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Abstract

Introduction. Computational models are often used to assess how functional connectivity
(FC) patterns emerge from neuronal population dynamics and anatomical connections in the
brain. However, group averaged data is often used in this context and it remains unclear
whether individual predictions of FC patterns using this approach can be made. Here, we
assess the value of using individualized structural data for simulation of individual whole-
brain FC.

Methods. The Jansen and Rit neural mass model was employed, where masses were
coupled using individual structural connectivity (SC) obtained from diffusion weighted
imaging. Simulated FC was correlated to individual magnetoencephalography-derived
empirical FC. FC was estimated using both phase-based (phase lag index (PLI), phase
locking value (PLV)) and amplitude-based (amplitude envelope correlation (AEC)) metrics to
analyze the goodness-of-fit of different metrics for individual predictions. Prediction of
individual FC was compared against the prediction of group averaged FC. We further tested
whether SC of a different participant could equally well predict a participants FC pattern.
Results. The AEC provided a significantly better match between individually simulated and
empirical FC than phase-based metrics. Simulations with individual SC provided higher
correlations between simulated and empirical FC compared to using the group-averaged SC.
However, using SC from other participants resulted in similar correlations between simulated
and empirical FC compared to using participants own SC.

Discussion. This work underlines the added value of FC simulations based on individual
instead of group-averaged SC, and could aid in a better understanding of mechanisms
underlying individual functional network trajectories in neurological disease.

Impact statement

In this work, we investigated how well individual empirical functional connectivity can be
simulated using the individual’s structural connectivity matrix combined with neural mass
modeling. Our research highlights the potential added value of using individual simulations of
functional connectivity, and could aid in a better understanding of mechanisms underlying
individual functional network trajectories in neurological disease. Moreover, individualized
prediction of disease trajectories could enhance patient care and may provide better
treatment options.
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Introduction

The brain is a complex network of brain regions that display interregional communication, i.e.
so called functional connectivity (FC). FC is defined by statistical interdependencies between
time-series of brain activity (Friston 2011). In case of neurophysiological data, FC can be
estimated from either the phase or amplitude of neuronal oscillations (Siegel et al 2012,
Siems & Siegel 2020). Disruption of the FC patterns are known to be clinically relevant in
neurological (Stam 2014) and psychiatric disorders (Hallett et al 2020). Computational
models are often used to gain insight into mechanisms that result in disrupted patterns of FC.
Using this approach, the impact of pathology at the neuronal population level or at the level
of structural connections (SC) on FC can be assessed and used to make predictions of
empirical FC patterns. Especially individualized prediction of disease trajectories (Douw et al
2019) are important in this context. However, so far mainly group averaged SC and FC have
been used, and it remains an open question whether individual predictions of FC are
feasible, even in healthy conditions.

Computational modeling of brain activity and FC can be approached using so-called neural
mass modelling (Deco et al 2008). Neural mass models assume a mean ensemble activity of
neurons that reduces the number of dimensions and allows multiple interacting local
populations (Breakspear 2017). A neural mass corresponds to activity within a brain region
and masses can be coupled using empirically measured structural connections, resulting in
whole-brain network simulations. A well-known model that is known to generate
physiologically accurate brain activity (Aburn et al 2012) was developed by (Lopes da Silva
et al 1974) and further improved by Jansen and Rit (Jansen & Rit 1995). The Jansen and Rit
model is able to produce oscillatory activity in the alpha band, i.e. the dominant rhythm in
resting-state neurophysiological data. Usage of this model can be justified by the fact that its
dynamical properties have been thoroughly investigated and are well understood (Grimbert &
Faugeras 2006, Spiegler et al 2011).

So far, computational modeling of empirical neurophysiological connectivity is mainly based
on group-averaged SC as input to neural mass models (Abeysuriya et al 2018, Cabral et al
2014, Deco et al 2017, Hadida et al 2018, Moon et al 2015, O'Neill et al 2018, Tewarie et al
2019a, Tewarie et al 2014). One previous study on structure-function relationships compared
individually simulated and empirically derived FC, based on electroencephalography (EEG)
data (Finger et al 2016). This study showed moderate to strong correlations between
individually simulated and empirical FC by using a simple autoregressive model. FC was
calculated with different phase-based FC metrics. Finger and colleagues tested the
specificity of using individual SC by correlating individually simulated FC with either the
corresponding empirical FC matrices, or with empirical FC matrices of other participants, and
found no significant differences between the two approaches. This finding could be
supported by a recent functional magnetic resonance imaging (MRI) study (Zimmermann et
al 2019) where it was found that the correspondence between empirical SC and FC in many
participants was limited due to the small variability between participants in SC compared with
the larger variability in FC, perhaps indicating that structural data is not specific enough to
simulate FC accurately. Despite the relevance of previous work (Finger et al 2016), we argue
that the feasibility of individual predictions of FC should be re-tested in an independent
dataset and should be tested using both amplitude- and phase-based metrics for FC, as
recent work suggest that both phase and amplitude could encode complementary
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information (Siems & Siegel 2020). However, this observation has not been reproduced in an
independent dataset. In addition, we will extend previous work by including more
participants, making use of magnetoencephalography (MEG) instead of EEG data and
applying different FC metrics.

In the current work, we investigated how well individual empirical FC can be approximated by
simulating an estimate of FC based on an individual’'s own SC. We analyzed both amplitude
and phase-based metrics in this context, calculated from MEG data. In order to put our
results into perspective, we compared our results of individual simulations with FC
approximations based on group-averaged SC and individual predictions based on non-
matched empirical SC.
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Methods

Participants

Forty healthy participants (37.5% men, age 50.7 £ 6.1 years) from the Amsterdam multiple
sclerosis cohort were included (Eijlers et al 2018). We only included participants who
underwent both diffusion MRI (dMRI) and magnetoencephalography recordings. Approval
was obtained from the institutional ethics review board of the VU University Medical Center,
and participants gave written informed consent prior to participation.

Empirical structural data: diffusion MR/

Individually weighted dMRI matrices were obtained to describe the structural connectivity
between the neural masses. dMRI matrices were calculated with probabilistic tractography
as described previously (Meijer et al 2020). In short, participants were scannedon a3 T
scanner (GE signa HDxt), using an eight-channel phased-array head-coil. For volumetric
measurements, a 3D T1-weighted inversion-prepared fast spoiled gradient recall sequence
(FSPGR, repetition time 7.8 ms, echo time 3 ms, inversion time 450 ms, flip angle 12°,
sagittal 1.0 mm sections, 0.94 x 0.94 mm? in-plane resolution) was taken into account. A
diffusion weighted imaging sequence (dMRI) was applied covering the entire brain using five
volumes without directional weighting (i.e. b=0 s/mm?) and 30 volumes with non-collinear
diffusion gradients (echo planar imaging (EPI), b=1000 s/mm?, repetition time 13000 ms,
echo time 91 ms, flip angle 90°, 2.4 mm contiguous axial slices, 2 x 2 mm? in-plane
resolution). Subsequently, the FMRIB Diffusion Toolbox (FDT; part of FSL 5) was performed
using eddy current distortion correction. Next, using the fiber orientation distribution (FOD),
probabilistic tractography was applied using MRtrix 3.0 (Tournier et al 2012). In this model, N
streamlines are reconstructed by randomly putting seeds in white matter and using
constrained spherical deconvolution to estimate the local FOD (Tournier et al 2007). The 30
non-collinear diffusion directions in the data were adjusted by restricting the maximum
spherical harmonic order (Imax) to 6. Then, for each participant, a random seeding of 100
million fibers within the brain mask was applied to perform whole-brain probabilistic
tractography. Probabilistic tractography was applied because it is frequently used due to its
low sensitivity for false-positives (Maier-Hein et al 2017).

Cortical grey matter regions were defined by processing the 3D T1-weighted image of each
participant with the FreeSurfer 5.3 pipeline. The automated anatomical labeling (AAL) atlas
(Tzourio-Mazoyer et al 2002) was used to define 78 cortical regions (Gong et al 2009) on the
native cortical surface. Structural networks were constructed by considering regions as
nodes and the number of fibers between pairs of nodes as links. We performed normalization
of elements in the SC matrices. For each individual SC matrix, link weights that exceeded
1.5*IQR (interquartile range) above the third quartile (Q3 + 1.5*IQR) were set to that value, to
make sure that very high values would not disproportionally influence the simulations.
Subsequently, the weighted structural connectivity matrices were rescaled to the range [0 1].

Empirical functional data: magnetoencephalography

Acquisition and pre-processing of the MEG data was performed as described previously
(Derks et al 2018). In short, eyes-closed, resting-state measurements of 5 minutes were
used. Measurements were performed in a magnetically shielded room (Vacuum Schmelze
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GmbH, Hanua, Germany) with a 306-channel whole-head MEG system (Elekta Neuromag
Oy, Helsinki, Finland). Data were sampled at 1250 Hz, and a high-pass filter (0.1 Hz) and
anti-aliasing filter (410 Hz) were employed online. The extended Signal Space Separation
method (xSSS) (van Klink et al 2017) was applied, after which a maximum of 12
malfunctioning channels were excluded during visual inspection (SK, LD). Artefact removal
was performed offline with the temporal extension of SSS in MaxFilter software (Elekta
Neuromag Oy, version 2.2.15) (Taulu & Simola 2006). The head position relative to the MEG
sensors was recorded continuously with the signals from four or five head-localization coils.
The head-localization coil positions and outline of the participants scalp were digitized using
a 3D digitizer (3Space Fastrak, Polhemus, Colchester, VT, USA). Each participant’s scalp
surface was co-registered to their structural MRI using a surface-matching procedure.
Subsequently, the co-registered MRI was spatially normalized to a template MRI. Centroid
voxels (Hillebrand et al 2016) of the 78 cortical regions of the AAL atlas, the same as was
used for the SC, were selected for further analyses after inverse transformation to the
participant’s co-registered MRI. A single best fitting sphere was fitted to the outline of the
scalp as obtained from the co-registered MRI and used as a volume conductor model for the
beamformer approach (Hillebrand & Barnes 2005, Hillebrand et al 2005). An atlas-based
scalar beamformer implementation (Elekta Neuromag Oy, version 2.1.28), similar to
Synthetic Aperture Magnetometry (Robinson & Vrba 1999), was applied to project MEG data
from sensor level to source space (Hillebrand et al 2012). The beamformer weights were
based on the data covariance matrix and the forward solution (lead field) of a dipolar source
at the voxel location. Orientation of the sources was estimated based on singular value
decomposition (Sekihara et al 2006). The broadband (0.5-48 Hz) time-series of the 78
centroids were projected through the normalized (Cheyne et al 2007) broadband beamformer
weights for each target voxel (i.e. centroid voxel). From these time-series, for each
participant, the maximum amount of artefact free data, i.e. 26 consecutive epochs of 6.55
seconds (8192 samples), were analyzed (Liuzzi et al 2017). Time-series were digitally band-
pass filtered in the alpha band (8-13 Hz) using a fast Fourier transform, after which all bins
outside the passbands were set to zero, and an inverse Fourier transform was performed
(implemented using in house script in Matlab (version 2018b, Mathworks, Natick, MA, USA)).
Subsequently, FC was calculated using different FC metrics (see paragraph ‘Simulated and
empirical functional connectivity’). All the analyses in the current work were performed in
Matlab using in house scripts (see https://github.com/multinetlab-
amsterdam/projects/tree/master/modelling paper 2021).

Simulated functional data: network of neural masses

We considered a network of coupled neural masses with network size N = 78. Each node
(neural mass) corresponded to a cortical region of the AAL atlas. Link weights (number of
streamlines) were derived from an individual’'s weighted SC matrix. We used the Jansen and
Rit model as described in (Grimbert & Faugeras 2006) to model a single neural mass. This
model allows for simulation of fluctuations in the synaptic membrane potential of a neuronal
population (Jansen & Rit 1995). Each mass consists of three populations (pyramidal
population, and excitatory and inhibitory neuronal populations) (see Figure 1A). The Jansen
and Rit model is optimized to generate alpha oscillations. In short, each neuronal population
is described by a second-order ordinary differential equation that models modulations in the
mean membrane potential due to the mean incoming firing rate from the same population
and from other populations in the neural mass. Incoming mean firing rates are obtained by a
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nonlinear sigmoid function that transforms the mean membrane potential to a mean firing
rate (Jansen & Rit 1995). Uncorrelated Gaussian noise was fed to the pyramidal population
only. The three interconnected neuronal populations were connected using the coupling
values (C1, C2, C3, C4) (Figure 1 and Table 1). These values represent the average number
of synaptic connections between each population. Connectivity between the neural masses
was implemented exactly the same as in (Forrester et al 2020) and the same parameters
were used as in (Grimbert & Faugeras 2006). A fourth order stochastic Runge-Kutta method
(Hansen & Penland 2006) was used to numerically solve the coupled differential equations of
the model.

A. Simulation of time series for a single subject

High
Input +
+,C2 +C1
| Inh | | Exc |
: Low

each brain region is tractography structural connectivity simulation yields a

represented by a determines structural matrix determines time series per
single neural mass connectivity between coupling between brain region

brain regions neural masses

B. Simulated (top row) and empirical (bottom row) functional connectivity
matrices for a single subject

Figure 1. Overview of the applied methods.

A: left: overview of the Jansen and Rit model reflecting the connections between the
pyramidal (Pyr), inhibitory (Inh) and excitatory (Exc) populations. Individual weighted
structural connectivity, computed by probabilistic tractography using MRTrix, was used as
input to the Jansen and Rit model to connect the neural masses. Each neural mass,
reflecting a brain region, produces MEG-like time series. B: Exemplar simulated and
empirical weighted functional connectivity matrices for one participant. Cold colors represent
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low connectivity and warmer colors represent high connectivity (this also applies to the
structural connectivity matrix). For both simulated and empirical data, FC was estimated
between all pairs of regions using different FC metrics (AEC: amplitude envelope correlation,
AEC full: AEC calculated over the full time-series (epochs concatenated), AEC: calculated
over epochs, PLI: phase lag index, calculated over epochs, PLV: phase locking value,
calculated over epochs). AEC full, AEC and PLV were corrected for signal leakage in the
empirical data, not in the simulated data. PLI inherently corrects for signal leakage and
therefore corrects in both empirical and simulated data. For each participant and per
connectivity metric, a correlation between the simulated and empirical FC was performed.

Table 1 Parameters and values included in the model (based on (Grimbert & Faugeras

2006))
Parameter Meaning Value
C1,C2, C3, Average number of synapses between 135 *[1 0.8 0.25 0.25]
(o7} populations
Beta_E Timescale for excitatory population 100 ms
Beta_l Timescale for inhibitory population 50 ms
A Average excitatory synaptic gain 3.25
B Average inhibitory synaptic gain 22
nu Threshold of sigmoid 5s"
r Slope of sigmoid 0.56 mV!
theta Amplitude of sigmoid 6 mV
Conduction 10 m/s
velocity
Fs Sample frequency 1250 Hz
h Integration time step 0.0001
T Observation time 20s
P External input to each of the neural 150

Coupling

masses
Coupling between the neural masses

[0.1:0.012:0.292]
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Each neural mass receives external input (P) that corresponds to external sources or activity
from neighboring populations (Ableidinger et al 2017). The external input was set to P=150
for all neural masses. For the global coupling parameter, which determines the coupling
between all neural masses, we used the interval [0.1, 0.292], with a discrete step size of
0.012. As explained in more detail later, this range was used to scan the parameter space in
order to obtain the coupling value for every individual that optimized the goodness of fit
between simulated and empirical FC matrices. We included distance dependent delays
between nodes based on the Euclidian distance between centroids in the AAL atlas divided
by the conduction velocity. See Table 1 for an overview of all model parameters. We ran the
model for each global coupling value to generate time-series of neuronal activity. For each
run, the time-series were band-pass filtered in the alpha band (8-13 Hz) in the same way as
for empirical data, and FC was calculated using different FC metrics (see paragraph
‘Simulated and empirical functional connectivity’). In order to obtain robust results and in
order to minimize the stochastic effect of the model’s stochastic differential equations, the
model was ran 20 times, and subsequently FC values were averaged over the 20 runs.

Simulated and empirical functional connectivity

Three FC metrics were calculated that capture either amplitude-based connectivity or phase-
based connectivity: the amplitude envelope correlation (AEC) (Brookes et al 2011, Bruns et
al 2000, Hipp et al 2012), the Phase Lag Index (PLI) (Stam et al 2007) and the Phase
Locking Value (PLV) (Lachaux et al 1999). The AEC quantifies amplitude-based connectivity
between two time-series, whereas the PLI and PLV are both metrics of phase
synchronization. The main difference between the latter two metrics is that the PLI inherently
is insensitive to zero lag phase differences and thereby reduces the effect of primary signal
leakage. Prior to FC estimation, we first band-pass filtered the data in the alpha band (8-13
Hz) followed by correction for signal leakage. More specifically, we applied pairwise
orthogonalisation in order to correct for signal leakage only in empirical data and only for
metrics that are inherently sensitive to signal leakage (AEC and PLV). To calculate the AEC,
the amplitude envelopes were obtained from the analytical signal after a Hilbert
transformation of the band-pass filtered orthogonalised time-series, and the correlations
between the amplitude envelopes of pairs of time-series were computed. For the empirical
data, the AEC was calculated in two different ways: 1) AEC: the data were divided into
epochs (6.55 seconds), and AEC computed for every epoch. The AEC was subsequently
averaged over epochs; 2) AEC full: AEC was computed for the entire time-series, after
concatenating all epochs. To calculate the PLI and the PLV, the instantaneous phases were
obtained from the same analytical signal after the Hilbert transformation. The PLI and PLV
were both calculated for every epoch (6.55 seconds) and subsequently averaged over
epochs. For the simulated data, for each FC metric, the FC matrices were averaged over the
20 runs per coupling value.

Similarity between simulated and participant-specific empirical functional connectivity using
individual structural connectivity

We computed a Spearman rank correlation (p) between simulated and empirical FC matrices
for every global coupling value to quantify the match between simulated and individual
empirical FC. To do this, the upper triangular part of the matrices were vectorised and
subsequently correlated between simulated and empirical FC. Spearman correlations were
applied since the distribution of FC values for most metrics was typically-non-Gaussian. For
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all statistical tests performed, values of p < 0.05 were considered to be significant.
Simulations were performed with the individual SC matrix as input to the neural mass
models. The highest Spearman correlation within the coupling range [0.1, 0.292] was
considered to be the best fit with the empirical FC, further referred to as the maximum
correlation per participant, and calculated per FC metric. If the coupling value corresponding
to the maximum correlation was at the end of the coupling range (i.e. coupling = 0.292), we
extended the coupling range to 0.4, with a step size of 0.012, to test whether that coupling
range would result in higher correlation values for that individual. Subsequently, the
maximum correlation for the range [0.1, 0.4] was determined.

A Wilcoxon signed rank test was subsequently performed to compare the maximum
correlations between FC metrics. The FC metric that resulted in the highest maximum
correlations at the group level was selected for further analyses. Differences between
coupling values corresponding to the maximum correlations for the different FC metrics were
tested with Friedman’s test.

Similarity between simulated and participant-specific empirical functional connectivity using
group-averaged structural connectivity

We subsequently tested whether the individual SC as input to the model outperformed
simulations based on the group-averaged SC. We therefore used the average SC as input to
the model and correlated the resulting simulated FC for the range of coupling values, with the
individual empirical FC, using a Spearman correlation. As reference, we also predicted
group-averaged FC based on simulations with the group-averaged SC as input. The group-
averaged SC and FC matrices were obtained by averaging SC and FC matrices across all
participants, respectively. Next, in the group-averaged weighted SC, outliers were removed
and normalization of the matrix was applied as described in section ‘Empirical structural data:
diffusion MRI". All subsequent steps to calculate the match between simulated and empirical
FC were as described in section ‘Similarity between simulated and participant-specific
empirical functional connectivity using individual structural connectivity’.

Simulated versus empirical functional connectivity in matched versus non-matched
participants

In a subsequent analysis, we tested whether the predictions of individual empirical FC based
on participants’ own SC matrix were specific. We tested the null hypothesis that prediction of
empirical FC for a given participant based on simulated FC with the SC of another participant
as input to the simulations would lead to an equally well prediction. To this end, we
correlated the individually simulated FC matrices to empirical FC matrices from other
participants. We then compared the Spearman correlations between simulated and empirical
FC for matched versus non-matched data. To test whether participant’'s own maximum
correlation (matched data) was higher compared to the correlations obtained with all other
participants’ empirical data (non-matched data), these correlations were ranked per
participant. Subsequently, if the participant’s own maximum correlation would fall within the
highest 97.5% of this ranking, it was considered to be significantly higher compared to the
correlations to other participants.

For all previously described analyses, no corrections for multiple comparisons were
performed.


https://doi.org/10.1101/2022.03.02.482608
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.02.482608; this version posted March 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Results

Exemplar time-series and power spectrum of simulated data for one participant are shown in
Supplementary Figure S1. Examples of simulated and empirical FC matrices of the same
participant are shown in Figure 1B.

Similarity between individually simulated and empirical functional connectivity

The similarity between the individually simulated and individual empirical FC was calculated
for each of the FC metrics for the range of coupling values. The resulting individual maximum
correlation values between simulated and empirical FC are shown in Figure 2 for each FC
metric. The median of the maximum correlations for each FC metric were: AEC full 0.19,
AEC 0.19, PLI 0.10, PLV 0.14. All of these maximum correlations between simulated and
empirical FC for the AEC full and AEC were statistically significant (for all participants with
AEC full p < 0.001, for all participants with AEC: p < 0.01). For the PLI and PLV, correlations
between the simulated and empirical FC were statistically significant for most participants
(PLI: p<0.005, PLV: p<0.01), except for three (PLI) and two (PLV) participants. The
coupling values corresponding to the maximum correlation between simulated and empirical
FC for each participant and each FC metric are displayed in Figure 3 and Supplementary
table S1. Coupling values corresponding to the maximum correlations did not differ between
metrics (x? = 5.09, p=0.17).

Maximum correlation (simulated vs empirical FC)

—0.05

AEC full AEC PLI pLv

Figure 2: Maximum correlations between simulated and empirical FC.

Raincloud figures showing the maximum correlations between simulated and empirical FC
for each FC metric. Both amplitude and phase based FC metrics were included: amplitude
envelope correlation (AEC); AEC full refers to AEC computed over the full time-series, phase
lag index (PLI), phase locking value (PLV).
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Figure 3. Optimal global coupling values for all FC metrics.

Optimized global coupling values between neural masses as determined by the maximum
correlation between simulated and empirical FC for each FC metric. Abbreviations: AEC:
amplitude envelope correlation (AEC), AEC full: AEC computed over the full time-series, PLI:
phase lag index, PLV: phase locking value.

We compared individual maximum correlations between FC metrics. There was no
significant difference between the AEC full and the AEC (W = 505, p = 0.20). AEC full
showed significantly higher maximum correlations than the PLI (W = 804, p < 0.001), and the
PLV (W =722, p < 0.001). The AEC also showed significantly higher maximum correlations
compared to both the PLI (W = 787, p < 0.001) and the PLV (W = 699, p < 0.001). Finally,
the PLI performed significantly worse than the PLV (W = 28, p < 0.001) in terms of maximum
correlations between simulated and empirical FC at the individual level. Since the use of the
AEC full and AEC resulted in significant better predictions of individual empirical FC, we
continued using only these metrics for further analyses.

Additionally, we analyzed the similarity between the strongest connections of the individually
simulated and empirical data. A detailed description of this analyses can be found in the
Supplementary Information. For the AEC, maximal correlations between the strongest
connections of simulated and empirical data showed to be significantly higher compared to
the maximal correlations when the full matrices were taken into account (W=205, p = 0.006,
see Figure S2).

Similarity between simulated functional connectivity and empirical function connectivity using
group-averaged structural connectivity

We next predicted individual empirical FC (AEC full and AEC) based on simulations with the
group-averaged SC as input. Results show a median of the maximum correlations of 0.19 for
both the AEC full and AEC (see Figure 4). There was no significant difference between the
maximum correlations for these two FC metrics (W = 462, p = 0.5). The match between
simulated and individual empirical FC was better for simulations with the individual SC as
input compared to simulations with the group-averaged SC as input, for both the AEC full (W
= 185, p=0.003) and AEC (W = 200, p = 0.005).
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Figure 4: Paired rain cloud figures containing the maximum correlations, for all coupling
values, between simulated and empirical FC. Grey lines between the dots connect one
participant for simulations with the individual SC matrices as input to the model (blue
rainclouds) and simulations with the group-averaged SC matrix as input to the model (green
rainclouds). A. FC calculated with the AEC full. B. FC calculated with the AEC.
Abbreviations: AEC: amplitude envelope correlation (AEC), AEC full: AEC computed over the
full time-series.

We also computed a correlation between simulations with group-averaged SC and group-
averaged FC, which showed a significant correlation between the two (AEC full: r = 0.40, p <
0.001 and AEC: r = 0.36, p < 0.001).

Similarity between simulated versus empirical functional connectivity in non-matched versus
matched participants

Next, we analyzed whether empirical FC of a given participant could be equally well
predicted by simulated FC on the basis of another participant’s SC matrix. We correlated
individually simulated FC to the empirical FC of all other participants. For both the AEC full
and the AEC, in 5 out of the 40 participants, participants’ own individual correlation was
significantly higher compared to the correlations with all other participants (see Figure 5).

max. specificity — > max, specificity 0*"

a— v -

=4 » =4 ’

&

g r & g o
=] — ] —
h=4 4 t $*

fud e o

o 4 =3 5

5 -+ 5 4

o > 4 o ..

@ . @ red

5 i 5 3
= & = rad
L — o .

[ b & [ b 4

E ) 4 15 >

g 4 g8 4

O :, o !

", ry

2 3 E i

=3 ;‘ o e
2 F) —

£ 4 £ 3

= o — <

5 + 5 +

5 2 s 5
k<] o 5]

2 4 2 i
k-] k] e
= = ¢

2 2 y 4
g = >
@ \ @ r 4
2 —4 2 y—
a = a

specificity - + — specificity +
low moderate high low moderate high
Correlation values AEC full Correlation values AEC

kS

B.

Figure 5. Forest plots showing the distributions of non-matched correlations per participant.
Grey lines correspond to correlation distributions (low-moderate-high) between a participants
own simulated FC and all other participants’ empirical FC. Black squares denote median
values of these distributions. Black diamonds correspond to the correlation between a
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participants own simulated and empirical FC. Red stars display the correlations between
participants own simulated and empirical FC that were significantly higher compared to
correlations between participants own simulated FC and all other participants’ empirical FC.
Participants are ranked based on the distance between their own correlation value and the
median of all other correlation values, indicating the range between minimum and maximum
specificity of participants own correlation values. A. AEC full. B. AEC. Abbreviations: AEC:
amplitude envelope correlation (AEC), AEC full: AEC computed over the full time-series.
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Discussion

The main aim of this study was to assess the feasibility and accuracy of modeling individual
empirical FC using individual empirical SC matrices. We found moderate correlations
between simulated and empirical FC using the amplitude-based AEC, while the phase-based
metrics (PLI and PLV) performed significantly worse. Using individual SC, instead of group-
averaged SC, improved the correlation between simulated and individual empirical FC
significantly. However, correlations between individually simulated FC and other participant’s
empirical FC were in general not significantly lower than between the matched pair of FC
patterns.

The FC simulations using individual SC outperformed simulations based on group-averaged
SC, indicating increased precision modeling of brain activity and FC when incorporating
participants’ own structural network. These findings are corroborated by Aerts and
colleagues (Aerts et al 2018), who simulated fMRI data in brain tumor patients using The
Virtual Brain. Individually optimized model parameters also resulted in improved accuracy of
individually simulated FC. However, when correlating an individual’s simulated FC to the
empirical FC of other participants, we found correlations that were comparable to matched
simulated and empirical individual FC. Although this finding is in line with earlier work (Finger
et al 2016), it remains unclear whether simulated FC can be attributed to a specific individual.
It would be useful for future work to explore the causes of this apparent aspecificity. A recent
study reported on subject specific MEG FC patterns, also known as functional fingerprints
(Da Silva Castanheira et al 2021). Future studies could look into such fingerprints in repeated
MEG measurements over time, both between and within participants. The variation that is
present between and within participants in the match between simulated and empirical FC
could increase our understanding of whether the simulated or empirical FC is underlying the
aspecificity that we found.

A second main result of this study is the clear difference between amplitude- and phase-
based metrics in the correlations between individually simulated and empirical FC. The AEC
full and AEC outperformed the PLI and PLV, while the PLV performed better in comparison
to the PLI. These findings partly corroborate earlier work in which only phase-based metrics
were considered (Finger et al 2016), also showing better performance for the PLV in
comparison to PLI. It is however important to note that Finger and colleagues used FC
metrics both corrected and uncorrected for signal leakage. Although signal leakage is known
to cause spurious correlations between nearby sources (Gross et al 2013), the previously
mentioned study corrected their empirical data dependent on the FC metric. Since leakage is
not present in our simulated data, we therefore chose not to perform leakage correction to
our simulated data, but only to the empirical data. Important to note here however is that the
PLI inherently corrects for leakage and therefore is corrected in both our simulated and
empirical data. The difference in the performance of phase- and amplitude-based metrics
could relate to the consistency levels of the FC metrics. In the alpha band, the AEC has been
shown to be more consistent in repeated empirical measurements from the same
participants, hypothetically since phase-based metrics are more susceptible to noise
(Colclough et al 2016, Tewarie et al 2019b). If noise indeed underlies the poorer
performance of phase-based FC metrics in individual simulations, including more data, i.e.
including ten- instead of five-minute recordings, might improve results with these metrics
(Liuzzi et al 2017). Additionally, previous research including EEG data of patients with
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Alzheimer’s disease found higher reproducibility of the PLI in the theta band, while the AEC
was more consistent in the alpha and beta frequency bands (Briels et al 2020). This work
could indicate that consistency of FC metrics might be frequency-dependent in empirical
data, an aspect that we did not take into account by only analyzing our data in the alpha
frequency band.

We found moderate (r=0.19 on average) correlations between individually simulated FC and
individual empirical FC, which is lower than obtained by Finger and colleagues (average
correlation of 0.53). However, direct comparison of these correlation values is not
straightforward due to the many methodological differences between their study and ours.
Nevertheless, several factors may have contributed to these results. The quality of both the
empirical SC and FC matrices could have influenced the correlation strengths that we found.
Regarding SC, tractography is known to underestimate the presence of interhemispheric
fibers, which strongly influences modeling results (Messe et al 2015). The tractography
method we used is the current standard in the field and takes care of false positives (Maier-
Hein et al 2018). Nonetheless, future studies may investigate whether increasing the quality
of the SC matrices, for instance by improving scanner hardware, diffusion sequences,
duration of scans, or the tractography methods, could enhance modeling accuracy.
Furthermore, MEG data is known to be susceptible to noise caused by environmental,
instrumental and biological factors. Although we only included MEG data that was visually
free from artefacts, noise may still have been present in the individual FC matrices. In an
additional analysis we only took the strongest connections of the simulated and empirical FC
into account (Figure S2), thereby decreasing the noise of the included connections. For the
AEC, the resulting match between simulated and empirical FC was higher compared to
taking the full matrices into account. Furthermore, functional connections can also occur
where there are few or no structural connections, possibly explained by indirect connections
and interregional distance (Meier et al 2016, Robinson 2012). This means that even small
variations in SC can support many different FC patterns, which makes the interdependence
between them complicated (Popovych et al 2018). Additionally, by correcting the empirical
data for signal leakage, true zero-lag interactions are also removed which might have been
present in the simulated data, causing a decrease in agreement between simulated and
empirical data.

Computational models that use average SC as an input have been frequently applied so far
(Abeysuriya et al 2018, Cabral et al 2014, Deco et al 2017, Hadida et al 2018, Moon et al
2015, O'Neill et al 2018, Tewarie et al 2019a, Tewarie et al 2014), but hamper further
tailoring of such models to individuals, particularly in the setting of neurological disease
modeling. Previously, damage that reflects different diseases, has been modelled with
advanced computational models (Aerts et al 2020, de Haan et al 2012, Tewarie et al 2018,
van Dellen et al 2013), but these disease models have not yet been applied to individual
data. Such tailored disease models could elucidate mechanisms underlying functional
network trajectories (Douw et al 2019) in neurological disease, for instance modeling the
impact of focal lesions on global network dysfunction and cognitive decline.

To conclude, we show that simulated FC best relates to individual empirical FC when using
the individual SC as input to the model, compared to the use of group-averaged SC. This
work therefore underlines a first step towards individual FC modeling.
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