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Abstract: Ustilago maydis is an important plant pathogen causing corn-smut disease and an effective 

biotechnological production host. The lack of a comprehensive metabolic overview hinders a full 

understanding of environmental adaptation and a full use of the organism9s metabolic potential. 

Here, we report the first genome scale metabolic model (GSMM) of Ustilago maydis (iUma22) for the 

simulation of metabolic activities. iUma22 was reconstructed from sequencing and annotation using 

PathwayTools, the biomass equation was derived from literature values and from the codon com-

position. The final model contains over 25% of annotated genes in the sequenced genome. Substrate 

utilization was corrected by Biolog-Phenotype arrays and exponential batch cultivations were used 

to test growth predictions. A pan-genome of four different U. maydis strains revealed missing met-

abolic pathways in iUma22. The majority of metabolic differences between iUma22 and the pan-

genome occurs in the inositol, purine and starch metabolic pathways. The new model allows studies 

of metabolic adaptations to different environmental niches as well as for biotechnological applica-

tions. 

Keywords: Ustilago maydis; Genome Scale Metabolic Model; Constraint Based Model; Biotechnol-

ogy; COBRA; FBA; Metabolism; Itaconate 

 

1. Introduction 

Ustilago maydis is a model organism and economically important fungus from the 

division of Basidiomycota. The associated corn smut disease affects maize harvest but is 

also used as food itself [1]. As a parasite, U. maydis is growing into the plant tissue to 

extract substrates for its own metabolic activity. Ustilaginaceae show a versatile product 

spectrum such as organic acids (e.g., itaconate, malate, succinate), polyols (e.g., erythritol, 

mannitol), and extracellular glycolipids, which are considered value-added chemicals 

with potential applications in the pharmaceutical, food, and chemical industries. U. maydis 

has developed an effective native production of itaconic acid, an important platform 

chemical. Indeed, the itaconic acid production in U. maydis was improved to surpass the 

current biotechnological route of Aspergillus terreus based production. The advantages are 

yeast-like growth, high productivities, yields and titer and reduced byproduct formation 

[234], and as model organism, efficient genetic tools are available [5]. 
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The annotated genome sequence of Ustilago maydis strain 512 enabled a deeper un-

derstanding of the pathogenic mechanisms as well as the metabolic competencies [6]. An-

notated genomes can be used to construct genome-scale metabolic models (GSMM), 

which serve as a knowledge-base of metabolic capacities and allow rational biotechnolog-

ical engineering [7]. GSMM can be optimized to identify genetic modifications for meta-

bolic engineering that maximize the production of metabolic intermediates. The optimal 

biotechnological production routes regarding different organisms and metabolic path-

ways can be computationally evaluated using their respective GSMM [8]. The perfor-

mance of metabolic microbial and cross-kingdom interactions can be interrogated, to iden-

tify exchange metabolites, community stability and metabolic properties that mark the 

transitions from mutualism to parasitism [9311]. 

 

Here, we present the first high-quality genome-scale metabolic model for U. maydis 

called iUma22. The initial draft model was constructed by the automated PathwayTools 

workflow with substantial manual adjustments including pathway adjustments derived 

from Biolog phenotype arrays with 190 carbon substrates. The model quality was assessed 

using the community evaluation with Memote and the accuracy of rate predictions was 

tested with glucose growth experiments. The metabolic capacity of the model iUma22 was 

compared to a pan-genome of different U. maydis strains annotated by means of KAAS 

and enabling reconstruction of KEGG pathways and BRITE hierarchies.  

2. Materials and Methods 

2.1. Draft GSMM from Pathway Tools 

The genomic DNA sequence of Ustilago maydis (Strain 521 FGSC 9021) [6] was ob-

tained from NCBI's RefSeq project [12]. A corresponding annotation file was then ex-

ported from the MIPS Ustilago Maydis Database via the PEDANT Interface [13]. Using 

the PathoLogic Tool [14], the sequence and annotation files were parsed and in combina-

tionwith MetaCyc reactions database a new Pathway/Genome Database (PGDB) was cre-

ated. During pathway cleaning reactions from other taxa are pruned, unless there are en-

zymes matching to all of the reactions. Additional metabolic activity was identified using 

the 8Pathway Hole Filler9 function and sequence information of isoenzymes was used to 
query the proteome of U. maydis via pBlast. Protein sequences were queried on PEDANT, 

MUMDB, MetaCyc or KEGG [15,16] and manually curated while inconclusive polypep-

tides as well as those that are involved in signaling and other non-metabolic pathways 

were discarded. 

 

2.2 Strains sequenced, pan-genome, KEGG pathway enrichment  

To identify metabolic differences within the U. maydis strain family, a pan-genome 

consisting of five Ustilago maydis strains was assembled, including strains 198, 482, 485, 

512 [17]. The Nanopore Rapid DNA Sequencing kit (SQK-RAD04, Oxford Nanopore Tech-

nologies, Oxford, UK) was used for preparation and sequencing was performed on an 

Oxford Nanopore GridION Mk1 sequencer using a R9.4.1 flow cell. The Nextera XT DNA 

Sample Preparation Kit (Illumina, San Diego, CA, USA) was used for whole-genome-shot-

gun PCR-free libraries from 5 μg of gDNA. The library quality was assessed by an Agilent 

2000 Bioanalyzer with Agilent High Sensitivity DNA Kit (Agilent Technologies, Santa 

Clara, CA, USA) for fragment sizes of 50031000 bp. Paired end sequencing was performed 

on the Illumina MiSeq platform (2 × 300 bp, v3 chemistry). Adapters and low-quality reads 

were removed by an in-house software pipeline prior to polishing as recently described 

[18]. Run control was based on MinKNOW (Oxford Nanopore Technologies) with the 48 

h sequencing run protocol. Base calling was performed offline using Bonito, assembly 

with canu v2.1.1 [19], contigs were polished with Pilon [20] for ten iterative cycles, and for 

read mapping BWA-MEM [21] and Bowtie2 v2.3.2 [22] in the first and second five itera-

tions, respectively. 
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Genes were predicted using GeneMark-ES 4.6.2. [23], and functionally annotated us-

ing a modified version of the genome annotation platform GenDB 2.0 [24] for eukaryotic 

genomes [25]. Similarity searches were conducted against COG [26], KEGG [16] and 

SWISS-PROT [27]. Identification of putative tRNA genes was conducted with tRNAscan-

SE [28]. Completeness, contamination, and strain heterogeneity were estimated with 

BUSCO (v3.0.2 [29]), using the fungi-specific single-copy marker genes database (odb9). 

The obtained genome sequences are compared and documented in more detail in 

Ullmann et al. (2022) [17]. The pan-genome of all available U. maydis strains was calculated 

by means of EDGAR 3.0 [30]. The KEGG pathway annotation was performed by compar-

ison of E.C. numbers in the pan-genome annotation and E.C. numbers in the reaction de-

scription of iUma22. The comparison resulted in three lists, E.C. numbers only present in 

iUma22 (iUmaNOTpan), present in the pan-genome and iUma (iUmaANDpan), and only 

present in pan-genome (panNOTiUma). The panNOTiUma list was exported as fasta-file 

and KAAS [31] was used to annotate the list with KEGG pathway information. The anno-

tation of the genes in the SBML-file was achieved with the BioServices Python package 

[32].  

 

2.3 Biomass equation and growth/non-growth maintenance  

The composition of proteins, RNA and DNA was estimated based on the protein and 

genome sequence respectively, whereas the composition of lipids and the cell wall were 

results mined from scientific articles [33,34]. The exact biomass composition of U. maydis  

is not available, however, the specific elemental composition [35] and the biomass com-

position for fungi in general [36] was used as a starting point and linear programming 

was applied to approximate the total biomass composition (Supplementary 2). The com-

position values of each monomer were converted into stoichiometric values [37]. For ex-

ample, to determine the AA composition contribution (in molAA/gProt), first the AA-protein 

molarity (MPAA in gAA/molProt) was calculated by multiplying the AA codon frequency 

with the AA molar mass (minus the molar mass of water released during polymerization) 

(Eq. 1). Normalizing each AA-protein molarity by the overall sum yields the weight frac-

tion of each AA (WPAA) (Eq. 2). Division of the AA weight fraction (WPAA) by its molar 

mass and multiplication with the weight fraction of protein to the dry weight (X in 

gProt/gCDW) and conversion from mol to mmol (factor 1000) gives the stoichiometric factor 

(SFAA) (Eq. 3). To calculate the stoichiometric factor of an AA (SFAA) the molar percentage 

(MP) is multiplied with the fractional protein mass per biomass (X) (Eq. 2). 

MPAA [gAA/molProt] = CDNAA /  CDN • (MAA 3 MH2O) (1) 

WPAA [gAA/gProt] = MPAA / MP (2) 

SFAA [molAA/gCDW] = WPAA/(MAA 3 MH2O) • X • 1000 (3) 

The fraction of protein on total biomass (X) is unknown and was determined by lin-

ear optimization. The average elemental composition of each macromolecule (protein, 

DNA., RNA, lipid, cell wall) was determined by summing up the products of the absolute 

amount of each element. For each macromolecule the C-mole content was calculated by 

division with the carbon elemental composition [35]. Phosphorous and Sulfur were added 

from the elemental composition of S. cerevisiae. The optimization followed the formula: 

 

A•X = b (4) 

subject to: xlbi ≤ xi ≤ xubi (5) 
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The rows of matrix A correspond to the six individual elements C, H, O, N, P, S 

whereas the columns correspond to the five types of macromolecules (protein, DNA, 

RNA, lipids, cell wall). The vector b represents the measured elemental biomass C, H, O, 

N supplemented by the elemental content of P and S of S. cerevisiae. The equation was 

solved for vector X, the biomass fractions of each of the macromolecules (Table 1). The 

lower (xlb) and upper (xub) boundary values are provided in Supplementary 2. The ATP-

associated maintenance values were set to 46.3 molATP/gCDW and 1.9 molATP /gCDW/h for 

GAM and NGAM, respectively. 

Table 1. Macromolecular composition of U. maydis calculated by linear optimization. The full com-

position is provided as Supplementary 1. 

Component Protein DNA RNA Lipids Cell Wall 

g/100 gCDW 30 0.3 10 40 16 

 

 

2.4 Substrate and growth experiments  

For the substrate utilization experiments the Biolog Phenotype Microplates™ PM1 
and PM2A were used with Ustilago maydis strain 521. Cultures were first grown on YEPS-

agar plates at 30°C for at least 24 hours. To prepare the pre-cultures 25 mL of YEPS me-

dium were inoculated from the plates of each strain then performed in 100 mL Erlenmeyer 

flasks and incubated at 30°C, 200 rpm for 24 hours. (Ecotron Incubation shaker, Infors HT 

AG, Switzerland). The inoculation fluid was prepared with IFY-0 (1.2x), cell suspension 

and sterile water to obtain a starting turbidity of 62% T, with 100 L for each well. The 

inoculated plates were shaken at 200 rpm with a shaking diameter of 50 mm, at 30°C and 

with a humidity of 70% up to 168 hours (Multitron Incubation shaker, Infors HT AG, Swit-

zerland). Microbial growth was measured with the SynergyMX (BioTek Instruments, 

USA) with the optical density at 600 nm. The Biolog raw data is available in Supplemen-

tary 4 (PM1) and 5 (PM2A). 

 

The threshold for positive growth was determined by examining the OD histograms 

for each plate. A normal distribution at low OD values represents the OD range below 

positive growth (Figure 2). The final growth threshold of 0.4 a.u. was empirically deter-

mined to maximize logic consistency and to minimize the integration of false positive 

metabolic activity. The value approximates the end of a normal distribution of non-

growth at low ODs. Experiments conducted for this manuscript and literature data was 

used to estimate growth rates and glucose uptake rates. The OD measurements of the 

growth data was converted into gCDW/L using the empirical relation from yeast of 0.62 

gCDW/L /OD (BNID 111182, [38]). The growth rates were identified using a nonlinear fit of 

the biomass to the Verhulst equation, 

X(t) = X0*C/(X0 + (C-X0)*exp(-*t)), (1) 

 

which calculates the biomass from the initial biomass (X0), the max biomass capacity (C), 

the growth rate (m) and time (t). The substrate uptake rate was estimated with a linear 

equation [39].  
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3. Results and discussion 

3.1. Description of iUma22  

The genome scale model for Ustilago maydis was constructed based on the genome 

sequence and annotation of strain 521 [6]. Table 2 shows the number of represented genes, 

metabolites and reactions in the new reconstruction and a comparison to the community 

yeast model ([40], version 8.5.0). Whereas the community yeast model is more compre-

hensive, iUma22 has a higher gene-to-reaction ratio as well as gene-protein-reaction rela-

tionships (GPR), as we aimed to include well connected metabolic pathways with (pre-

dicted) annotated genes. U. maydis and S. cerevisiae have similar number of predicted 

genes, and when assuming the yeast 8.5.0 as a benchmark of metabolic representation, the 

iUma22 has reached 70% of genes completeness. There are likely gaps in the secondary 

metabolism discussed in Ullmann et al. (2022) [17] as well as adaptations to the pathogenic 

life style.  

Table 2. Number of metabolites, reactions and genes of the genome scale metabolic model of U. 

maydis iUma22 and in comparison, the community yeast model (8.5.0 [40]). 

Component iUma22 Yeast 7.61 

Genes 814 1,150 

Metabolites 1,233 2,742 

Reactions 1,855 4,058 

Reactions with GPR 1434 2633 

Pred. genes2 6.909 6,464 

 
1 https://github.com/SysBioChalmers/yeast-GEM, update 2021-06-24. 
2 https://www.ncbi.nlm.nih.gov/datasets, accessed 2022-02-04 

 

The quality of iUma22 was tested with Memote with an overall performance of 42% 

[41] (Figure 1). Mass and charge balance as well as metabolite connectivity show high 

quality with scores of over 98%. Memote detects unbounded fluxes that reach boundary 

conditions during flux variability analysis for 203 reactions on standard media. The stoi-

chiometric consistency of the model could not be evaluated thus decreasing the overall 

consistency quality to 53%. Note, however, that also for the S. cerevisiae community model 

([40], version 8.5.0) the stoichiometric consistency test fails. Annotations for metabolites, 

reactions and genes contain detailed unique annotations. The community yeast model, 

developed since more than a decade, is evaluated by Memote with a score of 65%. 

 

Figure 1. Memote quality report of iUma22 with total score of 42%. The full html report is pro-

vided as Supplementary 3. 
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3.2. Carbon Substrate tests with BIOLOG Phenotype arrays 

The model iUma22 correctly reproduces 96% of growth phenotypes tested in BI-

OLOG carbon source assays. We chose an OD threshold of 0.4 a.u. for growth in the plates 

PM1 and PM2A, a value right after the apparent normal distribution of non-growth for 

low final OD values (Figure 2). The threshold is a compromise to include growth for gly-

cine dipeptides (PM1: E1, G1, G6, H1), but also includes TCA cycle intermediates (succin-

ate (PM1:A5), fumarate (PM1:F5), aspartate (PM1:A7), malate (PM1:G12)). These TCA cy-

cle intermediates could not be enabled for growth in the model. The largest set of reactions 

added because of the BIOLOG plates includes di- and oligosaccharide metabolism and 

methylated central carbon metabolites. Overall, growth took place in 52 wells (34 in PM1 

and 19 in PM2A). iUma22 was manually adjusted to reproduce the majority of the growth 

phenotypes (Figure 2). 

 

While the majority of substrate are correctly reproduced, some metabolites fail to 

support growth in iUma22. Many intermediates from the TCA cycle do not support 

growth (2-oxoglutarate, fumarate, succinate, aspartate) and this contrasts for lactate 

(PM1:B9), malate (PM1:G12) and succinamate (PM2A:F10) in the Biolog results (Figure 2). 

The degradation of arginine (PM2A:G4), isoleucine (PM2A:G9) and ornithine (H1) is dys-

functional in iUma22, despite the ability of the model to grow on proline, which is a car-

bon intermediate of the common carbon metabolization following the ornithine-gluta-

mate aminotransferase reaction (E.C. 2.6.1.13, ORNTArm). The metabolization of sebacic 

acid (PM2A:F8) is not represented in the model, because no information is available in the 

 

 

Figure 2. BIOLOG phenotype experiments with carbon sources from PM1 and 

PM2A. Growth was evaluated by OD 600 after 144h for PM1 (A) and 288h for 

PM2A (B) with a threshold of 0.4 a.u (black line with triangle) which excludes 

the normal distribution at low ODs representing no growth.  52 substrates are 

correctly predicted to growth (true positive, green) and 128 correctly assigned to 

non-growth by iUma22 (true negative, yellow) in the plates PM1 (C) and PM2A 

(D). Twelve substrates could not be balanced to enable growth in iUma22 (False 

Negative). Results of PM1 and PM2A are provided as Supplementary 4 and 5. 
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databases KEGG and Metacyc. Finally, note that false positive results were corrected by 

removing exchange reactions of the associated metabolites. 

3.3. Growth rate correlation 

We evaluated the growth characteristic of U. maydis on glucose and compared the 

results with predictions of iUma22. We used published batch growth data of U. maydis 

MB215 control strains by Becker et al. (2020) [4], that were genetically modified for opti-

mized biotechnological performance, as well as newly generated data with U. maydis 

strain 521 (Table 3). The growth rate was estimated based on error minimization of the 

logistic Verhulst growth equation and substrate depletion with a linear equation (Figure 

3A and Material and Methods). The yield of each experiment is close to expected and 

reported yields in S. cerevisiae of 0.51 gCDW/gglc [42]. Moreover, the correlation between 

substrate uptake rate and growth rate (Figure 3A) is strong, R2=0.99, and also results in a 

convincing overall growth associated yield of 0.47 gCDW/gglc. Note, however, that the high-

est substrate uptake rate (ID 82229v19, Table 3) is associated with a high standard deviation 

a higher yield (0.45 gCDW/gglc), despite the same initial glucose concentration as the exper-

iment by Becker et al. (2020) [4](ID 850glc9, Table 3). 
 

The maintenance parameter was calculated as the x-axis interception, i.e., glucose 

uptake in the absence of growth and results 0.16 mM glc/gcDW/h, similar to S. cerevisiae 

maintenance of 0.2 mM glc/gcDW/h [43]. The growth of U. maydis on glucose is substrate 

inhibited, the higher the glucose concentration the lower is the growth and the substrate 

uptake rate (Figure 3B, Table 3). Note, that even comparable initial substrate concentra-

tions can result in different substrate uptake and growth dynamics as for the experiments 

8130v19 with 126 mM and 8130v29 with 130 mM which are still consistent according to the 

comparable yield (Figure 3B, Table 3). The growth predictions by iUma22 coincide to the 

experiments at low concentrations but underestimate growth at high substrate uptake 

rates and suggest that the growth associated maintenance parameter should be increased. 

Table 3. Glucose batch growth experiments were performed and used from the literature [4]. The 

data provided growth and substrate uptake rates for testing iUma22 predictions. Growth results 

for each experiment is provided in Supplementary 6.  

Source ID 
Initial Glc, 

g/L 

Growth rate, 

/h 

Substrate rate, 

mmol/gCDW/h 

Yield, 

gCDW/gglc 

This work 2229v1 50 0.18+/-0.04 2.2+/-0.6 0.45 

Becker et al. 50glc 54 0.08+/-0.02 1.24+/-0.34 0.33 

This work 130v1 126 0.07+/-0.02 1.1+/-0.34 0.33 

This work 130v2 132 0.04+/-0.01 0.74+/-0.18 0.3 

Becker et al. 100glc 106 0.04+/-0.01 0.67+/-0.19 0.33 

This work 200v1 203 0.02+/-0.01 0.33+/-0.08 0.33 

This work 200v2 216 0.02+/-0.01 0.55+/-0.1 0.33 
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3.4. U. maydis Pan-Genome comparison 

We used the available sequenced U. maydis strains [17] to compare the enzymatic 

gene inventory among strains and regarding iUma22. A pan-genome of strains 198, 482, 

485 and 512 was constructed by means of EDGAR 3.0 resulting in 7838 coding genes of 

which 1458 are annotated with an E.C. number. We explored how many genes are shared 

among all strains and used strain 512 as a reference to identify unique enzyme coding 

genes and the proportion of shared genes to other strains (Figure 4A). The overwhelming 

number of genes is shared among all strains (8all strains9 in Figure 4A), strain 512 has a 
number of unique enzyme coding genes are more likely shared with other strains because 

genes with more selective distributions (shared among 3 strains to 1 other strain), are get-

ting less frequent (see also Figure 5 in Ullmann et al., 2022). We then evaluated how the 

genetic composition of iUma22 differed with respect to the U. maydis pan-genome of E.C. 

annotated genes (Figure 4B). Table 4 shows the top five pathways with the most enzyme 

annotations for iUma22 unique genes, shared genes and pan-genome unique genes with 

E.C. numbers. The majority of iUma22 unique genes belong to oxidative phosphorylation, 

the unique genes in the strain pan-genome belong to diverse central carbon metabolic 

pathways (Table 4). Particularly noteworthy is the inositol phosphate pathway (Figure 

4C), not only because of the highest number of pan-genome unique metabolic capacity 

but also because inositol was a growth supporting substrate of the Biolog which was man-

ually added to the model. 

 

 

 

 
Figure 3. Growth characteristics of U. maydis glucose batch cultures and similarity to 

iUma22 predictions. A) Seven batch experiments on glucose were analyzed to extract 

growth- and glucose-uptake rates (black dots). B) With increasing initial substrate concen-

trations the glucose uptake rate decreases. Figures C) and D) represent one example growth 

experiment of Becker et al. (2020) and the associated analysis. The growth rates were esti-

mated with the Verhulst logarithmic growth model and the growth rate was used to fit a 

linear equation to identify the substrate uptake rate. The slope of the experimental data in 

A) provides the biomass yield on glucose with 0.47+/-0.03 gCDW/gglc, the interception of the 

x-axis provides the glucose maintenance uptake rate with 0.2+/-0.01 mmol/gCDW/h. The 

growth rate data is provided in Supplementary 6. 
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Table 4. Top five metabolic pathways with the highest number of missing genes in iUma22 com-

pared to the strain Pan genome. The annotation is based on KAAS considering only KEGG path-

ways (KAAS outputs for iUma22-Unique, Shared and Pan-Unique provided as Supplementary 7-

9). 

iUma22-Unique Shared Pan-Uniqe 

Oxidative phosphor. (42) Purine (29) Inositol phosphate (20) 

TCA cycle (2) Pyruvate metabolism (27) Purine (12) 

C5-branched metabolism (1) Glycolysis (25) N-Glycan biosynth. (11) 

Nitrogen metabolism (1) Gly, Ser, Thr metab. (24) (GPI)-anchor biosynth. (11) 

Starch and sucrose (1) Val, Leu, Iso metab. (24) Starch and sucrose (10) 

 

 

 

Figure 4. Comparison of enzymes in U. maydis strain pan-genome and iUma22. A) E.C. annotated 

genes in strain 512 that are unique to 512 or shared with the other strains. B) Coverage of the 

genes in iUma22 of E.C. annotated genes in the pan-genome identified by KAAS. Table 4 show 

the top five pathways with most association for iUma22 unique, pan-genome unique and their 

intersection. C) The inositol phosphate metabolism contains with 20 genes the highest level of 

missing genes in iUma22 (Supplementary 9). 

5. Conclusions 

Here, we present iUma22, a genome scale metabolic model of U. maydis, which cor-

rectly simulates a large number of substrate phenotypes as well as glucose-based growth 

rates. The model can be used to identify biotechnological potential of metabolite over-

production and to optimize metabolic engineering strategies. It can also be used to study 
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metabolic shifts in different life cycles of the fungus during plant infection. While the re-

construction was performed based on model strain 521, the genome sequencing of addi-

tional U. maydis strains provided insight to additional metabolic pathways, which could 

be used to generate a pan-genome scale metabolic model of U. maydis. 
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S1: Excel file for calculations of the U. maydis elemental composition. 

S2: Matlab workspace file with variables and results of the optimization for the growth equation. 
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S6: Excel file with the growth experiments. 
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