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Abstract  

The quality of the immune infiltrate of intrahepatic cholangiocarcinoma (iCCA), a rare, yet 

aggressive tumor of the biliary tract, remains poorly characterized, limiting development of 

successful immunotherapies. We used high-dimensional flow cytometry to characterise the T cell 

and myeloid compartments of iCCA comparing these with their tumor-free peritumoral and 

circulating counterparts. We found poor infiltration of putative tumor-specific CD39+ CD8+ T cells 

accompanied by abundant infiltration of hyperactivated CD4+ regulatory T cells (Tregs), whose 

frequency in relation to that of CD4+ CD69+ T cells and conventional type 2 dendritic cells was 

associated with poor prognosis. Single-cell RNA-sequencing identified an altered network of 

transcription factors in iCCA-infiltrating compared to peritumoral T cells, suggesting reduced 

effector functions by tumor-infiltrating CD8+ T cells and enhanced immunosuppression by CD4+ 

Tregs. Specifically, we found that expression of mesenchyme homeobox 1 (MEOX1) was highly 

enriched in tumor-infiltrating Tregs, and demonstrated that MEOX1 overexpression is sufficient to 

reprogram circulating precursors to acquire the transcriptional and epigenetic landscape of tumor-

infiltrating Tregs. Interfering with hyperactivated Tregs should be thus explored to enhance anti-

tumor immunity in iCCA. 
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INTRODUCTION 

Cholangiocarcinoma (CCA) is a rare cancer that originates from the bile duct epithelia and accounts 

for 3-5% of all gastrointestinal malignancies worldwide (Tariq et al., 2019). Depending on the 

anatomic site of origin, CCA is divided into intrahepatic (iCCA), perihilar (pCCA), and distal 

(dCCA) CCA, with iCCA being the less prevalent type. However, the incidence rate of iCCA is 

constantly increasing and its mortality rate is extremely high, due to the aggressive evolution of the 

disease and the lack of efficient diagnostic and therapeutic treatments (Banales et al., 2020). Late 

diagnosis highly compromises surgery, the only current potentially curative option, and even among 

the 10-30% patients eligible for resection at diagnosis, 50% recur within the first year. Moreover, 

iCCA is a highly chemoresistant tumor, and pharmacological therapies are generally unsuccessful, 

with a 5-year survival rate that has persisted below 10% since the 1980s. Novel therapies targeting 

tumor subtypes with genetic rearrangements have been introduced last year into clinical practice 

after obtaining promising results in clinical trials (Abou-Alfa et al., 2020a; Abou-Alfa et al., 

2020b), but only benefit 13-14% of patients (Nakamura et al., 2015; Sia et al., 2013). Therefore, 

there is an urgent need to develop valid therapeutic alternatives for iCCA. 

During the last decade, immunotherapies approaches targeting checkpoint receptors 

expressed by tumor infiltrating lymphocytes (TILs) have revolutionized cancer treatment, 

increasing the overall survival (OS) of patients with multiple cancers (Borghaei et al., 2015; Snyder 

et al., 2014). The superior responsiveness to anti-programmed-death (PD)-1 checkpoint inhibitors is 

thought to be mediated by the unleashed reactivity of clonally expanded CD8+ T cells towards the 

cognate tumor antigens (Gros et al., 2014; Tumeh et al., 2014), among which those that are less 

differentiated, or stem-like, are endowed with enhanced functionality and capability for long-term 

persistence (Brummelman et al., 2018; Lugli et al., 2020; Miller et al., 2019; Sade-Feldman et al., 

2018; Siddiqui et al., 2019). In this regard, tumors with high mutational burden respond better to 

checkpoint-inhibitor therapy (Gubin et al., 2014). Accordingly, tumors with mismatch repair 

(MMR)-deficiency and consequently high DNA microsatellite instability (MSI) are highly 
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responsive to anti-PD-1 (Le et al., 2015). In that context, the FDA approved the use of anti-PD-1 

antibody in 2017 in CCA and other solid tumors with MSI or MMR-deficiency, which nevertheless 

benefits only a small proportion of iCCA patients (Kim et al., 2020; Piha-Paul et al., 2020). 

The tumor microenvironment is infiltrated by a diverse population of immune cells, among 

which effector and cytotoxic T cells and natural killer (NK) cells mediate tumor 

immunosurveillance and whose increased abundance is generally associated with delayed 

progression. By contrast, inhibitory subpopulations, including CD4+ regulatory T cells (Treg) and 

tumor-associated myeloid cells, can counteract immune responses and favor tumor growth 

(Binnewies et al., 2018).  Several studies have recently deciphered the architecture of the tumor 

microenvironment of several cancers, expanding our knowledge of its complex composition and 

revealing novel drug targets. Such analyses now begin to reveal that many immune lineages are not 

compartmetalised into discrete subcompartments but, rather, comprise a continuum of functional 

phenotypes.  

Knowledge regarding the complexity of the immune system in iCCA is still limited. Overall, 

iCCA is poorly infiltrated by the immune system, and is generally referred to as a <cold= tumor. 

Immunohistochemical analysis initially revealed the preferential presence of CD8+ and CD4+ T 

cells in tumors and in peritumoral areas, respectively (Kasper et al., 2009). A subsequent study in a 

cohort of 306 individuals with biliary tract cancers revealed that the longer OS correlated positively 

with a higher tumor infiltration of total CD4+ TIL, but did not distinguish CD4+ T cell subtypes 

(Goeppert et al., 2013). A recent study using single cell RNA-sequencing (scRNA-seq) of 8 paired 

tumoral and peritumoral samples elucidated at least in part the quality of immune cells infiltrating 

iCCA, revealing features similar to those found in other tumors, including the presence of activated 

Tregs and T cells expressing inhibitory receptors. The study also found a diverse population of 

cancer-associated fibroblasts (CAFs), where a predominant subpopulation of CD146+ vascular 

CAFs expressed high levels of IL-6, which in turn promoted tumor progression via IL-6R signaling 

on malignant cells (Zhang et al., 2020b).	However, high-resolution well-powered datasets defining 
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the architecture of the immune system infiltrating iCCA, both at the transcriptional and population 

level, are largely missing, thereby possibly preventing the development of future immunotherapy 

approaches.  

Here we show that T cells within iCCA undergo profound remodeling, revealing the absence 

of putative tumor-specific CD39+ CD8+ TRM cells (Duhen et al., 2018; Simoni et al., 2018) and 

cytotoxic T lymphocytes (CTLs), and the abundant infiltration of a diverse population of Tregs, 

predicted to engage multiple inhibitory pathways on T and myeloid cells in the tumor 

microenvironment, while receiving signals that in turn may support their hyperactivated phenotype. 

A transcription factor (TF) novel to T-cell biology, mesenchyme homeobox 1 (MEOX1), was at 

least in part responsible for the transcriptional and epigenetic features of Tregs found in iCCA. We 

thus provide a high-resolution atlas of the T cell and myeloid cell infiltrate in iCCA, predict 

functional interactions between cell types with divergent functions and suggest that interfering with 

the activated Treg program might be needed to enhance anti-tumor immunity in iCCA. 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.06.483155doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.06.483155
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

Results 

High-dimensional flow cytometry defines the T cell and myeloid cell composition of human 

iCCA. We initially generated single-cell suspensions from the tumor and the adjacent tumor-free 

tissue (hereafter referred to as peritumor), and isolated peripheral blood mononuclear cells 

(PBMCs) from 20 patients who were eligible for surgery shortly after diagnosis (Table S1). In 

addition, we isolated circulating immune cells that abundantly infiltrate the liver parenchyma by 

organ perfusion (hereafter referred to as perfusate). We next profiled millions of single cells with 2 

high-dimensional flow cytometry panels (Brummelman et al., 2019) encompassing markers of T 

cell memory and effector differentiation, activation, cytotoxicity and exhaustion, CD4+ Treg 

markers as well as markers capable to define subsets of myeloid cells (Fig. 1A, Fig. S1A and Table 

S2). CD3+ cells, identifying the bulk of T cells, and CD33 CD66b3 cells, enriching mainly for 

myeloid cells (hereafter referred to as <myeloid= for simplicity), were further analysed by 

PhenoGraph (Levine et al., 2015), a computational algorithm capable of clustering single cells 

without bias according to their relative expression of antigens in the multidimensional space. In this 

way, we identified 7, 10 and 12 CD4+, CD8+ and myeloid clusters, respectively (Fig. 1B), whose 

profile of antigen expression is shown in the heatmaps in Fig. S1A.  

Principal Component Analysis (PCA) of PhenoGraph cluster abundance revealed that the 

four tissue sites had a different T-cell and myeloid composition as a whole, although perfusate and 

the peritumor tended to share a similar immunophenotypic landscape (Fig. 1C). Specifically, 

PBMCs were characterized by the presence of CD4+ naïve and memory T cells expressing C-C 

chemokine receptor 4 (labelled as CD4+ CCR4+), CD45RO+ CCR7+ central memory CD8+ T 

cells (CD8+ TCM) as well as CD9+ and CD93 classical monocytes bearing a CD14+CD163 

phenotype; perfusate and peritumor by CD4+ granzyme K+ CCR2dull (CD4+ GZMK+) and, at a 

lesser extent, CD4+ GZMB+ 2B4+ terminal effector T cells (CD4+ TTE), by CD8+ T cells with a 

CD45RO- CCR7- GZMK+ GZMB+ phenotype (CD8+ CTL.2) or with a CD127low CD45RO+ 

CCR73 GZMK+ GZMB+ effector memory T cell phenotype (CD8+ TEM CD127low), by CD8+ T 
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cells with a CD127low GZMK+ CD161+ phenotype, labelled as MAIT cells (Dusseaux et al., 2011), 

and mainly by subsets of CD11b+ cells expressing or not CD11c, and of CD11b+CD11c+ HLA-

DRhigh CD141+ cells, suggesting the presence of immature myeloid cells and cDC1, respectively; 

tumors by subsets of CD4+ and CD8+ memory T cells expressing different combinations of the 

markers CD69 and CD103, collectively labelled as tissue-resident memory T cells (TRM; Fig. 1C, D 

and Fig. S1B-D). In the case of CD8+ T cells, a subset of CD69+ CD103+ TRM also expressed high 

levels of CD39 (CD8 TRM CD39+), a marker recently associated with CD8+ T cell reactivity to 

tumor antigens (Fig. 1D) (Duhen et al., 2018; Simoni et al., 2018). In line with their putative 

chronic stimulation by tumor antigens, these cells also expressed increased levels of the inhibitory 

receptor PD-1 and the activation marker CD38 compared to other iCCA-infiltrating CD8+ T cell 

clusters (Fig. S1A). Albeit present almost exclusively in tumors, the relative abundance of CD8+ 

CD39+ TRM among total CD3+ was low (median=0.68, IQR: 0.41 and 3.32; Fig. 1D), possibly 

suggesting the poor immunogenicity of human cholangiocarcinoma or suppression of T cell 

responses against them. Notably, tumors were highly infiltrated by CD4+ CD1273 CD25+ Tregs 

(Fig. 1C-E; Fig. S1A) overexpressing PD-1, CD39, CCR8, CD69, CD38 and the TF T-bet 

compared to Tregs from other tissue sites or the circulation (Fig. 1F), thereby indicating acquisition 

of a hyperactivated phenotype similar to that recently described in multiple other solid tumors 

(Alvisi et al., 2020; De Simone et al., 2016; Plitas et al., 2016). As far as myeloid cells were 

concerned, tumors were preferentially infiltrated compared to other tissue sites by CD11b+ CD11c+ 

HLA-DRhigh CD1c+ cDC2 (Fig. 1D), and by CD11b3 CD9+ cells. Tumors were also infiltrated by 

CD11c3 HLA-DRhigh CD123+ plasmacytoid DCs (pDCs), which were also abundant in the 

perfusate and in the peritumoral area, less so in the PBMCs, and by CD11b+ CD11c+ immature 

myeloid cells, which instead were ubiquitous (Fig. 1C-D; Fig. S1D). Overall, these data indicate 

that human iCCA is characterized by a different landscape of T cell and, at a lesser extent, myeloid 

phenotypes. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.06.483155doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.06.483155
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Impact of the immune landscape at surgery on the prognosis of iCCA patients. We next 

investigated whether a different immune landscape could influence disease progression in our 

cohort of 20 patients. While the relative abundance of single clusters alone was not informative in 

this regard (data now shown), combinatorial analysis of cluster abundance defined that the 

frequency of Tregs as relative to that of CD4+ CD69+ TRM cells or as that of cDC2 were highly 

associated with disease free survival (DFS). Specifically, worse prognosis was associated with high 

Treg infiltration and either low CD4+ CD69+ TRM cell or low cDC2 infiltration (Fig. 2). 

Interestingly, a recent report mechanistically related Treg-dependent inhibition of cDC2 activity 

with tumor immunosuppression using preclinical models (Binnewies et al., 2019). Accordingly, the 

relative abundance of these two cell types was associated with disease progression of head and neck 

squamous cell carcinoma and response of melanoma to checkpoint blockade. Overall, these data 

suggest that a common axis regulates anti-tumor immunity in different cancer types, and highlight 

the important role that CD4+ Tregs might play in the disease course of iCCA. 

 

scRNA-seq reveals tumor-specific differences in gene expression by specific T cell 

subpopulations. We next performed scRNA-seq of CD45+ immune cells isolated from 6 

cholangiocarcinomas and paired peritumoral tissues to gain more insights on the molecular 

characteristics of the tumor-specific immune infiltrate. Cluster analysis of scRNA-seq data and 

subsequent enrichment of defined immune signatures revealed that, among immune cells, T and NK 

cells were most abundant, followed by myeloid cells and B cells (Fig. 3B and Fig. S2A,B). CD453 

stromal/tumor cells from 2 patients, spiked in at known concentration as a control, separated from 

these subsets of immune cells (Fig. 3A). Among CD45+ cells, tumors tended to harbor increased 

frequencies of T cells, reduced frequencies of NK and B cells, and similar frequency of myeloid 

cells compared to adjacent peritumoral tissue (Fig. S2B). Overall, tumoral and peritumoral tissues 

could be clearly distinguished on the basis of T and NK cell gene expression profiles, and less so by 

B cell and myeloid profiles, indicating that T cells and NK cells undergo specific transcriptional 
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changes in the tumor (Fig. S2C). Inspired by flow cytometry results, we focused our subsequent 

investigation on T cells and myeloid cells, and subclustered these populations of cells to further 

identify their transcriptional characteristics within tumors compared to the adjacent peritumoral 

tissue. As scRNA-seq datasets may be characterized by zeros and dropout events, we employed 

imputation of single-cell data, a computational approach capable to infer gene expression even in 

the presence of dropouts, to improve the detection of gene expression (Linderman et al., 2018). For 

instance, this approach improved the detection of CD4 and CD8A mRNA expression (Fig. S3A). 

We identified 8 clusters of myeloid and 11 clusters of T cells, reflecting, at least in part, those 

subpopulations that were identified by flow cytometry. Among myeloid, we identified CD14high 

classical monocytes (C0) expressing S100A8, VCAN and CD36 , among other genes; ID3high 

macrophages (C1) expressing VSIG4 and resembling tissue resident Kupffer cells, as previously 

suggested (Mass et al., 2016); MARCOhigh macrophages (C3) expressing PLIN2, APOC1 and SPP1, 

among others; TREM2high macrophages (C5) expressing APOC1 and C1QA/B/C; cDC2 (C2), 

expressing FCER1A, ADAM8, CD1C, CLEC10A and IRF4; cDC1 (C7), expressing IRF8, IDO1, 

CLEC9A and BATF3; and non-classical monocytes (C6) expressing FCGR3A, CDKN1C, LILRA1 

and LILRB2 (Zhang et al., 2020a). Among T cells, we identified subsets of early differentiated 

memory T cells (C2, C5 and C8), expressing different combinations of genes previously related to 

stem-like memory cell differentiation such as CCR7, GPR183, IL6R, SATB1, CCR4 and IL7R 

(Galletti et al., 2020); subsets of effector cells (C0, C3, C6 and C7), expressing different 

combinations of genes previously related to effector memory differentiation, such as CSF1 

(encoding M-CSF), TNF, IFNG, TBX21 [encoding the TF T-bet], ID2, PRDM1 (encoding the TF 

BLIMP-1), GZMA, GZMK and the C-C chemokines CCL4 and CCL5, among others; a terminally 

differentiated/cytotoxic subset (C1), expressing the cytotoxicity-related genes CRTAM, NKG7 and 

PRF1 (encoding perforin) and the terminal differentiation-related TF ZEB2; a TRM cell subset (C4), 

expressing ITGAE (encoding CD103 integrin), CISH, CCR2, HOPX as well as detectable levels of 

ENTPD1 (encoding CD39), suggesting potential tumor reactivity (Duhen et al., 2018; Simoni et al., 
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2018) (Fig. 3D and Fig. S3B); and a subset expressing several CD4+ Treg-related genes (C10), 

including IL2RA, FOXP3, BATF, TIGIT, CD177, IL1R2, among others (Fig. 3D). An additional 

subset, C9, was found to express CCL20, IL23R, RORC and KLRB1 (encoding CD161), suggesting 

the identification of CD8+ mucosal associated invariant T (MAIT) cells (Dusseaux et al., 2011) or, 

alternatively, CD4+ T helper type-17 cells (Th17). The poor expression of CD4 and CD8A by C9 

(Fig. S3B) precluded further distinction between these two subsets.  

Overall, scRNA-seq revealed increased abundance of MARCOhigh myeloid cells and of 

CD4+ Tregs in tumoral compared to peritumoral tissues (Fig. 3E), in line with results obtained by 

flow cytometry, although could not detect additional differences, likely due to the limited number 

of patients that could be analysed using scRNA-seq. Nevertheless, scRNA-seq identified 

differences in T-cell gene expression between these two sites (Fig. S3B), suggesting distinct 

functional regulation of T cells in tumors. The biggest differences were observed among Tregs, 

where those from tumors expressed increased levels of CTLA4, HAVCR2 (encoding the inhibitory 

receptor TIM-3), TIGIT, BTLA and ENTPD1 (Fig. S3B), among others (Fig. S3D), confirming 

previous flow cytometry data. By contrast, C4 TRM and C7 effector subsets from tumors tended to 

express increased levels of HAVCR2 and CTLA4 (only C7) and lower levels of the effector/killer 

molecules compared to those from the peritumoral tissue (Fig. S3C). Overall, these data suggest 

functional modulation of the T-cell infiltrate in the tumor microenvironment, with heightened 

activation of Tregs and reduced functional capacity of putative tumor-specific ENTPD1high TRM 

cells and effector T cells.  

 

Dynamic remodeling of the Treg cell interactome in iCCA. Our high-dimensional single-cell 

profiling identified transcriptional and proteomic modulation of Treg ligands and receptors in 

tumoral vs. peritumoral tissues, potentially implicating that Tregs differentially interact with the 

surrounding microenvironment. To gain more insights into the molecular identity of these 

interactions, we used CellPhoneDB, a computational algorithm capable of predicting cell-cell 
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communications from differentially expressed ligand:receptor (L:R) pairs in single-cell data 

(Vento-Tormo et al., 2018). We found that, overall, Tregs interacted with different T cell and 

myeloid subsets via multiple interactions that were more significant in tumoral than in peritumoral 

tissues. The repertoire of these interactions, that involved co-inhibitory and co-stimulatory signals, 

TNF superfamily members, cytokines, chemokines and their receptors, tended to be different 

among T-cell clusters, while relatively uniform among myeloid clusters (Fig. 4A, B). Among 

others, we found enhanced interaction between CD80 and CD86 expressed by myeloid cells and 

CD28 costimulatory receptor expressed by Tregs. Similarly, the TNF superfamily members CD70 

and TNFSF4 (encoding OX-40 ligand), overexpressed by T cell subsets, and TNFSF9, encoding 4-

1BB ligand and expressed by both T and myeloid cells, interacted with their cognate receptors 

CD27, TNFRSF4 (OX-40) and TNFRSF9 (4-1BB) in tumors, suggesting that these interactions are 

important for the maintenance of activated Tregs as recently shown in murine models 

(Vasanthakumar et al., 2017). Importantly, CD80 and CD86 also showed enhanced predicted 

interaction with CTLA4, highly expressed by Tregs in tumors and important for the Treg-mediated 

inhibition of immune responses via competition with CD28. Additional interactions of note that 

were stronger in tumoral than in peritumoral tissues involved ligands expressed by myeloid subsets 

such as ICOSLG (encoding ICOS ligand), mediating Treg proliferation and functional stability 

following interaction with the cognate receptor ICOS (Kornete et al., 2012), or 

NECTIN2/NECTIN3/PVR and PDCD1LG2 (encoding PD-L2) on myeloid cells interacting with 

the inhibitory receptors TIGIT and PDCD1 (encoding PD-1), respectively. Moreover, intratumoral 

Tregs preferentially expressed CD200 and SIRPG inhibitory ligands interacting on myeloid cells 

with CD200R1 and CD47, respectively, both possibly involved in the downregulation of 

inflammatory responses (Vaine and Soberman, 2014; Weiskopf, 2017). Additional interactions 

involved members of the IL-1 family, potentially suggesting a role in Treg biology in tumors that 

will need further investigation. Thus, iCCA-infiltrating Tregs are characterized by extensive 
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remodeling of the expression of receptor ligand pairs required for cell-cell communication, 

suggestive of enhanced Treg-mediated immunosuppression in the iCCA microenvironment.      

 

Transcriptional network inference to understand the molecular basis of diminished effector T 

cell activation and enhanced Treg activation in iCCA. TF control the expression of several genes 

simultaneously and their co-regulation defines cell fate and functional responses. We hypothesized 

that differences in TF activities could be at the basis of differences in tumoral vs. peritumoral T-cell 

gene expression. To test this, we applied SCENIC, a computational algorithm capable to predict TF 

activity by the analysis of TF motifs that are enriched at the promoters of expressed genes in our 

scRNA-seq data (Aibar et al., 2017) (Fig. 5A). SCENIC analysis clearly separated tumoral and 

peritumoral T cells (Fig. 5A) as well as the majority of T-cell clusters previously defined by 

scRNA-seq (Fig. 5B), thus indicating that tissue-derived T-cell states can be described by their 

inferred TF activity. Among others, we found that IRF2, IRF3 and STAT1-mediated transcriptional 

activities, possibly dependent on type I interferon signaling and involved in promoting effector 

functional capacity (Huber and Farrar, 2011), were reduced in tumoral vs. peritumoral T cell 

clusters, especially in C3, C6 and C7 of effector cells and, at a lesser extent, in C4 of TRM cells (Fig. 

5B). C7 along with C1 of terminal/cytotoxic T cells from tumors vs. peritumors also showed 

reduced transcriptional activities of RUNX3, EOMES and TBX21 TFs, which mediate the 

expression of effector and cytotoxic molecules (Cruz-Guilloty et al., 2009). Altogether, these data 

suggest loss of TRM and effector T-cell functionality in cholangiocarcinoma is due to altered, cell 

type-specific transcriptional programs. By contrast, tumor-infiltrating Tregs displayed increased 

activity of several TFs compared to those infiltrating the peritumor, including FOXP3, the lineage-

specification factor for Treg cells, IKZF2, linked to stability of the Treg lineage (Getnet et al., 

2010), IRF4 and its transcriptional partner BATF, recently reported to play a pivotal role in Treg 

activation and suppression in tumors (Alvisi et al., 2020), STAT5A and SMAD1, possibly 

reflecting IL-2 and TGF-b signaling, respectively, FOXA1, linked to enhanced suppressive function 
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(Liu et al., 2014), and several others, such as VDR, SOX9, ZEB1 and Mesenchyme Homeobox 1 

(MEOX1), whose functions in Treg biology remain poorly described or unknown (Fig. 5B).  

We next ordered TF activities in pseudotime by using a dedicated algorithm, i.e., SCORPIUS 

(Saelens et al., 2019), so to possibly identify specific patterns of their activation or repression 

during Treg differentiation from peritumors to tumors. In line with data at the level of single genes, 

SCORPIUS was able to clearly separate Tregs from the two different sites (Fig. 5C), and identified 

domains of activity (Fig. 5D), suggesting that different TFs might be involved at different steps of 

Treg hyperactivation in iCCA. Specifically, loss of activity of FLI1, recently shown to inhibit 

effector CD8+ T cell differentiation in murine models of chronic infection and cancer (Chen et al., 

2021), was accompanied by increased activity of several TFs simultaneously, e.g., of IKZF2, 

SMAD1, VDR, IRF4, FOXP3 and BATF, during transition from peritumors to tumors. Several of 

these TFs are known to be upregulated, or to play a direct role in the enhanced immunosuppression 

of Tregs in solid tumors. We also revealed increased activity related to enhancer of zeste homolog 2 

(EZH2), a histone H3K27 methyltransferase elevated in tumor-infiltrating Tregs and whose 

pharmacological inhibition results in proinflammatory Treg reprogramming and enhanced anti-

tumor immunity (Goswami et al., 2018; Wang et al., 2018). A second group of TFs, including 

MEOX1, TP73 (encoding p73), SOX9 and FOXA1, among others, was activated transiently in 

Tregs in iCCA, and was later followed by enhanced ZMIZ1 and MYB activities, the latter reported 

to regulate effector Treg differentiation in murine peripheral organs (Dias et al., 2017) (Fig. 5D). 

Collectively, our analysis identified novel TF activities possibly related to hyperactivated Treg 

differentiation and enhanced immune suppression in iCCA. 

 

MEOX1 transcriptionally and epigenetically reprograms circulating Tregs to a tumor-

infiltrating phenotype. We next focused our investigation on one of the top hits from SCENIC 

analysis of intratumoral Tregs, i.e., MEOX1, whose role in the immune system in unknown. 

MEOX1 encodes a mesodermal TF that plays a key role in somitogenesis and sclerotome 
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development and whose mutation in humans results in the incomplete development of bones in the 

neck (also known as Klippel-Feil syndrome) (Mohamed et al., 2013; Skuntz et al., 2009). MEOX1 

mRNA levels strongly correlated with those of FOXP3 in the cholangiocarcinoma dataset from the 

cancer genome atlas (TCGA; Fig. S4A), suggesting a relationship with Tregs in tumors. In our 

scRNA-seq dataset, MEOX1 expression could be detected only in tumor-infiltrating Tregs, and not 

in other infiltrating CD4+ or CD8+ T cells (Fig. S4B). Similarly, Tregs overexpressed significantly 

more MEOX1 than CD4+ Tconv from lung, ovarian and breast tumors (Fig. S4C). A similar trend 

could be found in colorectal tumors, although not reaching statistical significance (Fig. S4C). By 

analysing the MEOX1 promoter, we found binding motifs of FOXP3, IRF4, FOXO1, EZH2 and 

IKZF2 TFs, among others (Fig. 6A). We also found that, in iCCA, the predicted activity of these 

TFs was co-regulated with that of MEOX1 in a subset of tumor-infiltrating Tregs (Fig. 6B), 

collectively suggesting a role in the regulation of MEOX1 expression. To investigate the functional 

importance of MEOX1 in specifying the molecular characteristics of tumor-infiltrating Tregs, we 

isolated peripheral blood CD4+ Tregs from healthy donors, activated them for 24 hours with 

aCD3/CD28 + IL-2 and transduced them with a lentivirus capable to overexpress the full-length 

MEOX1 cDNA, or with a mock lentivirus control. Transduced cells, identified by the green 

fluorescent protein (GFP) reporter, were further purified as CD1273 CD25+ by fluorescence-

activated cell sorting (FACS) and analysed at the transcriptomic and chromatin accessibility level 

by bulk RNA-seq and assay for transposase-accessible chromatin using sequencing (ATAC-seq), 

respectively (Fig. 6C). At the chromatin level, we found that genes previously shown to be 

overexpressed by Tregs in tumors and associated with effector differentiation (TNFRSF9, IL1RN) 

(Alvisi et al., 2020) and with disease progression in multiple cancers (LAYN) (De Simone et al., 

2016), or responsible for IL-10 production by Tregs (PRDM1) (Cretney et al., 2011), among others 

(Table S7), were more accessible at multiple genomic sites in MEOX1-transduced vs. mock-

transduced Tregs (Fig. 6D). Computational analysis of differentially accessible regions in the whole 

ATAC-seq dataset further identified differentially accessible TF-binding motifs (TFBMs). Motifs 
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attributable to AP-1 activity (FOS, JUNB and the combined FOS:JUNB motif), to AP-1 

transcriptional partners (BATF, IRF4 and the combined BATF:JUN motifs, mechanistically linked 

to hyperactivated Tregs in tumors) (Alvisi et al., 2020; Grant et al., 2020) and the SMAD2:SMAD3 

combined motif, reflecting increased accessibility of genes possibly controlled by TGF-b signaling, 

were enriched in MEOX1-transduced Tregs, whereas motifs attributable to TWIST2, MXI1, KLF9 

and TP53 were enriched in mock-transduced Tregs (Fig. 6E). In agreement with ATAC-seq results, 

overexpression of MEOX1 resulted in the induction of TNFRSF9, IL1RN, LAYN, as well as of 

additional effector or iCCA Treg-related genes such as CD70, MAGEH1 and ICOS (Fig. 6F and 

Fig. S3D) (Alvisi et al., 2020; De Simone et al., 2016), and of NRP1 (encoding Neuropilin-1), IL10 

and CTLA4 (Fig. 6F), all involved in Treg-mediated immunosuppression. Gene set enrichment 

analysis further showed that MEOX1-overexpressing Tregs were strongly enriched in specific 

transcriptomic signatures of Treg vs. CD4+ Tconv, of iCCA-infiltrating vs. peritumor-infiltrating 

Tregs, or of ICOS+ CCR8+ vs. ICOS3 CCR83 Tregs recently described by our group as highly 

immunosuppressive in non-small cell lung cancer (NSCLC), melanoma and hepatocellular 

carcinoma (Fig. 6G) (Alvisi et al., 2020). Collectively, these data support the conclusion that TF 

MEOX1 promotes the acquisition of a tumor-infiltrating Treg phenotype by reprogramming the 

transcriptional and epigenetic landscape.  
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Discussion 

We provide a comprehensive characterization of T-cell and myeloid subsets that are present in 

patients with iCCA by high-dimensional single cell technologies and report the extensive 

infiltration of CD4+ Tregs with a highly immunosuppressive phenotype, that is accompanied by the 

loss of CD8+ CTLs compared to the peritumoral tissue. CD8+ T cells expressing CD39, a marker 

recently linked to the identification of tumor-specific CD8+ T cells in the tumor microenvironment, 

represented only a minor fraction of CD8+ T cells in iCCA, which appears to be much lower than 

that reported for highly immunogenic tumors, such as NSCLC, melanoma and MSI colon cancer 

(Duhen et al., 2018). This observation reinforces previous evidence that, overall, iCCA is poorly 

immunogenic, thereby contributing to explain, among other factors, its low response to checkpoint 

blockade with anti-PD1 (Kim et al., 2020; Piha-Paul et al., 2020). By contrast, changes at the level 

of the myeloid compartment were less evident, and were mainly ascribed to the increased 

infiltration of cDC2, rather than to changes in overall gene expression, compared to other tissue 

sites. Importantly, absence of these cDC2 identified patients of our cohort with faster disease 

progression when also Tregs were high, in agreement with a recent report in head and neck 

squamous cell carcinoma (Binnewies et al., 2019), thus suggesting that a common axis might 

regulate anti-tumor immunity in different cancer types.  

scRNA-seq further informed on the characteristics of the different immune cell types and 

enabled the identification of a major suppressive hub orchestrated by Tregs in the iCCA tumor 

microenvironment. Compared to the adjacent peritumoral tissues, iCCA-infiltrating Tregs showed 

features of the hyperactivated effector state previously described in several solid tumors, including 

melanoma, NSCLC, hepatocellular carcinoma, breast and colon cancer (Plitas and Rudensky, 

2020). Although differences that are yet to be identified might be present according to the specific 

tumor type, it seems evident that intratumoral Tregs share a core transcriptional and functional 

program, characterized by the increased expression of inhibitory molecules, chronic immune 

activation and enhanced suppressive capacity compared to those from the circulation or the 
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peritumoral area. Tregs are predicted to engage multiple inhibitory pathways on T and myeloid cells 

in the tumor microenvironment, while receiving signals that in turn may support their 

hyperactivated phenotype, thereby offering novel, more specific targets for cancer immunotherapy. 

In agreement with the Treg-mediated inhibition, in several iCCA-infiltrating T-cell subsets we 

observed reduced activity of TFs promoting the cytotoxic program and effector function of T cells, 

including RUNX3, EOMES and TBX21 activities. We still do not know what is the relationship 

between enforced surface interactions and altered downstream gene expression/TF activities in T 

cells in iCCA. We anticipate that the future development of computational tools capable to integrate 

multiple layers of information, including at the level of single cells, will identify with precision 

those regulatory circuits that should be targeted to interfere with specific dysfunctional programs. 

Among infiltrating T cells, Tregs had the most diverse molecular program compared to those 

present in the adjacent peritumoral tissue, corroborating the hypothesis that these cells play a central 

role in orchestrating immunosuppression iCCA. We identified several TFs whose enhanced activity 

has been previously demonstrated to regulate immune activation of Tregs in solid tumors. These 

included IRF4, BATF and EZH2, which play an essential role in suppression of anti-tumor 

immunity (Alvisi et al., 2020; Goswami et al., 2018; Wang et al., 2018), in addition to TFs whose 

functional role in Treg biology remained to be established. Among these, we found that 

overexpression of MEOX1 was sufficient to epigenetically and transcriptionally reprogram 

circulating Tregs to a tumor-infiltrating phenotype. The mechanisms by which MEOX1 is induced 

and operates in hyperactivated Tregs remains to be established. MEOX1 is triggered by TGF-b 

signaling in non-immune cells such as mesenchymal progenitors and cardiac fibroblasts (Alexanian 

et al., 2021; Dong et al., 2018), and mediates cell differentiation by direct binding to DNA. 

Although these aspects were not tested directly on intratumoral Tregs, pseudotemporal ordering of 

TF activities and molecular analyses inspire a model according to which IRF4 and BATF precede 

MEOX1 activity, which in turn sustains hyperactivated Treg gene expression and, possibly, 

immunosuppression by favoring chromatin accessibility at AP-1/IRF4/BATF consensus sites.  
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In conclusion, we provide a comprehensive characterization of the iCCA T cell and myeloid 

infiltrate, and show that Treg abundantly infiltrate the tumor microenvironment while CTLs and 

CD39+, putative tumor-specific CD8+ T cells expressing PD-1 are rare. Future immunotherapeutic 

strategies must thus aim to turn iCCA from cold to hot, so to favor T-cell infiltration. Interfering 

with the hyperactivated Treg program, such as that regulated by MEOX1, which is shared by 

several solid tumors, seems an attractive approach to consider in this regard. 
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MATERIALS AND METHODS 
  
Study design 

The use of human samples was approved by the Humanitas Research Hospital Institutional Review 

Board (approval no. 146/20 for patients9 samples and no. 28/01/2016 for buffy coats from healthy 

donors). All patients were enrolled at Humanitas Research Hospital and provided informed consent 

for tissue biobanking. All patients had pathology proven iCCA, and were without chemotherapy 

treatment prior to resection. Hepatitis B or C positive patients were excluded. Samples (one tumoral 

and one peritumoral) were selected from areas without macroscopic evidence of necrosis or 

hemorrhage. For morphological analysis, sections were cut (2µm thick), stained with hematoxylin 

and eosin and evaluated by an expert liver pathologist. The histological features that were evaluated 

included tumor grade, desmoplasia, resection margin, steatosis, perineural, and linfo-vascular 

invasion, and lymph node metastasis. Resected iCCA patients were followed up every 3 months, as 

per protocol in our Center, or until death, and major events were recorded. Characteristics of the 

patients enrolled in the study are listed in Supplementary Table 1. 

 
Sample collection and processing 

PBMCs were isolated from buffy coats from iCCA and healthy donors via density-gradient 

separation and were cryopreserved in FBS supplemented with 10% DMSO until use. Blood samples 

from patients were collected in vacutainer EDTA Tubes (BD).  Tissues were collected in complete 

R10 medium: RPMI-1640 medium with 10% FBS (Sigma-Aldrich), 1% penicillin-streptomycin 

and 1% Ultra-glutamine (both from Lonza) RPMI 1640 media: 10% FBS (Sigma-Aldrich), 1% 

penicillin-streptomycin (Lonza) and 1% Ultra-glutamine (Lonza). Human cell isolation from 

healthy liver was performed by collagenase perfusion adapting a traditional two-step technique 

(Seglen, 1976). Briefly, non-tumoral tissue displaying the normal vascular architecture, was 

perfused in order to collect the circulating intrahepatic blood (perfusate). Then, the liver sample was 

digested with collagenase, obtaining a single-cell suspension. Parenchymal cells were eliminated 

from the sample through appropriate centrifugations and the supernatant was counted and stored. 

Cells were pelleted, counted, and frozen according to the slow freezing procedure in standard cryo-

vials. Further disaggregation of iCCA tissue into a single-cell solution for sequencing was 

completed using the MACS tumor dissociation kit (Miltenyi Biotec) with the standard tough tumor 

protocol. Brieûy, the MACS tumor dissociation kit enzyme mix (300¿l) was added to each sample. 

Next, samples were put into the gentleMACS Dissociator and ran through the tough tumor program. 

The cell suspension was then applied to a 70um cell strainer. Cells were pelleted, counted and 

frozen according to the slow freezing procedure in standard cryo-vials (1 ml cell suspension in the 

cryopreservation medium as above. 
 

Polychromatic flow cytometry 
Frozen samples were thawed in R10 additioned with 20 µg/mL DNase I from bovine pancreas 

(Sigma-Aldrich). After washing with PBS (Sigma-Aldrich), the cells were stained with the 

combination of mAbs listed in Supplementary Table 2. Flow cytometry procedure for (i) selection 

of antigen-fluorochrome combinations, (ii) reagent titration and validation, (iii) limiting spreading 

error (SE) have been previously described (Brummelman et al., 2019). Flow cytometry data were 

analysed on a FACS Symphony A5 cytometer (BD Biosciences) equipped with 5 lasers (UV, 350 

nm; violet, 405 nm; blue, 488 nm; yellow/green, 561 nm; red, 640 nm; all tuned at 100 mW, except 

for UV, tuned at 60 mW). Compensation was performed by FlowJo by using BD Compbeads 

inclubated with single antibodies, as previously described (Lugli et al., 2017). 

 

Computational analysis of flow cytometry data 
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Data were processed as previously described (Brummelman et al., 2019). Briefly, Flow Cytometry 

Standard (FCS) 3.0 files were analysed by standard gating in FlowJo version 9 to remove dead cells 

and spurious events, and identify CD45+CD3+ T cells or CD45+CD3-CD66b- myeloid cells. 3,000 

CD45+CD3+ T cells and 2,000 CD45+CD3-CD66b- myeloid cells per sample were subsequently 

imported in FlowJo (version 10), biexponentially transformed, and exported for further analysis by 

a custom-made pipeline of PhenoGraph where we modified the Linux-community and the core.py 

script of PhenoGraph package to fix the seed to <123456= (run in Python version 3.7.3). Tumoral, 

peritumoral, perfused blood from tissue and PBMC samples were labelled with a unique 

computational barcode for further identification and converted in comma separated (CSV) files and 

concatenated in a single matrix by using the merge function of pandas package. The K value, 

indicating the number of nearest neighbours identified in the first iteration of the algorithm, was set 

at 100 and 200 for CD3+ and for CD3-CD66b- cell clustering, respectively. The data were then 

reorganized and saved as new CSV files, one for each cluster, that were further analysed in FlowJo 

to determine the frequency of positive cells for each marker and the corresponding median 

fluorescent intensity (MFI). Subsequent metaclustering of these values was performed using the 

gplots R package. Uniform Manifold Approximation and Projection (UMAP) was obtained by 

UMAP Python package.  

 
scRNA-seq 
Frozen tumoral and peritumoral single-cell suspension were thawed, washed in PBS, stained with 

Live/dead Aqua Fluorescent Reactive Dye (Life Technologies) and mouse anti-human CD45 

antibody (30-F11, BD Biosciences) at 4°C for 20 minutes and sorted on a FACS Aria III (BD 

Biosciences) with a 100µm nozzle. FACS-purified CD45+/CD45- cells were resuspended in 1ml 

PBS plus 0.04% BSA and washed two times by centrifugation at 450xg for 7min. After the second 

wash, cells were resuspended in 30 µl and counted with an automatic cell counter (Countess II, 

Thermo Fisher) to get a precise estimation of total number of cells recovered and of their 

concentration.  Afterwards, CD45+ cells of each sample were loaded into one channel of the Single 

Cell Chip A using the Single Cell 39 reagent kit v2 single cell reagent kit (10X Genomics) for Gel 

bead Emulsion generation into the Chromium system. Following capture and lysis, cDNA was 

synthesized and amplified for 14 cycles following the manufacturer9s protocol (10X Genomics). 50 

ng of the amplified cDNA were then used for each sample to construct Illumina sequencing 

libraries. Sequencing was performed on the NextSeq550 Illumina sequencing platform following 

10x Genomics instruction for reads generation. A sequencing depth of at least ~ 30,000 reads/cell 

was obtained for each sample. 

 

Pre-processing of scRNA-seq data 

Raw sequencing data was processed and aligned to the GRCh38 human reference genome with 

CellRanger (10X Genomics) v3.0.1 (Zheng et al., 2017). Resulting filtered matrices of molecular 

counts (count matrices) were used as input for pre-processing with Seurat package v3.0.3 (Butler et 

al., 2018) running under R v3.6.1 and Bioconductor v3.9 on a Debian GNU/Linux 9 operating 

system. First, ribosomial genes were removed from the count matrix. Then, in order to avoid 

dying/damaged cells or doublets, quality control was performed and cells having < 200 or > 3000 

expressed genes or >20% mitochondrial counts were filtered out. Data normalization and log-

transformation was performed by applying the NormalizeData Seurat function (method = 

LogNormalize). Cell cycle scores were then evaluated by calling the CellCycleScoring Seurat 

function using a list of cell cycle markers genes (Tirosh et al., 2016). 

 

Dataset Integration 
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In order to integrate sample datasets together, the <SCT= normalization (Hafemeister and Satija, 

2019) was performed separately for each sample by running the SCTransform Seurat function 

where technical and cell-cycle effects were regressed out (do.correct.umi = true; vars.to.regress = 

percent.mt, S.Score, G2M.Score). The Seurat functions PrepSCTIntegration, 

FindIntegrationAnchors and IntegrateData were then applyed on the list of Seurat objects using 

3,000 genes in the anchor finding process. A final integrated dataset consisting of 31,745 cells 

(14,824 from peritumoral and 16,921 from tumoral samples) was obtained. A principal component 

analysis (PCA) was performed on the top variable features by calling the RunPCA Seurat function 

and the first 20 principal components (PCs) were selected for downstream analysis. Imputation of 

missing count values was performed by applying the Adaptively-thresholded Low Rank 

Approximation (ALRA) method (Linderman et al., 2018) by calling the RunALRA Seurat function 

with default parameters. 

 

Clustering and cell type identification 

To identify cell clusters, the graph-based clustering approach implemented in the FindClusters 

Seurat function was used with a resolution value ranging from 0 to 1 by steps of 0.1. Clustering 

stability was assessed using clustree R package v.0.4.0 (Zappia and Oshlack, 2018). Marker genes 

were obtained for each cluster by running the FindAllMarkers Seurat function which performs a 

Wilcoxon Rank Sum test (adj.p-value < 0.05). The SingleR v1.0.6 (Aran et al., 2019) and AUCell 

v1.8.0 (Aibar et al., 2017) packages were used as an aid to manual clusters cell types annotation.  

 

Reclustering of T cells 

Reclustering of T cells was performed by repeating the analysis used for the whole dataset on the 

subsets of cells enriched for the <Main Immune Cell Expression Data9= CD8 and CD4 T cells 

reference signature after ALRA imputation (5,037 cells from peritumoral and 7,607 cells from 

tumoral samples). A clustering resolution of 0.8 was chosen, obtaining a total of 11 clusters.  

 

Reclustering of myeloid cells 

Reclustering of myeloid cells was performed by repeating the analysis used for the whole dataset, 

apart from lowering k.filter to 100 in FindIntegrationAnchors Seurat function, on the subsets of 

cells enriched for the <Main Immune Cell Expression Data9= myeloid reference signature after 

ALRA imputation (2,384 cells from peritumoral and 2,201 cells from tumoral samples). A 

clustering resolution of 0.5 was chosen, obtaining a total of 8 clusters.  

 

UMAP plots 

UMAP was obtained by running the RunUMAP Seurat function with default parameters for the 

whole dataset and with min.dist = 0.01 and n.neighbors = 20 for reclusterings of T cells and 

Myeloid cells. 

 

PCA of samples by gene expression values 

Averaged gene expression values were obtained by running the AverageExpression function on the 

RNA assay of the Seurat object with data being normalized, centered and scaled by using the 

NormalizeData (method = LogNormalize) and ScaleData Seurat functions. PCA was performed 

with FactoMineR package v2.3. The first two principal components were plotted using factoextra 

package v1.0.6. 

 

Heatmap of cluster marker genes 

Cluster marker genes were obtained by running the FindAllMarkers Seurat function after 

imputation of missing count values with ALRA algorithm as previously described. For each cluster, 
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genes having an adjusted p-value < 0.05 and absolute log2 of fold-change (FC) > 0.5 and detectable 

expression in > 50% of the cells in that cluster were selected and sorted in descending order by FC 

values (Supplementary table 3). After data centering and scaling with ScaleData, the heatmap was 

generated using the DoHeatmap Seurat function with default parameters.  

 

Differentially expressed genes (DEGs) from scRNA-seq 

For each cluster, DEGs were obtained by comparing cells from peritumoral samples with cells from 

tumoral samples using the FindMarkers Seurat function (min.pct = 0.1, logfc.threshold = 0), which 

performs a Wilcoxon Rank Sum test. Genes having an adjusted p-value < 0.01 and an absolute FC 

> 1.5 were considered as statistically significant. Volcano plot was generated with 

EnhancedVolcano package v1.4.0 (https://github.com/kevinblighe/EnhancedVolcano).  
 

Integration of publicly available scRNA-seq datasets 

To generate Fig. S4C, we processed scRNA-seq data on lung (n=3), breast (n =14), ovarian (n =5) 

and colorectal (n =7) tumors by Qian et al. (https://lambrechtslab.sites.vib.be/en/pan-cancer-

blueprint-tumour-microenvironment-0) (Qian et al., 2020). We filtered out cells labelled as 

<Normal= and the 48,231 cells containing a mixture of different T-cell phenotypes were normalized 

(target_sum=1e4) using 88scanpy.pp.normalize_total99 function from SCANPY package (Wolf et 

al., 2018). CPM counts were square-root-transformed (<scanpy.pp.sqrt=) followed by 

dimensionality reduction by PCA on top most variable genes, computed using 

<scanpy.pp.highly_variable_genes= function with the following parameters: min_mean=0.0125, 

max_mean=3, min_disp=0.5. De novo clustering was performed using <scanpy.tl.leiden= function 

and marker genes for each significant cluster were found using the function 

<scanpy.tl.rank_genes_groups= (method= Wilcoxon). CD4+ T cell clusters were isolated and 

imputed with the MAGIC algorithm (k, number of nearest neighbors = 5) (van Dijk et al., 2018). 

Tregs were defined as those cells belonging to the cluster with the highest expression of Treg-

related genes. The remaining CD4+ T cells were combined and labelled as Tconv. The box plots 

showing the median expression of imputed transformed data were generated using seaborn package 

(version 0.11.1) and the statistical significance were assessed with Mann-Whitney-Wilcoxon test 

function of the statsmodels package (version= 0.12.2).  

 

Cell-cell interaction analysis 

Cellular interactions between Treg and myeloid/T cell populations were analysed with 

CellphoneDB tool (version 2.0.0) with default parameters (Vento-Tormo et al., 2018). Normalized 

gene expression matrices together with their cluster annotations derived from both myeloid and T 

cell reclustering were used as input (8data9 slot from Seurat after ALRA imputation step). The 

enriched ligand-receptor interactions between two cell subsets were calculated based on 

permutation test. Fig. 4 lists L:R pairs with a p-value £0.05, manually curated from all interactions 

listed in Supplementary Table 4. 

 

Gene regulatory network analysis 

The analysis of regulon activity were performed by SCENIC (version 1.1.2) (Aibar et al., 2017) 

starting from ALRA imputed data. The genes with at least 3 UMIs in at least 10% of the cells and 

detected in at least 10% of samples were selected as the input genes. The expression matrix was 

loaded into GENIE3 (Huynh-Thu et al., 2010) and the co-expressed genes to each TF was 

constructed. The TF co-expression modules were then analysed by RcisTarget Bioconductor 

package. The Normalized Enrichment Score (NES) of the transcription factor binding motifs 

(TFBS) was calculated and NES > 3.0 were considered as significantly enriched. The filtered 

potential targets by RcisTarget mouse hg19 database (hg19-500bp-upstream-

7species.mc9nr.feather; hg19-tss-centered-10kb-7species.mc9nr.feather) from the co-expression 

module were used to build the regulons. The regulon activity was analysed by AUCell (Aibar et al., 
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2017) and the active regulons were determined by AUCell default threshold. The active regulons 

were then mapped to all cells by t-SNE in Fig. 5A. Binary regulon activity active in at least 50% of 

cells were selected. Binary regulon activity clustering analysis was performed for Figure 5B. The 

complete list of significant regulons is listed in Supplementary Table 5. 

 

Trajectory analysis 

Trajectory analysis was performed with SCORPIUS R package v1.0.7 (Saelens et al., 2019) on 

Regulon Activity Scores obtained by running SCENIC R package as described in the previous 

paragraph. Dimensionality reduction was obtained by applying the reduce_dimensionality function 

(dist = "spearman", ndim = 3) on the subset of cells belonging to C10 of T cells. Linear trajectory 

was inferred by using the infer_trajectory function with default parameters. The importance of each 

gene with respect to the trajectory was calculated by running the gene_importances function 

(num_permutations = 10, ntree = 10000, ntree_perm = 1000). Regulons having a false discovery 

rate (FDR)-adjusted p-values < 0.05 were considered significant and are listed in  Supplementary 

Table 6. 

 
Treg cell transduction and culture condition  
The use of recombinant plasmids was approved by the Italian Ministry of Health authorization 

number MI/IC/Op2/17/024. Treg cells were enriched from buffy coats of healty donors using an 

EasySep Human CD4+ CD127low CD25+ Regulatory T cell Isolation kit. Purity was confirmed to 

be >90% by flow cytometry. Purified Treg cells were stimulated with Dynabeads human T-ACT 

CD3/CD28 at a 1:2 bead:cell ratio, in 96 U-bottomed well plates and in the presence of IL-2 (50 

ng/mL; Peprotech). 24h and 48h after stimulation, cells were transduced with lentiviral particles 

harboring a custom human ORF for MEOX1 (Sigma-Aldrich, Mission TRC3) or empty backbone-

vectors (mock), both expressing GFP as a reporter (Sigma-Aldrich). Cells were cultured for 5 

additional days and then stained with fluorochrome-conjugated monoclonal antibodies (listed 

in Supplementary Table 2). GFP+ cells, pre-gated as CD3+CD8-CD4+Aqua-CD25+CD127- were 

isolated with a FACSAria cell sorter (BD Biosciences).  

 

ATAC-seq 

Libraries were prepared using a protocol adapted from Buenrostro et al. (Buenrostro et al., 2015), as 

previously described (Galletti et al., 2020). 10,000 FACS-purified GFP+ Treg cells were washed in 

PBS without Ca2+ and Mg2+ and resuspended in 25¿l lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM 

MgCl2, 0.1% IPEGAL CA-630). Nuclei were pelleted by centrifugation for 10 min at 500g and 

resuspended in a final reaction volume of 25¿l comprising 0.2¿l of Tn5 transposase (made in-

house), 5¿l of 5× transposase buffer (50 mM Tris-HCl pH 8.4, 25 mM MgCl2) and 19.8¿l of 

ultrapure water (Milli-Q). The reaction was incubated with mixing at 300 r.p.m. for 30 min at 37 

°C, supplemented with 5 ¿l clean-up buffer (900 mM NaCl, 30 mM EDTA), 2.5¿l of 20% SDS, 

0.35¿l of ultrapure water (Milli-Q) and 2.15¿l of proteinase K (18.6 ¿g ¿l31, ThermoFisher 

Scientific), and incubated for a further 30 min at 40 °C. Tagmented DNA was isolated using 2× 

SPRI Beads (Beckman Coulter) and amplified via PCR. Fragments smaller than 600 bp were 

isolated via negative size selection using 0.65× SPRI Beads (Beckman Coulter) and purified using 

1.8× SPRI Beads (Beckman Coulter). Quality control was performed using a 4200 TapeStation 

System (Agilent) in conjunction with a Qubit 2.0 Fluorometer (Thermo Fisher Scientific). Libraries 

were then multiplexed in an equimolar pool and sequenced using a NextSeq 500/550 Platform 

(Illumina). At least 40 million single-end 75-bp reads were generated per sample. 

 

ATAC-seq data analysis 
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After demultiplexing with bcl2fastq v2.20 (Illumina, Inc.), quality control checks on raw 

sequencing data were performed with FastQC v0.11.8 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adapters removal and dynamic 

trimming of low-quality bases were performed using Trimmomatic v0.39 (Bolger et al., 2014) with 

parameters <ILLUMINACLIP:TruSeq2-SE.fa:2:30:10, LEADING:3, SLIDINGWINDOW:4:15, 

MINLEN:36=. Single-end reads were mapped to the UCSC hg38 reference human genome using 

Bowtie2 v2.4.1 (Langmead and Salzberg, 2012) with parameters <--end-to-end -D 20 -R 3 -N 1 -L 

20 -i S,1,0.50 --no-unal=. After alignment, several post-processing has been carried out. First, PCR 

duplicates, reads aligned to chrM and/or encode blacklisted regions v2 (Amemiya et al., 2019) were 

filtered out using BEDTools v2.30 (Quinlan and Hall, 2010). Second, only uniquely mapped reads 

were retained using SAMtools v1.9 (Li et al., 2009). Finally, reads aligning to the forward strand 

were offset by +4 bp, and reads aligning to the reverse strand were offset 25 bp. Non-shifted bam 

files were also kept for the differentially bound motif analysis. Peak calling was performed using 

MACS2 v2.2.6 (Zhang et al., 2008) with parameters <--nomodel --extsize 200 --shift -100 --gsize 

2.9e9 --tsize 71 --qvalue 0.05 -bdg --SPMR --keep-dup all=. In order to visualize the raw profiles 

with the Integrative Genomics Viewer (IGV) v2.9 (Robinson et al., 2011), RPM-normalized 

BedGraph files generated by MACS2 were converted to BigWig files v2.8 from UCSC tools (Kent 

et al., 2010). In order to obtain a set of unique genomic regions for the two conditions, MACS2 

called peaks were processed with BEDTools v2.30. Each region was extended by 50bp at both ends 

and theirs overlapping mapped reads were counted with Rsubread v2.4.2 (Liao et al., 2019) R 

package. The obtained count matrix was imported and processed by DeSeq2 v1.30.1 (Love et al., 

2014) R package, and differential expression analysis was performed with a paired design. 

Differentially significant regions between the two conditions were selected by choosing a p-value 

cut-off of 0.05 (Supplementary Table 7).  

 

Volcano plot of differentially bound motifs 

Differentially bound motifs were obtained by applying the TOBIAS v0.12.10 pipeline (Bentsen et 

al., 2020) to unshifted bam files obtained as described previously. Briefly, peak-calling was 

performed per replicate using MACS2 v2.2.6 with parameters <--nomodel --extsize 200 --shift -100 

--gsize 2.9e9 --tsize 71 --broad --qvalue 0.01 --keep-dup 'all'= and the list of genomic regions that 

represents peaks merged across all conditions was obtained using BEDTools v2.30.  Then, single 

replicates bam files were merged to condition bam files with SAMtools v1.9. The TOBIAS core 

analysis was then performed. First, to correct the Tn5 transposase insertion bias and to calculate a 

continuous footprinting score across regions, the ATACorrect and FootprintScores tools were 

runned for each condition with default parameters. Second, to make predictions on specific TF 

binding sites and to obtain the differential binding between conditions, the BINDetect tool was 

called with default parameters and by using the JASPAR 2020 core vertebrates non-redundant set 

of TF binding profiles (Fornes et al., 2020) (Supplementary Table 8).  

 

Bulk RNA sequencing (RNA-seq) 

RNA isolation of the FACS-purified GFP+ Treg cells was performed by the Quick-RNA Microprep 

kit following the manufacturer9s protocol (Zymo Research). RNA quality control was performed 

with the Agilent 4200 Tape Station system and only RNAs having a RIN >8 were used for library 

preparation. Libraries for mRNA sequencing were prepared starting from 10 ng tot RNA for each 

sample by using the SMART-Seq v4 Ultra Low Input RNA Kit (Clontech-Takara). All samples 

were sequenced on an Illumina NextSeq 550 at an average of 17,5 million 75-bp single-end reads. 

 

Bulk RNA-seq data analysis 
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After demultiplexing with bcl2fastq v2.20 (Illumina, Inc.), quality control checks on raw 

sequencing data were performed with FastQC v0.11.8 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)). Adapters removal and dynamic 

trimming of low-quality bases were performed using Trimmomatic v0.39 with parameters 

<ILLUMINACLIP:TruSeq2-SE.fa:2:30:10, LEADING:3, MAXINFO:50:0.7, MINLEN:40=. 

Single-end reads were aligned to the UCSC hg38 human genome using STAR v2.7.0f (Dobin and 

Gingeras, 2015) with parameters <--outSAMtype BAM SortedByCoordinate, --

outFilterMultimapNmax 20, --outWigType wiggle, --outWigNorm RPM=. Wiggle files were 

converted to BigWig format using wigToBigWig v2.8 from UCSC tools, Uniquely mapped reads 

having MAPQ > 30 were selected for downstream analysis using SAMtools v1.9. Quality control 

checks of aligments were carried out using Qualimap v2.2.2a (Okonechnikov et al., 2016). 

Transcripts quantification was performed by running the featureCounts function of the Rsubread 

package v1.34 with parameters <minOverlap=5, isPairedEnd=FALSE, strandSpecific=0=. Raw 

count values were then loaded and processed within edgeR R package v3.28.1 running under R 

v3.6.3 and Bioconductor v3.9. Non-expressed genes were filtered out by keeping only genes with 

read counts greater than 1 Count Per Million (CPM) in at least one sample. Then, data was 

normalized by applying the Trimmed Mean of M-values (TMM) normalization. Differential 

expression analysis was performed using the GLM approach using a paired design, and significant 

DEGs were obtained by calling the topTable function by choosing a minimum absolute FC of 1.5 

and FDR q-value < 0.05 (Supplementary Table 9). 

 

Volcano plot of DEGs from RNA-seq 

Volcano plot was generated with EnhancedVolcano package v1.4.0 

(https://github.com/kevinblighe/EnhancedVolcano). Genes having an adjusted p-value < 0.05 and 

an absolute FC > 1.5 were considered as statistically significant. 

 

Overrepresentation analysis 

Gene set enrichment analysis (GSEA) was obtained by running the fgsea R package v1.12.0 

(Korotkevich et. al, 2019), which perform a pre-ranked GSEA. The function fgsea was applied on 

the ranked list of all genes with default parameters and <maxSize=1000, nperm=10000=. Ranking 

score was determined by a combination of fold-change and F-statistic. Gene sets evaluated 

included: (i) Treg vs Tconv activated_UP (GSE7460) gene set (Hill et al., 2007); (ii) ICOS+CCR8+ 

vs ICOS-CCR8- intratumoral Treg_UP (GSE128822) gene set (Alvisi et al., 2020); (iii) 

intratumoral Treg vs peritumoral Treg_UP (C10 of CD4+ Tregs from scRNA-seq).  

Data availability  

Raw data sets are available in the Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo) under accession number GSE171900, which comprises scRNA-

seq data (GSE171899) and RNA-seq data (GSE171895). ATAC-seq data is provided upon request. 

 

Code availability  

Scripts used to analyse the flow cytometry single-cell data are available at 

https://github.com/luglilab/Cytophenograph. All other codes are available on request. 
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Figure 2. Features of immune infiltrate that predict disease-free survival (DFS) in iCCA. 

Kaplan-Meier DFS curves according to the intra-tumoral frequencies of Tregs as related to that of T
RM

 

CD4+ CD69+ cells (left) or cDC2 (right) in each patient (n = 16). The cohort was subdivided in 2 groups 

according to the percentile rank (set at 0.7). The p value (P) was calculated by Gehan Breslow-Wil-

coxon test. 
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Figure 4. Dynamic remodeling of the Treg cell interactome in iCCA. CellPhoneDB intercellular communication 

analysis between Tregs (scRNA-seq cluster 10) and (A) T cell or (B) myeloid cell clusters identified by scRNA-seq. In 

both A and B, circos plot show all predicted cell3cell interaction events via ligand:receptor (L:R) pairs, while bubble 

plots indicate the mean L:R expression (color scale) and the corresponding P value (size of the bubble). Molecules 

expressed by Tregs and the interacting populations are in purple and in black, respectively. P: empirical permutation P 

value.
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