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Abstract:

Open-population spatial capture-recapture (OPSCR) models use the spatial information
contained in individual detections collected over multiple consecutive occasions to estimate
occasion-specific density, but also demographic parameters. OPSCR models can also estimate
spatial variation in vital rates, but such models are neither widely used nor thoroughly tested.
We developed a Bayesian OSPCR model that not only accounts for spatial variation in survival
using spatial covariates, but also estimates local density-dependent effects on survival within a
unified framework. Using simulations, we show that OPSCR models provide sound inferences
on the effect of spatial covariates on survival, including multiple competing sources of
mortality, each with potentially different spatial determinants. Estimation of local density-
dependent survival was possible but required more data due to the greater complexity of the
model. Not accounting for spatial heterogeneity in survival led to positive bias in abundance
estimates (up to 10% relative bias). We provide a set of features in R package nimbleSCR that
allow computationally efficient fitting of Bayesian OPSCR models with spatially varying

survival. The ability to make population-level inferences of spatial variation in survival is an
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essential step towards a fully spatially-explicit OPSCR model that can disentangle the role of

multiple spatial drivers on population dynamics.

1. Introduction

Spatial capture recapture (SCR) models are hierarchical models that explicitly use the spatial
information contained in repeated individual detections to account for imperfect detection and
estimate density (Efford 2004, Borchers and Efford 2008, Royle et al. 2014). Because SCR
models are spatially explicit and accommodate various types of data (e.g., physical capture,
photographic, non-invasive genetic, acoustic), they are now routinely used to analyze wildlife
monitoring data. When data are collected over several consecutive occasions, open-population
SCR (OPSCR) models can be used to estimate demographic rates and movement of individuals
between occasions in addition to densities (Bischof et al. 2020a). Modelling individual
movement between occasions can help distinguish between the different causes of individual
disappearances from the population (Gardner et al. 2018). These properties make OPSCR
models well-suited for drawing population-level inferences about the drivers of demographic

processes.

Demographic rates, such as survival, are known to vary in time (Gaillard et al. 2000), with
individual attributes (de Valpine et al. 2014), and across space (DeCesare et al. 2014).
Temporal and individual variation of demographic parameters can be readily integrated in
OPSCR models (Augustine et al. 2019, Bischof et al. 2020a), and the possibility of inferring
spatial heterogeneity in survival using OPSCR models has been suggested (Royle et al. 2014)
and applied (Chandler et al. 2018). However, the performance of models that estimate spatially-
variable survival has not been thoroughly tested and their potential remains under-exploited.

Estimation of spatially varying vital rates is a key step in the development of OPSCR models
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(Royle et al. 2014) as it will lead to a better understanding of the processes driving the spatial

distribution of individuals (Pulliam 1988).

At their core, OPSCR models account for imperfect detection by using an observation process
which assumes that an individual’s probability of detection is a function of distance from its
activity center (AC) (Borchers and Efford 2008, Royle et al. 2014). The location of individual
ACs is a latent quantity and is a representation of the center of the individual’s home range.
AC locations are a key quantity of OPSCR models as they allow the estimation of density and
inter-annual movement. AC locations also provide the spatial information necessary to
characterize the environment in which individuals are located, and therefore its influence on

survival (Chandler et al. 2018).

Density itself can be a key driver of survival (Gaillard et al. 2000). The study of density-
dependent survival has often been limited to estimating the average population response to
variation in overall population size through time (Bonenfant et al. 2009). However, variation
in density is a spatiotemporal process and individuals within the population may not experience
the same density. OPSCR models, by estimating spatio-temporal variation in density, offer a
unique opportunity to study density-dependence in survival at the local scale while accounting

for variation and uncertainty in both density and survival within a unified framework.

Here, we present a Bayesian OPSCR model that accounts for spatial variation in survival as a
function of spatial covariates (e.g., characteristics of the landscape, resources availability) and
density. We model survival using a hazard rate formulation to allow inferences on spatial
variation in competing risks of mortality (Ergon et al. 2018). We quantify model performance
by simulating OPSCR datasets under a wide range of scenarios. In addition, we quantify the
consequence of ignoring spatial heterogeneity in mortality for OPSCR inferences. All

functionalities are made available in R package nimbleSCR which provides tools for fitting
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efficient Bayesian (Markov chain Monte Carlo) MCMC models (de Valpine et al. 2017,

NIMBLE Development Team 2019, Bischof et al. 2020b, Turek et al. 2021).

2. Methods

2.1. OPSCR model

To estimate spatial variation in mortality from live encounter and dead recoveries collected
over several consecutive occasions (hereafter “years”), we built a Bayesian hierarchical state-
space OPSCR model. The model is composed of four sub-models for 1) density and inter-
annual movement, 2) demography, 3) live detections, and 4) dead recoveries. (Royle et al.
2014, Bischof et al. 2020a, Milleret et al. 2020, 2021, Dupont et al. 2021). We created two
versions of the model. The first version can distinguish between two spatially-variable and
competing causes of mortality. For example, it is possible to distinguish between culling and
other causes of mortality in the case that all individuals culled are recovered dead (Bischof et
al. 2020a). The second model version only considered one cause of mortality. This reflects a
realistic limitation because dead recoveries are not always available in OPSCR datasets and

distinguishing between multiple causes of death may not be possible.
2.1.1. Spatial distribution and movement submodel

In SCR models, the location of individuals is represented by their activity centers (ACs) within
the spatial domain (S). We used a Bernoulli point process with spatial intensity 1(s) to model
the distribution of ACs, where s is a vector of spatial coordinates of ACs (Zhang et al. 2020).

For t>1, the probability density of s; ; is conditional on the Euclidean distance to s; ;_1:

2
_||5i.t—5i.t—1 ||

A(sic|Sie-1,7) x € 202 eqn 1
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97  where 7 is the standard deviation of a bivariate normal distribution centered on s; ;. This
98  represents movement between 7-/ and ¢ and helps distinguish between mortality and emigration
99  (Gardner et al. 2018).

100 2.1.2. Demographic submodel

101  We used a multistate formulation (Lebreton and Pradel 2002) where each individual life history
102  is represented by a succession of up to four discrete states zis: 1) “unborn” if the individual has
103  not been recruited in the population; 2) “alive” if it is alive; 3) “culled” if it was culled and
104  therefore recovered dead between the start of the previous and current occasion; or 4) “dead”:
105  if it has died but was not recovered dead. We used data augmentation, whereby additional,
106  undetected individuals are available for inclusion in the population at each time step (Royle et

107  al. 2007, Royle and Dorazio 2012).

108  During the first year, individuals can only be designated as “unborn” (z;,1=1) or “alive” (zi,1=2)

109  so that zi; ~ dcat(1-y4, ¥1,0, 0) where y; represents the probability to be “alive” at time =1.

110  For 22, zi; is conditional on the state of individual 7 at ¢-7:

111 e Ifz =1, individual i can be recruited (i.e., transition to state 2) with probability y;,
112 or remain unborn with probability 1- y;, so zi: ~dcat(1- y;,¥:,0,0).

113 e Ifz1 =2, individual i can survive with probability ¢; and remain z;=2. If it does not
114 survive, it can either die due to culling and be recovered (transition to zj=3) with
115 probability 4, or die from other causes without being recovered (transition to ziy =4)
116 with probability wi, so that zi;~ dcat(0, ¢;, hi, wi), where ®; = 1—h; —w;.

117 e All individuals in dead states (zix.1 = 3 or 4) transition to zit1 = 4, the absorbing state,
118 with probability 1, so that z;~ dcat(0, 0, 0, 1)

119  Abundance estimates are obtained by N, = Y11, I (zi+ = 2), where | (Zl-'t =2 ) is an indicator

120  function to count alive individuals, and M is the number of detected and augmented individuals.

5
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121  Parameterization with mortality hazard rates When an individual dies from a specific
122 cause, it is no longer available to die from another cause. Therefore, mortality causes are
123 competing and non-independent (Ergon et al. 2018). Following the recommendation of (Ergon
124 et al. 2018), we parameterized the model using mortality hazard rates instead of mortality
125  probabilities. We expressed survival and mortality probabilities as functions of the culling
126  hazard rate (m;) and the hazard rate associated with to all other causes of mortality combined
127  (my). For simplicity, we assumed that the hazard rate from culling and other causes remained

128  proportional within time intervals:

129 ¢; = exp (— (mhi + mwi)) eqn 2
mhi

130 h; =1 —¢;) <m) eqn 3

131 w; =1 —¢y) (ﬁ) eqn 4

132 Spatial and individual variation in mortality We accounted for spatial variation in cause-
133 specific mortality by modelling mortality hazard rates (mu and mw) as functions of a spatial

134 covariate SpatialCovs,, at the location of the AC (s;,):

135 log(mH”) = log(mon) + Bn * SpatialCovs,, eqn 5
136 log(mwi,t) = log(moy) + B * SpatialCovy,, eqn 6
137 Where S, and B,, are the coefficients of the relationship between the spatial covariate on
138  culling and other mortality, respectively. my, and my,, represent the intercept for culling and
139  other mortality hazard rate, respectively.

140  Density dependent survival At each occasion, local density within any habitat cell » of S (
141 =1, .., R) can be obtained as d,. ;= M, I(si’t =T, Ziy = 2), where I(sl-,t =712 = 2 ) is an

142 indicator function denoting whether the individual AC falls within cell » and it is alive.
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143 By replacing the SpatialCov in Eqn.5-6 with the logarithm of the local density log(d,; o) WE

144  can estimate the effect of local density-dependence on individual mortality between occasion

145  (t-1) and t. Note that since (Eqn 5-6) are on the log scale, transformation of d,.;, suchas d,.;" =

146  f(d,:) = d,: + 1,1is necessary to avoid d/;’t = 0.
147 2.1.3. Live detection submodel

148  We used the half-normal function to model detection probability of individuals alive, whereby
149  the probability p;;; of detecting individual i at detector j and time ¢ decreases with distance

150  between the location x of detector j and the AC (s;):

1 2
151 pije =po*exp (=55 |sie — x5 eqn 7
152 where po is the baseline detection probability, and ¢ the scale parameter.

153  The detection yi; of alive individual 7 at detector j and time ¢, is modelled as the realization of
154 a Bernoulli process conditional on both the “alive” individual state (i.e., zi~=2) and the

155  individual and detector-specific detection probability pij,:
156 Vi~ Bernoulli(pi,j,t * I(Zi,t =2 )) eqn 8
157 2.1.4. Dead recovery model

158  To model dead recoveries within S, we used a Bernoulli point process with a bivariate normal

159  density model, where:

_||y.deadi_t_si,t||2

160 A(y. deadi't|si,t, Zit) 0) X e 202 * I(zi,t = 3). eqn 9

161  where y.dead, is the vector of spatial coordinates of the dead recovery locations. The indicator
162  function is used to condition dead recoveries on the individual being culled and recovered dead.

163  The detection probability function represents space use, we therefore assume that o, the shape
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164  parameter of the detection probability function, is identical for live detections and dead

165  recoveries.
166 2.2. OPSCR model with a single cause of mortality

167  To provide an example of the OPSCR model where dead recoveries (y.dead) are not available
168 and cause-specific mortality is not estimable, we built an OPSCR model with only three
169  demographic states z. Individuals could be unborn (z;; = 1), alive (z; = 2), or dead (z;; =
170 3).For t>1, alive individuals (z; ;—; = 2) can survive with probability ¢; _; and remain z;, =
171 2 or die with probability (1 — ¢; ,—1) and transition to z;, = 3, the dead absorbing state. We

172 modelled the effect of density at occasion ¢ on individual survival between occasion ¢ and #+1:

173 log(ml-,t) =log(my ) + Baxlog(ds,, +1) eqn 10
174 ¢ =1-— exp(—mi,t) eqn 11
175 2.3. Simulations

176 We conducted simulations to quantify the performance of 1) the OPSCR model in estimating
177  spatial variation in cause-specific mortalities with a deterministic spatial covariate; of 2) the
178  version of the OPSCR model with integrated density-dependent survival. Finally, we tested the

179  consequences of ignoring spatial variation in survival for abundance estimates.

180 2.3.1. Using deterministic covariate

181  We created a spatial domain (S) of 28 x 28 distance units (du) subdivided in R=49 cells of 4x4
182  du. We centered in S a 16 x 16 detector grid (with a minimum distance of 1 du between
183  detectors). This configuration left a 6 du buffer around the detector grid where individuals
184  cannot be detected alive. We set py=0.1, 0=2, T = 3 and considered five consecutive occasions.
185  This set-up led to an average of 2 (95% quantiles=1.5-2.3) detections per individual detected,

186  and on average 43% (95% quantiles=34%-51%) of individuals alive detected at each occasion

8
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187  (Appendix 1, table 1). We created a spatially autocorrelated covariate following a diagonal

188  gradient (SpatialCov, ranging from (-2 to 2); Figure 1A).

189  We set M=650 and N= 250 individuals during the first occasion leading to y; = % = %. For

190 t>1, we assumed a constant 0.3 per capita recruitment rate. We set baseline mortality hazard

191  rates to my, =-2.25 and m, =-1.75 and created four different scenarios with all combinations

192 of B, =(1,-1) and B, = (1,-1).

193  We repeated the simulation scenarios described above, but with 1) lower population size,
194 N;=120 (M=370), and 2) a spatially random covariate SpatialCov, ~ Uniform(-1, 1)
195  (Appendix 1, table 1). We expected estimation performance for such scenarios to be more
196  challenging due to 1) sparser OPSCR data sets (Appendix 1, table 1), and 2) lower level of
197  spatial autocorrelation and overall variation in mortality. In total, we simulated 100 replicated
198  OPSCR data sets from each of the 16 scenarios (Appendix 1, table 1). We used NIMBLE’s
199  simulation feature (de Valpine et al. 2017, NIMBLE Development Team 2019) to simulate

200  OPSCR data sets directly from the nimble OPSCR model (Appendix 4-5).
201 2.3.2. Using density dependent survival

202 To illustrate how to estimate density-dependent survival, we used the OPSCR model with a
203  single source of mortality. Preliminary analyses showed that, computationally (convergence,
204  mixing), OPSCR models performed more poorly when survival was modeled as dependent on
205 latent density rather than deterministic spatial covariates. covariate. To counter this, we used a
206 larger spatial domain (S) to increase the number of habitat cells (R) and thus provide the model
207  with more variable latent density points to serve as covariate on the mortality hazard rate. This
208 led to habitat of 40x40 distance units (du) subdivided in R = 64 cells of dimension 5x5 du and

209  in which we centered a 30 x 30 detector grid. We set M=650 and N; = 250. We set m, =1.6


https://doi.org/10.1101/2022.03.04.482982
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.04.482982; this version posted March 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

210 and 4 = -1 to simulate negative density-dependence on survival and simulated 100 replicated

211 OPSCR data sets (Appendix 1, Table 12).
212 2.3.3. Ignoring spatial heterogeneity in mortality

213 To evaluate whether ignoring spatial variation in mortality leads to biased parameter estimates,
214 especially abundance (N), we fitted all simulated datasets described above with OPSCR models
215  that assumed constant survival across space and time. As in the earlier simulations, we fitted
216  models with two competing risks for the deterministic spatial covariate scenarios and a single

217  cause of mortality for the density dependent scenario.
218 2.4. Model fitting

219  We fitted the Bayesian OPSCR models using Markov chain Monte Carlo (MCMC) simulation
220  with NIMBLE in R version 4.1.0 (R Core Team 2021). We used R package nimbleSCR
221 (Bischof et al. 2020b, Turek et al. 2021) which implements the local evaluation approach
222 (Milleret et al. 2019) to increase MCMC efficiency. For each simulation, we ran three chains
223 0f 30,000 (60,000 for density-dependent survival) iterations, including a 2000-iteration burn-
224 in. We considered models as converged when the Gelman-Rubin diagnostic (R, (Gelman and
225  Rubin 1992)) was < 1.1 for all parameters and by visually inspecting trace plots from a
226  randomly selected subset of simulations. We also computed the prior-posterior distribution

227  overlap, and used overlap >35% as an indicator of weak identifiability (Gimenez et al. 2009).
228 2.5. Evaluation of model performance

229  We summarized the posterior § for each parameter and each simulation using relative error of

SD(B)

. 0-6 . .. . .
230  the mean posterior (T) and relative precision as the coefficient of variation (CV= TIRA

231  where 6 is the true (simulated) parameter value, 8 the mean of the posterior, and SD(0) the

232 standard deviation of the posterior. We quantified accuracy of the estimators across many

10
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233 simulations using relative bias of the average of the mean posteriors and the coverage accuracy
234 0of 95% credible intervals. The latter was determined as the rate of correct inferences, which is
235  the probability that the 95% credible interval of the parameter estimate contains the true value
236 of that parameter. In addition, we used results from a few of the simulated scenarios with a
237  deterministic covariate (as described above) to quantify the ability of the model to predict the

238  spatial pattern in mortality (see further details in Appendix 3).

239 3. Results

240 3.1. Spatial heterogeneity using a deterministic spatial covariate

241 All model parameters converged and were identifiable for scenarios with the spatial gradient
242 covariate and large population size (N1=250) (Appendix 1, table 2). The combination of the
243 spatially random covariate and low population size (N1=120) led to the poorest parameter

244  convergence and identifiability (28-57%; Appendix 1, table 2).

245  All model parameters had low bias (<6% relative bias) for all scenarios with large population
246  size and a gradient covariate (Figure 1, Appendix 1, table 3-6). Accurate estimates were more
247  challenging to obtain for scenarios with low population size and a spatially-random covariate
248  (Appendix 1, table 3-6). For example, relative bias of f,, reached 44% for the scenario with
249  low population size (N1=120), a spatially-random covariate and £, =-1; S,=1; (Appendix 1,
250 table 5). For the same scenario, but with a larger population size (N1=250), relative bias for 3,
251  was substantially lower (RB=2%). Coverage remained relatively high (>90%) for all scenarios
252  (Appendix 1, table 3-6). Across all scenarios, the effect of spatial covariates on mortality cause
253  with no dead recovery information (f3,,) was more challenging to estimate, with lower precision

254  (approx. 2 times larger CV) than () (Fig 1.C, Appendix 1, table 3-6).

255 3.2. Density-dependent survival

11
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256  Across the 100 replicated datasets, 86 models reached convergence and showed no
257  identifiability issues (Appendix 2, table 13). We detected a 13% positive relative bias in ¢

258  and f3; but coverage was >92% for all parameters (Figure 2 A, table 14).

259 3.3. Ignoring spatial heterogeneity in mortality

260  Apart from not being able to provide robust inferences on mortality, not accounting for spatial
261  heterogeneity in mortality can lead to bias in abundance estimates. The relative bias (up to 10%
262  for our simulated scenarios) and lower coverage were especially pronounced for scenarios with

263  aspatial gradient in mortality (Figure 2 B, Appendix 1, table 7-11).

264 4. Discussion

265  Wedescribed and tested an OPSCR model that explicitly models and estimates spatial variation
266  insurvival. The model is versatile enough to allow survival to be modelled as a function of any
267  spatial covariate, including local density estimated within the same model. Survival is modeled
268  asafunction of the location of the AC of both detected and undetected individuals which allows
269  population-level and spatially-explicit inferences. Using simulations, we show that the model
270  produces sound inferences on the role of spatial covariates and density dependence in
271  explaining spatial variation in survival. In addition, the model allows for integrating spatial
272 dead recoveries (Dupont et al. 2021) and estimates multiple competing sources of mortality
273 with potentially different spatial determinants. The model overcomes a challenge faced by
274  other methods, namely to a obtain population-level assessment of spatial determinants of

275  variation in survival (Royle et al. 2018).

276 Despite the recognized potential of OPSCR models to estimate spatial variation in vital rates
277  (Royle et al. 2014), few studies have attempted to use them for this purpose (Chandler et al.
278  2018)., Furthermore, we are not aware of any study that has evaluated the performance of

279  OPSCR models that include spatially-explicit vital rates. Our simulations show that sound

12
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280 inferences in the spatial variation of cause-specific mortality can be obtained when survival is
281  modelled as a function of a deterministic spatial covariate, even with relatively small OPSCR
282  datasets (5 occasions, ~50 individuals detected per occasion). OPSCR model performance
283  (convergence, precision) was significantly higher for simulations with spatially autocorrelated

284  survival (gradient) compared with spatially-random survival (Appendix 1, table 3-6).

285  One of the main advantages of SCR models is that they can estimate spatial variation in density.
286 We showed that OPSCR models can simultaneously estimate local density and its effect on
287  survival. This has the advantage that the uncertainty in both the number of individuals alive
288  and their location is propagated when estimating the spatially link with survival. However,
289  density being both a latent variable and a covariate used to explain variation in survival, it is
290 computationally challenging (i.e., due to the increased number of model dependencies) to fit
291  density dependent-survival OPSCR models. In Appendix 5, we showcase how centering the

292 density covariate (d) can improve the mixing of MCMC chains of different model parameters.

293 Future research should focus on building and testing models that estimate spatial variation in
294  other demographic parameters, i.e., recruitment, emigration and immigration, as it is an
295  essential step to fully understand the mechanisms driving spatial heterogeneity in density and
296 therefore population dynamics (Chandler et al. 2018). Meanwhile, it is possible to use a spatial
297  covariate on the intensity parameter in the spatial point process submodel for the ACs to help

298  account for spatial heterogeneity in recruitment (Zhang et al. 2020).

299 The OPSCR model described here can identify spatial variation in mortality and its
300 determinants from spatial capture-recapture data, which are collected by many monitoring
301  programs (Royle et al. 2018). Climatic conditions, resources, human activities, hunting,
302  predation risk, and intra- and inter- specific competition are some examples of the pressures

303  that are inherently spatial and known to impact survival and that could be studied with the
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304 model presented here. We also show that estimates of density obtained from OPSCR models
305 can be biased (reached up to 10% in the scenarios tested) when spatial variation in survival is
306  not accounted for. The Bayesian model written in NIMBLE and the set of features available in
307 the nimbleSCR package will allow users to fit efficient and flexible OPSCR models. This
308 development represents an essential step towards a fully spatially-explicit OPSCR model that

309 can disentangle the role of spatial drivers on population dynamics (Chandler et al. 2018).
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396  Figure caption

397  Figure 1. A) Maps depicting the simulated spatial variation in cause-specific mortality (h and
398  w) within the spatial domain (S) for the scenario with a gradient covariate ,=-1 and f3,, =1
399 (Table 5 Appendix 1 ). White points represent detectors. Violin plots show the distribution of
400 the relative error (left; points: relative bias) and coefficient of variation (CV; right, points:
401 median) in B) occasion-specific abundances, and C) cause-specific mortality parameters
402  obtained after fitting the OPSCR model accounting for spatial variation in mortality to 100
403  replicated datasets. Results from scenarios with small (N1=120) and large (N1=250) population

404  size are presented.

405  Figure 2: A) Violin plots (points: medians = relative bias) representing the distribution of the
406  relative error in occasion-specific abundances (N) and parameters controlling for the effect of

407  density in survival (B, o). Abundance estimates and associated relative error were obtained

408 by fitting an OPSCR model that did not account for spatial variation in survival (“without™)
409  and a model that accounted for density-dependent survival (“with”) to 100 replicated datasets
410  simulated with a negative effect of density on survival f4= -1. B) Violin plots of distribution

411  of the relative error (left; points: medians= relative bias) and coverage (right) of occasion-
412  specific abundances obtained by fitting an OPSCR model that accounted for spatial variation
413  in mortality (“with) and a model did not (“without”). Results are presented for 100 replicated

414  datasets simulated with a spatial gradient in mortality, f,=-1, 8,,=1 and N;=250.
415
416
417
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