a 553 

meta-assembly for sheep and cattle carcass qtl. Genetics, selection, evolution : GSE. 42(1):36. 554 

Charmantier A, Garant D, Kruuk LEB. 2014. Quantitative genetics in the wild. Oxford University Press. 555 

Clutton-Brock TH, Pemberton JM. 2003. Soay sheep: Dynamics and selection in an island population. 556 

Clutton-Brock TH, Pemberton JM, editors. Cambridge: Cambridge University Press. 557 

Cornish J, Naot D. 2010. Lactoferrin as an effector molecule in the skeleton. BioMetals. 23(3):425-430. 558 

Duchatelet S, Ostergaard E, Cortes D, Lemainque A, Julier C. 2005. Recessive mutations in pthr1 cause 559 

contrasting skeletal dysplasias in eiken and blomstrand syndromes. Human molecular genetics. 560 

14(1):1-5. 561 

Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, Huber W. 2005. Biomart and 562 

bioconductor: A powerful link between biological databases and microarray data analysis. 563 

Bioinformatics (Oxford, England). 21(16):3439-3440. 564 

Durinck S, Spellman PT, Birney E, Huber W. 2009. Mapping identifiers for the integration of genomic 565 

datasets with the r/bioconductor package biomart. Nature protocols. 4(8):1184-1191. 566 

Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, 567 

Danielsson A, Edlund K et al. 2014. Analysis of the human tissue-specific expression by genome-568 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.03.07.483376doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.483376
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

wide integration of transcriptomics and antibody-based proteomics. Molecular & cellular 569 

proteomics : MCP. 13(2):397-406. 570 

Fathzadeh M, Li J, Rao A, Cook N, Chennamsetty I, Seldin M, Zhou X, Sangwung P, Gloudemans MJ, Keller 571 

M et al. 2020. Fam13a affects body fat distribution and adipocyte function. Nature 572 

communications. 11(1):1465. 573 

Gao X, Starmer J, Martin ER. 2008. A multiple testing correction method for genetic association studies 574 

using correlated single nucleotide polymorphisms. 32(4):361-369. 575 

. Applications of linear models in animal breeding. 1984. 576 

Hickey JM, Kinghorn BP, Tier B, van der Werf JH, Cleveland MA. 2012. A phasing and imputation method 577 

for pedigreed populations that results in a single-stage genomic evaluation. Genetics, selection, 578 

evolution : GSE. 44(1):9. 579 

Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, 580 

Bhai J et al. 2020. Ensembl 2021. Nucleic Acids Research. 49(D1):D884-D891. 581 

Hu Z-L, Park CA, Reecy JM. 2022. Bringing the animal qtldb and corrdb into the future: Meeting new 582 

challenges and providing updated services. Nucleic Acids Research. 50(D1):D956-D961. 583 

Ishigaki K, Akiyama M, Kanai M, Takahashi A, Kawakami E, Sugishita H, Sakaue S, Matoba N, Low S-K, 584 

Okada Y et al. 2020. Large-scale genome-wide association study in a japanese population 585 

identifies novel susceptibility loci across different diseases. Nature genetics. 52(7):669-679. 586 

Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-y, Freimer NB, Sabatti C, Eskin E. 2010. Variance 587 

component model to account for sample structure in genome-wide association studies. Nature 588 

genetics. 42(4):348-354. 589 

Kruuk LEB. 2004. Estimating genetic parameters in natural populations using the "animal model". 590 

Philosophical transactions of the Royal Society of London Series B, Biological sciences. 591 

359(1446):873-890. 592 

Kruuk LEB, Slate J, Wilson AJ. 2008. New answers for old questions: The evolutionary quantitative 593 

genetics of wild animal populations. 39(1):525-548. 594 

Laue K, Pogoda H-M, Daniel PB, van Haeringen A, Alanay Y, von Ameln S, Rachwalski M, Morgan T, Gray 595 

MJ, Breuning MH et al. 2011. Craniosynostosis and multiple skeletal anomalies in humans and 596 

zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet. 597 

89(5):595-606. 598 

Li Q, Zhao J, Hu W, Wang J, Yu T, Dai Y, Li N. 2018. Effects of recombinant human lactoferrin on 599 

osteoblast growth and bone status in piglets. Animal Biotechnology. 29(2):90-99. 600 

Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J 601 

et al. 2015. Genetic studies of body mass index yield new insights for obesity biology. Nature. 602 

518(7538):197-206. 603 

Malenfant RM, Davis CS, Richardson ES, Lunn NJ, Coltman DW. 2018. Heritability of body size in the 604 

polar bears of western hudson bay. Molecular Ecology Resources. 18(4):854-866. 605 

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon 606 

LR, Chakravarti A et al. 2009. Finding the missing heritability of complex diseases. Nature. 607 

461(7265):747-753. 608 

Mendez IA, Ostlund SB, Maidment NT, Murphy NP. 2015. Involvement of endogenous enkephalins and 609 

β-endorphin in feeding and diet-induced obesity. Neuropsychopharmacology : official 610 

publication of the American College of Neuropsychopharmacology. 40(9):2103-2112. 611 

Mrode RA. 2014. Linear models for the prediction of animal breeding values. 612 

Nagamine Y, Pong-Wong R, Navarro P, Vitart V, Hayward C, Rudan I, Campbell H, Wilson J, Wild S, Hicks 613 

AA et al. 2012. Localising loci underlying complex trait variation using regional genomic 614 

relationship mapping. PloS one. 7(10):e46501. 615 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.03.07.483376doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.483376
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

Oralová V, Chlastáková I, Radlanski RJ, Matalová E. 2014. Distribution of bmp6 in the alveolar bone 616 

during mouse mandibular molar eruption. Connective tissue research. 55(5-6):357-366. 617 

Ozgul A, Tuljapurkar S, Benton TG, Pemberton JM, Clutton-Brock TH, Coulson T. 2009. The dynamics of 618 

phenotypic change and the shrinking sheep of st. Kilda. Science (New York, NY). 325(5939):464-619 

467. 620 

Pemberton JM. 2008. Wild pedigrees: The way forward. Proceedings Biological sciences. 275(1635):613-621 

621. 622 

Pemberton JM, Ellis PE, Pilkington JG, Bérénos C. 2017. Inbreeding depression by environment 623 

interactions in a free-living mammal population. Heredity (Edinb). 118(1):64-77. 624 

Perrier C, Delahaie B, Charmantier A. 2018. Heritability estimates from genomewide relatedness 625 

matrices in wild populations: Application to a passerine, using a small sample size. Molecular 626 

Ecology Resources. 18(4):838-853. 627 

Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. 2012. Double digest radseq: An inexpensive 628 

method for de novo snp discovery and genotyping in model and non-model species. PloS one. 629 

7(5):e37135. 630 

Qiu T, Xian L, Crane J, Wen C, Hilton M, Lu W, Newman P, Cao X. 2015. Pth receptor signaling in 631 

osteoblasts regulates endochondral vascularization in maintenance of postnatal growth plate. J 632 

Bone Miner Res. 30(2):309-317. 633 

Regan CE, Pilkington JG, Bérénos C, Pemberton JM, Smiseth PT, Wilson AJ. 2017. Accounting for female 634 

space sharing in st. Kilda soay sheep (ovis aries) results in little change in heritability estimates. 635 

Journal of Evolutionary Biology. 30(1):96-111. 636 

Santure AW, Garant D. 2018. Wild gwas—association mapping in natural populations. Molecular Ecology 637 

Resources. 18(4):729-738. 638 

Schipani E, Provot S. 2003. Pthrp, pth, and the pth/pthrp receptor in endochondral bone development. 639 

Birth defects research Part C, Embryo today : reviews. 69(4):352-362. 640 

Shirali M, Knott SA, Pong-Wong R, Navarro P, Haley CS. 2018. Haplotype heritability mapping method 641 

uncovers missing heritability of complex traits. Scientific Reports. 8(1):4982. 642 

Silva CNS, McFarlane SE, Hagen IJ, Rönnegård L, Billing AM, Kvalnes T, Kemppainen P, Rønning B, Ringsby 643 

TH, Sæther BE et al. 2017. Insights into the genetic architecture of morphological traits in two 644 

passerine bird species. Heredity (Edinb). 119(3):197-205. 645 

Stoffel MA, Johnston SE, Pilkington JG, Pemberton JM. 2021. Genetic architecture and lifetime dynamics 646 

of inbreeding depression in a wild mammal. Nature communications. 12(1):2972. 647 

Tang J, Zhou H, Sahay K, Xu W, Yang J, Zhang W, Chen W. 2019. Obesity-associated family with sequence 648 

similarity 13, member a (fam13a) is dispensable for adipose development and insulin sensitivity. 649 

International Journal of Obesity. 43(6):1269-1280. 650 

Van Vleck LD. 1970. Misidentification in estimating the paternal sib correlation. Journal of Dairy Science. 651 

53(10):1469-1474. 652 

VanRaden PM. 2008. Efficient methods to compute genomic predictions. J Dairy Sci. 91(11):4414-4423. 653 

Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, Montgomery GW, Martin NG. 654 

2006. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing 655 

between full siblings. PLOS Genetics. 2(3):e41. 656 

Wardhana DA, Ikeda K, Barinda AJ, Nugroho DB, Qurania KR, Yagi K, Miyata K, Oike Y, Hirata KI, Emoto N. 657 

2018. Family with sequence similarity 13, member a modulates adipocyte insulin signaling and 658 

preserves systemic metabolic homeostasis. Proceedings of the National Academy of Sciences of 659 

the United States of America. 115(7):1529-1534. 660 

Warrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland Ø, Laurin C, Bacelis J, Peng S, Hao K, 661 

Feenstra B et al. 2019. Maternal and fetal genetic effects on birth weight and their relevance to 662 

cardio-metabolic risk factors. Nature genetics. 51(5):804-814. 663 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.03.07.483376doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.483376
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

Wilson AJ, Pemberton JM, Pilkington JG, Clutton-Brock TH, Coltman DW, Kruuk LEB. 2006. Quantitative 664 

genetics of growth and cryptic evolution of body size in an island population. Evolutionary 665 

Ecology. 21(3):337. 666 

Wilson AJ, Réale D, Clements MN, Morrissey MM, Postma E, Walling CA, Kruuk LE, Nussey DH. 2010. An 667 

ecologist's guide to the animal model. The Journal of animal ecology. 79(1):13-26. 668 

Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, Chu AY, Estrada K, Luan Ja, Kutalik Z et al. 669 

2014. Defining the role of common variation in the genomic and biological architecture of adult 670 

human height. Nature genetics. 46(11):1173-1186. 671 

Wu Y, Murray GK, Byrne EM, Sidorenko J, Visscher PM, Wray NR. 2021. Gwas of peptic ulcer disease 672 

implicates helicobacter pylori infection, other gastrointestinal disorders and depression. Nature 673 

communications. 12(1):1146-1146. 674 

Xia C, Amador C, Huffman J, Trochet H, Campbell A, Porteous D, Hastie ND, Hayward C, Vitart V, Navarro 675 

P et al. 2016. Pedigree- and snp-associated genetics and recent environment are the major 676 

contributors to anthropometric and cardiometabolic trait variation. PLoS Genet. 677 

12(2):e1005804. 678 

Xia C, Canela-Xandri O, Rawlik K, Tenesa A. 2021. Evidence of horizontal indirect genetic effects in 679 

humans. Nature human behaviour. 5(3):399-406. 680 

Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Lee SH, Robinson MR, Perry JR, Nolte IM, van Vliet-681 

Ostaptchouk JV et al. 2015. Genetic variance estimation with imputed variants finds negligible 682 

missing heritability for human height and body mass index. Nature genetics. 47(10):1114-1120. 683 

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, 684 

Montgomery GW et al. 2010. Common snps explain a large proportion of the heritability for 685 

human height. Nature genetics. 42(7):565-569. 686 

Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. 2014. Advantages and pitfalls in the application 687 

of mixed-model association methods. Nature genetics. 46(2):100-106. 688 

Yashiro K, Zhao X, Uehara M, Yamashita K, Nishijima M, Nishino J, Saijoh Y, Sakai Y, Hamada H. 2004. 689 

Regulation of retinoic acid distribution is required for proximodistal patterning and outgrowth of 690 

the developing mouse limb. Developmental cell. 6(3):411-422. 691 

Zaitlen N, Kraft P, Patterson N, Pasaniuc B, Bhatia G, Pollack S, Price AL. 2013. Using extended genealogy 692 

to estimate components of heritability for 23 quantitative and dichotomous traits. PLOS 693 

Genetics. 9(5):e1003520. 694 

Zhao B, Luo H, Huang X, Wei C, Di J, Tian Y, Fu X, Li B, Liu GE, Fang L et al. 2021. Integration of a single-695 

step genome-wide association study with a multi-tissue transcriptome analysis provides novel 696 

insights into the genetic basis of wool and weight traits in sheep. Genetics, selection, evolution : 697 

GSE. 53(1):56. 698 

 699 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.03.07.483376doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.483376
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

Table 1 Number of individuals and records, fixed and random effects fitted in each trait x age class 700 

model in addition to the GRM. The same individuals and records were used for both heritability 701 

estimates and for GWAS. 702 

  703 

Age Trait No. 

individuals 

No. 

records 

Fixed effects Random effects 

Neonate Birth weight 2678 2678 Sex Year of birth 

Litter size Mother ID 

Population size year before birth   

Age of mother (quadratic)   

Ordinal date of birth   

Age (days)  

Lamb Weight 2228 2228 Sex Year of birth 

Litter size Mother ID 

Population size Permanent environment 

Age (days)   

Foreleg 2284 2284 Sex Year of birth 

Litter size Mother ID 

Population size Permanent environment 

Age (days)   

Hindleg 2349 2349 Sex Year of birth 

Litter size Mother ID 

Population size Permanent environment 

Age (days)   

Metacarpal 2059 2059 Sex Year of birth 

Litter size Mother ID 

Age at death (months)   

Jaw 2113 2113 Sex Year of birth 

Litter size Mother ID 

Age at death (months)   

Adult Weight  1152  3553  Sex Year of capture 

Population size Permanent environment 

Age (years)   

Foreleg 1121 3331 Sex Year of capture 

Population size Permanent environment 

Age (years)   

Hindleg 1135 3444 Sex Year of capture 

Population size Permanent environment 

Age (years)   

Metacarpal 945 945 Sex Year of birth 

Age at death (years)  

Jaw 991 991 Sex Year of birth 

Age at death (years)  
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Gene Name Ensembl Gene ID Chr Associated trait Effects in other species 

Cytochrome 

P450 26B1 

ENSOARG00000011582 3  Lamb metacarpal 

length 

Associated with skeletal 

abnormalities in humans and 

zebrafish (Laue et al. 2011), 

knockouts produce reduced limbs 

in mice (Yashiro et al. 2004). 

EXOC6B ENSOARG00000011607 3 Lamb metacarpal 

length 

Associated with  

spondyloepimetaphyseal dysplasia 

(resulting in short stature) in 

humans (Campos-Xavier et al. 

2018). 

FAM13A ENSOARG00000018727 6 Adult August 

weight 

Modulates body fat distribution 

and adipocyte function in humans 

and mice (Fathzadeh et al. 2020) as 

well as adipose insulin signalling in 

mice (Wardhana et al. 2018), also 

linked with obesity in mice (Tang et 

al. 2019) 

ONECUT1 ENSOARG00000020928 7 Birth weight Associated with birth weight in 

humans (Warrington et al. 2019). 

IFT43 ENSOARG00000002065 7 Adult foreleg 

length 

Associated with Sensenbrenner 

syndrome (resulting in growth 

retardation and dwarfism due to 

femoral and humeral limb 

shortening) in humans (Arts et al. 

2011). 

PENK ENSOARG00000020184 9 Adult August 

weight 

PENK knock-out mice found to 

have diminished food motivation, 

lower baseline body weight and 

attenuated weight gain (Mendez et 

al. 2015) 

PTH1R ENSOARG00000006638 19 Lamb metacarpal 

length, adult 

foreleg length, 

adult hindleg 

length, adult 

metacarpal length 

Involved in osteoblast 

development in mice (Qiu et al. 

2015), associated with skeletal 

disorders such as JMC (Schipani 

and Provot 2003), EKNS 

(Duchatelet et al. 2005) and BLC  

(Schipani and Provot 2003) in 

humans. 

LTF ENSOARG00000008620 19 Lamb metacarpal 

length, adult 

Human LTF associated with 

increased bone growth when 
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metacarpal length injected into piglets (Li et al. 2018), 

found to stimulate osteoblast 

proliferation (Cornish and Naot 

2010). High expression levels in 

human bone marrow (Fagerberg et 

al. 2014). 

BMP6 ENSOARG00000017264 20 Adult jaw length Involved in bone development and 

expressed in the jaw bone in mice 

(Oralová et al. 2014). 

Table 2 Potential candidate genes for future analyses. From left to right: gene name, Ensembl gene ID, 704 

chromosome, associated trait, and evidence for association in other species. 705 

  706 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.03.07.483376doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.483376
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

Figure 1 Estimates of VA/VP for body size traits in neonates, lambs, and adult Soay sheep when using a 707 

GRM calculated from the 50K SNP data (blue) compared with using a GRM calculated from the imputed 708 

SNP data (yellow). Error bars represent standard error estimates. 709 

 710 

 711 

Figure 2 Manhattan plots for A) birth weight GWAS using 50K SNP data (left) and imputed SNP data 712 

(right); B) adult August weight GWAS using 50K SNP data (left) and imputed SNP data (right); and C) 713 

adult metacarpal length GWAS using 50K SNP data (left) and imputed SNP data (right). The red line 714 

represents the significance threshold (2.49e-06 for the 50K SNP data and 1.03e-06 for the imputed SNP 715 

data)  – any SNPs above this threshold are considered to be significantly associated with variation in 716 

their respective traits. 717 

 718 

 719 

Figure 3 Miami plots for A) birth weight using imputed SNP data (top) and birth weight conditional 720 

analysis using imputed SNP data (bottom); and B) adult jaw length GWAS using 50K SNP data (top left) 721 

and imputed SNP data (top right), adult jaw length conditional analysis using 50K SNP data (bottom left) 722 

and imputed SNP data (bottom right). The red line represents the significance threshold (2.49e-06 for 723 

the 50K SNP data and 1.03e-06 for the imputed SNP data)  – any SNPs above this threshold are 724 

considered to be significantly associated with variation in their respective traits. 725 

  726 
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Data Availability Statement 727 

All scripts and data can be found at 728 

https://github.com/CaelinnJames/Impact_of_SNPDensity_on_Soay_Sheep 729 
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