

1 **Inhibition is a prevalent mode of activity in the neocortex around awake**
2 **hippocampal ripples**

3
4 Javad Karimi Abadchi¹, Zahra Rezaei¹, Thomas Knöpfel², Bruce L. McNaughton^{1,3}, Majid H.
5 Mohajerani^{1,*}

6
7 1. Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K
8 3M4, Canada
9 2. Laboratory for Neuronal Circuit Dynamics, Imperial College London, London SW7 2AZ,
10 United Kingdom
11 3. Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA

12
13 **Corresponding authors**

14 *Majid H. Mohajerani, email: mohajerani@uleth.ca, Tel: 403 394 3950
15 Address: Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University
16 of Lethbridge, Lethbridge, AB, Canada, T1K 3M4

17
18
19 **Keywords**

20 Hippocampus, neocortex, hippocampal-neocortical interaction, memory consolidation, sharp-
21 wave ripple, sleep, wide-field mesoscale voltage and glutamate imaging, two-photon Ca^{2+} imaging

22
23
24
25
26
27

28 **Abstract**

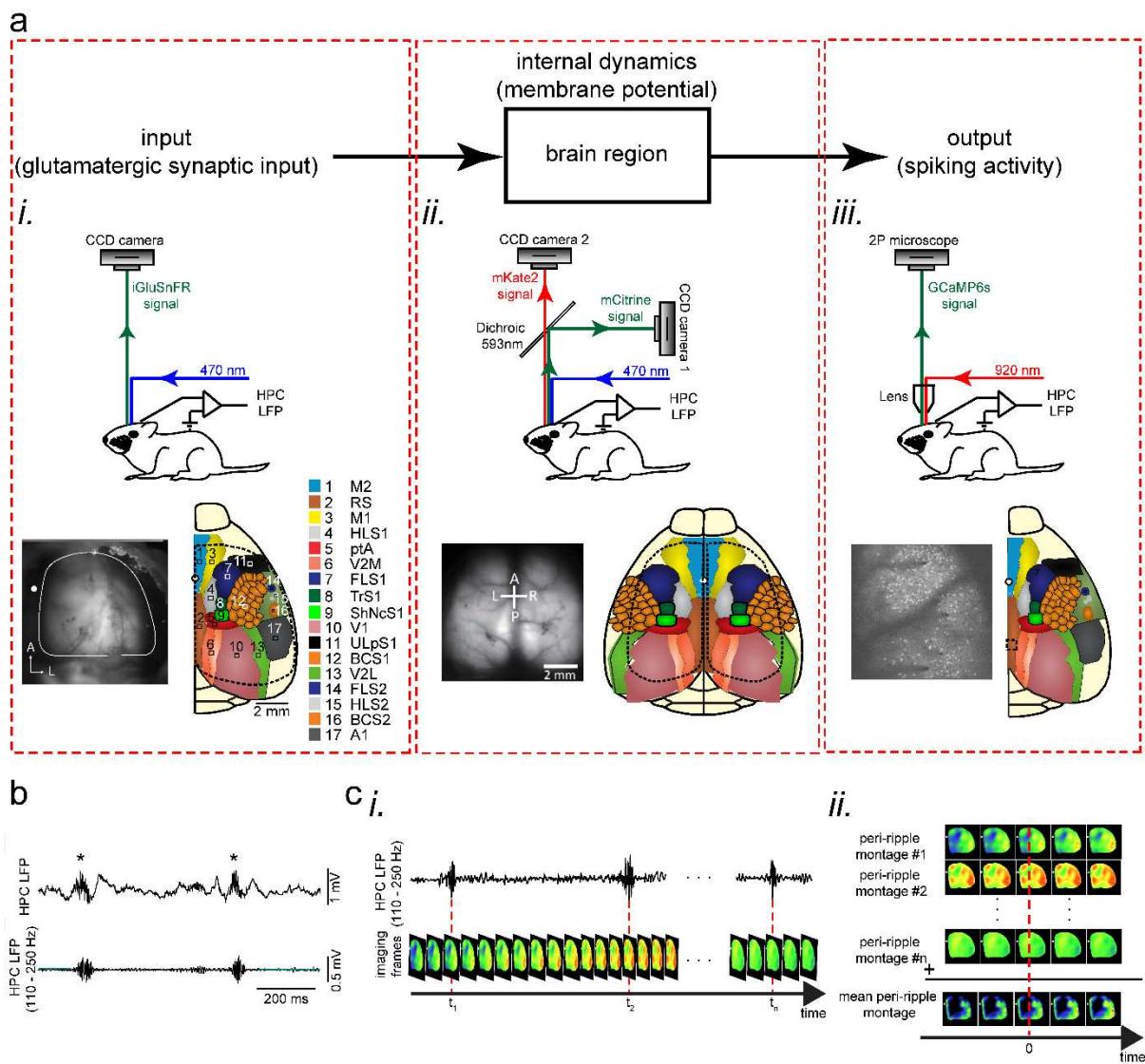
29 Coordinated peri-ripple activity in the hippocampal-neocortical network is essential for
30 mnemonic information processing in the brain. Hippocampal ripples likely serve different
31 functions in sleep and awake states. Thus, the corresponding neocortical activity patterns may
32 differ in important ways. We addressed this possibility by conducting voltage and glutamate wide-
33 field imaging of the neocortex with concurrent hippocampal electrophysiology in awake mice.
34 Contrary to our previously published sleep results, deactivation and activation were dominant in
35 post-ripple neocortical voltage and glutamate activity, respectively, especially in the agranular
36 retrosplenial cortex (aRSC). Additionally, the spiking activity of aRSC neurons, estimated by two-
37 photon calcium imaging, revealed the existence of two subpopulations of excitatory neurons with
38 opposite peri-ripple modulation patterns: one increases and the other decreases firing rate. These
39 differences in peri-ripple spatiotemporal patterns of neocortical activity in sleep versus awake
40 states might underlie the reported differences in the function of sleep versus awake ripples.

41

42 **Introduction**

43 Hippocampal-neocortical interactions around hippocampal ripples play an important role
44 in memory processes¹⁻⁴. The functional role of such interactions are believed to be brain state-
45 dependent such that they are involved in memory consolidation during NREM sleep, while they
46 are implicated in memory-guided behavior such as planning and memory retrieval in waking
47 state⁵⁻⁷. This state-dependent functional dichotomy poses a question: how does spatiotemporal
48 dynamics of hippocampal-neocortical network interactions differ in the two states?

49 There are pronounced differences in the neocortical activity patterns between NREM sleep
50 and quite wakefulness. The most prominent difference is the near absence of so-called slow-
51 oscillations (SO) during wakefulness. SO, a quasi-synchronous ≤ 1 Hz rhythmic fluctuation
52 observed in LFP and EEG recordings throughout the neocortex during NREM sleep, is partly
53 correlated with hippocampal ripples, and recent memory reactivation in cortex is strongly locked
54 to ripples⁸⁻¹¹. However, given the near absence of SO in wakefulness¹², it is not straightforward to
55 extrapolate from sleep to wakefulness, although a few studies have shown that the proportion of


56 neurons whose spiking activity is suppressed around hippocampal ripples is significantly higher
57 in wakefulness compared with sleep.

58 In the present study, we extended the previous results by imaging the activity of a large
59 portion of the dorsal neocortical mantle in awake mice, with concurrent local-field potential (LFP)
60 and multi-unit activity (MUA) recording from the pyramidal layer of the dorsal CA1. Wide-field
61 glutamate and voltage recording were used to capture the excitatory synaptic input and the
62 membrane potential fluctuations across neocortical regions and to correlate them with the
63 occurrence of hippocampal ripples. A sharp contrast in the peri-ripple neocortical activity between
64 the awake and sleep states was observed. To further elaborate on this contrast, we used the two-
65 photon calcium imaging to focus on the agranular retrosplenial cortex (aRSC) whose glutamate
66 and voltage activity patterns were different from the rest of the imaged regions. Our results suggest
67 that inhibition is more pronounced in peri-ripple neocortical activity in awake than sleep states.

68

69 **Results**

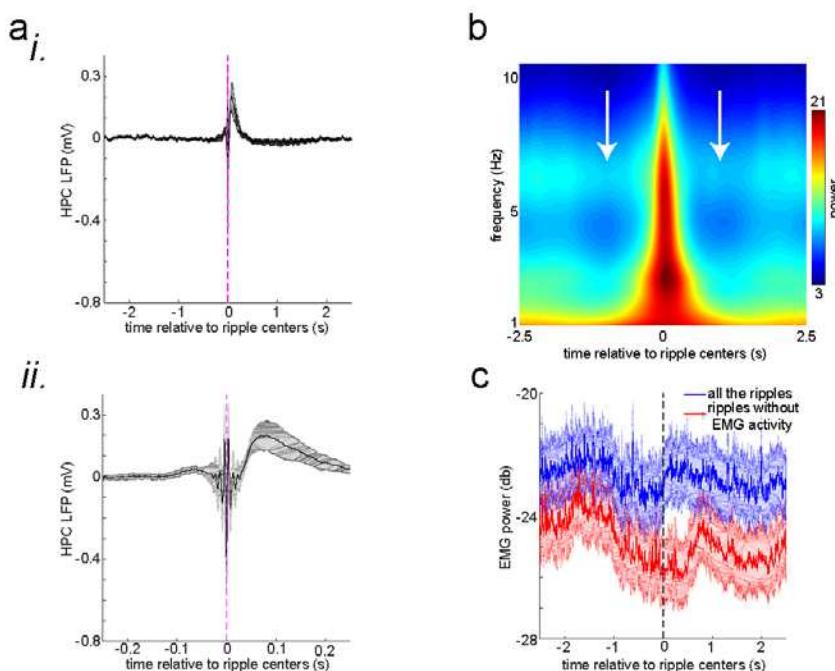
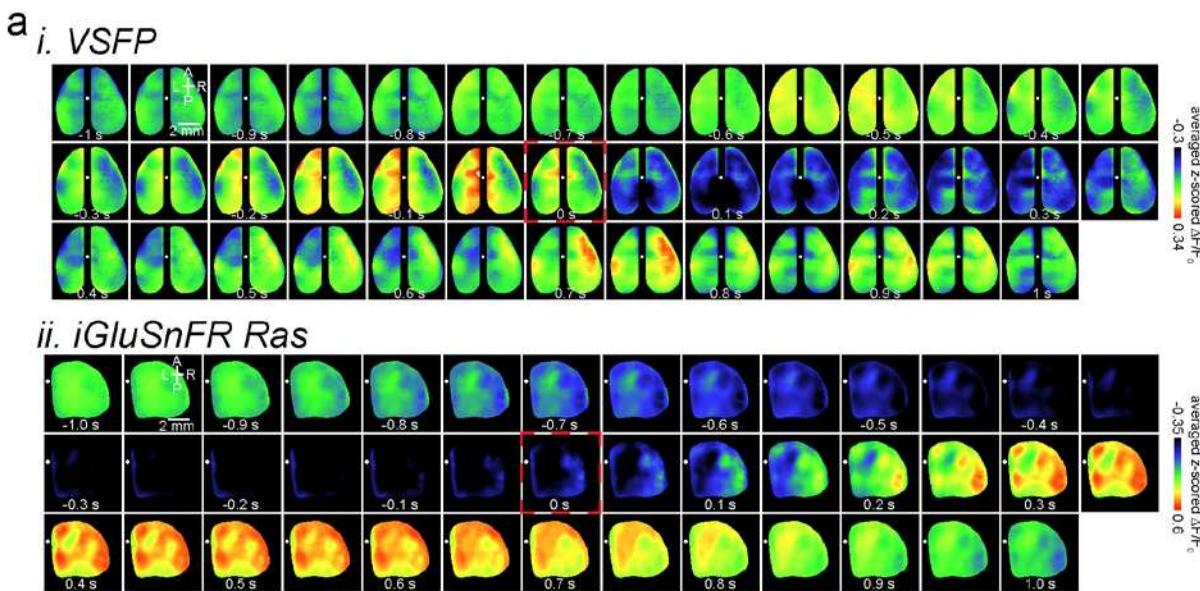
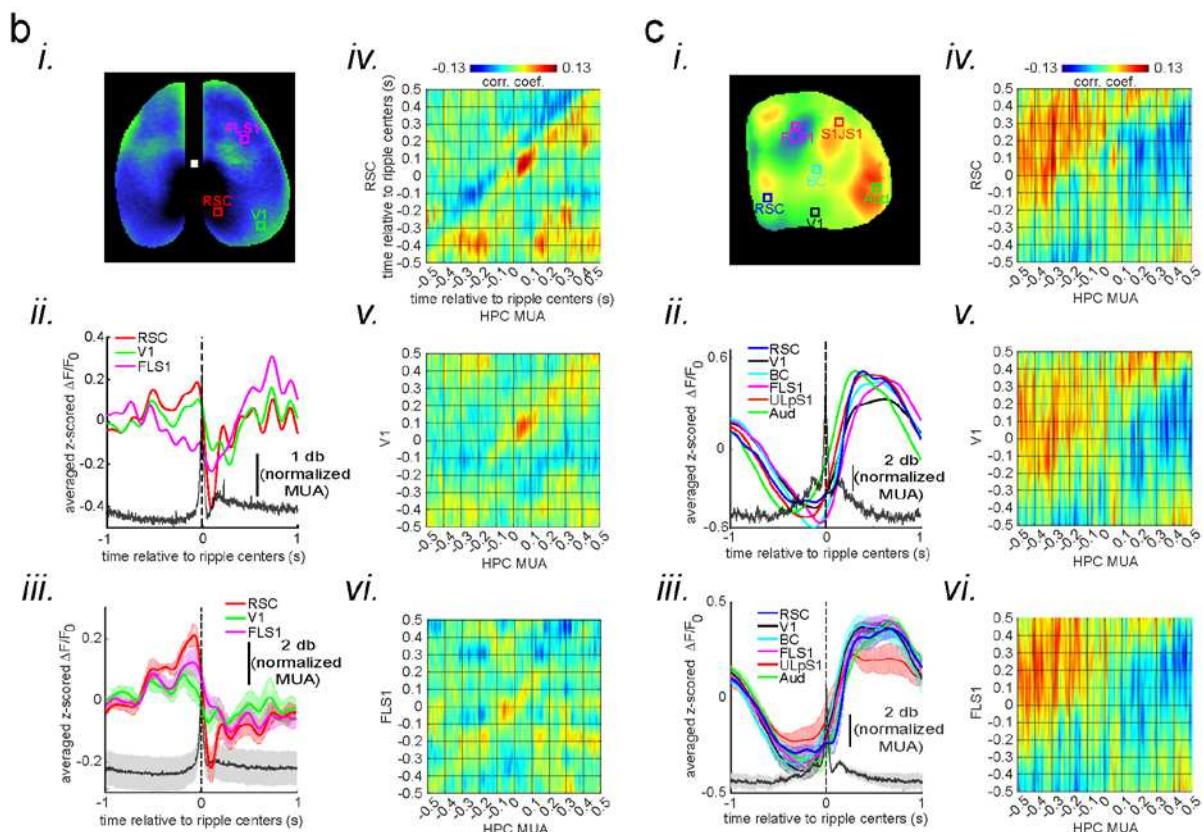

70 To study peri-ripple activity across neocortical regions in the awake state, we utilized three
71 imaging modalities to shed light on different aspects of the problem at hand. First, to capture the
72 internal dynamics of neocortical regions, wide-field voltage imaging with voltage indicator
73 (butterfly1.2; VSFP mice) expressed in the excitatory neurons of the neocortical layers II/III was
74 used (Fig. 1aii). Second, to capture the excitatory input to the neocortical regions, wide-field
75 imaging with intensity-based glutamate-sensing fluorescent reporter (iGluSnFR; iGlu-Ras mice)
76 indicator expressed in the excitatory neurons of the neocortical layers II/III was used (Fig. 1ai).
77 Last, to estimate the spiking output of neocortical neurons, two-photon calcium imaging of the
78 aRSC superficial layers in Thy1-GCamp mice was conducted (Fig. 1aiii). In addition, to compare
79 the peri-ripple glutamatergic transmission in superficial versus deep neocortical layers, wide-field
80 imaging of iGluSnFR activity in all neocortical layers (iGlu-EMX mice) was conducted. In all the
81 imaging modality experiments, concurrent local field potential (LFP) and multi-unit activity
82 (MUA) recordings from pyramidal layer of the CA1 subfield of the dorsal hippocampus was
83 performed, and the hippocampal LFP was used to detect ripples (Fig. 1b). Moreover, in 3 out 4
84 sets of the experiments, electromyography from the neck muscles was conducted to monitor the
85 animals' movements. During the recordings, the mice were placed on a stationary platform in all

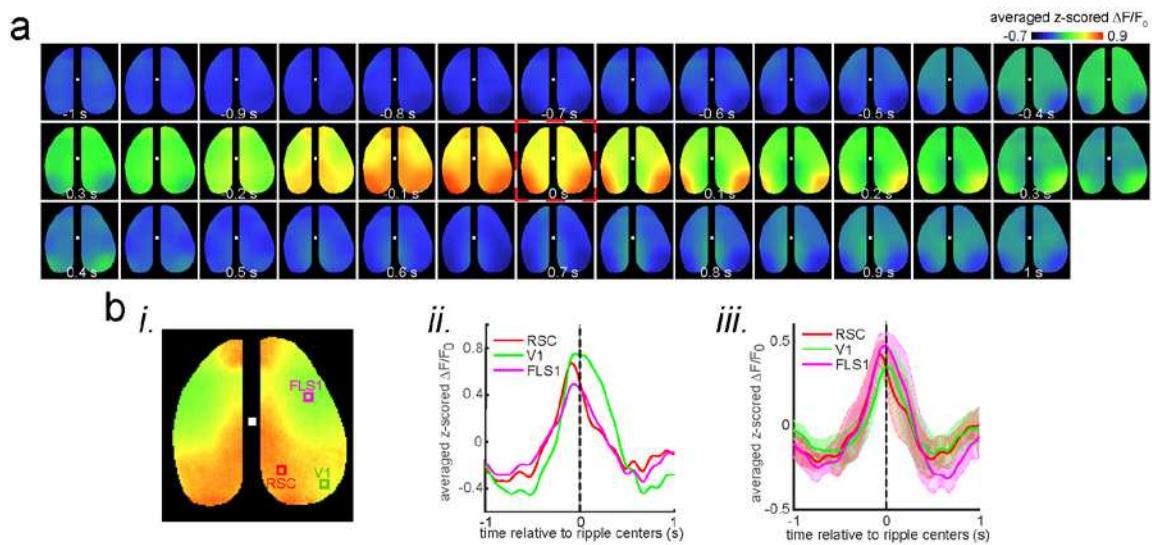
Fig. 1 Experimental protocol for investigating peri-ripple neocortical activity during awake state.

a Top: each region could be modeled as an input-output block with internal dynamics. Bottom (i-iii): experimental setups, exemplar imaging windows, and schematic of the regions included in the windows for unilateral wide-field glutamate imaging (i), bilateral wide-field voltage imaging (ii), and two-photon calcium imaging (iii) which were conducted for monitoring input, internal dynamics, and output, respectively. **b** Top: an exemplar local field potential (LFP) trace recorded from pyramidal layer of CA1 subfield of the dorsal hippocampus. Asterisks denote detected ripples. Bottom: ripple-band (110-250 Hz) filtered version of the top trace. **c** Schematic of peri-ripple (ripple-triggered) averaging analysis. (i) Schematic of concurrently recorded LFP and imaging signals. Red dashed lines indicate timestamp of center of detected ripples. (ii) The imaging frames around the timestamp of the detected ripples are aligned with respect to the ripple centers and averaged.


87 the experiments to increase the probability of occurrence of motionless periods during which
88 ripples would emerge. In general, the animals did not move right before the ripples; however, they
89 sometimes tend to move after ripples occurred (Supplementary Fig. 1). Hence, to remove the
90 potential role of body movement on the brain optical signals, ripples with EMG tone around them
91 (± 500 ms) were excluded (0.2847 ± 0.1576 ; mean \pm std; $n = 19$ animals). Then, to extract the
92 overall neocortical activity around ripples, the activity, captured by the three modalities, was
93 aligned with respect to the timestamp of the ripple centers (largest trough of ripples) and averaged
94 (Figure 1c). In addition, to evaluate the coordination between hippocampal and neocortical
95 activity, the ensemble-wise correlation coefficient of the hippocampal MUA and the activity of
96 neocortical regions were calculated (see Methods).



Supplementary Fig. 1 – related to Fig. 1 a **(i)** The mean peri-ripple hippocampal local field potential (HPC LFP) first averaged in individual animals and then averaged across 25 animals. **(ii)** The zoomed-in version of (i). **b** The mean spectrogram of peri-ripple HPC LFP first averaged in individual animals and then averaged across 25 animals. Note the high power of ~ 3 Hz close to 0 time corresponding to the post-ripple large deflection apparent in (a). Moreover, note the reduction of theta power (~ 6 Hz; white arrows) before and after the ripple centers time (0 time). **c** The mean peri-ripple EMG signal first averaged in individual animals and then averaged across 19 animals. The blue trace is associated with all the detected ripples, and the red trace is associated with all the ripples around which (± 500 ms) no EMG activity was detected. Note that both traces show a significant reduction right before the ripple centers (0 time). Note also that the blue trace shows an elevation right after the ripple centers indicating that the


animals start moving right after a proportion of ripples (0.2847 ± 0.1576 ; mean \pm std; $n = 19$ animals). The shadings represent the standard error of the mean.

97 **Population membrane voltage significantly dropped during awake ripples in the neocortical**
98 **superficial layers.** The ripple event-triggered averaged neocortical membrane voltage showed a
99 fast hyperpolarization right after the ripple centers (Fig. 2ai, 2bi-iii). These peri-ripple voltage
100 signals in the awake state were in sharp contrast with what had been reported in sleep where a
101 membrane depolarization dominates¹³ (Supplementary Fig. 2). There was significant regional
102 variation in the hyperpolarization pattern, with aRSC showing the strongest reduction of amplitude
103 (Fig. 2b). This phenomenon was consistent in all the six animals used for this set of experiments
104 (Supplementary Fig. 3a). The rate of reduction of voltage was also fastest in aRSC in the majority
105 of animals (Supplementary Fig. 3b). Moreover, we observed a pre-ripple elevation of voltage
106 which was also strongest in aRSC in at least half of the animals (Fig. 2biii; Supplementary Fig.
107 3c). Lastly, the ensemble-wise correlation coefficients averaged across VSFP animals revealed a
108 period (~ 0 – 100 ms) of enhanced coordination between hippocampal MUA and aRSC voltage
109 activity which was absent for somatosensory regions (Fig. 2biv-vi).

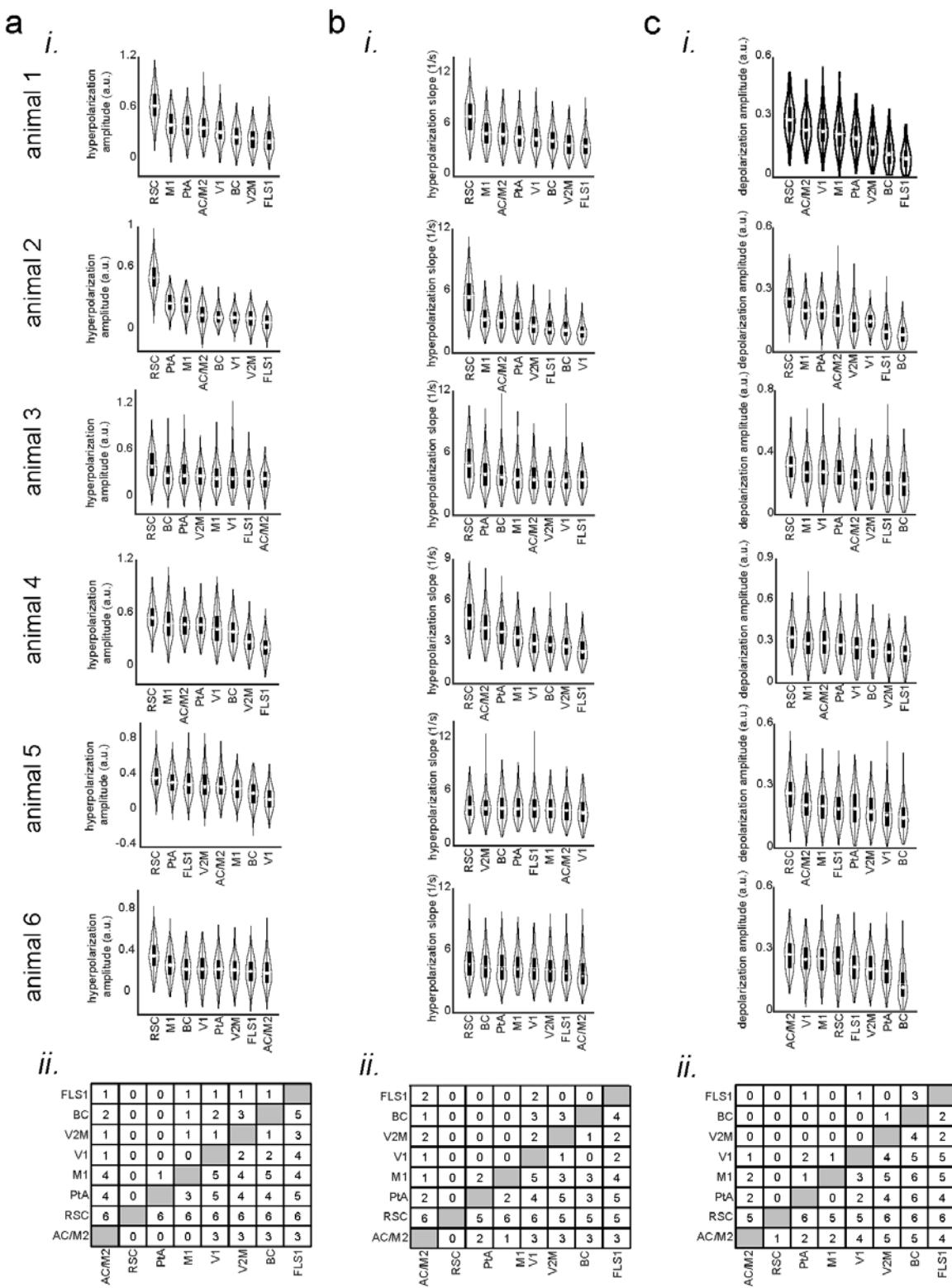
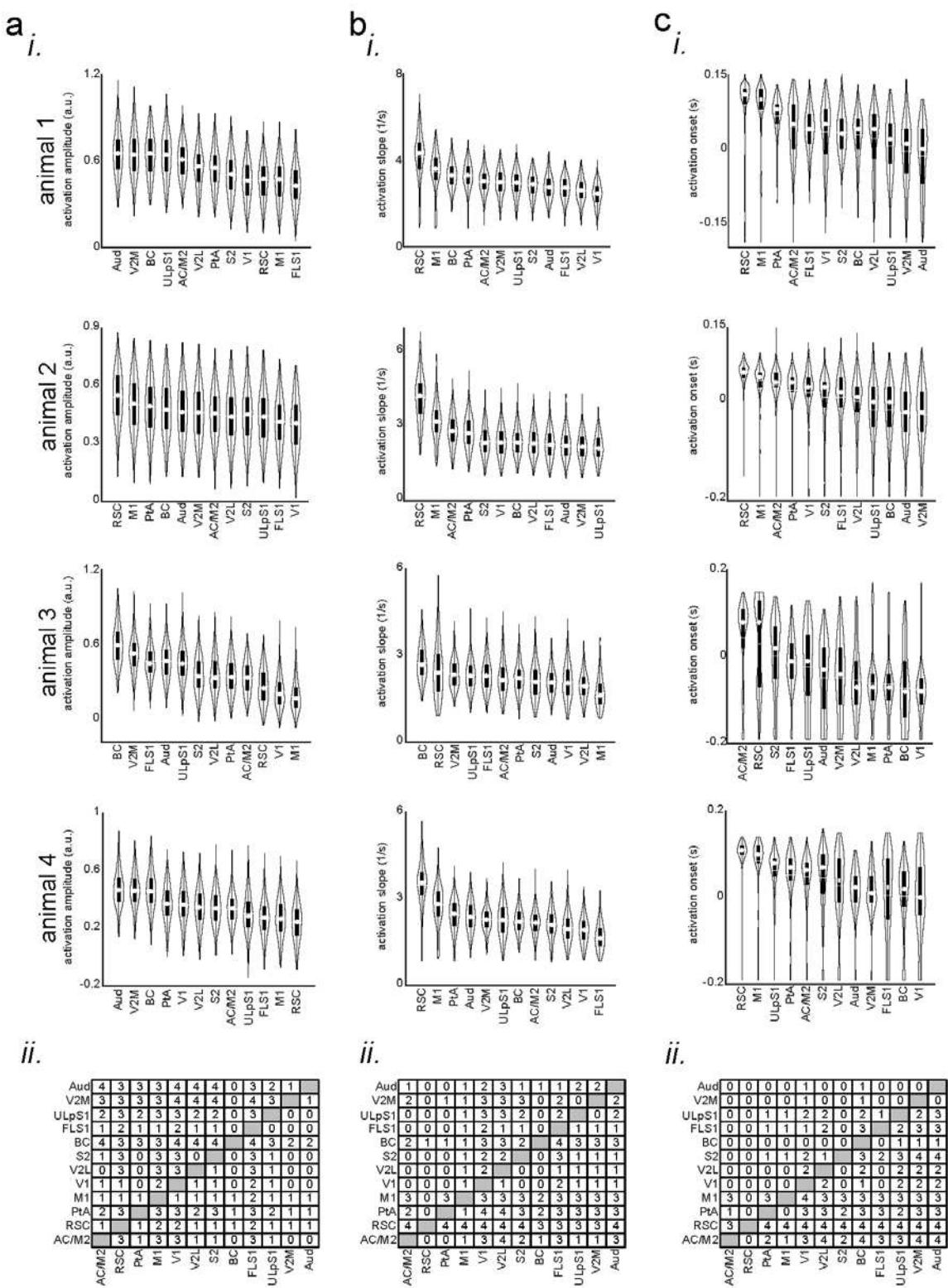


Fig. 2 Deactivation and activation dominate the neocortical voltage and glutamate activity, respectively, during awake ripples. a (i-ii) Montage of average voltage (i) and glutamate (ii) activity 1 second before and after ripple centers in two representative animals. Zero time (red dashed square) represents the timestamp of center of ripples. Note the reduction of voltage signal across neocortical regions during ripples and the elevation of voltage activity before ripples. The deactivation is strongest in the agranular retrosplenial cortex (aRSC), the dark area in the posterior-medial part the imaging window which is noticeable in the frame associated with the time 100 ms in (i). Glutamate activity, on the other hand, showed a strong activation during ripples in all the regions. **b** (i-ii) A representative frame chosen from hyperpolarization period in (a-i) along with peri-ripple mean voltage time-series of three region of interests chosen from agranular retrosplenial cortex (aRSC), primary visual cortex (V1), and primary forelimb somatosensory cortex (FLS1). The data represented in time-series format is the same data shown in (a-i). The black trace represents the mean hippocampal multi-unit activity (HPC MUA). (iii) Peri-ripple mean voltage and MUA time-series averaged across six VSFP mice. The shading represents standard error of the mean (SEM). aRSC shows strongest and fastest deactivation compared with other regions. **(iv-vi)** Ensemble-wise correlation coefficient function of the peri-ripple voltage activity of the neocortical regions and hippocampal multi-unit activity (MUA). Rows and columns of the matrices represent time (in seconds) relative to ripple centers. **(c)** The same as (b) but for iGlu-Ras animals ($n = 4$) with extra ROIs from primary lip somatosensory cortex (ULpS1), primary barrel cortex (BC), and primary auditory cortex (Aud). The glutamate signal from aRSC shows fastest and latest onset of elevation. Note the presence and absence of enhanced correlation between aRSC and HPC MUA in the time interval (0,100 ms) in the voltage and glutamate activity, respectively.

Supplementary Fig. 2 – related to Fig. 2 **a** Montage of average voltage activity 1 second before and after ripple centers under urethane anesthesia (as a model of sleep) in the same representative animal as in Fig. 2a-i. Zero time (red dashed square) represents the timestamp of center of ripples. Note the elevation of voltage signal (depolarization) across neocortical regions during ripples which is in sharp contrast with the result in Fig. 2a-i. **b (i-ii)** A representative frame chosen from depolarization period in (a) along with peri-ripple mean voltage time-series of three region of interests chosen from agranular retrosplenial cortex (aRSC), primary visual cortex (V1), and primary forelimb somatosensory cortex (FLS1). The data represented in time-series format is the same data shown in (a). **(iii)** peri-ripple mean voltage time-series under urethane anesthesia averaged across five VSFP mice. The shading represents standard error of the mean (SEM).

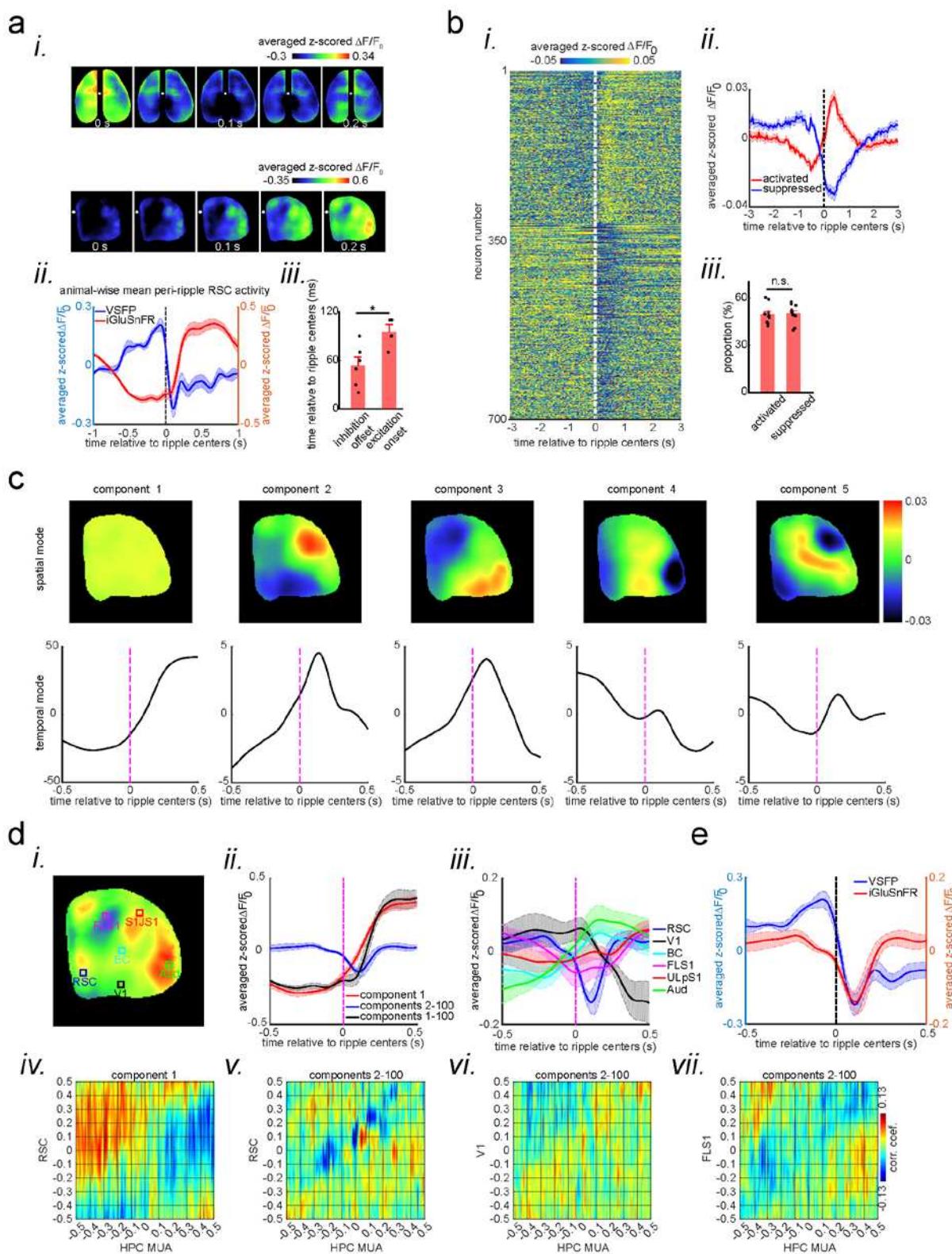


Supplementary Fig. 3 – related to Fig. 2 a **(i)** Bootstrap distribution of voltage reduction amplitude (with respect to the pre-ripple baseline) across imaged neocortical regions for individual VSFP animals. The regions are sorted according to their distribution mean in descending order (repeated-measure ANOVA with $df = 7$ and $n = 231$; from top to bottom: $F = 440.597$, p -value = 1.0596×10^{-211} ; $F = 858.17$, $p = 0$; $F = 62.95$, $p = 3.0723 \times 10^{-46}$; $F = 202.86$, $p = 1.578 \times 10^{-86}$; $F = 163.62$, $p = 1.797 \times 10^{-82}$; $F = 115.303$, $p = 2.703 \times 10^{-97}$). **(ii)** The result of posthoc multiple comparisons following repeated-measure ANOVA, pooled across animals (6 animals). The numbers at each entry of the matrix represent the number of mice for which the bootstrap distribution associated with the corresponding row region has statistically significant larger mean than column region. Significance alpha level of 0.05 was used as the threshold for statistical significance. **b-c** The same as (a) but for voltage reduction slope (mean over full-width at half-maximum of derivative of the voltage signal; repeated-measure ANOVA with $df = 7$ and $n = 231$; from top to bottom: $F = 195.096$, $df = 7$, p -value = 1.1431×10^{-128} ; $F = 291.61$, $p = 1.32 \times 10^{-161}$; $F = 63.9$, $p = 4.56 \times 10^{-55}$; $F = 240.13$, $p = 1.36 \times 10^{-146}$; $F = 7.35$, $p = 4.06 \times 10^{-6}$; $F = 20.24$, $p = 1.43 \times 10^{-20}$) and pre-ripple voltage elevation amplitude (mean over full-width at half-maximum; repeated-measure ANOVA with $df = 7$ and $n = 231$; from top to bottom: $F = 288.5488$, $df = 7$, p -value = 1.8389×10^{-142} ; $F = 316.86$, $p = 1.79 \times 10^{-213}$; $F = 92.71$, $p = 4.53 \times 10^{-74}$; $F = 62.03$, $p = 4.88 \times 10^{-37}$; $F = 58.77$, $p = 2.3 \times 10^{-50}$; $F = 134.77$, $p = 2.37 \times 10^{-123}$). Note that aRSC, compared with all other imaged regions, shows largest voltage reduction amplitude, fastest rate of change of voltage reduction, and largest pre-ripple voltage elevation in at least 5 out of 6 animals.

111

112 **Glutamate concentration increases after awake ripples in the neocortical superficial layers.**

113 Next, we performed peri-ripple averaging of glutamate indicator (iGluSnFR) signals of the
114 neocortical superficial layers. In all imaged neocortical regions, the glutamate signal was reduced
115 before the ripple peak (Fig. 2aiii, ci-iii). This reduction is probably associated with a brain state
116 (i.e., quiet wakefulness) which is conducive for emergence of the ripples (Supplementary Fig. 1).
117 On the other hand, after the ripples occurred, the glutamate signal increased (Fig. 2aiii, ci-iii). The
118 amplitude of the signal varied between regions with barrel cortex (BC), primary auditory cortex
119 (Aud), and secondary medial visual cortex (V2M) showing the highest and aRSC the lowest
120 increase in the majority of the animals (Supplementary Fig. 4a). There was also a region-
121 dependency in the rate (i.e., slope or derivative) and onset of glutamate concentration change with
122 aRSC showing the steepest slope and the latest elevation onset compared with other imaged
123 regions, especially with BC, Aud, and V2M which showed the lowest slope (Supplementary Fig.
124 4b) and the earliest onset time in the majority of the animals (Supplementary Fig. 4c). Lastly, the
125 ensemble-wise correlation coefficients averaged across iGluSnFR-Ras animals did not reveal a
126 period of enhanced coordination between hippocampal MUA and aRSC glutamate activity in close
127 vicinity of the ripples (Fig. 2civ-vi; compare with Fig. 2biv).

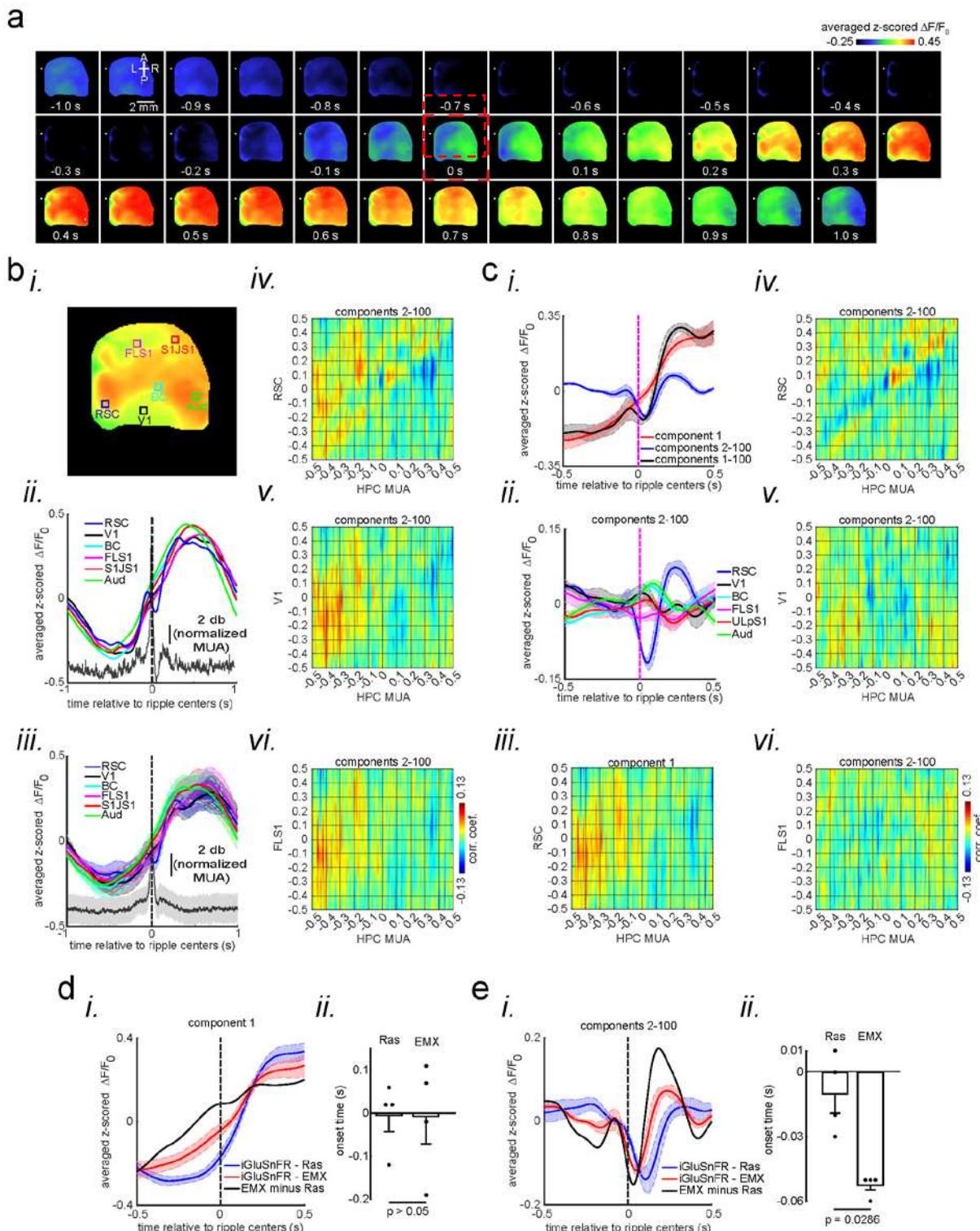

Supplementary Fig. 4 – related to Fig. 2 a (i) Bootstrap distribution of glutamate activation amplitude (with respect to the pre-ripple baseline) across imaged neocortical regions for individual iGlu-Ras

128 animals.. The regions are sorted according to their distribution mean in descending order (repeated-measure ANOVA with $df = 11$ and $n = 270$; from top to bottom: $F = 337.9781$, $df = 11$, p -value = 3.6841×10^{-262} ; $F = 304.206$, $p = 1.3 \times 10^{-211}$; $F = 663.42$, $p = 0$; $F = 394.13$, $p = 4.42 \times 10^{-256}$). (ii) The result of posthoc multiple comparisons following repeated measure ANOVA, pooled across animals (4 animals). The numbers at each entry of the matrix represent the number of mice for which the bootstrap distribution associated with the corresponding row region has statistically significant larger mean than column region. Significance alpha level of 0.05 was used as the threshold for statistical significance. b-c The same as (a) but for glutamate activation slope (mean over full-width at half-maximum of derivative of the glutamate signal repeated-measure ANOVA with $df = 11$ and $n = 270$; from top to bottom: $F = 207.5245$, p -value = 3.427×10^{-130} ; $F = 889.69$, $p = 0$; $F = 81.93$, $p = 2.83 \times 10^{-76}$; $F = 249.77$, $p = 1.35 \times 10^{-180}$) and glutamate activation onset (timestamp at which the derivative of iGluSnFR signal reaches its half-maximum for the first time; repeated-measure ANOVA with $df = 11$ and $n = 270$; from top to bottom: $F = 113.0048$, p -value = 7.705×10^{-149} ; $F = 142.93$, $p = 3.53 \times 10^{-187}$; $F = 86.56$, $p = 2.53 \times 10^{-119}$; $F = 57.1$, $p = 5.78 \times 10^{-80}$). Note that aRSC, compared with all other imaged regions, shows fastest rate of change and latest onset of glutamate activation in at least 3 out of 4 animals.

128

129 **aRSC neurons show opposite patterns of peri-ripple modulation.** Due to the hyperpolarization
130 of membrane potential in superficial layers of aRSC and the delayed glutamate elevation in the
131 region (Supplementary Fig. 4c: the onset time of RSC activation is larger than zero; Fig. 3a), aRSC
132 neurons may not fire at all during awake ripples. To address this question, we performed two-
133 photon calcium imaging of the neurons in layers II/III of aRSC in Thy1-GCamp mice. Peri-ripple
134 averaging of single cell calcium traces was performed, and the average traces of neurons over the
135 interval -500 ms to +500 ms were clustered into two clusters using the k-means algorithm with
136 correlation coefficient as the similarity metric. Two was the optimum number of clusters according
137 to the silhouette and Calinski-Harabasz criteria. This analysis revealed that there are at least two
138 equally-sized subpopulations of neurons in aRSC; one whose firing is elevated and one whose
139 firing is suppressed during and right after awake ripples (Fig. 3bi). Notably, in the ~1s-long interval
140 before the ripple centers, the firing of elevated and suppressed sub-populations was suppressed
141 and elevated, respectively (Fig. 3bii). The pre-ripple modulation of the two sub-populations is
142 consistent with the excitatory and inhibitory ramps observed in Chambers et al.¹⁴. These results
143 show that, despite the presence of significant reduction in population membrane voltage in aRSC,
144 a substantially-large sub-population of neurons increase their firing rate during awake ripples.
145 However, the timing of their firing does not match that of the elevation in glutamate signal
146 (increase in firing precedes glutamate signal elevation). This led us to ask whether the observed
147 glutamate signal consists of components whose timings match those of the observed reduction in
148 voltage signal and the increase firing rate as indicated by calcium imaging. To address this
149 question, we performed singular-value decomposition on the concatenated stack of individual peri-

150 ripple glutamate activity chunks. This method decomposed the stack into components with specific
151 spatial (Fig.3c upper row) and temporal modes. Then, for each component, the corresponding
152 temporal mode was chunked around individual ripples, aligned, and averaged (Fig. 3c lower row).
153 Notably, the first component showed a global post-ripple elevation of glutamate activity whose
154 amplitude was an order of magnitude larger than that in other components. Other components, on
155 the other hand, showed a mixture of elevation and reduction across neocortical regions. These
156 patterns were similar across all the animals. We combined all the components with mixed patterns
157 of modulation (components 2 to 100) and reconstructed the mean peri-ripple glutamate activity
158 across neocortical regions (Fig. 3di-iii). We observed that the mean peri-ripple glutamate activity
159 in aRSC was decomposed into two specific patterns of post-ripple modulation, positive (Figure
160 3dii; red signal; reconstructed from component 1) and negative (blue signal; reconstructed from
161 components 2 to 100). Interestingly, other regions did not show the negative pattern of modulation
162 (Fig. 3diii). In addition, the timing of the post-ripple negatively-modulated glutamate signal in
163 aRSC matched that of the voltage activity in aRSC (Fig. 3e), which suggests that one of the factors
164 involved in the reduction of voltage in aRSC could be the reduction of endogenous and/or
165 exogenous excitatory glutamatergic input to the region. Also, the onset time of the positively
166 modulated glutamate signal in aRSC was earlier than that of the original signal, which matches
167 better with the timing of aRSC neurons firing presented in Figure 3b. Lastly, the ensemble-wise
168 correlation coefficients averaged across iGluSnFR-Ras animals revealed a period (~ 0 – 100 ms)
169 of enhanced coordination between hippocampal MUA and negatively-modulated (but not
170 positively-modulated) aRSC glutamate activity (reconstructed from components 2-100) which was
171 absent for sensory regions (Fig. 3div-vii).


Fig. 3 A subpopulation of aRSC neurons fire during awake ripples despite the strong voltage reduction. a (i) five frames taken from the montages shown in Fig. 2ai-ii aligned with respect to the

ripple center timestamps (zero time). Note the elevation of the glutamate signal as voltage suppression eases. Also note that voltage reduction is strongest and glutamate activation onset is latest in aRSC compared with other regions. **(ii)** time-series representation of the aRSC voltage (blue) and glutamate (red) signals shown in (i). Note that the onset of glutamate activation is around the offset of voltage suppression. **(iii)** Statistical comparison of the voltage suppression offset time in VSFP mice ($n=6$) and glutamate onset time in iGlu-Ras mice ($n=4$). There is a statistically significant difference between the two (two-sample t-test; $p = 0.02$). **b (i)** Average calcium trace ($\Delta F/F_0$) for individual neurons 3 second before and after ripple centers in a representative Thy1-GCamp animal. The neurons' calcium traces are grouped into two clusters and are sorted based on their cluster membership. During ripples, the neurons in cluster 1 and 2 show elevation and suppression of calcium signal, respectively. **(ii)** Peri-ripple calcium traces are averaged across neurons in each cluster in each animal and then averaged across 11 animals. The shading represents standard error of the animal-wise mean. **(iii)** Statistical comparison of the proportion of neurons in cluster 1 (activated) and 2 (suppressed). There is no significant difference between the two proportions (paired t-test; $p > 0.05$). Comparing the results in (aii) and (b-ii) suggests that majority of neurons in clusters 1 and 2 are likely modulated by the excitatory and inhibitory forces applied to aRSC, respectively. **c** Spatial and temporal modes associated with first 5 largest singular values (components) of the concatenated stack of peri-ripple iGluSnFR activity in the representative iGlu-Ras animal presented in Fig. 2aii. Note that the spatial mode of the first component does not show a specific topography and the corresponding temporal mode is dominated with post-ripple elevation of iGluSnFR signal. Also, the amplitude of the first component temporal mode is an order of magnitude larger than that in other components. **d (i)** A representative frame chosen from (a) with 6 ROIs chosen from 6 different neocortical regions. **(ii)** Three animal-wise ($n = 4$) averages of the reconstructed mean peri-ripple glutamate signals captured from the aRSC ROI in (d-i). The signals were reconstructed using first (red), second-to-hundredth (blue), and first-to-hundredth (black) components in (c). The black signal is the summation of the red and blue ones. Note that the red signal (first component) captured almost all of the elevation seen in the black signal while the blue signal (2-100th components) shows a post-ripple dip. **(iii)** Animal-wise average of the reconstructed mean peri-ripple glutamate signals captured from all the ROIs in (d-i) color-coded according to the ROIs. The signals were reconstructed using second-to-hundredth components. Note that only aRSC shows a post-ripple dip. **(iv)** Ensemble-wise correlation coefficient function of the peri-ripple aRSC glutamate activity (only 1st component) and hippocampal HPC MUA. Rows and columns of the matrices represent time (in seconds) relative to ripple centers. **(v-vii)** The same as (iv) but for glutamate activity of three regions reconstructed from components 2-100th. Note the presence and absence of enhanced correlation between aRSC and HPC MUA in the time interval (0,100 ms) in (iv) and (v), respectively. **e** Animal-wise average of mean peri-ripple signals captured from aRSC in all VSFP (blue; $n = 6$) and iGlu-Ras (red; $n = 4$) animals. The signals in iGlu-Ras animals were reconstructed from 2-100th components. Note that the timing of the dips in both signals match, suggesting they both represent the same phenomenon.

172 **The peri-ripple glutamatergic activity is layer-dependent.** Given different hypothesized
173 functions for superficial and deep layers in association cortices^{15,16}, we asked whether the patterns
174 of peri-ripple glutamate activity is layer-dependent. To address this question, we conducted wide-
175 field optical imaging with concurrent CA1 LFP/MUA recording in EMX iGluSnFR mice with

176 glutamate indicators expressed in excitatory neurons across all the neocortical layers (as opposed
177 to Ras mice with only superficial layer expression). Qualitatively, the mean peri-ripple glutamate
178 activity and ensemble-wise correlation coefficients in EMX mice (Fig. 4a-b) did not differ from
179 that in Ras mice (Fig. 2aii, c). However, the activity in EMX mice seemed to be shifted to earlier
180 time (compare Fig. 2ciii and 4biii). To probe the potential differences in glutamate activity in Ras
181 and EMX mice, we compared the result of the singular value decomposition analysis. The spatial
182 and temporal modes associated with different components were similar in these two strains.
183 Moreover, the reconstructed signals using 1st and 2-100th components showed the same pattern of
184 positive and negative modulations, respectively (Fig. 4ci-ii). The ensemble-wise correlation
185 coefficients averaged across iGluSnFR-EMX animals revealed a period (~ 0 – 100 ms) of enhanced
186 coordination between hippocampal MUA and negatively-modulated (but not positively-
187 modulated) aRSC glutamate activity (reconstructed from components 2-100) which was absent for
188 sensory regions (Fig. 4ciii-vi).

189 Moreover, we did not find a statistically significant difference in amplitude and slope of
190 neither positively- nor negatively modulated signals between Ras and EMX groups. Additionally,
191 although the animal-wise average of positively-modulated aRSC signal showed earlier onset time
192 (Fig. 4di), the statistical comparison between the two groups did not reach the significance
193 threshold of 0.05 (Fig. 4dii). However, the onset time of negatively-modulated signal in aRSC was
194 significantly earlier in EMX than that in Ras group (Fig. 4e). We also estimated the glutamate
195 activity of the deep layers of aRSC by subtracting a scaled version of the Ras from the EMX signal
196 (the black trace in Fig. 4d-ei; black trace = $\frac{\text{red trace} - 0.5 * \text{blue trace}}{0.5}$). The scaling was performed
197 to accommodate for the potential amount of variance the superficial and deep layers explain in the
198 EMX signal¹⁷. The estimated positively- and negatively modulated glutamate signals from the
199 deep layers of aRSC showed a shift to an earlier time (to the left). Furthermore, the estimated
200 negatively-modulated signal (black trace in Fig. 4ei) showed a noticeable rebound with a peak
201 around 200 ms after the ripple centers. All in all, these results suggest that deep neocortical layers
202 in aRSC receive glutamatergic modulation earlier than superficial layers do.

Fig. 4 Peri-ripple glutamatergic transmission in neocortical superficial layers is delayed compared with that in deep layers. **a** Montage of average iGluSnFR activity 1 second before and after ripple centers in a representative iGlu-EMX animal. Zero time (red dashed square) represents the timestamp of center of ripples. Note the elevation of glutamate signal across neocortical regions around ripple times. **b (i-ii)** A representative frame chosen from elevation period in (a) along with peri-ripple mean iGluSnFR time-series of six regions of interest chosen from agranular retrosplenial cortex (aRSC), primary visual cortex (V1), and primary forelimb somatosensory cortex (FLS1), primary lip somatosensory cortex (ULpS1), primary barrel cortex (BC), and primary auditory cortex (Aud). The data represented in time-series format is the same data shown in (a). **(iii)** peri-ripple mean iGluSnFR time-series averaged across 4 mice. The shading represents standard error of the mean (SEM). The glutamate signals in iGlu-EMX animals are shifted to left (precede) compared with those in iGlu-Ras animals represented in Fig. 2a-ii and 2c. The black trace represents the mean hippocampal multi-unit activity (HPC MUA). **(iv-vi)** Ensemble-wise correlation coefficient function of the peri-ripple voltage activity of the neocortical regions and hippocampal multi-unit activity (HPC MUA). Rows and columns of the matrices represent time (in seconds) relative to ripple centers. **c (i)** Three animal-wise ($n = 4$) averages of the reconstructed mean peri-ripple glutamate signals captured from the aRSC ROI in (b-i). The signals were reconstructed using first (red), second-to-hundredth (blue), and first-to-hundredth (black) components. The black signal is the summation of the red and blue ones. Note that the red signal (first component) captured almost all of the elevation seen in the black signal while the blue signal (2-100th components) shows a post-ripple dip. **(ii)** Animal-wise average of the reconstructed mean peri-ripple glutamate signals captured from all the ROIs in (b-i) color-coded according to the ROIs. The signals were reconstructed using second-to-hundredth components. Note that only aRSC shows a post-ripple dip. **(iii)** Ensemble-wise correlation coefficient function of the peri-ripple aRSC glutamate activity (only 1st component) and hippocampal HPC MUA. **(iv-vi)** The same as (b iv-vi) but for signals reconstructed from components 2-100th. Note the presence and absence of enhanced correlation between aRSC and HPC MUA in the time interval (0,100 ms) in (iii) and (iv), respectively. **d (i)** Animal-wise ($n = 4$) average of reconstructed (using 1st component) mean peri-ripple glutamate activity in iGlu-Ras (blue; $n = 4$) and iGlu-EMX (red; $n = 4$) animals. **(ii)** The statistical comparison of onset time in iGlu-Ras and iGlu-EMX signals in (i) (two-way ranksum test). **e (i)** Animal-wise average of reconstructed (using 2-100th components) mean peri-ripple glutamate activity in iGlu-Ras (blue) and iGlu-EMX (red) animals. **(ii)** The statistical comparison of onset time in iGlu-Ras and iGlu-EMX signals in (i) (two-sided ranksum test).

203

204 **Discussion**

205 In this study, we investigated the peri-ripple activity of the neocortex during the awake
206 state. We utilized voltage, glutamate, and calcium imaging to untangle the activity dynamics in
207 the input, internal, and output levels of neocortical regions, especially in agranular retrosplenial
208 cortex (aRSC). “Input” in this context is considered from the perspective of the dendritic trees
209 occupying the majority of the volume of the superficial layers of the neocortical layers^{18,19}. Thus,

210 even self-excitation (i.e., the excitation of the dendrites of a region by the axonal projections
211 originating from the same region) is seen as input in this framework.

212 The data revealed a reduction in peri-awake-SWR membrane voltage of pyramidal cells
213 with the strongest and fastest hyperpolarization in aRSC. The reduction of membrane voltage
214 could be due to a reduction of the glutamatergic drive or an increase in gabaergic inhibition. We
215 monitored the glutamate delivered to pyramidal cells to test for the first possibility. The mean peri-
216 awake-SWR glutamate concentration did not show a reduction and instead showed a delayed
217 elevation. Moreover, we analyzed the glutamate imaging data further by applying the singular
218 value decomposition (SVD) to see if the glutamate signal was a mixture (multiplex) of negatively-
219 and positively-modulated components. The motivation for investigating the idea of multiplexed
220 glutamate transmission was further fueled by the fact that a significant subpopulation of neurons
221 in aRSC fired despite the significant reduction in voltage as well as seemingly delayed (relative to
222 the SWR centers) glutamate activity in the region. Singular value decomposition (SVD) was able
223 to decompose the potentially-multiplexed glutamate signal in aRSC and to recover the two patterns
224 of modulations. Notably, the timing of these two patterns matched those of voltage reduction and
225 neural firing (measured by calcium activity) in aRSC. It is worthy of note that SVD is agnostic to
226 excitation and inhibition, and it simply captures the maximum amount of variance in the data.
227 Thus, the two patterns of modulations, which resulted from the application of SVD, may not reflect
228 brain mechanisms. However, the coincidence of the timing of these two patterns with those of
229 voltage reduction and neural firing in aRSC suggests that the SVD output, to some extent, reflects
230 truly different neuronal processes.

231 Even though the peri-awake-SWR glutamate signal was found to be a mixture of rising and
232 falling components, the amplitude (explained variance) of the rising component was larger than
233 that of the falling component. It suggests that the reduction of the glutamate activity in aRSC is
234 not the only factor contributing to the reduction of the voltage signal in the region. Therefore, by
235 exclusion, we suggest that inhibitory input to the superficial layers of aRSC plays a significant role
236 in the reduction of the voltage signal. Moreover, since the majority of the volume of the neocortical
237 superficial layers is filled with dendritic trees^{18,19}, dendritic inhibition is probably the major
238 inhibitory process reflected in the reduction of peri-awake-SWR voltage activity.

239 Another interesting result that came out of the application of SVD on the peri-awake-SWR
240 glutamate activity was the observation that the negatively-modulated component was present only
241 in aRSC and not in other recorded regions while the positively-modulated component was present
242 in all the recorded regions. This observation supports the hypothesis of the presence of peri-awake-
243 SWR inhibition in the neocortex. It is because even though the recorded neocortical regions, except
244 aRSC, did not have a negatively-modulated glutamate activity component, they still showed a
245 reduction in their voltage activity.

246 Peri-ripple modulation of multiple brain regions, such as ventral tegmental area²⁰,
247 subiculum^{21,22}, medial prefrontal^{8,23,24}, anterior cingulate²⁵, and entorhinal cortices²⁶, have been
248 observed. Moreover, our data show that multiple neocortical regions, such as the auditory and
249 barrel cortices, express glutamate elevation before aRSC does. Since the majority of these regions
250 project to aRSC, it is plausible that a peri-awake-SWR excitatory input to aRSC comes indirectly
251 from the hippocampus, or even independently from the hippocampus, through these intermediate
252 neocortical regions. In addition, because some aRSC neurons appear to start firing before the
253 timing of SWR centers, it is also plausible that self-excitation may occur in aRSC. In addition, as
254 awake SWRs are involved in planning, and planning could lead to the initiation of movement²⁷,
255 another potential source of excitation in aRSC could stem from the subcortical structures involved
256 in motion generation. This could explain as to why EMG tone was detected right after some of the
257 ripples in this study (Supplementary Fig. 1).

258 According to the current literature, there are at least two potential sources for the peri-
259 ripple inhibitory inputs to aRSC. One option is the long-range inhibitory projections emanating
260 from CA1. Although a majority of tracing studies have been focused on the presence of such
261 projections in the granular RSC (gRSC)²⁸⁻³⁰, it is plausible that they also exist in the agranular
262 RSC (aRSC). The second option is feed-forward inhibition originated from CA1. This mechanism
263 has been reported in gRSC where peri-ripple hippocampal excitatory input activates, via
264 subiculum, the inhibitory interneurons in gRSC which leads to suppression of firing of pyramidal
265 many neurons^{31,32}. Similarly, a recent work found that inhibitory interneurons in superficial layers
266 of aRSC increase their firing during awake ripples which, in turn, could suppress the activity of
267 excitatory neurons¹⁴.

268 Even though the elevation of neuronal firing is dominant around sleep SWRs, suppression
269 of neuronal firing seems to be an abundant pattern of neuronal modulation around awake ripples.
270 For instance, suppression of neuronal firing around awake hippocampal ripples has been reported
271 in the medial prefrontal cortex²⁴ and gRSC²². Both of these regions are heavily involved in
272 mnemonic processing, especially through replaying/reactivating the neural traces associated with
273 previous experiences. Given that the fidelity of awake replays is higher than that of sleep ones^{12,33}
274 , it could be reasonably speculated that the peri-ripple inhibition plays a role in this higher fidelity.
275 It probably does so via increasing the signal-to-noise ratio by suppressing the interference of the
276 non-mnemonic neuronal populations while the mnemonic representations are being replayed
277 during ripples²⁴.

278 Given the coincidence of peri-ripple inhibition and the negatively-modulated component
279 of the glutamatergic activity in superficial layers of aRSC, it could be deduced that the same
280 coincidence would exist in the deep layers as well. This possibility is supported by the observation
281 that reduction of glutamate signal occurred earlier in deep than superficial layers. In that case, the
282 deep layers would receive a peri-ripple inhibitory force before the superficial layers do. Since the
283 back-projection from the hippocampus mainly target the superficial neocortical layers¹⁶, the
284 difference in latency of peri-ripple modulation of deep versus superficial neocortical layers could
285 be interpreted from the perspective of the memory indexing theory in the following way: At the
286 time of awake ripples, the hippocampus communicates, via a subspace of neural space, the
287 mnemonic signal as a form of an index code to the superficial layers of RSC. At this time, the deep
288 layers, containing the attributes of past episodic memories, do not receive a mnemonic excitatory
289 drive to avoid interference with the retrieval of index code in the superficial layers¹⁶. When the
290 index code is retrieved, it is sent to the deep layers for the memory contents to be retrieved, and
291 now the superficial layers are deprived of the mnemonic excitatory drive to avoid any interference
292 with the content retrieval in deep layers. This hypothesized coordinated and sequential retrieval
293 process in superficial and deep layers¹⁶ might explain the higher fidelity of awake than sleep
294 replays. This is because peri-ripple neocortical inhibition is rare during sleep which implies that
295 the coordination of retrieval of hippocampal content and contextual codes is probably weaker
296 during sleep compared to the awake state.

297

298 **Methods**

299 **Animals.** 6 adult (> 2 months old) male transgenic mice with voltage-sensitive fluorescent protein
300 (VSFP) Butterfly 1.2, expressed in excitatory neurons in neocortical layers II and III, were used
301 for investigating membrane potential dynamics of neocortical regions around awake hippocampal
302 ripples. These mice were generated by crossing the lines Ai78 (Jax023528)³⁴, Camk2a-tTA
303 (Jax007004), and Rasgrf2-2A-dCre (Jax022864).

304 4 adult (> 2 months old) female transgenic mice with fluorescent glutamate indicator
305 (iGluSnFR³⁵)³⁶, expressed in excitatory neurons in neocortical layers II and III, were used for
306 investigating dynamics of excitatory synaptic input to the neocortical regions around awake
307 hippocampal ripples. These mice were generated by crossing the lines Ai85 (Jax026260), Camk2a-
308 tTA (Jax007004), and Rasgrf2-2A-dCre (Jax022864). These mice are called iGlu-Ras in this work.

309 4 adult (> 2 months old) male transgenic mice with fluorescent glutamate indicator
310 (iGluSnFR), expressed in excitatory neurons in all neocortical layers, were used for investigating
311 dynamics of excitatory synaptic input to the neocortical regions around awake hippocampal
312 ripples. These mice were generated by crossing the lines Ai85 (Jax026260), Camk2a-tTA
313 (Jax007004), and Emx1-Cre (Jax005628). These mice are called iGlu-EMX in this work.

314 11 Thy1-GCaMP6s female mice with fluorescent calcium indicator, expressed in
315 excitatory neurons across all neocortical layers, were used for investigating spiking dynamics of
316 neurons in layers II/III of agranular retrosplenial cortex around awake hippocampal ripples.

317 Mice were housed in groups of two to five under a 12 hr light-dark cycle. Mice were given
318 ad libitum access to water and standard laboratory mouse diet at all times. After head-
319 plate/electrode implantation surgery, the mice were single-housed. The animal protocols were
320 approved by the University of Lethbridge Animal Care Committee and were in accordance with
321 guidelines set forth by the Canadian Council for Animal Care.

322

323 **Surgeries for wide-field voltage and glutamate imaging experiments.** On the days of surgery
324 on mice, used in wide-field imaging experiments, subcutaneous injection of buprenorphine (0.5
325 gr/Kg) was delivered half an hour before the surgery started. Animals were then anesthetized with

326 isoflurane (1–2% mixed in O₂). After reaching the desired depth of anesthesia, the following steps
327 were performed: (1) the skull skin was removed. (2) Hippocampal LFP electrode was implanted.
328 (3) A head-plate was implanted. (4) The muscles covering the lateral portion of the skull (on top
329 of secondary somatosensory and auditory cortices) were removed. This step was performed only
330 for the glutamate imaging experiments where a unilateral imaging window was used. This step
331 allowed us to image activity of secondary somatosensory and auditory cortices. (5) The skull was
332 covered with a thin and transparent layer of the metabond (Parkell, Inc). (6) The skull was covered
333 with a glass coverslip. An additional bipolar electrode was implanted in the neck muscles for
334 recording EMG activity. Animals were allowed to recover for two weeks before recordings started.

335

336 **Surgeries for two-photon calcium imaging experiments.** On the days of surgery on mice, used
337 in two-photon calcium imaging experiments, subcutaneous injection of buprenorphine (0.5 gr/Kg)
338 was delivered half an hour before the surgery started. Animals were then anesthetized with
339 isoflurane (1–2% mixed in O₂). After reaching the desired depth of anesthesia, the following steps
340 were performed: (1) the skull skin was removed. (2) A small craniotomy was performed to remove
341 portion of the skull covering agranular retrosplenial cortex. (3) The exposed part of the brain was
342 covered with a glass coverslip. (4) Hippocampal LFP electrode was implanted. (5) A head-plate
343 was implanted. (6) An additional bipolar electrode was implanted in the neck muscles for recording
344 EMG activity. Animals were allowed to recover for two weeks before recordings started.

345

346 **Hippocampal LFP recording.** Teflon coated 50 μ m stainless steel wires (A-M Systems) were
347 used to make bipolar hippocampal LFP electrodes. The two tips of the electrode were separate
348 around 0.5 mm so that the tips could record from two different depths. To implant the electrode
349 for wide-field imaging experiments, a hole was drilled on the right hemisphere skull about 2.6 mm
350 lateral to the midline and tangent to the posterior side of the occipital suture. Then, the electrode
351 was gradually lowered through the hole at an angle of 57 degrees with respect to the vertical axis
352 (the axis perpendicular to the surface on which the stereotaxic apparatus was sitting). The electrode
353 signal was being continuously monitored both visually and audibly. Lowering the electrode was
354 stopped as soon as a dramatic increase in the spiking activity was heard and observed for the
355 second time near the calculated coordinate (angle = 57 degrees, depth = ~1.75 mm) for the

356 pyramidal layer of the dorsal CA1. In this way, we ensured that the upper and lower tips of the
357 electrode were placed in and beneath the pyramidal layer of the dorsal CA1, respectively. The
358 electrode was fixated on the skull using Krazy Glue and dental cement. For the two-photon
359 imaging experiments, a similar electrode implantation procedure was used. The only difference
360 was that the electrode was lowered perpendicular to the surface of the brain until it reached the
361 pyramidal layer of the dorsal CA1. In all the experiments, the hippocampal electrodes were
362 implanted in the right hemispheres ipsilateral to the imaging window. The electrode signals were
363 amplified using a Grass A.C. pre-amplifier Model P511 (Artisan Technology Group, IL) and
364 digitized using a Digidata 1440 (Molecular Device Inc, CA) or National Instruments data
365 acquisition system.

366

367 **Glutamate imaging.** Blue-light-emitting diodes (Luxeon K2, 473 nm, Quadica Developments Inc,
368 Lethbridge, Alberta) augmented with band-pass filters (Chroma Technology Corp, 467–499 nm)
369 were used to excite iGluSnFR indicators. The fluorescence emission from iGluSnFR was filtered
370 with a 520–580 nm band-pass filter (Semrock, New York, NY) and collected as 12-bit images at
371 100 Hz using a CCD camera (1M60 Pantera, Dalsa, Waterloo, ON) and an EPIX E4DB frame
372 grabber controlled with XCAP 3.7 imaging software (EPIX, Inc, Buffalo Grove, IL). To reduce
373 the effect of large neocortical blood vessels in imaging quality, the lens was focused into the
374 neocortex to a depth of ~1 mm. We also recorded the iGluSnFR signal in response to different
375 periphery stimulation under urethane anesthesia^{13,37} to functionally map the center of the hind-
376 limb somatosensory, fore-limb somatosensory, auditory, visual, and barrel cortices.

377

378 **Voltage imaging.** Blue-light-emitting diodes (Luxeon K2, 473 nm, Quadica Developments Inc,
379 Lethbridge, Alberta) augmented with band-pass filters (Chroma Technology Corp, 467–499 nm)
380 were used to excite the Butterfly indicator. FF580-FDi01-25x36 dichroic mirror was used for
381 mCitrine/mKate2 emission light separation before getting filtered using a 528–555 nm and 582–
382 602 band-pass filters (Semrock, New York, NY), respectively. The filtered signals were collected
383 as 12-bit images at 100 Hz using two CCD cameras (1M60 Pantera, Dalsa, Waterloo, ON) and
384 EPIX E8 frame grabber controlled with XCAP 3.7 imaging software (EPIX, Inc, Buffalo Grove,
385 IL). To reduce the effect of large neocortical blood vessels in imaging quality, the lens was focused

386 into the neocortex to a depth of ~0.5 mm. We also recorded the Butterfly FRET signals in response
387 to different periphery stimulation under urethane anesthesia to functionally map the center of the
388 hind-limb somatosensory, fore-limb somatosensory, auditory, visual, and barrel cortices.

389

390 **Two-photon calcium imaging.** Two-photon calcium imaging was conducted via a Bergamo II
391 multi-photon microscope (THORLABS). Ti:Saphire pulsed laser (Coherent) with wavelength of
392 920 nm and power of ~80 mW (measured at the tissue) was used to excite the calcium indicators.
393 Scanning of the field of view was done by Galvo-Resonant X-Y mirrors. A 16x water-immersion
394 objective lens (Nikon) with numerical aperture of 0.8 was used for imaging. The emitted light from
395 calcium indicators was collected via a GaAsP photomultiplier tube (Hamamatsu). The field of
396 view size was $835 \times 835 \mu\text{m}$ and frames were captured at spatial resolution of 800×800 pixels
397 and temporal resolution of 19.6 Hz. The depths of imaging was aimed between 110 and 190 μm
398 (layers II/III).

399

400 **Preprocessing of Butterfly (VSFP) imaging data.** We followed the ratiometric procedure,
401 described in Carandini et al.³⁸, with a modification to preprocess the VSFP data and obtain an
402 estimate of the membrane potential at each pixel. The modification was that we used time-varying
403 quantities for \bar{A} , \bar{D} , \bar{A}_e , and \bar{D}_e by calculating trends of these signals using the local regression
404 method. We made this adjustment because we were working with spontaneous neocortical activity
405 recorded over a long period of time while, in the Carandini et al.³⁸, peri-stimulus activity over a
406 short interval of time (couple of seconds) was analyzed.

407

408 **Preprocessing of iGluSnFR imaging data.** First, low-rank reconstruction of the stack of frames,
409 obtained via iGluSnFR imaging, was performed by applying singular-value decomposition and
410 taking the components with the greatest associated singular values³⁹. Next, for each pixel in the
411 imaging window, a time-varying baseline (F_0) for the iGluSnFR signal (F) was calculated. Baseline
412 calculation was performed by applying the *locdetrend* function in the Choronux toolbox⁴⁰
413 (<http://chronux.org/>) to fit a piecewise linear curve to the pixels' time series using the local
414 regression method. The calculated baseline signal (F_0) was then subtracted from the raw signal (F),

415 and the difference signal was divided by the baseline values at each time point ($\Delta F/F_0$). At the end,
416 a band pass (0.5–6 Hz) FIR filter was applied on the $\Delta F/F_0$ signal for each pixel.

417

418 **Preprocessing of two-photon calcium imaging data.** The preprocessing of two-photon calcium
419 imaging data was conducted via Suite2p pipeline implemented in Python 3⁴¹. The signals from the
420 detected candidate neuronal ROIs as well as the geometric shape the ROIs were visually inspected
421 to screen for non-somatic compartments. The neuropil component of the calcium traces, estimated
422 by Suite2p, was multiplied by 0.7 and subtracted from the traces⁴¹.

423

424 **SWRs detection.** The raw hippocampal LFP was down-sampled to 1 kHz, filtered between 110
425 to 250 Hz (ripple-band) using real-valued Morlet wavelet implemented in MATLAB
426 (MathWorks). The ripple power signal was generated by rectifying and smoothing the ripple-band
427 filtered signal. Smoothing was performed using a rectangular window with a length of 8 ms. SWRs
428 were identified when the ripple power signal passed the detection threshold defined by the mean
429 plus a multiple of its standard deviation. The numerical value of the standard deviation multiplier
430 was adjusted manually for each animal. A lower threshold (75% of the detection threshold) was
431 used to estimate the onset and offset of each SWR. Detected events were further screened by
432 applying a duration threshold. The timestamp of the largest trough between the onset and offset
433 times of each detected event is referred to as the event center. At the end, events with centers less
434 than 50 ms apart were concatenated.

435

436 **Exclusion of ripples based on EMG activity.** To ensure that the peri-ripple neocortical activity
437 was least affected by movement-related brain activity, the ripples with above-threshold EMG
438 activity within ± 500 ms were excluded from all the analyses used in this study. The exclusion
439 threshold was manually chosen for each animal.

440

441 **Multi-unit activity (MUA) calculation.** MUA signal was calculated from hippocampal LFP using
442 a similar method reported before⁴². Briefly, the hippocampal LFP signal were filtered above 300
443 Hz, rectified and smoothed with a rectangular window with the length of ~3 millisecond. The
444 resultant signal was called MUA in this work.

445

446 **Z-scoring peri-ripple neocortical activity.** The z-scoring of peri-ripple traces/frames was
447 performed against a null distribution. The null distribution was obtained from traces centered
448 round random timestamps which did not necessarily correspond to those of ripple centers, and the
449 random timestamps were generated by randomly permuting the intervals between the successive
450 ripple centers. All the individual peri-ripple traces/frames were z-scored against the null
451 distribution before being analyzed further.

452

453 **Calculating the number of bootstrap draws and sampling size.** The number of bootstrap draws
454 for voltage (i.e., 193) and for glutamate (i.e., 270) imaging data was calculated to achieve the
455 statistical power of 0.8 at significance level of 0.05 and effect size of 0.25 for a repeated-measure
456 ANOVA design with 8 and 12 groups (i.e., regions), respectively. The power analysis was
457 performed using the G*Power software⁴³. 50 was chosen as the sampling size at each bootstrap
458 draw. This number was chosen since the correlation coefficient between the average of the
459 bootstrap draws and the average of the whole peri-ripple ripples plateaued around this number in
460 all the animals.

461

462 **Calculating amplitude, slope, and onset of activation and/or deactivation.** For voltage peri-
463 ripple mean traces, to report all the quantities as a positive number, the traces were inverted by
464 multiplying a negative one to them. Deactivation amplitude was calculated as the difference
465 between maximum value of the trace in the interval [0,200 ms] and the baseline value. The baseline
466 value was calculated as the mean of the trace in the interval [-200 ms,0]. To calculate the onset
467 and offset of the deactivation, the maximum value of the derivative (rate of change) of the voltage
468 traces in the interval [-200 ms,200 ms] was calculated. Onset and offset of deactivation were
469 defined as the timestamps at which the derivative signal reaches half of its maximum value before
470 and after the maximum value timestamp, respectively. The slope of deactivation was defined as
471 the average slope of the voltage traces between their onset and offset times. Finally, the pre-ripple
472 amplitude of the voltage traces were calculated by averaging the non-inverted trace values between
473 the timestamps of the half-maximum value. For glutamate peri-ripple mean traces, all the

474 calculations are the same as those applied to the voltage imaging data except the signal inversion
475 at the very first step was not performed.

476

477 **Calculating ensemble-wise correlation coefficient function.** Peri-ripple activity of each region
478 and peri-ripple MUA could be conceived of as random processes for which we have observed
479 multiple realizations. The observed realizations of these two random processes could be arranged
480 in the matrix form as $A(r,t)$ and $B(r,t)$, respectively, where r and t represent r -th ripple and t -th
481 time point with respect to the r -th ripple center. Note that all the observed realizations are aligned
482 with respect to the ripple centers. The cross-correlation coefficient function, $C(t_1,t_2)$, between
483 random processes A and B could be estimated by calculating the sample correlation coefficient
484 between $A(:,t_1)$ and $B(:,t_2)$. In other words, $C(t_1,t_2)$ equals the correlation coefficient between t_1 -th
485 column of A and t_2 -th column of B.

486 **Clustering the aRSC calcium traces.** The z-scored (against the null distribution) peri-ripple
487 calcium traces in the interval [-500ms, 500ms] were further z-scored with respect to their mean
488 and standard deviation and then fed into the k-means algorithm implemented as the built-in
489 function *kmeans* in MATLAB (MathWorks). Correlation was chosen as the distance metrics.

490

491 **Statistical tests.** All statistical tests in this study were performed using MATLAB built-in
492 functions. Repeated-measure ANOVA with Greenhouse-Geisser correction for sphericity was
493 performed for testing the hypothesis that there was a region-effect in any of the features (i.e.,
494 amplitude, slope, onset/offset time) of the peri-ripple traces. This analysis was followed by
495 performing multiple comparisons with Tukey-Kramer correction. For all the two-group
496 comparisons, two-sample two-sided t-test was used.

497

498

499

500

501

502 **Author contributions**

503 Conceptualization, J.KA., B.L.M., M.H.M.; Methodology, J.KA., Z.J., M.H.M.; Investigation,
504 J.KA, Z.R.; Formal Analysis, J.KA.; Experimental models, T.K.; Writing – Original Draft, J.KA;
505 Writing – Review & Editing, J.KA., Z.R., T.K., B.L.M., and M.H.M.; Funding Acquisition,
506 M.H.M., B.L.M.; Resources, B.L.M and M.H.M.; Supervision, M.H.M.

507

508 **Acknowledgment**

509 This work was supported by Natural Sciences and Engineering Research Council of Canada (grant
510 no 40352 & 1631465 to MHM and BLM respectively), Alberta Innovates (MHM and BLM),
511 Alberta Prion Research Institute (grant no. 43568 to MHM), and Canadian Institute for Health
512 Research (grant no 390930 & 156040 to MHM and BLM MHM respectively), National Science
513 Foundation (MHM, BLM), and USA Defense Advanced Research Projects Agency (grant no
514 HR0011-18-2-0021 to BLM). The authors also thank Di Shao and Behroo Mirza Agha for animal
515 breeding, and J. Sun for surgical assistance. The authors thank Hongkoi Zeng from the Allen
516 Institute for Brain Science for providing the Emx-cre, Camk2a-tTa, and Ai85 mice as a gift.

517

518 **Declaration of Interests**

519 The authors declare no competing interests.

520

521

522

523

524

525

526

527

528

529

530 **References**

- 531 1. Buzsáki, G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and
532 planning. *Hippocampus* (2015). doi:10.1002/hipo.22488
- 533 2. Buzsáki, G. Two-stage model of memory trace formation: A role for ‘noisy’ brain states. *Neuroscience* **31**, 551–570 (1989).
- 535 3. Schwindel, C. D. & McNaughton, B. L. Hippocampal-cortical interactions and the dynamics of
536 memory trace reactivation. *Prog. Brain Res.* **193**, 163–77 (2011).
- 537 4. Qin, Y.-L., McNaughton, B. L., Skaggs, W. E. & Barnes, C. A. Memory reprocessing in
538 corticocortical and hippocampocortical neuronal ensembles. *Philos. Trans. R. Soc. London. Ser. B
539 Biol. Sci.* **352**, 1525–1533 (1997).
- 540 5. Tang, W. & Jadhav, S. P. Sharp-wave ripples as a signature of hippocampal-prefrontal reactivation
541 for memory during sleep and waking states. *Neurobiol. Learn. Mem.* **160**, 11–20 (2019).
- 542 6. Roumis, D. K. & Frank, L. M. Hippocampal sharp-wave ripples in waking and sleeping states. *Curr.
543 Opin. Neurobiol.* **35**, 6–12 (2015).
- 544 7. Ólafsdóttir, H. F., Bush, D. & Barry, C. The Role of Hippocampal Replay in Memory and Planning.
545 *Curr. Biol.* **28**, R37–R50 (2018).
- 546 8. Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I. & Battaglia, F. P. Replay of rule-learning
547 related neural patterns in the prefrontal cortex during sleep. *Nat. Neurosci.* **12**, 919–26 (2009).
- 548 9. Rothschild, G., Eban, E. & Frank, L. M. A cortical–hippocampal–cortical loop of information
549 processing during memory consolidation. *Nat. Neurosci.* (2016). doi:10.1038/nn.4457
- 550 10. Kaefer, K., Nardin, M., Blahna, K. & Csicsvari, J. Replay of Behavioral Sequences in the Medial
551 Prefrontal Cortex during Rule Switching. *Neuron* **106**, 154-165.e6 (2020).
- 552 11. Benchenane, K. *et al.* Coherent Theta Oscillations and Reorganization of Spike Timing in the
553 Hippocampal- Prefrontal Network upon Learning. *Neuron* **66**, 921–936 (2010).
- 554 12. Tang, W., Shin, J. D., Frank, L. M. & Jadhav, S. P. Hippocampal-prefrontal reactivation during
555 learning is stronger in awake compared with sleep states. *J. Neurosci.* **37**, 11789–11805 (2017).
- 556 13. Abadchi, J. K. *et al.* Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave
557 ripples. *Elife* **9**, (2020).
- 558 14. Chambers, A. R., Berge, C. N. & Vervaeke, K. Cell-type-specific silence in thalamocortical circuits
559 precedes hippocampal sharp-wave ripples. *bioRxiv* 2021.05.05.442741 (2021).
560 doi:10.1101/2021.05.05.442741
- 561 15. Burke, S. N. *et al.* Differential Encoding of Behavior and Spatial Context in Deep and Superficial
562 Layers of the Neocortex. *Neuron* **45**, 667–674 (2005).
- 563 16. McNaughton, B. L. Cortical hierarchies, sleep, and the extraction of knowledge from memory. *Artif.
564 Intell.* **174**, 205–214 (2010).
- 565 17. Newton, T. H. *et al.* In silico voltage-sensitive dye imaging reveals the emergent dynamics of
566 cortical populations. *Nat. Commun.* 2021 **12**, 1–13 (2021).
- 567 18. Chemla, S. & Chavane, F. Voltage-sensitive dye imaging: Technique review and models. *J. Physiol.
568 Paris* **104**, 40–50 (2010).

569 19. Chemla, S. & Chavane, F. A biophysical cortical column model to study the multi-component origin
570 of the VSDI signal. *Neuroimage* **53**, 420–438 (2010).

571 20. Gomperts, S. N., Kloosterman, F. & Wilson, M. A. VTA neurons coordinate with the hippocampal
572 reactivation of spatial experience. *Elife* **4**, (2015).

573 21. Chrobak, J. J. & Buzsáki, G. Selective activation of deep layer (V-VI) retrohippocampal cortical
574 neurons during hippocampal sharp waves in the behaving rat. *J. Neurosci.* **14**, 6160–6170 (1994).

575 22. Nitzan, N. *et al.* Propagation of Hippocampal Ripples to the Neocortex by Way of a Subiculum-
576 Retrosplenial Pathway. *bioRxiv* 2020.02.27.966770 (2020). doi:10.1101/2020.02.27.966770

577 23. Siapas, A. G. & Wilson, M. a. Coordinated interactions between hippocampal ripples and cortical
578 spindles during slow-wave sleep. *Neuron* **21**, 1123–1128 (1998).

579 24. Jadhav, S. P., Rothschild, G., Roumis, D. K. & Frank, L. M. Coordinated Excitation and Inhibition
580 of Prefrontal Ensembles during Awake Hippocampal Sharp-Wave Ripple Events. *Neuron* **90**, 113–
581 127 (2016).

582 25. Wang, D. V & Ikemoto, S. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and
583 Anterior Cingulate Unit Activity. *J. Neurosci.* **36**, 10663–10672 (2016).

584 26. Isomura, Y. *et al.* Integration and Segregation of Activity in Entorhinal-Hippocampal Subregions
585 by Neocortical Slow Oscillations. *Neuron* **52**, 871–882 (2006).

586 27. Diba, K. & Buzsáki, G. Forward and reverse hippocampal place-cell sequences during ripples. *Nat.*
587 *Neurosci.* 2007 1010 **10**, 1241–1242 (2007).

588 28. Yamawaki, N. *et al.* Long-range inhibitory intersection of a retrosplenial thalamocortical circuit by
589 apical tuft-targeting CA1 neurons. *Nat. Neurosci.* 2019 224 **22**, 618–626 (2019).

590 29. Miyashita, T. & Rockland, K. S. GABAergic projections from the hippocampus to the retrosplenial
591 cortex in the rat. *Eur. J. Neurosci.* **26**, 1193–1204 (2007).

592 30. Jinno, S. *et al.* Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus.
593 *J. Neurosci.* **27**, 8790–8804 (2007).

594 31. Nitzan, N. *et al.* Propagation of hippocampal ripples to the neocortex by way of a subiculum-
595 retrosplenial pathway. *Nat. Commun.* 2020 111 **11**, 1–17 (2020).

596 32. Opalka, A. N., Huang, W., Liu, J., Liang, H. & Wang, D. V. Hippocampal Ripple Coordinates
597 Retrosplenial Inhibitory Neurons during Slow-Wave Sleep. *Cell Rep.* **30**, 432-441.e3 (2020).

598 33. Karlsson, M. P. & Frank, L. M. Awake replay of remote experiences in the hippocampus. *Nat.*
599 *Neurosci.* **12**, 913–8 (2009).

600 34. Madisen, L. *et al.* Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors
601 with High Specificity and Performance. *Neuron* **85**, 942–958 (2015).

602 35. Marvin, J. S. *et al.* An optimized fluorescent probe for visualizing glutamate neurotransmission.
603 *Nat. Methods* **10**, 162–170 (2013).

604 36. Xie, Y. *et al.* Resolution of High-Frequency Mesoscale Intracortical Maps Using the Genetically
605 Encoded Glutamate Sensor iGluSnFR. *J. Neurosci.* **36**, 1261–72 (2016).

606 37. Mohajerani, M. H. *et al.* Spontaneous cortical activity alternates between motifs defined by regional
607 axonal projections. *Nat. Neurosci.* **16**, 1426–1435 (2013).

608 38. Carandini, M. *et al.* Imaging the Awake Visual Cortex with a Genetically Encoded Voltage
609 Indicator. *J. Neurosci.* **35**, 53–63 (2015).

610 39. Mitra, P. P. & Pesaran, B. Analysis of Dynamic Brain Imaging Data. *Biophys. J.* **76**, 691–708
611 (1999).

612 40. Mitra, P. & Bokil, H. *Observed Brain Dynamics*. (Oxford University Press, 2007).
613 doi:10.1093/acprof:oso/9780195178081.001.0001

614 41. Pachitariu, M. *et al.* Suite2p: beyond 10,000 neurons with standard two-photon microscopy. *bioRxiv*
615 061507 (2017). doi:10.1101/061507

616 42. Belitski, A. *et al.* Low-frequency local field potentials and spikes in primary visual cortex convey
617 independent visual information. *J. Neurosci.* **28**, 5696–709 (2008).

618 43. Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G*Power 3: A flexible statistical power analysis
619 program for the social, behavioral, and biomedical sciences. *Behav. Res. Methods* **2007** *39*,
620 175–191 (2007).

621