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Abstract

The quality of the immune infiltrate of intrahepatic cholangiocarcinoma (iCCA), a rare, yet
aggressive tumor of the biliary tract, remains poorly characterized, limiting development of
successful immunotherapies. We used high-dimensional flow cytometry to characterise the T cell
and myeloid compartments of iCCA comparing these with their tumor-free peritumoral and
circulating counterparts. We found poor infiltration of putative tumor-specific CD39+ CD8+ T cells
accompanied by abundant infiltration of hyperactivated CD4+ regulatory T cells (Tregs), whose
frequency in relation to that of CD4+ CD69+ T cells and conventional type 2 dendritic cells was
associated with poor prognosis. Single-cell RNA-sequencing identified an altered network of
transcription factors in iCCA-infiltrating compared to peritumoral T cells, suggesting reduced
effector functions by tumor-infiltrating CD8+ T cells and enhanced immunosuppression by CD4+
Tregs. Specifically, we found that expression of mesenchyme homeobox 1 (MEOXT1) was highly
enriched in tumor-infiltrating Tregs, and demonstrated that MEOX1 overexpression is sufficient to
reprogram circulating precursors to acquire the transcriptional and epigenetic landscape of tumor-
infiltrating Tregs. Interfering with hyperactivated Tregs should be thus explored to enhance anti-

tumor immunity in iCCA.
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INTRODUCTION

Cholangiocarcinoma (CCA) is a rare cancer that originates from the bile duct epithelia and accounts
for 3-5% of all gastrointestinal malignancies worldwide (Tariq et al., 2019). Depending on the
anatomic site of origin, CCA is divided into intrahepatic (iCCA), perihilar (pCCA), and distal
(dCCA) CCA, with iCCA being the less prevalent type. However, the incidence rate of iCCA is
constantly increasing and its mortality rate is extremely high, due to the aggressive evolution of the
disease and the lack of efficient diagnostic and therapeutic treatments (Banales et al., 2020). Late
diagnosis highly compromises surgery, the only current potentially curative option, and even among
the 10-30% patients eligible for resection at diagnosis, 50% recur within the first year. Moreover,
iCCA is a highly chemoresistant tumor, and pharmacological therapies are generally unsuccessful,
with a 5-year survival rate that has persisted below 10% since the 1980s. Novel therapies targeting
tumor subtypes with genetic rearrangements have been introduced last year into clinical practice
after obtaining promising results in clinical trials (Abou-Alfa et al., 2020a; Abou-Alfa et al.,
2020b), but only benefit 13-14% of patients (Nakamura et al., 2015; Sia et al., 2013). Therefore,
there is an urgent need to develop valid therapeutic alternatives for iCCA.

During the last decade, immunotherapies approaches targeting checkpoint receptors
expressed by tumor infiltrating lymphocytes (TILs) have revolutionized cancer treatment,
increasing the overall survival (OS) of patients with multiple cancers (Borghaei et al., 2015; Snyder
et al., 2014). The superior responsiveness to anti-programmed-death (PD)-1 checkpoint inhibitors is
thought to be mediated by the unleashed reactivity of clonally expanded CD8+ T cells towards the
cognate tumor antigens (Gros et al., 2014; Tumeh et al., 2014), among which those that are less
differentiated, or stem-like, are endowed with enhanced functionality and capability for long-term
persistence (Brummelman et al., 2018; Lugli et al., 2020; Miller et al., 2019; Sade-Feldman et al.,
2018; Siddiqui et al., 2019). In this regard, tumors with high mutational burden respond better to
checkpoint-inhibitor therapy (Gubin et al., 2014). Accordingly, tumors with mismatch repair

(MMR)-deficiency and consequently high DNA microsatellite instability (MSI) are highly
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responsive to anti-PD-1 (Le et al., 2015). In that context, the FDA approved the use of anti-PD-1
antibody in 2017 in CCA and other solid tumors with MSI or MMR-deficiency, which nevertheless
benefits only a small proportion of iCCA patients (Kim et al., 2020; Piha-Paul et al., 2020).

The tumor microenvironment is infiltrated by a diverse population of immune cells, among
which effector and cytotoxic T cells and natural killer (NK) cells mediate tumor
immunosurveillance and whose increased abundance is generally associated with delayed
progression. By contrast, inhibitory subpopulations, including CD4+ regulatory T cells (Treg) and
tumor-associated myeloid cells, can counteract immune responses and favor tumor growth
(Binnewies et al., 2018). Several studies have recently deciphered the architecture of the tumor
microenvironment of several cancers, expanding our knowledge of its complex composition and
revealing novel drug targets. Such analyses now begin to reveal that many immune lineages are not
compartmetalised into discrete subcompartments but, rather, comprise a continuum of functional
phenotypes.

Knowledge regarding the complexity of the immune system in iCCA is still limited. Overall,
iCCA is poorly infiltrated by the immune system, and is generally referred to as a “cold” tumor.
Immunohistochemical analysis initially revealed the preferential presence of CD8+ and CD4+ T
cells in tumors and in peritumoral areas, respectively (Kasper et al., 2009). A subsequent study in a
cohort of 306 individuals with biliary tract cancers revealed that the longer OS correlated positively
with a higher tumor infiltration of total CD4+ TIL, but did not distinguish CD4+ T cell subtypes
(Goeppert et al., 2013). A recent study using single cell RNA-sequencing (scRNA-seq) of 8 paired
tumoral and peritumoral samples elucidated at least in part the quality of immune cells infiltrating
iCCA, revealing features similar to those found in other tumors, including the presence of activated
Tregs and T cells expressing inhibitory receptors. The study also found a diverse population of
cancer-associated fibroblasts (CAFs), where a predominant subpopulation of CD146" vascular
CAFs expressed high levels of IL-6, which in turn promoted tumor progression via IL-6R signaling

on malignant cells (Zhang et al., 2020b). However, high-resolution well-powered datasets defining
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the architecture of the immune system infiltrating iCCA, both at the transcriptional and population
level, are largely missing, thereby possibly preventing the development of future immunotherapy
approaches.

Here we show that T cells within iCCA undergo profound remodeling, revealing the absence
of putative tumor-specific CD39+ CD8+ Trum cells (Duhen et al., 2018; Simoni et al., 2018) and
cytotoxic T lymphocytes (CTLs), and the abundant infiltration of a diverse population of Tregs,
predicted to engage multiple inhibitory pathways on T and myeloid cells in the tumor
microenvironment, while receiving signals that in turn may support their hyperactivated phenotype.
A transcription factor (TF) novel to T-cell biology, mesenchyme homeobox 1 (MEOX1), was at
least in part responsible for the transcriptional and epigenetic features of Tregs found in iCCA. We
thus provide a high-resolution atlas of the T cell and myeloid cell infiltrate in iCCA, predict
functional interactions between cell types with divergent functions and suggest that interfering with

the activated Treg program might be needed to enhance anti-tumor immunity in iCCA.
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Results

High-dimensional flow cytometry defines the T cell and myeloid cell composition of human
iCCA. We initially generated single-cell suspensions from the tumor and the adjacent tumor-free
tissue (hereafter referred to as peritumor), and isolated peripheral blood mononuclear cells
(PBMC:s) from 20 patients who were eligible for surgery shortly after diagnosis (Table S1). In
addition, we isolated circulating immune cells that abundantly infiltrate the liver parenchyma by
organ perfusion (hereafter referred to as perfusate). We next profiled millions of single cells with 2
high-dimensional flow cytometry panels (Brummelman et al., 2019) encompassing markers of T
cell memory and effector differentiation, activation, cytotoxicity and exhaustion, CD4+ Treg
markers as well as markers capable to define subsets of myeloid cells (Fig. 1A, Fig. S1A and Table
S2). CD3+ cells, identifying the bulk of T cells, and CD3— CD66b— cells, enriching mainly for
myeloid cells (hereafter referred to as “myeloid” for simplicity), were further analysed by
PhenoGraph (Levine et al., 2015), a computational algorithm capable of clustering single cells
without bias according to their relative expression of antigens in the multidimensional space. In this
way, we identified 7, 10 and 12 CD4+, CD8+ and myeloid clusters, respectively (Fig. 1B), whose
profile of antigen expression is shown in the heatmaps in Fig. S1A.

Principal Component Analysis (PCA) of PhenoGraph cluster abundance revealed that the
four tissue sites had a different T-cell and myeloid composition as a whole, although perfusate and
the peritumor tended to share a similar immunophenotypic landscape (Fig. 1C). Specifically,
PBMCs were characterized by the presence of CD4+ naive and memory T cells expressing C-C
chemokine receptor 4 (labelled as CD4+ CCR4+), CD45RO+ CCR7+ central memory CD8+ T
cells (CD8+ Tcwm) as well as CD9+ and CD9- classical monocytes bearing a CD14+CD16—
phenotype; perfusate and peritumor by CD4+ granzyme K+ CCR2%!" (CD4+ GZMK+) and, at a
lesser extent, CD4+ GZMB+ 2B4+ terminal effector T cells (CD4+ Ttg), by CD8+ T cells with a
CD45R0O- CCR7- GZMK+ GZMB+ phenotype (CD8+ CTL.2) or with a CD127'°% CD45RO+

CCR7- GZMK+ GZMB+ effector memory T cell phenotype (CD8+ Tegm CD127'9%), by CD8+ T
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cells with a CD127"°% GZMK+ CD161+ phenotype, labelled as MAIT cells (Dusseaux et al., 2011),
and mainly by subsets of CD11b+ cells expressing or not CD11¢, and of CD11b+CD11c+ HLA-
DR"e" CD141+ cells, suggesting the presence of immature myeloid cells and ¢cDC1, respectively;
tumors by subsets of CD4+ and CD8+ memory T cells expressing different combinations of the
markers CD69 and CD103, collectively labelled as tissue-resident memory T cells (Trwm; Fig. 1C, D
and Fig. S1B-D). In the case of CD8+ T cells, a subset of CD69+ CD103+ Trum also expressed high
levels of CD39 (CD8 Trm CD39+), a marker recently associated with CD8+ T cell reactivity to
tumor antigens (Fig. 1D) (Duhen et al., 2018; Simoni et al., 2018). In line with their putative
chronic stimulation by tumor antigens, these cells also expressed increased levels of the inhibitory
receptor PD-1 and the activation marker CD38 compared to other iCCA-infiltrating CD8+ T cell
clusters (Fig. S1A). Albeit present almost exclusively in tumors, the relative abundance of CD8+
CD39+ Trm among total CD3+ was low (median=0.68, IQR: 0.41 and 3.32; Fig. 1D), possibly
suggesting the poor immunogenicity of human cholangiocarcinoma or suppression of T cell
responses against them. Notably, tumors were highly infiltrated by CD4+ CD127— CD25+ Tregs
(Fig. 1C-E; Fig. S1A) overexpressing PD-1, CD39, CCR8, CD69, CD38 and the TF T-bet
compared to Tregs from other tissue sites or the circulation (Fig. 1F), thereby indicating acquisition
of a hyperactivated phenotype similar to that recently described in multiple other solid tumors
(Alvisi et al., 2020; De Simone et al., 2016; Plitas et al., 2016). As far as myeloid cells were
concerned, tumors were preferentially infiltrated compared to other tissue sites by CD11b+ CD11c+
HLA-DR"¢" CDIc+ ¢DC2 (Fig. 1D), and by CD11b— CD9+ cells. Tumors were also infiltrated by
CD11c— HLA-DRMeh CD123+ plasmacytoid DCs (pDCs), which were also abundant in the
perfusate and in the peritumoral area, less so in the PBMCs, and by CD11b+ CD11c+ immature
myeloid cells, which instead were ubiquitous (Fig. 1C-D; Fig. S1D). Overall, these data indicate
that human iCCA is characterized by a different landscape of T cell and, at a lesser extent, myeloid

phenotypes.
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Impact of the immune landscape at surgery on the prognosis of iCCA patients. We next
investigated whether a different immune landscape could influence disease progression in our
cohort of 20 patients. While the relative abundance of single clusters alone was not informative in
this regard (data now shown), combinatorial analysis of cluster abundance defined that the
frequency of Tregs as relative to that of CD4+ CD69+ Tru cells or as that of cDC2 were highly
associated with disease free survival (DFS). Specifically, worse prognosis was associated with high
Treg infiltration and either low CD4+ CD69+ Trwm cell or low ¢DC2 infiltration (Fig. 2).
Interestingly, a recent report mechanistically related Treg-dependent inhibition of cDC2 activity
with tumor immunosuppression using preclinical models (Binnewies et al., 2019). Accordingly, the
relative abundance of these two cell types was associated with disease progression of head and neck
squamous cell carcinoma and response of melanoma to checkpoint blockade. Overall, these data
suggest that a common axis regulates anti-tumor immunity in different cancer types, and highlight

the important role that CD4+ Tregs might play in the disease course of iCCA.

scRNA-seq reveals tumor-specific differences in gene expression by specific T cell
subpopulations. We next performed scRNA-seq of CD45+ immune cells isolated from 6
cholangiocarcinomas and paired peritumoral tissues to gain more insights on the molecular
characteristics of the tumor-specific immune infiltrate. Cluster analysis of scRNA-seq data and
subsequent enrichment of defined immune signatures revealed that, among immune cells, T and NK
cells were most abundant, followed by myeloid cells and B cells (Fig. 3B and Fig. S2A,B). CD45-
stromal/tumor cells from 2 patients, spiked in at known concentration as a control, separated from
these subsets of immune cells (Fig. 3A). Among CD45+ cells, tumors tended to harbor increased
frequencies of T cells, reduced frequencies of NK and B cells, and similar frequency of myeloid
cells compared to adjacent peritumoral tissue (Fig. S2B). Overall, tumoral and peritumoral tissues
could be clearly distinguished on the basis of T and NK cell gene expression profiles, and less so by

B cell and myeloid profiles, indicating that T cells and NK cells undergo specific transcriptional
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changes in the tumor (Fig. S2C). Inspired by flow cytometry results, we focused our subsequent
investigation on T cells and myeloid cells, and subclustered these populations of cells to further
identify their transcriptional characteristics within tumors compared to the adjacent peritumoral
tissue. As scRNA-seq datasets may be characterized by zeros and dropout events, we employed
imputation of single-cell data, a computational approach capable to infer gene expression even in
the presence of dropouts, to improve the detection of gene expression (Linderman et al., 2018). For
instance, this approach improved the detection of CD4 and CD84 mRNA expression (Fig. S3A).
We identified 8 clusters of myeloid and 11 clusters of T cells, reflecting, at least in part, those
subpopulations that were identified by flow cytometry. Among myeloid, we identified CD14"ie"
classical monocytes (C0) expressing S10048, VCAN and CD36 , among other genes; /D3"eh
macrophages (C1) expressing VSIG4 and resembling tissue resident Kupffer cells, as previously
suggested (Mass et al., 2016); MARCO"#" macrophages (C3) expressing PLIN2, APOCI and SPPI,
among others; TREM2"eh macrophages (C5) expressing APOCI and C1QA/B/C; cDC2 (C2),
expressing FCERIA, ADAMS, CDIC, CLEC10A4 and IRF4; cDC1 (C7), expressing IRFS, IDOI,
CLECY94 and BATF 3, and non-classical monocytes (C6) expressing FCGR3A, CDKNIC, LILRAI
and LILRB2 (Zhang et al., 2020a). Among T cells, we identified subsets of early differentiated
memory T cells (C2, C5 and C8), expressing different combinations of genes previously related to
stem-like memory cell differentiation such as CCR7, GPRI183, IL6R, SATB1, CCR4 and IL7R
(Galletti et al., 2020); subsets of effector cells (C0, C3, C6 and C7), expressing different
combinations of genes previously related to effector memory differentiation, such as CSF/
(encoding M-CSF), TNF, IFNG, TBX21 [encoding the TF T-bet], /D2, PRDM] (encoding the TF
BLIMP-1), GZMA, GZMK and the C-C chemokines CCL4 and CCL5, among others; a terminally
differentiated/cytotoxic subset (C1), expressing the cytotoxicity-related genes CRTAM, NKG7 and
PRFI (encoding perforin) and the terminal differentiation-related TF ZEB2; a Tru cell subset (C4),
expressing /TGAE (encoding CD103 integrin), CISH, CCR2, HOPX as well as detectable levels of

ENTPDI (encoding CD39), suggesting potential tumor reactivity (Duhen et al., 2018; Simoni et al.,
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2018) (Fig. 3D and Fig. S3B); and a subset expressing several CD4+ Treg-related genes (C10),
including IL2RA, FOXP3, BATF, TIGIT, CD177, ILIR2, among others (Fig. 3D). An additional
subset, C9, was found to express CCL20, IL23R, RORC and KLRBI (encoding CD161), suggesting
the identification of CD8+ mucosal associated invariant T (MAIT) cells (Dusseaux et al., 2011) or,
alternatively, CD4+ T helper type-17 cells (Th17). The poor expression of CD4 and CD8A by C9
(Fig. S3B) precluded further distinction between these two subsets.

Overall, scRNA-seq revealed increased abundance of MARCO"e" myeloid cells and of
CD4+ Tregs in tumoral compared to peritumoral tissues (Fig. 3E), in line with results obtained by
flow cytometry, although could not detect additional differences, likely due to the limited number
of patients that could be analysed using scRNA-seq. Nevertheless, scRNA-seq identified
differences in T-cell gene expression between these two sites (Fig. S3B), suggesting distinct
functional regulation of T cells in tumors. The biggest differences were observed among Tregs,
where those from tumors expressed increased levels of CTLA4, HAVCR?2 (encoding the inhibitory
receptor TIM-3), TIGIT, BTLA and ENTPD1 (Fig. S3B), among others (Fig. S3D), confirming
previous flow cytometry data. By contrast, C4 Trm and C7 effector subsets from tumors tended to
express increased levels of HAVCR?2 and CTLA4 (only C7) and lower levels of the effector/killer
molecules compared to those from the peritumoral tissue (Fig. S3C). Overall, these data suggest
functional modulation of the T-cell infiltrate in the tumor microenvironment, with heightened
activation of Tregs and reduced functional capacity of putative tumor-specific ENTPD " Try

cells and effector T cells.

Dynamic remodeling of the Treg cell interactome in iCCA. Our high-dimensional single-cell
profiling identified transcriptional and proteomic modulation of Treg ligands and receptors in
tumoral vs. peritumoral tissues, potentially implicating that Tregs differentially interact with the
surrounding microenvironment. To gain more insights into the molecular identity of these

interactions, we used CellPhoneDB, a computational algorithm capable of predicting cell-cell
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communications from differentially expressed ligand:receptor (L:R) pairs in single-cell data
(Vento-Tormo et al., 2018). We found that, overall, Tregs interacted with different T cell and
myeloid subsets via multiple interactions that were more significant in tumoral than in peritumoral
tissues. The repertoire of these interactions, that involved co-inhibitory and co-stimulatory signals,
TNF superfamily members, cytokines, chemokines and their receptors, tended to be different
among T-cell clusters, while relatively uniform among myeloid clusters (Fig. 4A, B). Among
others, we found enhanced interaction between CD80 and CD86 expressed by myeloid cells and
CD28 costimulatory receptor expressed by Tregs. Similarly, the TNF superfamily members CD70
and TNFSF4 (encoding OX-40 ligand), overexpressed by T cell subsets, and TNFSF9, encoding 4-
1BB ligand and expressed by both T and myeloid cells, interacted with their cognate receptors
CD27, TNFRSF4 (0OX-40) and TNFRSF9 (4-1BB) in tumors, suggesting that these interactions are
important for the maintenance of activated Tregs as recently shown in murine models
(Vasanthakumar et al., 2017). Importantly, CD80 and CD86 also showed enhanced predicted
interaction with CTLA4, highly expressed by Tregs in tumors and important for the Treg-mediated
inhibition of immune responses via competition with CD28. Additional interactions of note that
were stronger in tumoral than in peritumoral tissues involved ligands expressed by myeloid subsets
such as ICOSLG (encoding ICOS ligand), mediating Treg proliferation and functional stability
following interaction with the cognate receptor ICOS (Kornete et al., 2012), or
NECTIN2/NECTIN3/PVR and PDCD1LG2 (encoding PD-L2) on myeloid cells interacting with
the inhibitory receptors TIGIT and PDCD1 (encoding PD-1), respectively. Moreover, intratumoral
Tregs preferentially expressed CD200 and SIRPG inhibitory ligands interacting on myeloid cells
with CD200R1 and CDA47, respectively, both possibly involved in the downregulation of
inflammatory responses (Vaine and Soberman, 2014; Weiskopf, 2017). Additional interactions
involved members of the IL-1 family, potentially suggesting a role in Treg biology in tumors that

will need further investigation. Thus, iCCA-infiltrating Tregs are characterized by extensive
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remodeling of the expression of receptor ligand pairs required for cell-cell communication,

suggestive of enhanced Treg-mediated immunosuppression in the iCCA microenvironment.

Transcriptional network inference to understand the molecular basis of diminished effector T
cell activation and enhanced Treg activation in iCCA. TF control the expression of several genes
simultaneously and their co-regulation defines cell fate and functional responses. We hypothesized
that differences in TF activities could be at the basis of differences in tumoral vs. peritumoral T-cell
gene expression. To test this, we applied SCENIC, a computational algorithm capable to predict TF
activity by the analysis of TF motifs that are enriched at the promoters of expressed genes in our
scRNA-seq data (Aibar et al., 2017) (Fig. 5A). SCENIC analysis clearly separated tumoral and
peritumoral T cells (Fig. 5A) as well as the majority of T-cell clusters previously defined by
scRNA-seq (Fig. 5B), thus indicating that tissue-derived T-cell states can be described by their
inferred TF activity. Among others, we found that IRF2, IRF3 and STAT1-mediated transcriptional
activities, possibly dependent on type I interferon signaling and involved in promoting effector
functional capacity (Huber and Farrar, 2011), were reduced in tumoral vs. peritumoral T cell
clusters, especially in C3, C6 and C7 of effector cells and, at a lesser extent, in C4 of Trwm cells (Fig.
5B). C7 along with C1 of terminal/cytotoxic T cells from tumors vs. peritumors also showed
reduced transcriptional activities of RUNX3, EOMES and TBX21 TFs, which mediate the
expression of effector and cytotoxic molecules (Cruz-Guilloty et al., 2009). Altogether, these data
suggest loss of Trm and effector T-cell functionality in cholangiocarcinoma is due to altered, cell
type-specific transcriptional programs. By contrast, tumor-infiltrating Tregs displayed increased
activity of several TFs compared to those infiltrating the peritumor, including FOXP3, the lineage-
specification factor for Treg cells, IKZF2, linked to stability of the Treg lineage (Getnet et al.,
2010), IRF4 and its transcriptional partner BATF, recently reported to play a pivotal role in Treg
activation and suppression in tumors (Alvisi et al., 2020), STATS5A and SMADI, possibly

reflecting IL-2 and TGF-f signaling, respectively, FOXA1, linked to enhanced suppressive function
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(Liu et al., 2014), and several others, such as VDR, SOX9, ZEB1 and Mesenchyme Homeobox 1
(MEOXT1), whose functions in Treg biology remain poorly described or unknown (Fig. 5B).

We next ordered TF activities in pseudotime by using a dedicated algorithm, i.e., SCORPIUS
(Saelens et al., 2019), so to possibly identify specific patterns of their activation or repression
during Treg differentiation from peritumors to tumors. In line with data at the level of single genes,
SCORPIUS was able to clearly separate Tregs from the two different sites (Fig. 5C), and identified
domains of activity (Fig. 5D), suggesting that different TFs might be involved at different steps of
Treg hyperactivation in iCCA. Specifically, loss of activity of FLI1, recently shown to inhibit
effector CD8+ T cell differentiation in murine models of chronic infection and cancer (Chen et al.,
2021), was accompanied by increased activity of several TFs simultaneously, e.g., of IKZF2,
SMADI1, VDR, IRF4, FOXP3 and BATF, during transition from peritumors to tumors. Several of
these TFs are known to be upregulated, or to play a direct role in the enhanced immunosuppression
of Tregs in solid tumors. We also revealed increased activity related to enhancer of zeste homolog 2
(EZH2), a histone H3K»7 methyltransferase elevated in tumor-infiltrating Tregs and whose
pharmacological inhibition results in proinflammatory Treg reprogramming and enhanced anti-
tumor immunity (Goswami et al., 2018; Wang et al., 2018). A second group of TFs, including
MEOX1, TP73 (encoding p73), SOX9 and FOXA1, among others, was activated transiently in
Tregs in iCCA, and was later followed by enhanced ZMIZ1 and MYB activities, the latter reported
to regulate effector Treg differentiation in murine peripheral organs (Dias et al., 2017) (Fig. 5D).
Collectively, our analysis identified novel TF activities possibly related to hyperactivated Treg

differentiation and enhanced immune suppression in iCCA.

MEOQOXT1 transcriptionally and epigenetically reprograms circulating Tregs to a tumor-
infiltrating phenotype. We next focused our investigation on one of the top hits from SCENIC
analysis of intratumoral Tregs, i.e., MEOX1, whose role in the immune system in unknown.

MEOXI1 encodes a mesodermal TF that plays a key role in somitogenesis and sclerotome
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development and whose mutation in humans results in the incomplete development of bones in the
neck (also known as Klippel-Feil syndrome) (Mohamed et al., 2013; Skuntz et al., 2009). MEOX1
mRNA levels strongly correlated with those of FOXP3 in the cholangiocarcinoma dataset from the
cancer genome atlas (TCGA; Fig. S4A), suggesting a relationship with Tregs in tumors. In our
scRNA-seq dataset, MEOX1 expression could be detected only in tumor-infiltrating Tregs, and not
in other infiltrating CD4+ or CD8+ T cells (Fig. S4B). Similarly, Tregs overexpressed significantly
more MEOX1 than CD4+ Tconv from lung, ovarian and breast tumors (Fig. S4C). A similar trend
could be found in colorectal tumors, although not reaching statistical significance (Fig. S4C). By
analysing the MEOX1 promoter, we found binding motifs of FOXP3, IRF4, FOXO1, EZH2 and
IKZF2 TFs, among others (Fig. 6A). We also found that, in iCCA, the predicted activity of these
TFs was co-regulated with that of MEOX1 in a subset of tumor-infiltrating Tregs (Fig. 6B),
collectively suggesting a role in the regulation of MEOXI1 expression. To investigate the functional
importance of MEOXI1 in specifying the molecular characteristics of tumor-infiltrating Tregs, we
isolated peripheral blood CD4+ Tregs from healthy donors, activated them for 24 hours with
aCD3/CD28 + IL-2 and transduced them with a lentivirus capable to overexpress the full-length
MEOX1 ¢cDNA, or with a mock lentivirus control. Transduced cells, identified by the green
fluorescent protein (GFP) reporter, were further purified as CD127— CD25+ by fluorescence-
activated cell sorting (FACS) and analysed at the transcriptomic and chromatin accessibility level
by bulk RNA-seq and assay for transposase-accessible chromatin using sequencing (ATAC-seq),
respectively (Fig. 6C). At the chromatin level, we found that genes previously shown to be
overexpressed by Tregs in tumors and associated with effector differentiation (TNFRSF9, ILIRN)
(Alvisi et al., 2020) and with disease progression in multiple cancers (L4YN) (De Simone et al.,
2016), or responsible for IL-10 production by Tregs (PRDM1) (Cretney et al., 2011), among others
(Table S7), were more accessible at multiple genomic sites in MEOX1-transduced vs. mock-
transduced Tregs (Fig. 6D). Computational analysis of differentially accessible regions in the whole

ATAC-seq dataset further identified differentially accessible TF-binding motifs (TFBMs). Motifs
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attributable to AP-1 activity (FOS, JUNB and the combined FOS:JUNB motif), to AP-1
transcriptional partners (BATF, IRF4 and the combined BATF:JUN motifs, mechanistically linked
to hyperactivated Tregs in tumors) (Alvisi et al., 2020; Grant et al., 2020) and the SMAD2:SMAD?3
combined motif, reflecting increased accessibility of genes possibly controlled by TGF-f signaling,
were enriched in MEOX1-transduced Tregs, whereas motifs attributable to TWIST2, MXI1, KLF9
and TP53 were enriched in mock-transduced Tregs (Fig. 6E). In agreement with ATAC-seq results,
overexpression of MEOXI1 resulted in the induction of TNFRSF9, ILIRN, LAYN, as well as of
additional effector or iCCA Treg-related genes such as CD70, MAGEH1 and ICOS (Fig. 6F and
Fig. S3D) (Alvisi et al., 2020; De Simone et al., 2016), and of NRP! (encoding Neuropilin-1), IL10
and CTLA4 (Fig. 6F), all involved in Treg-mediated immunosuppression. Gene set enrichment
analysis further showed that MEOX1-overexpressing Tregs were strongly enriched in specific
transcriptomic signatures of Treg vs. CD4+ Tconv, of iCCA-infiltrating vs. peritumor-infiltrating
Tregs, or of ICOS+ CCR8+ vs. ICOS— CCR8- Tregs recently described by our group as highly
immunosuppressive in non-small cell lung cancer (NSCLC), melanoma and hepatocellular
carcinoma (Fig. 6G) (Alvisi et al., 2020). Collectively, these data support the conclusion that TF
MEOXI1 promotes the acquisition of a tumor-infiltrating Treg phenotype by reprogramming the

transcriptional and epigenetic landscape.
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Discussion
We provide a comprehensive characterization of T-cell and myeloid subsets that are present in
patients with iCCA by high-dimensional single cell technologies and report the extensive
infiltration of CD4+ Tregs with a highly immunosuppressive phenotype, that is accompanied by the
loss of CD8+ CTLs compared to the peritumoral tissue. CD8+ T cells expressing CD39, a marker
recently linked to the identification of tumor-specific CD8+ T cells in the tumor microenvironment,
represented only a minor fraction of CD8+ T cells in iCCA, which appears to be much lower than
that reported for highly immunogenic tumors, such as NSCLC, melanoma and MSI colon cancer
(Duhen et al., 2018). This observation reinforces previous evidence that, overall, iCCA is poorly
immunogenic, thereby contributing to explain, among other factors, its low response to checkpoint
blockade with anti-PD1 (Kim et al., 2020; Piha-Paul et al., 2020). By contrast, changes at the level
of the myeloid compartment were less evident, and were mainly ascribed to the increased
infiltration of cDC2, rather than to changes in overall gene expression, compared to other tissue
sites. Importantly, absence of these cDC2 identified patients of our cohort with faster disease
progression when also Tregs were high, in agreement with a recent report in head and neck
squamous cell carcinoma (Binnewies et al., 2019), thus suggesting that a common axis might
regulate anti-tumor immunity in different cancer types.

scRNA-seq further informed on the characteristics of the different immune cell types and
enabled the identification of a major suppressive hub orchestrated by Tregs in the iCCA tumor
microenvironment. Compared to the adjacent peritumoral tissues, iICCA-infiltrating Tregs showed
features of the hyperactivated effector state previously described in several solid tumors, including
melanoma, NSCLC, hepatocellular carcinoma, breast and colon cancer (Plitas and Rudensky,
2020). Although differences that are yet to be identified might be present according to the specific
tumor type, it seems evident that intratumoral Tregs share a core transcriptional and functional
program, characterized by the increased expression of inhibitory molecules, chronic immune

activation and enhanced suppressive capacity compared to those from the circulation or the
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peritumoral area. Tregs are predicted to engage multiple inhibitory pathways on T and myeloid cells
in the tumor microenvironment, while receiving signals that in turn may support their
hyperactivated phenotype, thereby offering novel, more specific targets for cancer immunotherapy.
In agreement with the Treg-mediated inhibition, in several iCCA-infiltrating T-cell subsets we
observed reduced activity of TFs promoting the cytotoxic program and effector function of T cells,
including RUNX3, EOMES and TBX21 activities. We still do not know what is the relationship
between enforced surface interactions and altered downstream gene expression/TF activities in T
cells in iCCA. We anticipate that the future development of computational tools capable to integrate
multiple layers of information, including at the level of single cells, will identify with precision
those regulatory circuits that should be targeted to interfere with specific dysfunctional programs.
Among infiltrating T cells, Tregs had the most diverse molecular program compared to those
present in the adjacent peritumoral tissue, corroborating the hypothesis that these cells play a central
role in orchestrating immunosuppression iCCA. We identified several TFs whose enhanced activity
has been previously demonstrated to regulate immune activation of Tregs in solid tumors. These
included IRF4, BATF and EZH2, which play an essential role in suppression of anti-tumor
immunity (Alvisi et al., 2020; Goswami et al., 2018; Wang et al., 2018), in addition to TFs whose
functional role in Treg biology remained to be established. Among these, we found that
overexpression of MEOX1 was sufficient to epigenetically and transcriptionally reprogram
circulating Tregs to a tumor-infiltrating phenotype. The mechanisms by which MEOX1 is induced
and operates in hyperactivated Tregs remains to be established. MEOX1 is triggered by TGF-3
signaling in non-immune cells such as mesenchymal progenitors and cardiac fibroblasts (Alexanian
et al., 2021; Dong et al., 2018), and mediates cell differentiation by direct binding to DNA.
Although these aspects were not tested directly on intratumoral Tregs, pseudotemporal ordering of
TF activities and molecular analyses inspire a model according to which IRF4 and BATF precede
MEOXI1 activity, which in turn sustains hyperactivated Treg gene expression and, possibly,

immunosuppression by favoring chromatin accessibility at AP-1/IRF4/BATF consensus sites.
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In conclusion, we provide a comprehensive characterization of the iCCA T cell and myeloid
infiltrate, and show that Treg abundantly infiltrate the tumor microenvironment while CTLs and
CD39+, putative tumor-specific CD8+ T cells expressing PD-1 are rare. Future immunotherapeutic
strategies must thus aim to turn iCCA from cold to hot, so to favor T-cell infiltration. Interfering
with the hyperactivated Treg program, such as that regulated by MEOX1, which is shared by

several solid tumors, seems an attractive approach to consider in this regard.
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MATERIALS AND METHODS

Study design

The use of human samples was approved by the Humanitas Research Hospital Institutional Review
Board (approval no. 146/20 for patients’ samples and no. 28/01/2016 for buffy coats from healthy
donors). All patients were enrolled at Humanitas Research Hospital and provided informed consent
for tissue biobanking. All patients had pathology proven iCCA, and were without chemotherapy
treatment prior to resection. Hepatitis B or C positive patients were excluded. Samples (one tumoral
and one peritumoral) were selected from areas without macroscopic evidence of necrosis or
hemorrhage. For morphological analysis, sections were cut (2um thick), stained with hematoxylin
and eosin and evaluated by an expert liver pathologist. The histological features that were evaluated
included tumor grade, desmoplasia, resection margin, steatosis, perineural, and linfo-vascular
invasion, and lymph node metastasis. Resected iCCA patients were followed up every 3 months, as
per protocol in our Center, or until death, and major events were recorded. Characteristics of the
patients enrolled in the study are listed in Supplementary Table 1.

Sample collection and processing

PBMC:s were isolated from buffy coats from iCCA and healthy donors via density-gradient
separation and were cryopreserved in FBS supplemented with 10% DMSO until use. Blood samples
from patients were collected in vacutainer EDTA Tubes (BD). Tissues were collected in complete
R10 medium: RPMI-1640 medium with 10% FBS (Sigma-Aldrich), 1% penicillin-streptomycin
and 1% Ultra-glutamine (both from Lonza) RPMI 1640 media: 10% FBS (Sigma-Aldrich), 1%
penicillin-streptomycin (Lonza) and 1% Ultra-glutamine (Lonza). Human cell isolation from
healthy liver was performed by collagenase perfusion adapting a traditional two-step technique
(Seglen, 1976). Briefly, non-tumoral tissue displaying the normal vascular architecture, was
perfused in order to collect the circulating intrahepatic blood (perfusate). Then, the liver sample was
digested with collagenase, obtaining a single-cell suspension. Parenchymal cells were eliminated
from the sample through appropriate centrifugations and the supernatant was counted and stored.
Cells were pelleted, counted, and frozen according to the slow freezing procedure in standard cryo-
vials. Further disaggregation of iCCA tissue into a single-cell solution for sequencing was
completed using the MACS tumor dissociation kit (Miltenyi Biotec) with the standard tough tumor
protocol. Briefly, the MACS tumor dissociation kit enzyme mix (300ul) was added to each sample.
Next, samples were put into the gentleMACS Dissociator and ran through the tough tumor program.
The cell suspension was then applied to a 70um cell strainer. Cells were pelleted, counted and
frozen according to the slow freezing procedure in standard cryo-vials (1 ml cell suspension in the
cryopreservation medium as above.

Polychromatic flow cytometry

Frozen samples were thawed in R10 additioned with 20 pg/mL DNase I from bovine pancreas
(Sigma-Aldrich). After washing with PBS (Sigma-Aldrich), the cells were stained with the
combination of mAbs listed in Supplementary Table 2. Flow cytometry procedure for (i) selection
of antigen-fluorochrome combinations, (ii) reagent titration and validation, (iii) limiting spreading
error (SE) have been previously described (Brummelman et al., 2019). Flow cytometry data were
analysed on a FACS Symphony A5 cytometer (BD Biosciences) equipped with 5 lasers (UV, 350
nm; violet, 405 nm; blue, 488 nm; yellow/green, 561 nm; red, 640 nm; all tuned at 100 mW, except
for UV, tuned at 60 mW). Compensation was performed by FlowJo by using BD Compbeads
inclubated with single antibodies, as previously described (Lugli et al., 2017).

Computational analysis of flow cytometry data
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Data were processed as previously described (Brummelman et al., 2019). Briefly, Flow Cytometry
Standard (FCS) 3.0 files were analysed by standard gating in FlowJo version 9 to remove dead cells
and spurious events, and identify CD45+CD3+ T cells or CD45+CD3-CD66b- myeloid cells. 3,000
CD45+CD3+T cells and 2,000 CD45+CD3-CD66b- myeloid cells per sample were subsequently
imported in FlowJo (version 10), biexponentially transformed, and exported for further analysis by
a custom-made pipeline of PhenoGraph where we modified the Linux-community and the core.py
script of PhenoGraph package to fix the seed to “123456” (run in Python version 3.7.3). Tumoral,
peritumoral, perfused blood from tissue and PBMC samples were labelled with a unique
computational barcode for further identification and converted in comma separated (CSV) files and
concatenated in a single matrix by using the merge function of pandas package. The K value,
indicating the number of nearest neighbours identified in the first iteration of the algorithm, was set
at 100 and 200 for CD3" and for CD3-CD66b- cell clustering, respectively. The data were then
reorganized and saved as new CSV files, one for each cluster, that were further analysed in FlowJo
to determine the frequency of positive cells for each marker and the corresponding median
fluorescent intensity (MFI). Subsequent metaclustering of these values was performed using the
gplots R package. Uniform Manifold Approximation and Projection (UMAP) was obtained by
UMAP Python package.

scRNA-seq

Frozen tumoral and peritumoral single-cell suspension were thawed, washed in PBS, stained with
Live/dead Aqua Fluorescent Reactive Dye (Life Technologies) and mouse anti-human CD45
antibody (30-F11, BD Biosciences) at 4°C for 20 minutes and sorted on a FACS Aria III (BD
Biosciences) with a 100um nozzle. FACS-purified CD45%/CD45" cells were resuspended in 1ml
PBS plus 0.04% BSA and washed two times by centrifugation at 450xg for 7min. After the second
wash, cells were resuspended in 30 pl and counted with an automatic cell counter (Countess 11,
Thermo Fisher) to get a precise estimation of total number of cells recovered and of their
concentration. Afterwards, CD45" cells of each sample were loaded into one channel of the Single
Cell Chip A using the Single Cell 3’ reagent kit v2 single cell reagent kit (10X Genomics) for Gel
bead Emulsion generation into the Chromium system. Following capture and lysis, cDNA was
synthesized and amplified for 14 cycles following the manufacturer’s protocol (10X Genomics). 50
ng of the amplified cDNA were then used for each sample to construct Illumina sequencing
libraries. Sequencing was performed on the NextSeq550 Illumina sequencing platform following
10x Genomics instruction for reads generation. A sequencing depth of at least ~ 30,000 reads/cell
was obtained for each sample.

Pre-processing of scRNA-seq data

Raw sequencing data was processed and aligned to the GRCh38 human reference genome with
CellRanger (10X Genomics) v3.0.1 (Zheng et al., 2017). Resulting filtered matrices of molecular
counts (count matrices) were used as input for pre-processing with Seurat package v3.0.3 (Butler et
al., 2018) running under R v3.6.1 and Bioconductor v3.9 on a Debian GNU/Linux 9 operating
system. First, ribosomial genes were removed from the count matrix. Then, in order to avoid
dying/damaged cells or doublets, quality control was performed and cells having <200 or > 3000
expressed genes or >20% mitochondrial counts were filtered out. Data normalization and log-
transformation was performed by applying the NormalizeData Seurat function (method =
LogNormalize). Cell cycle scores were then evaluated by calling the CellCycleScoring Seurat
function using a list of cell cycle markers genes (Tirosh et al., 2016).

Dataset Integration
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In order to integrate sample datasets together, the “SCT” normalization (Hafemeister and Satija,
2019) was performed separately for each sample by running the SCTransform Seurat function
where technical and cell-cycle effects were regressed out (do.correct.umi = true; vars.to.regress =
percent.mt, S.Score, G2M.Score). The Seurat functions PrepSCTIntegration,
FindIntegrationAnchors and IntegrateData were then applyed on the list of Seurat objects using
3,000 genes in the anchor finding process. A final integrated dataset consisting of 31,745 cells
(14,824 from peritumoral and 16,921 from tumoral samples) was obtained. A principal component
analysis (PCA) was performed on the top variable features by calling the RunPCA Seurat function
and the first 20 principal components (PCs) were selected for downstream analysis. Imputation of
missing count values was performed by applying the Adaptively-thresholded Low Rank
Approximation (ALRA) method (Linderman et al., 2018) by calling the RunALRA Seurat function
with default parameters.

Clustering and cell type identification

To identify cell clusters, the graph-based clustering approach implemented in the FindClusters
Seurat function was used with a resolution value ranging from 0 to 1 by steps of 0.1. Clustering
stability was assessed using clustree R package v.0.4.0 (Zappia and Oshlack, 2018). Marker genes
were obtained for each cluster by running the FindAllMarkers Seurat function which performs a
Wilcoxon Rank Sum test (adj.p-value < 0.05). The SingleR v1.0.6 (Aran et al., 2019) and AUCell
v1.8.0 (Aibar et al., 2017) packages were used as an aid to manual clusters cell types annotation.

Reclustering of T cells

Reclustering of T cells was performed by repeating the analysis used for the whole dataset on the
subsets of cells enriched for the “Main Immune Cell Expression Data’” CD8 and CD4 T cells
reference signature after ALRA imputation (5,037 cells from peritumoral and 7,607 cells from
tumoral samples). A clustering resolution of 0.8 was chosen, obtaining a total of 11 clusters.

Reclustering of myeloid cells

Reclustering of myeloid cells was performed by repeating the analysis used for the whole dataset,
apart from lowering k.filter to 100 in FindIntegrationAnchors Seurat function, on the subsets of
cells enriched for the “Main Immune Cell Expression Data’” myeloid reference signature after
ALRA imputation (2,384 cells from peritumoral and 2,201 cells from tumoral samples). A
clustering resolution of 0.5 was chosen, obtaining a total of 8 clusters.

UMAP plots
UMAP was obtained by running the RunUMAP Seurat function with default parameters for the

whole dataset and with min.dist = 0.01 and n.neighbors = 20 for reclusterings of T cells and
Myeloid cells.

PCA of samples by gene expression values

Averaged gene expression values were obtained by running the AverageExpression function on the
RNA assay of the Seurat object with data being normalized, centered and scaled by using the
NormalizeData (method = LogNormalize) and ScaleData Seurat functions. PCA was performed
with FactoMineR package v2.3. The first two principal components were plotted using factoextra
package v1.0.6.

Heatmap of cluster marker genes
Cluster marker genes were obtained by running the FindAllMarkers Seurat function after
imputation of missing count values with ALRA algorithm as previously described. For each cluster,
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genes having an adjusted p-value < 0.05 and absolute log> of fold-change (FC) > 0.5 and detectable
expression in > 50% of the cells in that cluster were selected and sorted in descending order by FC
values (Supplementary table 3). After data centering and scaling with ScaleData, the heatmap was
generated using the DoHeatmap Seurat function with default parameters.

Differentially expressed genes (DEGs) from scRNA-seq

For each cluster, DEGs were obtained by comparing cells from peritumoral samples with cells from
tumoral samples using the FindMarkers Seurat function (min.pct = 0.1, logfc.threshold = 0), which
performs a Wilcoxon Rank Sum test. Genes having an adjusted p-value < 0.01 and an absolute FC
> 1.5 were considered as statistically significant. Volcano plot was generated with
EnhancedVolcano package v1.4.0 (https://github.com/kevinblighe/EnhancedVolcano).

Integration of publicly available scRNA-seq datasets

To generate Fig. S4C, we processed scRNA-seq data on lung (n=3), breast (n =14), ovarian (n =5)
and colorectal (n =7) tumors by Qian et al. (https://lambrechtslab.sites.vib.be/en/pan-cancer-
blueprint-tumour-microenvironment-0) (Qian et al., 2020). We filtered out cells labelled as
“Normal” and the 48,231 cells containing a mixture of different T-cell phenotypes were normalized
(target_sum=le4) using ‘‘scanpy.pp.normalize total’’ function from SCANPY package (Wolf et
al., 2018). CPM counts were square-root-transformed (“scanpy.pp.sqrt”’) followed by
dimensionality reduction by PCA on top most variable genes, computed using
“scanpy.pp.highly variable genes” function with the following parameters: min_mean=0.0125,
max_mean=3, min_disp=0.5. De novo clustering was performed using “scanpy.tl.leiden” function
and marker genes for each significant cluster were found using the function
“scanpy.tl.rank genes groups” (method= Wilcoxon). CD4+ T cell clusters were isolated and
imputed with the MAGIC algorithm (k, number of nearest neighbors = 5) (van Dijk et al., 2018).
Tregs were defined as those cells belonging to the cluster with the highest expression of Treg-
related genes. The remaining CD4+ T cells were combined and labelled as Tconv. The box plots
showing the median expression of imputed transformed data were generated using seaborn package
(version 0.11.1) and the statistical significance were assessed with Mann-Whitney-Wilcoxon test
function of the statsmodels package (version= 0.12.2).

Cell-cell interaction analysis

Cellular interactions between Treg and myeloid/T cell populations were analysed with
CellphoneDB tool (version 2.0.0) with default parameters (Vento-Tormo et al., 2018). Normalized
gene expression matrices together with their cluster annotations derived from both myeloid and T
cell reclustering were used as input (‘data’ slot from Seurat after ALRA imputation step). The
enriched ligand-receptor interactions between two cell subsets were calculated based on
permutation test. Fig. 4 lists L:R pairs with a p-value <0.05, manually curated from all interactions
listed in Supplementary Table 4.

Gene regulatory network analysis

The analysis of regulon activity were performed by SCENIC (version 1.1.2) (Aibar et al., 2017)
starting from ALRA imputed data. The genes with at least 3 UMIs in at least 10% of the cells and
detected in at least 10% of samples were selected as the input genes. The expression matrix was
loaded into GENIE3 (Huynh-Thu et al., 2010) and the co-expressed genes to each TF was
constructed. The TF co-expression modules were then analysed by RcisTarget Bioconductor
package. The Normalized Enrichment Score (NES) of the transcription factor binding motifs
(TFBS) was calculated and NES > 3.0 were considered as significantly enriched. The filtered
potential targets by RcisTarget mouse hg19 database (hg19-500bp-upstream-
7species.mc9nr.feather; hgl9-tss-centered-10kb-7species.mc9nr.feather) from the co-expression
module were used to build the regulons. The regulon activity was analysed by AUCell (Aibar et al.,
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2017) and the active regulons were determined by AUCell default threshold. The active regulons
were then mapped to all cells by ~-SNE in Fig. SA. Binary regulon activity active in at least 50% of
cells were selected. Binary regulon activity clustering analysis was performed for Figure 5B. The
complete list of significant regulons is listed in Supplementary Table 5.

Trajectory analysis

Trajectory analysis was performed with SCORPIUS R package v1.0.7 (Saelens et al., 2019) on
Regulon Activity Scores obtained by running SCENIC R package as described in the previous
paragraph. Dimensionality reduction was obtained by applying the reduce dimensionality function
(dist = "spearman", ndim = 3) on the subset of cells belonging to C10 of T cells. Linear trajectory
was inferred by using the infer trajectory function with default parameters. The importance of each
gene with respect to the trajectory was calculated by running the gene importances function
(num_permutations = 10, ntree = 10000, ntree_perm = 1000). Regulons having a false discovery
rate (FDR)-adjusted p-values < 0.05 were considered significant and are listed in Supplementary
Table 6.

Treg cell transduction and culture condition

The use of recombinant plasmids was approved by the Italian Ministry of Health authorization
number MI/IC/Op2/17/024. Treg cells were enriched from buffy coats of healty donors using an
EasySep Human CD4+ CD127°% CD25+ Regulatory T cell Isolation kit. Purity was confirmed to
be >90% by flow cytometry. Purified Treg cells were stimulated with Dynabeads human T-ACT
CD3/CD28 at a 1:2 bead:cell ratio, in 96 U-bottomed well plates and in the presence of IL-2 (50
ng/mL; Peprotech). 24h and 48h after stimulation, cells were transduced with lentiviral particles
harboring a custom human ORF for MEOX1 (Sigma-Aldrich, Mission TRC3) or empty backbone-
vectors (mock), both expressing GFP as a reporter (Sigma-Aldrich). Cells were cultured for 5
additional days and then stained with fluorochrome-conjugated monoclonal antibodies (listed

in Supplementary Table 2). GFP+ cells, pre-gated as CD3+CD8-CD4+Aqua-CD25+CD127- were
isolated with a FACSAria cell sorter (BD Biosciences).

ATAC-seq

Libraries were prepared using a protocol adapted from Buenrostro et al. (Buenrostro et al., 2015), as
previously described (Galletti et al., 2020). 10,000 FACS-purified GFP* Treg cells were washed in
PBS without Ca?" and Mg?" and resuspended in 25ul lysis buffer (10 mM Tris-HCI pH 7.4, 10 mM
MgCl2, 0.1% IPEGAL CA-630). Nuclei were pelleted by centrifugation for 10 min at 500g and
resuspended in a final reaction volume of 25l comprising 0.2ul of Tn5 transposase (made in-
house), 5l of 5x transposase buffer (50 mM Tris-HCI pH 8.4, 25 mM MgCl2) and 19.8ul of
ultrapure water (Milli-Q). The reaction was incubated with mixing at 300 r.p.m. for 30 min at 37
°C, supplemented with 5 pl clean-up buffer (900 mM NaCl, 30 mM EDTA), 2.5ul of 20% SDS,
0.35pl of ultrapure water (Milli-Q) and 2.15ul of proteinase K (18.6 pg pl-1, ThermoFisher
Scientific), and incubated for a further 30 min at 40 °C. Tagmented DNA was isolated using 2%
SPRI Beads (Beckman Coulter) and amplified via PCR. Fragments smaller than 600 bp were
isolated via negative size selection using 0.65x SPRI Beads (Beckman Coulter) and purified using
1.8x SPRI Beads (Beckman Coulter). Quality control was performed using a 4200 TapeStation
System (Agilent) in conjunction with a Qubit 2.0 Fluorometer (Thermo Fisher Scientific). Libraries
were then multiplexed in an equimolar pool and sequenced using a NextSeq 500/550 Platform
(Illumina). At least 40 million single-end 75-bp reads were generated per sample.

ATAC-seq data analysis
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After demultiplexing with bel2fastq v2.20 (Illumina, Inc.), quality control checks on raw
sequencing data were performed with FastQC v0.11.8
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adapters removal and dynamic
trimming of low-quality bases were performed using Trimmomatic v0.39 (Bolger et al., 2014) with
parameters “ILLUMINACLIP:TruSeq2-SE.fa:2:30:10, LEADING:3, SLIDINGWINDOW:4:15,
MINLEN:36”. Single-end reads were mapped to the UCSC hg38 reference human genome using
Bowtie2 v2.4.1 (Langmead and Salzberg, 2012) with parameters “--end-to-end -D 20 -R 3 -N 1 -L
20 -1 S,1,0.50 --no-unal”. After alignment, several post-processing has been carried out. First, PCR
duplicates, reads aligned to chrM and/or encode blacklisted regions v2 (Amemiya et al., 2019) were
filtered out using BEDTools v2.30 (Quinlan and Hall, 2010). Second, only uniquely mapped reads
were retained using SAMtools v1.9 (Li et al., 2009). Finally, reads aligning to the forward strand
were offset by +4 bp, and reads aligning to the reverse strand were offset —5 bp. Non-shifted bam
files were also kept for the differentially bound motif analysis. Peak calling was performed using
MACS2 v2.2.6 (Zhang et al., 2008) with parameters “--nomodel --extsize 200 --shift -100 --gsize
2.9¢9 --tsize 71 --qvalue 0.05 -bdg --SPMR --keep-dup all”. In order to visualize the raw profiles
with the Integrative Genomics Viewer (IGV) v2.9 (Robinson et al., 2011), RPM-normalized
BedGraph files generated by MACS2 were converted to BigWig files v2.8 from UCSC tools (Kent
et al., 2010). In order to obtain a set of unique genomic regions for the two conditions, MACS2
called peaks were processed with BEDTools v2.30. Each region was extended by 50bp at both ends
and theirs overlapping mapped reads were counted with Rsubread v2.4.2 (Liao et al., 2019) R
package. The obtained count matrix was imported and processed by DeSeq2 v1.30.1 (Love et al.,
2014) R package, and differential expression analysis was performed with a paired design.
Differentially significant regions between the two conditions were selected by choosing a p-value
cut-off of 0.05 (Supplementary Table 7).

Volcano plot of differentially bound motifs

Differentially bound motifs were obtained by applying the TOBIAS v0.12.10 pipeline (Bentsen et
al., 2020) to unshifted bam files obtained as described previously. Briefly, peak-calling was
performed per replicate using MACS2 v2.2.6 with parameters “--nomodel --extsize 200 --shift -100
--gsize 2.9¢9 --tsize 71 --broad --qvalue 0.01 --keep-dup 'all”” and the list of genomic regions that
represents peaks merged across all conditions was obtained using BEDTools v2.30. Then, single
replicates bam files were merged to condition bam files with SAMtools v1.9. The TOBIAS core
analysis was then performed. First, to correct the Tn5 transposase insertion bias and to calculate a
continuous footprinting score across regions, the ATACorrect and FootprintScores tools were
runned for each condition with default parameters. Second, to make predictions on specific TF
binding sites and to obtain the differential binding between conditions, the BINDetect tool was
called with default parameters and by using the JASPAR 2020 core vertebrates non-redundant set
of TF binding profiles (Fornes et al., 2020) (Supplementary Table 8).

Bulk RNA sequencing (RNA-seq)

RNA isolation of the FACS-purified GFP" Treg cells was performed by the Quick-RNA Microprep
kit following the manufacturer’s protocol (Zymo Research). RNA quality control was performed
with the Agilent 4200 Tape Station system and only RNAs having a RIN >8 were used for library
preparation. Libraries for mRNA sequencing were prepared starting from 10 ng tot RNA for each
sample by using the SMART-Seq v4 Ultra Low Input RNA Kit (Clontech-Takara). All samples
were sequenced on an [llumina NextSeq 550 at an average of 17,5 million 75-bp single-end reads.

Bulk RNA-seq data analysis
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After demultiplexing with bcl2fastq v2.20 (Illumina, Inc.), quality control checks on raw
sequencing data were performed with FastQC v0.11.8
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)). Adapters removal and dynamic
trimming of low-quality bases were performed using Trimmomatic v0.39 with parameters
“ILLUMINACLIP:TruSeq2-SE.fa:2:30:10, LEADING:3, MAXINFO:50:0.7, MINLEN:40”.
Single-end reads were aligned to the UCSC hg38 human genome using STAR v2.7.0f (Dobin and
Gingeras, 2015) with parameters “--outSAMtype BAM SortedByCoordinate, --
outFilterMultimapNmax 20, --outWigType wiggle, --outWigNorm RPM”. Wiggle files were
converted to BigWig format using wigToBigWig v2.8 from UCSC tools, Uniquely mapped reads
having MAPQ > 30 were selected for downstream analysis using SAMtools v1.9. Quality control
checks of aligments were carried out using Qualimap v2.2.2a (Okonechnikov et al., 2016).
Transcripts quantification was performed by running the featureCounts function of the Rsubread
package v1.34 with parameters “minOverlap=5, isPairedEnd=FALSE, strandSpecific=0". Raw
count values were then loaded and processed within edgeR R package v3.28.1 running under R
v3.6.3 and Bioconductor v3.9. Non-expressed genes were filtered out by keeping only genes with
read counts greater than 1 Count Per Million (CPM) in at least one sample. Then, data was
normalized by applying the Trimmed Mean of M-values (TMM) normalization. Differential
expression analysis was performed using the GLM approach using a paired design, and significant
DEGs were obtained by calling the topTable function by choosing a minimum absolute FC of 1.5
and FDR g-value < 0.05 (Supplementary Table 9).

Volcano plot of DEGs from RNA-seq

Volcano plot was generated with EnhancedVolcano package v1.4.0
(https://github.com/kevinblighe/EnhancedVolcano). Genes having an adjusted p-value < 0.05 and
an absolute FC > 1.5 were considered as statistically significant.

Overrepresentation analysis

Gene set enrichment analysis (GSEA) was obtained by running the fgsea R package v1.12.0
(Korotkevich et. al, 2019), which perform a pre-ranked GSEA. The function fgsea was applied on
the ranked list of all genes with default parameters and “maxSize=1000, nperm=10000". Ranking
score was determined by a combination of fold-change and F-statistic. Gene sets evaluated
included: (i) Treg vs Tconv activated UP (GSE7460) gene set (Hill et al., 2007); (ii) [COS+CCR8+
vs ICOS-CCRS- intratumoral Treg UP (GSE128822) gene set (Alvisi et al., 2020); (iii)
intratumoral Treg vs peritumoral Treg UP (C10 of CD4" Tregs from scRNA-seq).

Data availability

Raw data sets are available in the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo) under accession number GSE171900, which comprises scRNA-
seq data (GSE171899) and RNA-seq data (GSE171895). ATAC-seq data is provided upon request.

Code availability
Scripts used to analyse the flow cytometry single-cell data are available at
https://github.com/luglilab/Cytophenograph. All other codes are available on request.
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Figure 1. High-dimensional single-cell profiling of CD45+ cells infiltrating human intrahepatic cholangiocarcinoma
(iCCA). A. Experimental workflow. B. UMAP representation of concatenated CD3+ T cell and CD3-CD66b- myeloid cell
PhenoGraph clusters resulting from the flow cytometric analysis of paired tissue sites of iCCA patients (n=20 for T cell data;
n=16 for myeloid data). Tregs: regulatory T; T, tissue-resident memory; T, : central memory; T_,: effector memory; T__:
terminal effectors; MAIT: mucosal-associated invariant T; CTLs: cytotoxic T lymphocytes; NK: Natural Killer; cDC1: type 1
conventional dendritic cells; cDC2: type 2 conventional dendritic cells; pDCs: plasmacytoid dendritic cells; tolDCs: tolerogenic
dendritic cells. C. PCA plots showing the distribution of samples according to the frequency of CD3+ T cell (left) and CD3-
CD66b- myeloid cell (right) PhenoGraph clusters as in B. Small circles identify single samples, while big circles the mean of
the distribution. Colors of the arrows and the cluster labels reflect the relative contribution to the PCA distribution. D. Box plots
showing the median and the IQR of PhenoGrapg cluster frequency at different tissue sites. Bars indicated the SD. Dots depict
single patient values. *=P<0.05, **=P<0.01, ***=P<0.001, ****=P<0.0001, two-sided Mann-Whitney test. E. Representative
flow cytometric analysis of CD25 CD127- Tregs and F. of their markers from the different tissue sites. Conventional CD4+
CD25- CD127+ T cells (Tconv) are depicted as a control. Numbers indicate the percentage of cells in the gate (E) or the
median fluorescence intensity (MFI) of marker expression.
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Figure 2. Features of immune infiltrate that predict disease-free survival (DFS) in iCCA.
Kaplan-Meier DFS curves according to the intra-tumoral frequencies of Tregs as related to that of T,
CD4+ CD69+ cells (left) or cDC2 (right) in each patient (n = 16). The cohort was subdivided in 2 groups
according to the percentile rank (set at 0.7). The p value (P) was calculated by Gehan Breslow-Wil-
coxon test.
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Figure 3. Single cell RNA-sequencing (scRNA-seq) reveals tumor-specific differences in gene expression by specific
T-cell populations. A. Workflow of the experimental strategy: scRNA-seq was performed on paired peritumoral and tumoral
surgical resections from iCCA patients (n = 6). B. UMAP projection of all cells analyzed (n = 31,745). Each dot corresponds to
one single cell, colored according to immune cell lineage. C. UMAP projection representing T (n = 12,644) and myeloid cells (n =
4,585) sub-clustering. Clusters are depicted with different colors. T, tissue-Resident Memory T cells; Tregs: regulatory T cells;
cDC2: type 2 dendritic cells; cDC1: type 1 dendritic cells. D. Gene expression heatmap of myeloid and T cell cluster marker genes
after Adaptively-threshold Low-Rank Approximation (ALRA) imputation. Columns: cells grouped by clusters. Rows: cluster marker
genes after filtering by Fold Change (|log,(FC)|>0.5), g-value<0.05 and percentage of expression in cluster cells (pct1)>0.5.
Representative genes that are differentially expressed in specific clusters are labelled on the right. E. Violin plots showing the
relative distribution of each T and myeloid cell cluster among tumoral (dark red) and peritumoral (light blue) samples. Lines
represent median frequencies between samples from 6 patients, *p<0.05 with 2-way ANOVA test.
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Figure 4. Dynamic remodeling of the Treg cell interactome in iCCA. CellPhoneDB intercellular communication
analysis between Tregs (scRNA-seq cluster 10) and (A) T cell or (B) myeloid cell clusters identified by scRNA-seq. In
both A and B, circos plot show all predicted cell-cell interaction events via ligand:receptor (L:R) pairs, while bubble
plots indicate the mean L:R expression (color scale) and the corresponding P value (size of the bubble). Molecules
expressed by Tregs and the interacting populations are in purple and in black, respectively. P: empirical permutation P

value.
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T cell activation and enhanced Treg activation in iCCA. A. Top: schematic overview of the SCENIC
pipeline. Bottom: t-SNE map of all T cells based on regulon activity scores, as obtained by SCENIC. B.
Heatmap of binary regulon activity (arbitrary threshold = 0.5) by scRNA-seq T cell clusters related to peritu-
moral (light blue) and tumoral (dark red) tissues. Relevant transcription factors (TFs) are indicated. The

putative number of genes regulated by each TF is in brackets. Colored dashed boxes in the heatmap identi-
fy the T cell cluster with the highest TF activities. C. Zoom-in view of the scRNAseq cluster 10 (CD4+ Tregs)
regulatory state. Tregs are distributed in a trajectory map by SCORPIUS according to regulon activity scores

and color-coded based on tissue origin. D. Pseudo-time alignment of regulon activity in single Tregs deter-
mined by SCORPIUS trajectory analysis. The top 30 TF leading the time line are indicated along with their
DNA binding motifs and their predicted targets (manually selected; in dark blue).
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Figure 6. MEOX1 transcriptionally and epigenetically reprograms Tregs to a tumor-infiltrating phenotype. A. MEOX1
regulation network predicted by SCENIC based on DNA-motif analysis (RcisTarget database). B. t-SNE map of all T cells
obtained as in Fig. 5A and depicting Treg cells from tumors (scRNAseq cluster 10) and specific TF activities (predicted activators
of MEOX1), as indicated by Area Under the recovery Curve (AUC) values. C. Schematic view of the MEOX1 overexpression
(OE) approach by lentiviral vector (LV) in Tregs isolated from the peripheral blood of healthy donors (n=3). ATAC-seq: Assay for
Transposase-Accessible Chromatin using sequencing; GSEA: Gene Set Enrichment Analysis. D. Representative accessible
genomic regions in ATAC-seq data from Treg cells transduced as in C. Significant differentially accessible regions are
highlighted in light yellow. E. Transcription factor binding motif (TFBM) enrichment analysis by TOBIAS. Colored dots represent
single significant motifs. TFs of interest are indicated. F. Volcano plot of differentially expressed genes in bulk RNA-seq from

MEOX1- and mock-transduced Tregs (g-value< 0.05, [FC|> 1.5, n=3). Genes of interest are indicated. G. GSEA of different gene
sets in bulk GSEA of different gene sets in bulk RNA-seq data obtained as in C.
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