

1 Title: Improved target capture with lower hybridization temperatures for invertebrate loci with
2 different baiting strategies: a case study of the leaf-footed bugs and allies (Hemiptera: Coreoidea)

3

4 Running title: Improved target capture in leaf-footed bugs

5

6 Michael Forthman^{1,2*}, Eric R. L. Gordon³, Rebecca T. Kimball⁴

7 ¹California State Collection of Arthropods, Plant Pest Diagnostics Branch, California Department
8 of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832, USA

9 ²Entomology & Nematology Department, University of Florida, 1881 Natural Area Drive,
10 Gainesville, FL 32611, USA

11 ³Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville
12 Road, Unit 3043, Storrs, CT 06269, USA

13 ⁴Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL 32611, USA

14

15 *Corresponding author: California State Collection of Arthropods, Plant Pest Diagnostics Branch,
16 California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA
17 95832, USA; e-mail: michael.forthman@cdfa.ca.gov

18

19 Abstract

20 Target capture approaches are widely used in phylogenomic studies, yet few experimental
21 comparisons of critical parameters, e.g. hybridization temperature, have been published. Even
22 fewer studies have focused on invertebrates where bait-target divergences may be high. Most
23 capture studies use a fixed hybridization temperature of 65°C to maximize the proportion of on-
24 target data, but lower temperatures, which might improve locus recovery, are not commonly
25 employed. We used fresh and degraded specimens of leaf-footed bugs and relatives (Hemiptera:
26 Coreoidea) to investigate the effect of hybridization temperature on capture success of previously
27 published ultraconserved elements (UCE) targeted by baits derived from divergent hemipteran
28 genomes and other loci targeted by newly designed baits derived from less divergent coreoid
29 transcriptomes. We found touchdown capture approaches with lower hybridization temperatures
30 generally resulted in lower proportions of on-target reads and lower coverage but were associated
31 with more assembled contigs and improved recovery of targeted UCE loci. Low hybridization
32 temperatures were also associated with increased numbers of putative paralogs of targeted UCE
33 loci and recovery of well-known loci (from off-target reads) with historical uses in Sanger-based
34 molecular phylogenetic studies. Hybridization temperatures did not generally affect recovery of
35 newly targeted loci, which we attributed to lower bait-target divergences (compared to higher
36 divergences between UCE baits and targets) and greater bait tiling density. Thus, optimizing *in*
37 *vitro* target capture conditions to accommodate low hybridization temperatures can provide a
38 cost-effective, widely applicable solution to improve recovery of protein-coding loci in
39 invertebrates, while retrieving other potentially useful data for downstream comparative analyses.

40

41 Keywords: Annealing temperature, Coreoidea, Pentatomomorpha, target capture, touchdown
42 hybridization

43

44 1. Introduction

45 Many biological disciplines have witnessed a dramatic increase in the amount of genomic
46 data sampled due to recent advances and declining cost of next-generation sequencing
47 technologies. While whole genome sequencing may be cost-effective for some research
48 questions, genome reduction approaches that enrich for genomic regions of interest prior to high-
49 throughput sequencing are often more feasible (reviewed in Lemmon and Lemmon, 2013). One
50 of the most frequently employed genome reduction techniques in phylogenomic studies are target
51 capture approaches, which include exon capture, anchored hybrid enrichment (AHE), and capture
52 of ultraconserved elements (UCEs) (e.g., Bi et al., 2012; Faircloth et al., 2012; Lemmon et al.,
53 2012; Li et al., 2013). In general, target capture leverages existing genomic resources to
54 synthesize short (60–120 bp) nucleotide bait sequences complementary to genomic regions of
55 interest. Baits are then hybridized to DNA libraries, and unbound DNA (i.e., non- or off-targets)
56 is removed via a series of washing steps prior to sequencing.

57 Several recent studies have investigated experimental conditions that may affect the
58 success of *in vitro* target capture approaches, including, e.g., GC content and tiling of baits,
59 starting amount of DNA or baits, bait-target divergence, and washing stringency (e.g., Ávila-
60 Arcos et al., 2011; Li et al., 2013; Cruz-Dávalos et al., 2017). Another condition that can affect
61 capture success is hybridization temperature during bait-target annealing. Many capture studies
62 have employed low hybridization temperatures (e.g., 50°C) to improve capture success,
63 particularly for divergent DNA sequences relative to capture baits (e.g., Mason et al., 2011;

64 Peñalba et al., 2014; Li et al., 2015). However, to our knowledge, only four experimental studies
65 have explicitly tested the effect of hybridization temperature on capture success (Li et al., 2013;
66 Paijmans et al., 2016; Cruz-Dávalos et al., 2017; Mohandesan et al., 2017) (Table 1). Each of
67 these studies has compared a commonly used high hybridization temperature (fixed at 65°C) in
68 capture experiments with lower hybridization temperatures (e.g., 50°C, either at a fixed setting or
69 through incremental decreases [i.e., touchdown]). Results from these experiments have provided
70 conflicting conclusions regarding the benefits of lower hybridization temperatures (fixed or
71 touchdown) in target capture studies based on various metrics, e.g., the proportion of on-target
72 reads, mismatch tolerance between bait and targets, and overall number of loci recovered.
73 However, these conflicting results may be attributable to differing experimental properties among
74 studies, such as the type of capture employed, sample quality, or type of loci targeted (Table 1).

75 What has not been well explored are the effects of hybridization temperatures on other
76 aspects of capture success, such as the number of putative paralogs between different
77 hybridization temperature conditions. Additionally, none have explored intermediate
78 temperatures to evaluate if there is no further improvement to locus recovery or if costs outweigh
79 the benefits at a particular temperature. Furthermore, these studies have not investigated the
80 effects of hybridization temperatures on invertebrate capture success, where divergences may be
81 greater in some taxa than seen in some of the vertebrate taxa investigated. Thus, given a desire to
82 maximize recovery of loci using these approaches, further effort is warranted to understand
83 general impacts of lower hybridization temperatures on capture success.

84 Invertebrate target capture studies often recover a low to moderate proportion of the
85 targeted loci (particularly for UCE studies) (e.g., Faircloth et al., 2015; Hamilton et al., 2016;
86 Baca et al., 2017; Van Dam et al., 2017; Dietrich et al., 2017; Kieran et al., 2019). Optimizing

87 existing invertebrate target capture bait sets to be more tailored to focal taxa has been shown to
88 improve recovery (e.g., Branstetter et al., 2017; Gustafson et al., 2020), suggesting that baits may
89 often be too divergent from some taxa to allow effective recovery. However, genomic resources
90 that permit such optimization for many other groups are still lacking. As such, optimizing one or
91 more *in vitro* target capture conditions may provide a more cost-effective solution to improve
92 locus recovery. Studies in invertebrates typically employ a fixed hybridization temperature at
93 65°C as suggested by standard protocols (although temperatures are often not reported in AHE
94 studies), with few studies having used lower temperatures during bait-target hybridization (Zhang
95 et al., 2019; Braby et al., 2020; Emberts et al., 2020; Forthman et al., 2020; Miller et al.; 2022).
96 However, no studies have experimentally investigated the effect of altering hybridization
97 temperatures on capture success of targeted loci in invertebrates.

98 Lower hybridization temperatures, whether fixed or achieved through touchdown, may
99 improve on-target and locus recovery due to relaxed specificity between baits and targets. This
100 may be particularly advantageous if some baits are more divergent from their targets (as is
101 commonly the case in invertebrates) or have lower optimal annealing temperatures than other
102 baits. However, relaxing specificity to allow for partial matching between baits and targets should
103 also increase the risk of baits to potentially hybridize with paralogous sequences exhibiting some
104 degree of divergence from the corresponding target sequence and/or may increase the number of
105 off-target sequences (e.g., Cruz-Dávalos et al., 2017) and thus reduce read numbers for targeted
106 regions.

107 However, off-targets reads may contain sequences from loci traditionally used in
108 phylogenetic studies (herein referred to as “legacy loci”) (e.g., Amaral et al., 2015; Wang et al.,
109 2017; Simon et al., 2019; Miller et al., 2022). Integrating legacy loci with target capture datasets

110 has benefits, such as increasing the resolution power for phylogenetic inference and the inclusion
111 of rare species with existing legacy data that are difficult to sample repeatedly (Branstetter et al.,
112 2017; Derkarabetian et al., 2019; Zhang et al., 2019). While legacy locus data can be integrated
113 with target capture data by designing baits from legacy loci (Branstetter et al., 2017; Simon et al.,
114 2019; Hughes et al., 2021), this may increase the cost of custom probe kits because more baits
115 may be required across more species due to higher substitution rates of some loci (e.g., mtDNA)
116 and/or these baits may be included in a separate kit to prevent high copy number loci, like those
117 on the mtDNA genome or the rRNA operon, from dominating capture data (Ströher et al., 2016;
118 Pierce et al., 2017; Allio et al., 2020; Bristetter et al., 2021; Miller et al., 2022). Extracting
119 legacy loci from off-target reads can circumvent some of these issues (Miller et al., 2022), and
120 they have been successfully integrated with capture data despite their often-fewer numbers
121 (compared to, e.g., 1000+ UCE loci) and/or introduction of large amounts of missing data (e.g.,
122 Simon et al., 2019; Miller et al., 2022). Thus, having off-target reads may not always be
123 detrimental in capture studies when designing legacy locus baits is less desirable, as long as
124 targeted regions are also recovered.

125 Here, we evaluated the impact of four different protocols that varied hybridization
126 temperatures on invertebrate target capture success in leaf-footed bugs and allies (Hemiptera:
127 Coreoidea) and closely related taxa using samples from various sources (fresh versus older, dried
128 specimens) and library qualities to reflect conditions typical of empirical studies. One protocol
129 used a fixed, standard hybridization temperature (65°C) while the remaining three protocols
130 employed touchdown approaches with different final temperatures. Specifically, we addressed the
131 following questions: 1) do touchdown target capture approaches with lower hybridization
132 temperatures result in a greater total of on-target reads, total assembled contigs, total targeted

133 loci, and longer targeted assemblies compared to the commonly used standard hybridization
134 temperature?; 2) does the touchdown target capture protocol with the lowest final temperature
135 produce the most data for the variables listed in question 1?; and 3) does a lower hybridization
136 temperature from touchdown capture protocols generate a greater proportion of off-target reads
137 (including useful legacy loci) and/or paralogous sequences?

138 Our study utilized a subsampled version of an existing Hemiptera-derived UCE bait set
139 (Faircloth, 2017; see Forthman et al., 2019), but we also introduced newly designed baits (with
140 slightly greater tiling) derived from coreoid transcriptomes and evaluated the ability of these new
141 baits to enrich samples *in vitro*. Given the different bait designs, we also examined whether the
142 effects of hybridization temperature exhibited different patterns across bait design strategies;
143 specifically, we investigated if 1) the proportion of on-target reads and coverage exhibit similar
144 trends across hybridization temperature conditions regardless of bait design strategy, 2) the
145 capture of loci with greater divergences from baits shows the greatest improvement at lower
146 hybridization temperatures than loci with less divergence from their baits, 3) the number of
147 putative paralogous loci increase as hybridization temperatures decrease regardless of bait design
148 strategy, and 4) an increase in bait tiling improves coverage of captured loci.

149

150 2. Material and methods

151 2.1. *Sample material*

152 Our target capture experiment was performed on 39 taxa (36 species of Coreoidea, 3
153 outgroup taxa), of which 30 were ethanol, frozen, or silica bead (“fresh”) preserved samples
154 (collected 2008–2017) and nine were degraded samples from pinned museum material of varying
155 ages (1935–2017) (Table S1). All taxa had previously been subjected to target capture protocols

156 and sequenced prior to the start of this study (i.e., freshly preserved samples or dried preserved
157 samples were subjected to the standard or TD-60 protocols shown in Fig. 1, respectively); 27 taxa
158 have already been published following protocols described in Forthman et al. (2019, 2020) and
159 Emberts et al. (2020) (see Table S1 and references therein). These 39 taxa were selected for this
160 experiment based on the availability of extra DNA libraries for additional target captures and to
161 include a diversity of preservation methods and specimen ages (recent/fresh vs. historical/dried),
162 as well as library qualities (best, moderate, and marginal quality based on initial sequencing
163 outcomes relative to other samples).

164

165 *2.2. Target capture baits*

166 For a list of terms and their definitions used in this study, see Table 2. A summary of bait
167 properties from our different bait design strategies are given in Fig. 2.

168 We used our previously published custom myBaits kit (Forthman et al., 2019), which
169 subsampled a Hemiptera-wide derived UCE bait set (at ~1.33x tiling) designed by Faircloth
170 (2017) to only include two pentatomomorphan taxa that are more closely-related to but not
171 included in our ingroup taxa (herein, referred to as “Pentatomomorpha-derived baits”; Table 2;
172 Fig. 2). This kit also included an independently designed set of baits that were derived from
173 coreoid transcriptomes, but these have not yet been introduced in the literature prior to this study.
174 Thus, we introduce our coreoid bait design procedures here (herein, collectively referred to as
175 “Coreoidea-derived baits”) and assess the effectiveness of these baits. Below, we describe two
176 bait design strategies for our Coreoidea-derived baits, wherein baits were designed from
177 individual exons while others were designed across entire transcripts.

178 For baits designed from individual coreoid exon sequences (herein, “exon-derived baits”,
179 which is a subset of the Coreoidea-derived baits; Table 2; Fig. 2), we first retrieved an annotated
180 draft genome of *Oncopeltus fasciatus* (Dallas, 1852) (Lygaeidae) from the Baylor College of
181 Medicine – Human Genome Sequencing Center
182 (<https://www.hgsc.bcm.edu/arthropods/milkweed-bug-genome-project>). We extracted exon
183 sequences from the *O. fasciatus* genome using BEDTools v2.29.0 (Quinlan and Hall, 2010).
184 Exon sequences were then filtered to exclude those that were <200 bp in length or that had a GC-
185 content <30% or >70%.

186 We then obtained sequence reads for five published coreoid transcriptomes that have not
187 been annotated: *Alydus pilosulus* Herrich-Schaffer, 1847 (Johnson et al., 2018); NCBI
188 Bioproject PRJNA272214), *Anasa tristis* (De Geer, 1773) (Johnson et al., 2018; NCBI Bioproject
189 PRJNA272215), *Anoplocnemis curvipes* (Fabricius, 1781) (Agunbiade et al., 2013); NCBI
190 Bioproject PRJNA192258), *Boisea trivittata* (Say, 1825) (Johnson et al., 2018; NCBI Bioproject
191 PRJNA272221), and *Clavigralla tomentosicollis* Stål, 1855 (Agunbiade et al., 2013; NCBI
192 Bioproject PRJNA192261). Sequence reads were processed using PRINSEQ-lite v0.20.4
193 (Schmieder and Edwards, 2011) and QuorUM v1.1.0 (Marçais et al., 2015), as well as *de novo*
194 assembled in Trinity (Grabherr et al., 2011), following Forthman et al. (2019). For each coreoid
195 transcriptome, a localized reciprocal blastn search using *O. fasciatus* individual exon sequences
196 was performed using a custom python script (e-value threshold set to 1e-20 and percent identity
197 to 60%) (reciprocal_blast.py).

198 The best reciprocal hit was extracted from each transcriptome using a custom perl script
199 (extract_rbh_to_exons.pl), with sequences from multiple transcriptomes corresponding to the
200 same exon grouped together in a single fasta file. These exons were then searched against all

201 coreoid transcriptome sequences using blastn to confirm orthology and to identify additional
202 sequences that may not have been found in reciprocal blast hits with the more distant *O. fasciatus*
203 genome. We then used the RepeatMasker web server (<https://repeatmasker.org>) (options: rmblast
204 search engine and *Drosophila melanogaster* DNA source [all other options at default]) to exclude
205 exons with low complexity sequences and simple repeats. Sequences were then aligned with
206 MAFFT v7.305b (Katoh et al., 2002; Katoh and Standley, 2013) using the G-INS-i algorithm,
207 and alignments were visually inspected in Geneious v9 to further confirm orthology. Sequences
208 for a total of 456 individual exons were then selected for part of the Coreoidea-derived bait set.

209 We also used a pipeline from Portik et al. (2016) to design baits across transcript
210 sequences (i.e., RNAseq-derived sequences that may include more than one exon, with baits
211 potentially spanning across one or more introns; herein, “transcript-derived baits”; Table 2; Fig.
212 2). We first used Portik et al.’s (2016) 4-Annotation.pl script (with some modifications to process
213 our data) and amino acid sequences of the *O. fasciatus* genome to annotate the assembled coreoid
214 transcriptomes by transcript ID (e-value threshold set to 1e-20 and percent identity to 60%). We
215 then used their 6-MarkerSelectionTRANS.pl script with default settings to find orthologous
216 transcript sequences across our transcriptomes. This script requires an orthologous sequence to be
217 present across all transcriptomes to be selected for bait design. Few transcript sequences were
218 selected when all five of our transcriptomes were used because of this requirement; in attempting
219 this, we found that the inclusion of the *B. trivittata* transcriptome was associated with the low
220 number of transcript sequences selected. Thus, we excluded the *B. trivittata* transcriptome from
221 subsequent searches. Furthermore, to maximize the number of transcript sequences selected for
222 bait design while “allowing” for missing taxa, we performed two separate searches that excluded
223 the *Ano. curvipes* or *Ana. tristis* transcriptomes, respectively. Transcript sequences were aligned

224 and visually inspected as described above for exon-derived baits. Based on the annotations, 141
225 transcripts (out of 172 initially selected) did not correspond to any of the exon-derived baits. Of
226 these, we selected 81 transcripts for part of the Coreoidea-derived baits that were found across
227 most of our coreoid transcriptomes and that ranged between 256 bp and 1000 bp to reduce the
228 number of probes potentially targeting multiple exons interspersed by long introns.

229 The final Coreoidea-derived bait sequences (i.e., exon- and transcript-derived baits) were
230 submitted to Arbor Biosciences (Ann Arbor, MI) to produce 120 bp baits with ~2x tiling density.
231 We also preliminarily compared our Coreoidea-derived baits against the Pentatomomorpha-
232 derived baits using blastn (e-value threshold set to 1e-20) to determine whether any were
233 potentially associated with a locus already targeted by the latter set of baits. Those Coreoidea-
234 derived bait sequences matching to Pentatomomorpha-derived baits were not removed from the
235 final selection of baits, as their inclusion could allow for some targeted loci to be captured by
236 more baits from more closely-related species (herein, “Pentatomomorpha-Coreoidea [PC] dual
237 baits”; Table 2; Fig. 2).

238

239 *2.3. DNA extraction and library preparation*

240 See references in Table S1 for details on library preparation and target capture for samples
241 previously published. For new samples, genomic DNA was extracted from any part of the body
242 or the entire body from ethanol-preserved, silica-bead preserved, frozen, or dried specimens to
243 sample similar amounts of tissue across taxa, where possible (Table S1). Freshly preserved
244 specimens were extracted with either the Gentra Puregene Tissue or Qiagen DNeasy Blood and
245 Tissue kit (hereafter DNeasy) (Table S1). For the Puregene kit, we followed the manufacturer’s
246 protocol for 5–10 mg tissue and optional recommendations, but we made the following

247 modifications: 10 μ L of proteinase K was added to samples; samples were incubated for 24–48
248 hr; 600 μ L of 100% ethanol was used for the first wash, and the sample was then centrifuged for
249 10 mins; and 50–100 μ L of molecular grade water or Puregene DNA Hydration Solution was
250 used to resuspend isolated DNA. For the DNeasy kit, we also followed the manufacturer’s
251 protocol but with fewer modifications: tissue was incubated in 180–190 μ L Buffer ATL and 10–
252 20 μ L proteinase K for 24–48 hr, and depending on the source of the tissue, DNA was eluted
253 once or twice with 50 μ L Buffer AE.

254 For degraded museum specimens, DNA was extracted using a modified version of the
255 DNeasy protocol, following Knyshov et al. (2019) (i.e., Qiagen DNeasy Blood and Tissue kit
256 coupled with Qiagen QIAquick PCR purification kit; hereafter DNQIA) (Table S1). The protocol
257 is designed to extract DNA >100 bp in length. The DNQIA protocol follows the DNeasy protocol
258 to the first centrifugation step, but a QIAquick spin column is used. The samples are then
259 subjected to the manufacturer’s Qiagen QIAquick PCR purification protocol by replacing AW1
260 and AW2 washes with PE buffer. Samples were then eluted in 30 μ L EB buffer.

261 We assessed DNA quality and quantity with 1% agarose gel electrophoresis and a Qubit 2.0
262 fluorometer, respectively. Samples were normalized to 10–20 ng/ μ L. High molecular weight
263 samples were then fragmented into 200–1000 bp using a Bioruptor UCD-300 sonication device
264 (4–10 cycles of 30 s on/30 s) or a Covaris M220 Focused-ultrasonicator (20–60 s) (Table S1).

265 Libraries were constructed with a modified KAPA Hyper Prep Kit protocol following
266 Forthman et al. (2019). Briefly, we used half volume reactions for all steps. iTru universal adapter
267 stubs and 8 bp dual indexes were used (Glenn et al., 2016). Library amplification conditions
268 involved initial denaturation at 98°C for 3 min; 14 cycles of 98°C for 30 s, 60°C for 30 s, and
269 72°C for 30 s; and a final extension at 72°C for 5 min. Amplified libraries quality and quantity

270 were assess with gel electrophoresis and Qubit, respectively. Libraries were then combined into
271 1000 ng pools using equimolar amounts, dried at 60°C, and resuspended in 14 µL IDTE.

272

273 *2.4. Target capture experimental design*

274 To evaluate the effects of different hybridization conditions on target capture, we
275 compared four experimental protocols using ½ or ¼ volume baits for fresh and dried samples,
276 which differed only in hybridization temperatures used over a 24- (common in standard target
277 capture protocols) or 36-hour period (see Fig. 1). Due to the limited availability of extra DNA
278 libraries, previously sequenced samples could only be assigned to one of three different target
279 capture protocols (see Table S2). In assigning samples to treatments, we attempted to distribute
280 sample preservation methods, sample age, and library quality (based on results of our initial
281 sequencing that had used a constant 65°C hybridization temperature).

282 All post-capture protocols followed Forthman et al. (2019), with the exception that
283 captures were washed at temperatures corresponding to the final hybridization temperature used
284 in each capture protocol (i.e., 65°C for standard, 60°C for TD-60, etc.). All enriched library pools
285 were combined in equimolar amounts and sequenced on an Illumina HiSeq3000 lane (2x100) at
286 the University of Florida’s Interdisciplinary Center for Biotechnology Research.

287

288 *2.5. Sequence data processing and analysis*

289 Unless otherwise stated, all data processing steps and analyses mentioned below used
290 default settings. Sequence reads were demultiplexed by the sequencing facility. Adapters were
291 trimmed with illumiprocessor (Faircloth, 2013; Bolger et al., 2014). Duplicate reads were filtered
292 with PRINSEQ-lite. Reads were then error corrected using QuorUM and subsequently assembled

293 *de novo* using SPAdes v3.13.0 with the single-cell and auto coverage cutoff options invoked
294 (Bankevich et al., 2012; Nurk et al., 2013; Prjibelski et al., 2020). PHYLUCE v1.5.0 (Faircloth,
295 2016) was then used to extract targeted loci from assembled contigs.

296 Because our preliminary comparison of loci targeted by Coreoidea-derived baits against
297 the Pentatomomorpha-derived baits prior to bait design indicated that some loci were targeted by
298 both sets of baits, a more thorough confirmation was performed after *in vitro* target capture.

299 Using captured loci targeted by our Coreoidea-derived baits, we performed a tblastx (e-value
300 threshold = 1e-10) search against those loci captured by the Pentatomomorpha-derived baits and
301 extracted matches with ALiBaSeq (Knyshov et al., 2021). Of the loci captured by the
302 Pentatomomorpha-derived baits, we found that 103 of these were targeted by both
303 Pentatomomorpha- and Coreoidea-derived baits. It is worth noting that during this process, we
304 also determined that some targeted transcript loci were also targeted by multiple, adjacent UCE
305 loci by Pentatomomorpha-derived baits; in such cases, we treated these loci as a single locus.
306 Thus, we had 376 loci targeted by exon-derived baits, 58 targeted by transcript-derived baits,
307 2566 targeted by Pentatomomorpha-derived baits, and 103 targeted by both Pentatomomorpha-
308 and Coreoidea-derived baits (i.e., PC dual baits), resulting in a total of 3103 targeted loci.

309 We calculated the number and lengths of assembled contigs and captured loci using
310 PHYLUCE. Because our Pentatomomorpha- and Coreoidea-derived baits were designed from
311 different sets of genomes and transcriptomes of varying divergences, we also calculated the
312 average minimum distances between our baits and captured loci for exon-derived, transcript-
313 derived, Pentatomomorpha-derived, and PC dual baits. We then calculated coverage using our
314 filtered reads and the total number of on-target filtered reads using BBMap v38.44 (Bushnell,

315 2014). We determined the number of captured loci with putative paralogs by invoking the keep-
316 duplicates option in the PHYLUCE phyluce_assembly_match_contigs_to_probes.py script.

317 We extracted mitochondrial and nuclear legacy loci from off-target contigs in our target
318 capture dataset. Briefly, we retrieved sequence data for 15 mitochondrial (13 protein-coding and
319 two ribosomal regions) and two nuclear ribosomal loci (18S and 28S) from the National Center
320 for Biotechnology Information's database. We used MitoFinder v1.1 (Allio et al., 2020) to extract
321 mitochondrial sequences. To identify nuclear legacy loci, we created a local nucleotide database
322 using BLAST for each locus of interest and queried our capture data against them using blastn (e-
323 value set to 1×10^{-50}). We then calculated the number of legacy loci recovered.

324 As one part of the experiment, we also wanted to quantify the effect of different tiling
325 strategies (~1.33x vs. ~2x tiling density) on locus recovery. As most loci with baits tiled
326 differently also exhibited major differences in bait-target divergences (see Section 3.2.), we were
327 not able to directly measure the effect of tiling strategy for most loci. However, some loci (i.e., 40
328 out of 2566) captured with Pentatomomorpha-derived baits had low average minimum bait-target
329 divergences as seen in loci captured with Coreoidea-derived bait (see Sections 3.2. and 3.4.3.).
330 Thus, we had a limited opportunity to explore the effect of tiling strategy on coverage while
331 controlling for bait-target divergences. For this, we selected loci captured with Coreoidea- or
332 Pentatomomorpha-derived baits that had divergences ranging from 0.05–0.10 and calculated
333 coverage.

334 Sequencing depth between different sequence lanes/runs may affect, e.g., how many loci
335 are recovered or the proportion of on-target reads. Furthermore, the effective sample size across
336 different sequencing efforts can vary as some samples may fail or have poor sequencing
337 outcomes, which can have an impact on sequencing depth across samples. Three different

338 sequencing efforts were performed across our samples, with each producing different effective
339 sample sizes: 1) 99 samples combined for previously sequenced samples subjected to the standard
340 capture conditions, 2) 96 samples combined for previously sequenced samples subjected to the
341 TD-60 capture conditions and 3) 88 samples combined for sequenced samples subjected to the
342 different target capture conditions conducted in this study. Thus, to investigate the influence of
343 different sequencing depths on our metrics of capture success, we equalized sequencing depth by
344 subsampling 2,000,000 raw reads generated under the different capture protocols for 28 taxa
345 using Seqtk v1.3 (<https://github.com/lh3/seqtk>) (random seed [-s option] = 100); 11 taxa
346 were not included in this analysis because at least one of the target capture protocols for each of
347 these taxa were associated with fewer than 3,000,000 raw reads total. The subsampled reads were
348 then processed and evaluated as described above to determine if any patterns observed in the
349 subsampled dataset differed from what was observed in the original data.

350

351 3. Results

352 *3.1. Raw read and assembled contig yield across target capture conditions*

353 Overall, lower hybridization temperatures tended to be associated with more raw
354 sequence reads. Of the 39 samples in our dataset, 26 had more raw reads sequenced when these
355 samples were subjected to lower hybridization temperatures in pairwise comparisons (median
356 increase = 272%) (Table S3). On average, TD-50 generated the most raw reads (Fig. 3A),
357 followed by TD-55, compared to the standard and TD-60 protocols. Three degraded samples that
358 failed or nearly failed to produce any raw reads under the standard protocol had over 33,000 reads
359 sequenced at a modestly lower hybridization temperature (TD-60). Of those samples in which
360 their respective touchdown protocol produced fewer total raw reads than the standard, all were

361 fresh quality samples, most were subjected to the TD-60 protocol, and the decrease was <72% of
362 the standard protocol (median = 48%).

363 In general, touchdown protocols were also associated with a greater total of assembled
364 contigs and nucleotides, with few exceptions (Table S3). Overall, the TD-50 protocol assembled
365 the most contigs (Fig. 3B). Contigs had similar ranges of median lengths between capture
366 protocols, although the TD-50 and TD-55 protocols generally had longer median contig lengths
367 than the other protocols (Fig. S1A), and data generated under protocols with lower hybridization
368 temperatures yielded some of the longest contigs recovered (Table S3). Thus, while lower
369 hybridization temperatures varied in their success, the lowest hybridization temperature resulted
370 in the most raw reads and contigs, on average.

371

372 *3.2. Bait-target distances, reads on- and off-target, coverage, and locus length*

373 We found that loci targeted by Coreoidea exon- and transcript-derived bait sequences
374 followed similar trends in our experiment, as well as similar average minimum bait-target
375 divergences (Fig. S1B). Due to this and the relatively few number of loci compared to many more
376 loci targeted by Pentatomomorpha-derived UCE baits, we combined results from the exon- and
377 transcript-targeted loci together, which we refer to as Coreoidea-derived baits. For separate exon-
378 and transcript targeted locus results, see Tables S4–S6 and Figs. S1 and S2.

379 Low average minimum bait-target divergences were observed for loci captured by
380 Coreoidea-derived baits and PC dual baits (with less variation) compared to those captured by
381 Pentatomomorpha-derived baits (Fig. 3C), as we expected.

382 In pairwise comparisons of protocols for a given taxon, lower hybridization temperatures
383 were generally associated with increases in the total number of on-target filtered reads (Table S4).

384 When partitioning captured loci by the baits used (i.e., Coreoidea-derived, Pentatomomorpha-
385 derived, and PC dual baits), this was most apparent with loci captured by Pentatomomorpha-
386 derived baits (Table S4). However, when comparing among capture conditions, hybridization
387 temperature did not appear to affect the number of on-target reads for loci targeted by Coreoidea-
388 or Pentatomomorpha-derived baits (Fig. S1C). We found the highest median locus length in
389 either the TD-50 or TD-55 protocols regardless of bait design strategy, while the TD-60 protocol
390 was associated with the shortest median locus length for all target sequences (Fig. S1F).

391 Despite the general increases in the number of filtered on-target reads in pairwise
392 comparisons as hybridization temperature was lowered, there was often a decrease in the
393 proportion of on-target reads from the TD-55 and TD-50 capture protocols (Table S4; Figs. 3D,
394 E). For any given target capture protocol, in general, lower hybridization temperatures noticeably
395 reduced the percentage of on-target reads (Fig. 3D). When comparing across protocols, the TD-
396 50 and TD-55 protocols were associated with the highest percentages of off-target reads (Fig.
397 3E).

398 In pairwise comparisons, there was frequently a decrease in coverage at lower
399 temperatures regardless of bait design strategy (Tables 4, S4). Coverage was relatively similar
400 between loci captured with Coreoidea-derived baits and PC dual baits, which were higher than
401 those captured using Pentatomomorpha-derived baits and did not appear to be generally affected
402 by hybridization temperatures (Table S4, Fig. 3F).

403

404 3.3. Targeted locus recovery

405 Pairwise comparisons within each of our 39 samples showed that lower hybridization
406 temperatures were generally associated with a greater percentage of loci and longer median

407 sequence lengths captured compared to the standard temperature and longer median sequence
408 lengths (Tables S5–S8). Comparison of capture protocols across all samples generally showed
409 little to no improvements in locus recovery or median locus length across hybridization
410 temperatures when looking at Coreoidea-derived and PC dual bait design strategies (Figs. 4A,
411 4B, S1F). However, lower hybridization temperatures generally resulted in improved recovery
412 and slightly longer median locus lengths for Pentatomomorpha-baited loci (Figs. 4C, S1F).

413 In pairwise comparisons and comparison target capture conditions across all samples, we
414 did not observe any patterns with respect to hybridization temperatures and the number of
415 putative paralogs detected for Coreoidea-derived and PC dual baited strategies (Tables S5–S7;
416 Figs. 4D). In contrast, we observed slight to moderate increases in putative paralogs at lower
417 temperatures for the Pentatomomorpha-derived bait strategy (Table S8; Fig. 4D).

418

419 *3.4. Additional measures and parameters investigated*

420 *3.4.1. Tissue quality*

421 We observed similar trends across hybridization temperatures for the number of raw reads
422 generated, total number of assembled contigs, proportion of on-target reads, number of putative
423 paralogs of loci captured by Coreoidea-derived and PC dual baits, and number of legacy loci
424 recovered even when partitioning the data by tissue quality (i.e., preserved fresh or dried) (see
425 Tables S2–S9; Figs. S3–S6). Freshly preserved samples also showed similar trends for most other
426 measured variables (see Tables S2–S9, Figs. S3–S6) as seen when the data is not partitioned by
427 tissue quality (i.e., Figs. 3–5).

428 We found that all samples preserved dry and subjected to the standard protocol produced
429 very little, if any, data for analysis. Sequencing these degraded samples after target capture at low

430 hybridization temperatures substantially rectified this issue, even at very modest temperature
431 reductions (i.e., $\leq 60^{\circ}\text{C}$) (Tables S2–S9); more raw reads and assembled contigs were obtained
432 when these degraded samples were subjected to low hybridization temperatures. However, unlike
433 freshly preserved samples, we observed no apparent trends for preserved, dried samples with
434 respect to overall coverage, locus recovery, locus length, or number of putative paralogous loci
435 (see Tables S2–S9, Figs. S3–S6).

436

437 *3.4.2. Library quality*

438 When partitioning the data by library quality (i.e., best, moderate, or marginal) (see
439 Tables S2–S9, Figs. S7–S10), we observed trends similar to those seen for all the variables
440 measured when the data is not partitioned (Figs. 3–5).

441

442 *3.4.3. Tiling strategies*

443 We quantified the effect of different tiling strategies on one aspect of locus recovery:
444 coverage. Average coverage per locus appeared to differ when considering tiling strategy. For
445 loci captured with Coreoidea- or Pentatomomorpha-derived baits ($\sim 2x$ and $\sim 1.33x$ tiling depth,
446 respectively) and that exhibited similar average minimum bait-target divergences (i.e., 0.05–0.10
447 divergence), we found that loci captured by Coreoidea-derived baits at $\sim 2x$ tiling had greater
448 coverage than Pentatomomorpha-derived baited loci at $1.33x$ tiling (Fig. S1E).

449

450 *3.4.4. Legacy loci*

451 When comparing overall legacy locus recovery across target capture protocols, as well as
452 in pairwise comparisons of protocols for each taxon, lower hybridization temperatures improved

453 (or had no negative effect on) legacy locus recovery from off-target data (Tables 8, S9; Fig. 5).
454 This was particularly true for mitochondrial legacy loci, in which we observed a drastic increase
455 in the number of loci recovered for most samples subjected to the TD-50 protocol instead of the
456 standard one. While nuclear legacy loci appeared to be recovered more often at lower
457 hybridization temperatures, this was not as consistent among samples compared to mitochondrial
458 legacy loci.

459

460 *3.4.5. Effects of sequencing depth*

461 To investigate the influence of sequencing depth on our metrics of capture success, we
462 evaluated whether the capture success metrics for 28 taxa were still congruent when reads were
463 subsampled evenly. In general, patterns across hybridization temperatures remained congruent for
464 the following metrics compared to when reads were not subsampled: proportion of on-target
465 reads, coverage, total number of assembled contigs, number of loci captured by Coreoidea-
466 derived baits, and number of legacy loci recovered (Figs. S11–S13). However, the median length
467 of assembled contigs exhibited similar ranges of variation across hybridization temperatures, but
468 the median quartile was much lower in the TD-50 protocol compared to the others (Fig. S11B).
469 Similarly, the median length of capture loci was often shorter at lower hybridization temperatures
470 (Fig. S12E). Lastly, while we found the number of loci captured by our Pentatomomorpha-
471 derived baits to increase at lower hybridization temperatures compared to the standard protocol
472 (congruent with our non-subsampled data), we observed that the TD-50 protocol did not capture
473 as many loci as TD-60 and TD-55 protocols (Fig. S12D).

474

475 4. Discussion

476 Invertebrate target capture studies employing a fixed, high hybridization temperatures
477 often recover relatively low proportions of targeted loci. For many taxonomic groups, like the
478 leaf-footed bugs studied here, genomic resources are lacking or too limited to adequately
479 optimize target capture baits to improve locus recovery. Furthermore, optimizing or re-designing
480 target capture baits to improve locus recovery may result in more bait sets that are too narrowly
481 targeted from a taxonomic perspective (e.g., a family) when there can be advantages of making
482 bait sets more broadly applicable (e.g., a superfamily, infraorder, or higher ranks). Thus,
483 modifying target capture conditions may be the best approach to improve the success of capture
484 experiments across a broader taxon sampling.

485 Our evaluation of four different in-solution capture protocols found hybridization
486 temperatures lower than the standard 65°C generally led to more assembled contigs and improved
487 recovery of targeted loci, which held true even after normalizing sequencing depth. This
488 improvement was particularly apparent for loci targeted by the more divergent
489 Pentatomomorpha-derived baits despite touchdown capture ending at 50°C generally having a
490 negative impact on the proportion of on-target reads and coverage, as well as increased numbers
491 of paralogous loci. Lower hybridization temperatures also led to a greater recovery of legacy loci
492 from off-target reads. Given our results, we find that optimizing *in vitro* target capture conditions
493 to accommodate low hybridization temperatures can provide a cost-effective solution to improve
494 the successful recovery of targeted loci in invertebrates (albeit with some costs), while also
495 providing opportunities to gain additional data.

496 Our touchdown capture protocols were performed at longer durations than the standard
497 protocol (36 hrs vs. 24 hrs, respectively), and one of these touchdown protocols had four
498 incremental temperature decreases every 9 hrs instead of three incremental decreases every 12 hrs

499 (Fig. 1). Thus, the total capture duration and duration of the incremental temperature decreases
500 might be considered a confounding factor in our experiment. However, two of our target capture
501 protocols (TD-60 and TD-55) used the same timing, and it still appeared that a lower
502 hybridization temperature generally improved target capture success. Thus, the duration of
503 capture or the duration of bait-target hybridization at specific temperatures may not be a major
504 confounding factor in our study.

505

506 *4.1. Considerations for using Coreoidea-derived baits*

507 We employed a bait design procedure in which coreoid transcriptomes were used to
508 identify individual exons that baits would target, as well as entire transcripts that could contain
509 multiple exons with baits potentially dissected by introns (i.e., a single bait that is derived from
510 two exons). Based on our metrics irrespective of target capture conditions (particularly the
511 number of targeted loci recovered), we found that our exon-derived baits were highly successful
512 (78% recovery, on average) compared to the transcript-derived baits (33% recovery, on average).
513 This finding indicates that most of the 58 loci targeted by transcript-derived baits cannot be
514 captured. The poor *in vitro* performance of our transcript-derived baits may be due to transcript
515 sequences comprised of many short exons leading to many baits dissected by introns. This could
516 result in multiple assembled contigs if the entire intron(s) was not sequenced, which would result
517 in the associated transcript baits matching multiple “different” contigs and in PHYLUCE
518 excluding these sequences due to putative paralogy. Thus, our transcript-derived baits do not
519 appear very useful in Coreoidea target capture studies, and our transcript bait design strategy may
520 not be suitable for other groups in general unless exon-intron boundaries are known or different
521 bioinformatic strategies are used.

522

523 *4.2. Considerations for using low hybridization temperature*

524 Low hybridization temperatures were associated with improved recovery of loci only
525 targeted by the Pentatomomorpha-derived UCE baits, but not for loci targeted by Coreoidea-
526 derived baits or PC dual baits, suggesting that other factors, such as bait-target divergence and
527 bait tiling strategy, also impacted our capture experiments. Previous studies suggest that the
528 efficacy of target capture markedly decreases when bait-target divergences exceed 5–10%
529 (Vallender, 2011; Bi et al., 2012; Paijmans et al., 2016), although successful capture has been
530 reported when divergences are much higher (e.g., 40% in Li et al. [2013]). The
531 Pentatomomorpha-derived baits used here were derived from two taxa in the same infraorder as
532 the leaf-footed bugs (Faircloth, 2017), but these taxa diverged from coreoids for ~160–230 my
533 (Li et al., 2017; Liu et al., 2019; Wang et al., 2019). The Pentatomomorpha-derived baits
534 generally exhibited relatively high levels of divergence from the targeted loci in coreoids,
535 sometimes as high as that seen in Li et al. (2013). By reducing target capture stringency via lower
536 hybridization temperatures, a greater mismatch tolerance between divergent baits and targets can
537 lead to improved locus recovery, which our study supports. Given that our Coreoidea-derived
538 baits or PC dual baits were designed from coreoid transcriptomes, we were able to target loci with
539 much lower divergences from their respective baits (<10%).

540 Bait tiling strategy also appears to have played a role, although we could not thoroughly
541 explore its effects on many of our metrics. Despite some loci targeted by the Pentatomomorpha-
542 derived baits exhibiting similar levels of divergences as those targeted by Coreoidea-derived
543 baits, we found that a modest increase in bait tiling density (in this case, the latter set of baits)
544 was associated with higher coverage of the targeted loci. Lower bait-target divergences and/or

545 greater tiling of baits across targeted loci likely explain the high proportion of loci recovered
546 regardless of hybridization temperature for these Coreoidea-derived baits.

547 If locus recovery is the main goal of invertebrate capture studies (especially if bait-target
548 divergences exhibit a broad range of variation as in our study), using less stringent hybridization
549 temperatures can be particularly beneficial when baits and targets are expected to exhibit high
550 divergences and/or when baits are tiled at a low density. The lowest hybridization temperature
551 tested (TD-50) resulted in the best target locus recovery, especially for the more divergent target
552 loci. This result is likely due in part to the higher amount of data (i.e., reads and contigs) obtained
553 for this treatment. However, when we subsampled raw reads across all capture conditions to
554 normalize sequencing depth, we found that the TD-60 protocol provided the best balance with
555 respect to the percentage of on-target reads and lower hybridization stringency allowing for
556 maximal target locus recovery. Thus, to maximize target data for many samples with relatively
557 lower sequencing depth, the TD-60 protocol may be preferable, but if sequencing depth is not a
558 critically limiting factor, the TD-50 protocol may be a more desirable option.

559 It is expected that lowering hybridization temperature to reduce target capture stringency
560 should result in a greater proportion of off-target than on-target sequences in capture data due to
561 greater mismatch tolerance. Previous studies have observed this pattern (Paijmans et al., 2016
562 [ancient and archival specimens]; Cruz-Dávalos et al., 2017), which we also support here. More
563 off-target data may be considered undesirable for many studies, and for phylogenomic studies,
564 this could include potential sequences deemed paralogous to target data. When putative paralogs
565 are detected in some sequence processing pipelines like PHYLUCE, both the target and putative
566 paralog are excluded from further analysis, so even targeted data may be excluded from final
567 analyses. We found more paralogs recovered for loci targeted by Pentatomomorpha-derived baits,

568 but not other targeted loci, which may be related to the degree of bait-target divergences or tiling
569 strategy. Thus, for capture studies using baits expected to be quite divergent from ingroup taxa,
570 lower hybridization temperatures can result in more targets recovered, but possibly at the cost of
571 recovering more paralogous loci and a loss of some corresponding true targets. However, further
572 evaluation of putative paralogs and potential targets can often prevent loss of data, especially
573 since bioinformatic pipelines like PHYLUCE can report information on multiple contigs
574 matching to a bait. This then allows analyzing sequences more carefully, such as with BLAST,
575 inspecting alignments containing reference sequences, or refining ortholog binning procedures in
576 bioinformatic pipelines to also use untargeted paralogs in analyses. Accurate paralog detection
577 steps are very important regardless of hybridization temperatures (and how many paralogs are
578 expected to be recovered) as any undetected paralogs have the potential to mislead phylogenetic
579 reconstruction.

580 While off-target data may be considered undesirable, it can provide a greater chance to
581 extract more legacy loci than what might be acquired under standard capture conditions. This can
582 be advantageous for phylogenomic studies that seek to generate more comprehensive datasets
583 (taxon and character sampling) by integrating capture data with well-known markers of historical
584 use in molecular phylogenetic studies. Several target capture studies, especially in vertebrates,
585 have extracted legacy loci from off-target sequences in capture data (e.g., Meiklejohn et al., 2014;
586 Amaral et al., 2015; Wang et al., 2017; Derkarabetian et al., 2019; Simon et al., 2019; Miller et
587 al., 2022). Legacy locus data extracted for focal taxa can then be combined with loci retrieved
588 from genetic depositories for other taxa of interest prior to phylogenetic analysis, as well as to
589 assess possible errors and/or contamination. While the relatively low number of legacy loci
590 available for taxa in depositories does not always provide enough information for perfect

591 phylogenetic resolution, sometimes these loci are the only available data for rare taxa. If such
592 taxa are closely related to others in a target capture experiment, they can be accurately placed in
593 phylogenetic analyses despite the large amounts of missing data (e.g., Kieran et al., 2021; Miller
594 et al., 2022). Given the sequencing depth of a standard Illumina HiSeq or NextSeq lane often
595 used for sequencing target capture data and typical pooling of 60–96 samples for sequencing, the
596 presence of some usable off-target data may be desirable compared to the limited range of on-
597 target loci sequenced at very high, sometimes excessive, depth.

598 Tissue and library quality generally appear to have little influence on the trends we
599 observed with respect to hybridization temperatures and many of our metrics of capture success,
600 as we still observed the same general patterns when we partitioned our data based on these
601 characteristics. One notable exception was degraded samples (i.e., those preserved dry). Our three
602 touchdown hybridization temperatures improved locus recovery for degraded samples when
603 compared to the fixed standard 65°C, but recovery did not differ when comparing across the
604 touchdown protocols. It may be that for samples with highly fragmented DNA, the hybridization
605 temperature of baits to bind to short target DNA (shorter than DNA usually targeted from fresh
606 samples) only requires a modest reduction to obtain the maximum amount of targeted data
607 possible. Furthermore, slightly lowering hybridization temperature may have the benefit of
608 recovering enough loci to ensure a taxon can be represented in a final analysis where missing data
609 is minimized. Thus, based on our assessment, employing capture approaches with hybridization
610 temperatures less than 65°C generally have positive outcomes especially with samples of low
611 quality.

612

613 5. Conclusion

614 Our study primarily focused on the effects of a single target capture parameter, i.e.,
615 hybridization temperature, on several metrics of capture success in an invertebrate protein-coding
616 dataset. However, given that our baits were derived from different genomic resources, we were
617 also able to explore the role of bait-target divergence and bait tiling strategy in our experiment, as
618 well as tissue quality. While hybridization temperature, bait-target divergence, and bait tiling
619 strategy had effects on some of our metrics, we recognize other parameters likely affect capture
620 efficacy and remain to be thoroughly investigated in target capture experiments similar to ours
621 (i.e., in-solution capture, sample quality, etc.). Such parameters may also include base genomes
622 used in probe design (Gustafson et al., 2019), GC content of probes (Tewhey et al., 2009; Ávila-
623 Arcos et al., 2011), amount of probes used (Cruz-Dávalos et al., 2017), and post-hybridization
624 washing stringency (Li et al., 2013), among many others. Regardless, our study suggests that
625 lowering the hybridization temperature during capture can be beneficial to similar studies
626 (especially those with high bait-target divergences) seeking to improve target recovery in fresh
627 and degraded invertebrate material without major negative impacts overall, while also retrieving
628 other potentially useful data for comparative analyses.

629

630 Acknowledgements

631 We thank Joe Eger, Christiane Weirauch, and the Field Museum of Natural History for
632 providing new samples for our study. We also thank Kevin Johnson for kindly providing
633 transcriptome data prior to their publication. Caroline Miller and Min Zhao assisted with
634 molecular benchwork. Gavin Naylor and Shannon Corrigan kindly provided use of their Covaris
635 ultrasonication. Edward L. Braun helped with some perl and python scripts used in this study, and
636 Ke Bi modified the Portik et al. (2016) scripts in order to accommodate our data. We also thank

637 Christine W. Miller and members of the Miller lab for their support and feedback. This study was
638 funded by the National Science Foundation (grant number IOS-1553100 [awarded to Christine
639 W. Miller]).

640

641 References

642 Agunbiade, T. A., Sun, W., Coates, B. S., Djouaka, R., Tamò, M., Ba, M. N., Binsø-Dabire, C.,
643 Baoua, I., Olds, B. P., Pittendrigh, B. R. 2013. Development of reference transcriptomes
644 for the major field insect pests of cowpea: a toolbox for insect pest management
645 approaches in West Africa. *PLoS ONE*, 8(11), e79929. doi:
646 10.1371/journal.pone.0079929

647 Allio, R., Schomaker-Bastos, A., Romiguier, J., Prosdocimi, F., Nabholz, B., Delsuc, F. 2020.
648 MitoFinder: efficient automated large-scale extraction of mitogenomic data in target
649 enrichment phylogenomics. *Mol. Ecol. Resour.*, 20(4), 892–905. doi:
650 <https://doi.org/10.1111/1755-0998.13160>

651 Amaral, F. R. do, Neves, L. G., Resende, M. F. R. R., Jr., Mobili, F., Miyaki, C. Y., Pellegrino,
652 K. C. M., Biondo, C. 2015. Ultraconserved elements sequencing as a low-cost source of
653 complete mitochondrial genomes and microsatellite markers in non-model amniotes.
654 *PLoS ONE*, 10(9), e0138446. doi: 10.1371/journal.pone.0138446

655 Ávila-Arcos, M. C., Cappellini, E., Romero-Navarro, J. A., Wales, N., Moreno-Mayar, J. V.,
656 Rasmussen, M., Fordyce, S. L., Montiel, R., Vielle-Calzada, J.-P., Willerslev, E., Gilbert,
657 M. T. P. 2011. Application and comparison of large-scale solution-based DNA capture-
658 enrichment methods on ancient DNA. *Sci. Rep.*, 1(1), 74. doi: 10.1038/srep00074

659 Baca, S. M., Alexander, A., Gustafson, G. T., Short, A. E. Z. 2017. Ultraconserved elements
660 show utility in phylogenetic inference of Adephaga (Coleoptera) and suggest paraphyly of
661 'Hydradephaga.' *Syst. Entomol.*, 42(4), 786–795. doi: 10.1111/syen.12244

662 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V.
663 M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotnik, A. V., Vyahhi,
664 N., Tesler, G., Alekseyev, M. A., Pevzner, P. A. 2012. SPAdes: a new genome assembly
665 algorithm and its applications to single-cell sequencing. *J. Comput. Biol.*, 19(5), 455–477.
666 doi: 10.1089/cmb.2012.0021

667 Bi, K., Vanderpool, D., Singhal, S., Linderoth, T., Moritz, C., Good, J. M. 2012. Transcriptome-
668 based exon capture enables highly cost-effective comparative genomic data collection at
669 moderate evolutionary scales. *BMC Genomics*, 13(1), 403. doi: 10.1186/1471-2164-13-
670 403

671 Bolger, A. M., Lohse, M., Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina
672 sequence data. *Bioinformatics*, 30(15), 2114–2120. doi: 10.1093/bioinformatics/btu170

673 Branstetter, M. G., Longino, J. T., Ward, P. S., Faircloth, B. C. 2017. Enriching the ant tree of
674 life: enhanced UCE bait set for genome-scale phylogenetics of ants and other
675 Hymenoptera. *Methods Ecol. Evol.*, 8(6), 768–776. doi: <https://doi.org/10.1111/2041-210X.12742>

677 Branstetter, M. G., Müller, A., Griswold, T. L., Orr, M. C., Zhu, C. 2021. Ultraconserved element
678 phylogenomics and biogeography of the agriculturally important mason bee subgenus
679 *Osima* (*Osima*). *Syst. Entomol.*, 46, 453–472. doi: 10.1111/syen.12470

680 Bushnell, B. 2014. *BBMap: A Fast, Accurate, Splice-Aware Aligner* (No. LBNL-7065E).

681 Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Retrieved from
682 <https://www.osti.gov/biblio/1241166>

683 Cruz-Dávalos, D. I., Llamas, B., Gaunitz, C., Fages, A., Gamba, C., Soubrier, J., Librado, P.,
684 Seguin-Orlando, A., Pruvost, M., Alfarhan, A. H., Alquraishi, S. A., Al-Rasheid, K. A. S.,
685 Scheu, A., Beneke, N., Ludwig, A., Cooper, A., Willerslev, E., Orlando, L. 2017.
686 Experimental conditions improving in-solution target enrichment for ancient DNA. *Mol.*
687 *Ecol. Resour.*, 17(3), 508–522. doi: <https://doi.org/10.1111/1755-0998.12595>

688 Derkarabetian, S., Benavides, L. R., Giribet, G. 2019. Sequence capture phylogenomics of
689 historical ethanol-preserved museum specimens: unlocking the rest of the vault. *Mol.*
690 *Ecol. Resour.*, 19(6), 1531–1544. doi: <https://doi.org/10.1111/1755-0998.13072>

691 Dietrich, C. H., Allen, J. M., Lemmon, A. R., Lemmon, E. M., Takiya, D. M., Evangelista, O.,
692 Walde, K. K. O., Grady, P. G. S., Johnson, K. P. 2017. Anchored hybrid enrichment-
693 based phylogenomics of leafhoppers and treehoppers (Hemiptera: Cicadomorpha:
694 Membracoidea). *Insect Syst. Divers.*, 1(1), 57–72. doi: 10.1093/isd/ixx003

695 Emberts, Z., Mary, C. M. S., Howard, C. C., Forthman, M., Bateman, P. W., Somjee, U., Hwang,
696 W. S., Li, D., Kimball, R. T., Miller, C. W. 2020. The evolution of autotomy in leaf-
697 footed bugs. *Evolution*, 74(5), 897–910. doi: 10.1111/evo.13948

698 Faircloth, B. C. 2013. Illumiprocessor: a trimmomatic wrapper for parallel adapter and quality
699 trimming. Retrieved from <https://github.com/faircloth-lab/illumiprocessor>

700 Faircloth, B. C. 2016. PHYLUCE is a software package for the analysis of conserved genomic
701 loci. *Bioinformatics*, 32(5), 786–788. doi: 10.1093/bioinformatics/btv646

702 Faircloth, B. C. 2017. Identifying conserved genomic elements and designing universal bait sets
703 to enrich them. *Methods Ecol. Evol.*, 8(9), 1103–1112. doi: 10.1111/2041-210X.12754

704 Faircloth, B. C., Branstetter, M. G., White, N. D., Brady, S. G. 2015. Target enrichment of
705 ultraconserved elements from arthropods provides a genomic perspective on relationships
706 among Hymenoptera. *Mol. Ecol. Resour.*, 15(3), 489–501. doi: 10.1111/1755-0998.12328

707 Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G., Brumfield, R. T., Glenn, T.
708 C. 2012. Ultraconserved elements anchor thousands of genetic markers spanning multiple
709 evolutionary timescales. *Syst. Biol.*, 61(5), 717–726. doi: 10.1093/sysbio/sys004

710 Forthman, M., Miller, C. W., Kimball, R. T. 2019. Phylogenomic analysis suggests Coreidae and
711 Alydidae (Hemiptera: Heteroptera) are not monophyletic. *Zool. Scr.*, 48(4), 520–534. doi:
712 <https://doi.org/10.1111/zsc.12353>

713 Forthman, M., Miller, C. W., Kimball, R. T. (2020). Phylogenomics of the leaf-footed bug
714 subfamily Coreinae (Hemiptera: Coreidae). *Insect Syst. Divers.*, 4(2). doi:
715 10.1093/isd/ixaa009

716 Glenn, T. C., Nilsen, R. A., Kieran, T. J., Finger, J. W., Pierson, T. W., Bentley, K. E., Hoffberg,
717 S. L., Louha, S., León, F. J. G.-D., del Rio Portilla, M. A., Reed, K. D., Anderson, J. L.,
718 Meece, J. K., Aggery, S. E., Rekaya, R., Alabady, M., Bélanger, M., Winker, K.,
719 Faircloth, B. C. 2016. Adapterama I: universal stubs and primers for thousands of dual-
720 indexed Illumina libraries (iTru & iNext). *bioRxiv*, 049114.

721 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X.,
722 Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A.,
723 Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N.,

724 Regev, A. 2011. Full-length transcriptome assembly from RNA-Seq data without a
725 reference genome. *Nat. Biotechnol.*, 29(7), 644–652. doi: 10.1038/nbt.1883

726 Gustafson, G. T., Alexander, A., Sproul, J. S., Pflug, J. M., Maddison, D. R., Short, A. E. Z.
727 2019. Ultraconserved element (UCE) probe set design: base genome and initial design
728 parameters critical for optimization. *Ecol. Evol.*, 9(12), 6933–6948. doi:
729 10.1002/ece3.5260

730 Gustafson, G. T., Baca, S. M., Alexander, A. M., Short, A. E. Z. 2020. Phylogenomic analysis of
731 the beetle suborder Adephaga with comparison of tailored and generalized ultraconserved
732 element probe performance. *Syst. Entomol.*, 45(3), 552–570. doi:
733 <https://doi.org/10.1111/syen.12413>

734 Hamilton, C. A., Lemmon, A. R., Lemmon, E. M., Bond, J. E. 2016. Expanding anchored hybrid
735 enrichment to resolve both deep and shallow relationships within the spider tree of life.
736 *BMC Evol. Biol.*, 16(1), 212. doi: 10.1186/s12862-016-0769-y

737 Hughes, L. C., Ortí, G., Saad, H., Li, C., White, W. T., Baldwin, C. C., Crandall, K. A., Arcila,
738 D., Betancur-R., R. 2021. Exon probe sets and bioinformatics pipelines for all levels of
739 fish phylogenomics. *Mol. Ecol. Resourc.*, 21, 816–833. doi: 10.1111/1755-0998.13287

740 Johnson, K. P., Dietrich, C. H., Friedrich, F., Beutel, R. G., Wipfler, B., Peters, R. S., Allen, J.
741 M., Petersen, M., Donath, A., Walden, K. K. O., Kozlov, A. M., Podsiadlowski, L.,
742 Mayer, C., Meusemann, K., Vasilikopoulos, A., Waterhouse, R. M., Cameron, S. L.,
743 Weirauch, C., Swanson, D. R., Percy, D. M., Hardy, N. B., Terry, I., Liu, S., Zhou, X.,
744 Misof, B., Robertson, H. M., Yoshizawa, K. 2018. Phylogenomics and the evolution of
745 hemipteroid insects. *P. Natl. Acad. Sci.*, 115(50), 12775–12780. doi:
746 10.1073/pnas.1815820115

747 Katoh, K., Misawa, K., Kuma, K., Miyata, T. 2002. MAFFT: a novel method for rapid multiple
748 sequence alignment based on fast Fourier transform. *Nucleic Acids Res.*, 30(14), 3059–
749 3066. doi: 10.1093/nar/gkf436

750 Katoh, K., Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7:
751 improvements in performance and usability. *Mol. Biol. Evol.*, 30(4), 772–780. doi:
752 10.1093/molbev/mst010

753 Kieran, T. J., Gordon, E. R. L., Forthman, M., Hoey-Chamberlain, R., Kimball, R. T., Faircloth,
754 B. C., Weirauch, C., Glenn, T. C. 2019. Insight from an ultraconserved element bait set
755 designed for hemipteran phylogenetics integrated with genomic resources. *Mol.*
756 *Phylogenetic Evol.*, 130, 297–303. doi: 10.1016/j.ympev.2018.10.026

757 Kieran, T. J., Gordon, E. R. L., Zaldívar-Riverón, A., Ibarra-Cerdeña, C. N., Glenn, T.C.,
758 Weirauch, C. 2021. Ultraconserved elements reconstruct the evolution of Chagas disease-
759 vectoring kissing bugs (Reduviidae: Triatominae). *Syst. Entomol.*, 46, 725–740, doi:
760 10.1111/syen.12485.

761 Knyshov, A., Gordon, E. R. L., Weirauch, C. 2019. Cost-efficient high throughput capture of
762 museum arthropod specimen DNA using PCR-generated baits. *Methods Ecol. Evol.*, 10,
763 841–852.

764 Knyshov, A., Gordon, E. R. L., Weirauch, C. 2021. New alignment-based sequence extraction
765 software (ALiBaSeq) and its utility for deep level phylogenetics. *PeerJ*, 9, e11019. doi:
766 10.7717/peerj.11019

767 Lemmon, A. R., Emme, S. A., Lemmon, E. M. 2012. Anchored hybrid enrichment for massively
768 high-throughput phylogenomics. *Syst. Biol.*, 61(5), 727–744. doi: 10.1093/sysbio/sys049

769 Lemmon, E. M., Lemmon, A. R. 2013. High-throughput genomic data in systematics and
770 phylogenetics. *Annu. Rev. Ecol. Evol. Syst.*, 44(1), 99–121. doi: 10.1146/annurev-ecolsys-
771 110512-135822

772 Li, C., Hofreiter, M., Straube, N., Corrigan, S., Naylor, G. J. P. 2013. Capturing protein-coding
773 genes across highly divergent species. *Biotechniques*, 54(6), 321–326. doi:
774 10.2144/000114039

775 Li, F. W., Melkonian, M., Rothfels, C. J., Villarreal, J. C., Stevenson, D. W., Graham, S. W.,
776 Wong, G. K.-S., Pryer, K. M., Mathews, S. 2015. Phytochrome diversity in green plants
777 and the origin of canonical plant phytochromes. *Nat. Commun.*, 6, 1–12. doi:
778 10.1038/ncomms8852

779 Li, H., Leavengood, J. M., Chapman, E. G., Burkhardt, D., Song, F., Jiang, P., Liu, J., Zhou, Z.,
780 Cai, W. 2017. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations
781 driving the diversification of true bugs. *Proc. R. Soc. B, Biol. Sci.*, 284(1862), 20171223.
782 doi: 10.1098/rspb.2017.1223

783 Liu, Y., Li, H., Song, F., Zhao, Y., Wilson, J.-J., Cai, W. 2019. Higher-level phylogeny and
784 evolutionary history of Pentatomomorpha (Hemiptera: Heteroptera) inferred from
785 mitochondrial genome sequences. *Syst. Entomol.*, 44(4), 810–819. doi:
786 <https://doi.org/10.1111/syen.12357>

787 Marçais, G., Yorke, J. A., Zimin, A. 2015. QuorUM: an error corrector for Illumina reads. *PLoS
788 ONE*, 10(6), e0130821. doi: 10.1371/journal.pone.0130821

789 Mason, V. C., Li, G., Helgen, K. M., Murphy, W. J. 2011. Efficient cross-species capture
790 hybridization and next-generation sequencing of mitochondrial genomes from

791 noninvasively sampled museum specimens. *Genome Res.*, 21, 1695–1704. doi:
792 10.1101/gr.120196.111

793 Meiklejohn, K. A., Danielson, M. J., Faircloth, B. C., Glenn, T. C., Braun, E. L., Kimball, R. T.
794 2014. Incongruence among different mitochondrial regions: a case study using complete
795 mitogenomes. *Mol. Phylogenet. Evol.*, 78, 314–323. doi: 10.1016/j.ympev.2014.06.003

796 Miller, C. D., Forthman, M., Miller, C. W., Kimball, R. T. 2022. Extracting “legacy loci” from an
797 invertebrate sequence capture dataset. *Zool. Scr.*, 51(1), 14–31. doi: 10.1111/zsc.12513

798 Nurk, S., Bankevich, A., Antipov, D., Gurevich, A., Korobeynikov, A., Lapidus, A., Prjibelsky,
799 A., Pyshkin, A., Sirotnik, A., Sirotnik, Y., Stepanauskas, R., McLean, J., Lasken, R.,
800 Clingenpeel, S. R., Woyke, T., Tesler, G., Alekseyev, M. A., Pevzner, P. A. 2013.
801 Assembling genomes and mini-metagenomes from highly chimeric reads. In M. Deng, R.
802 Jiang, F. Sun, & X. Zhang (Eds.), *Research in Computational Molecular Biology* (pp.
803 158–170). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-37195-0_13

804 Paijmans, J. L. A., Fickel, J., Courtiol, A., Hofreiter, M., Förster, D. W. 2016. Impact of
805 enrichment conditions on cross-species capture of fresh and degraded DNA. *Mol. Ecol.*
806 *Res.*, 16(1), 42–55. doi: 10.1111/1755-0998.12420

807 Peñalba, J. V., Smith, L. L., Tonione, M. A., Sass, C., Hykin, S. M., Skipwith, P. L., McGuire, J.
808 A., Bowie, R. C. K., Moritz, C. 2014. Sequence capture using PCR-generated probes: a
809 cost-effective method of targeted high-throughput sequencing for nonmodel
810 organisms. *Mol Ecol. Res.*, 14, 1000–1010. doi: 10.1111/1755-0998.12249

811 Pierce, M. P., Branstetter, M. G., Longino, J. T. 2017. Integrative taxonomy reveals multiple
812 cryptic species within Central American *Hylomyrma* Forel, 1912 (Hymenoptera:
813 Formicidae). *Myrmecol. News*, 25, 131–143. doi: 10.25849/myrmecol.news_025:131

814 Portik, D. M., Smith, L. L., Bi, K. 2016. An evaluation of transcriptome-based exon capture for
815 frog phylogenomics across multiple scales of divergence (Class: Amphibia, Order:
816 Anura). *Mol. Ecol. Res.*, 16(5), 1069–1083. doi: <https://doi.org/10.1111/1755-0998.12541>

817 Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., Korobeynikov, A. 2020. Using SPAdes de
818 novo assembler. *Current Protocols in Bioinformatics*, 70(1), e102. doi:
819 <https://doi.org/10.1002/cpbi.102>

820 Quinlan, A. R., Hall, I. M. 2010. BEDTools: a flexible suite of utilities for comparing genomic
821 features. *Bioinformatics*, 26(6), 841–842. doi: 10.1093/bioinformatics/btq033

822 Schmieder, R., Edwards, R. 2011. Quality control and preprocessing of metagenomic datasets.
823 *Bioinformatics*, 27(6), 863–864. doi: 10.1093/bioinformatics/btr026

824 Simon, C., Gordon, E. R. L., Moulds, M. S., Cole, J. A., Haji, D., Lemmon, A. R., Lemmon, E.
825 M., Kortyna, M., Nazario, K., Wade, E. J., Meister, R. C., Goemans, G., Chiswell, S. M.,
826 Pessacq, P., Veloso, C., McCutcheon, J. P., Łukasik, P. 2019. Off-target capture data,
827 endosymbiont genes and morphology reveal a relict lineage that is sister to all other
828 singing cicadas. *Biol. J. Linn. Soc.*, 128(4), 865–886. doi: 10.1093/biolinnean/blz120

829 Ströher, P. R., Zarza, E., Tsai, W. L., McCormack, J. E., Feitosa, R. M., Pie, M. R. 2016. The
830 mitochondrial genome of *Octostruma stenognatha* and its phylogenetic implications.
831 *Insect. Soc.*, 64, 149–154. doi: 10.1007/s00040-016-0525-8

832 Tewhey, R., Nakano, M., Wang, X., Pabón-Peña, C., Novak, B., Giuffre, A., Lin, E., Happe, S.,
833 Roberts, D. N., LeProust, E. M., Topol, E. J., Harismendy, O., Frazer, K. A. 2009.
834 Enrichment of sequencing targets from the human genome by solution hybridization.
835 *Genome Biol.*, 10(10), R116. doi: 10.1186/gb-2009-10-10-r116

836 Vallender, E. J. 2011. Expanding whole exome resequencing into non-human primates. *Genome*
837 *Biol.*, 12(9), R87. doi: 10.1186/gb-2011-12-9-r87

838 Van Dam, M. H., Lam, A. W., Sagata, K., Gewa, B., Laufa, R., Balke, M., Faircloth, B. C.,
839 Riedel, A. 2017. Ultraconserved elements (UCEs) resolve the phylogeny of Australasian
840 smurf-weevils. *PLoS ONE*, 12(11), e0188044. doi: 10.1371/journal.pone.0188044

841 Wang, N., Hosner, P. A., Liang, B., Braun, E. L., Kimball, R. T. 2017. Historical relationships of
842 three enigmatic phasianid genera (Aves: Galliformes) inferred using phylogenomic and
843 mitogenomic data. *Mol. Phylogenet. Evol.*, 109, 217–225. doi:
844 10.1016/j.ympev.2017.01.006

845 Wang, Y.-H., Wu, H.-Y., Rédei, D., Xie, Q., Chen, Y., Chen, P.-P., Dong, Z.-E., Dang, K.,
846 Damgaard, J., Štys, P., Wu, Y.-Z., Luo, J.-Y., Sun, X.-Y., Hartung, V., Kuechler, S. M.,
847 Liu, Y., Liu, H.-X., Bu, W.-J. 2019. When did the ancestor of true bugs become stinky?
848 Disentangling the phylogenomics of Hemiptera–Heteroptera. *Cladistics*, 35(1), 42–66.
849 doi: 10.1111/cla.12232

850 Zhang, Y. M., Williams, J. L., Lucky, A. 2019. Understanding UCEs: a comprehensive primer on
851 using ultraconserved elements for arthropod phylogenomics. *Insect Syst. Divers.*, 3, 3.
852 doi: 10.1093/isd/ixz016

853

854 Data accessibility

855 Newly generated sequence read files are available on NCBI's Sequence Read Archive
856 under Bioproject PRJNA763985. For sequence read data previously published, see NCBI

857 Bioprojects PRJNA531965 (Forthman et al., 2019), PRJNA546248 (Forthman et al., 2020), and
858 PRJNA609116 (Emberts et al., 2020).

859 Tables

860 Table 1. Experimental design of four studies that investigated the effects of target capture hybridization temperatures on various
861 metrics used to assess capture performance.

862

Characteristics of study	Li et al. (2013)	Paijmans et al. (2016)	Cruz-Dávalos et al. (2017)	Mohandesan et al. (2017)
Taxon	Gnathostomata	Felidae	Equidae	<i>Camelus</i> (Camelidae)
Target data type	CDS	Mitogenome	SNP	Mitogenome
No. of targets	1449	1 (entire mitogenome)	~5000 (SNPs)	1 (entire mitogenome)
Bait type	Biotinylated RNA	“Oligonucleotides”	Biotinylated RNA	Biotinylated RNA
Bait length (bp)	120	60	60	80
Tiling density	2x	30x	3x	4x
Sample quality	Fresh	Fresh & degraded	Degraded	Degraded
Target capture method	In-solution	Solid-state	In-solution	In-solution
Capture Protocol (CP) 1	65°C hybridization (duration not reported)	65°C hybridization; captured targets used for additional capture under same conditions (duration not reported)	65°C hybridization (24 hrs)	65°C hybridization (36 hrs)
Capture Protocol (CP) 2	65°C to 50°C hybridization (5°C decrease every 11 hrs)	50°C hybridization; captured targets used for additional capture under same conditions (duration not reported)	55°C hybridization (40 hrs)	65°C to 50°C hybridization (5°C decrease every 12 hrs)

Capture Protocol (CP) 3	CP3 used captured targets & same capture conditions from CP 2	65°C to 50°C hybridization (5°C decrease every 16.25 hrs); captured targets used for additional capture under same conditions		
Metrics evaluated	Proportion of target loci recovered Bait-target divergence GC content Target seq. length recovered Chromosomal position	Proportion of on-target reads Bait-target divergence (fresh tissues only) Target coverage	Fold enrichment Proportion of on-target reads Target coverage Read length	Proportion of on-target reads Percentage of endogenous DNA Percentage of PCR duplicate reads
Recommended CP based on metrics	CP 3	CP 3 (fresh) CP 1 (archival & ancient)	CP 2 (samples with low to medium endogenous DNA) CP 1 & CP 2 not significantly different (samples with high endogenous DNA)	CP 1 & CP 2 performance not significantly different
Relevant conclusions	Lower hybridization temperatures improve proportion of target loci recovered, particularly when bait-target divergence is high	Sample type & quality likely determines which hybridization temperature results in best capture based on proportion of on-target	Lower hybridization temperatures result in greater enrichment folds when samples have greater amounts of contamination but no	Lower hybridization temperatures perform similarly with standard capture conditions for recovery of uniquely mapped reads or

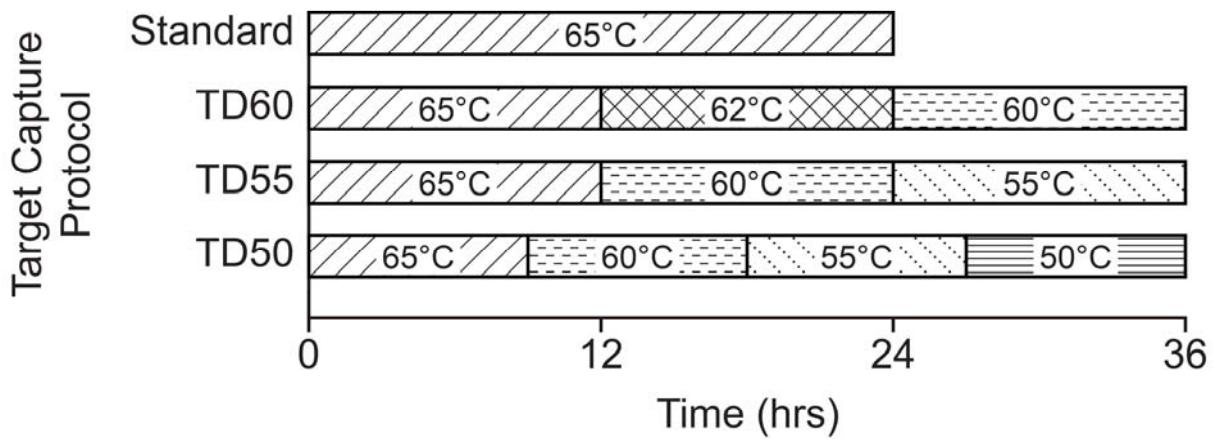
reads; high temperatures may be better for degraded samples with greater amounts of contamination	impact when samples have higher amounts of endogenous DNA	capture efficiency
---	---	--------------------

863 Table 2. Terminology related to bait design and targeted loci.

Term	Definition
Ultraconserved element (UCE) baits	120 bp baits designed to target highly conserved genomic regions at ~1.33x tiling. A Hemiptera-wide UCE bait set was designed by Faircloth (2017), which targets the conserved core of protein-coding loci (Kieran et al., 2019); however, contigs captured by UCE baits may also include introns and/or untranslated regions (UTRs).
Pentatomomorpha-derived baits	The Faircloth (2017) Hemiptera-wide UCE bait set was subsampled to include only those baits designed from the genomes of two species within the infraorder Pentatomomorpha, which are the closest relatives to the ingroup of this study.
Exon-derived baits	120 bp baits designed at ~2x tiling from individual exon sequences (i.e., baits do not span across introns) exhibiting ≥60% conservation across transcriptomes from five species of Coreoidea. While the baits do not target UTRs, given that they are derived from transcriptome sequences, contigs captured by these baits may include introns and/or UTRs.
Transcript-derived baits	120 bp baits designed at ~2x tiling from sequences that may include one or more exons and that exhibit ≥60% conservation across transcriptomes from five species of Coreoidea. While the baits do not target UTRs, given that they are derived from transcriptome sequences, baits may span across one or more introns and, thus, contigs captured by these baits may include introns and/or UTRs.
Coreoidea-derived baits	Baits designed primarily from transcriptomes of five species of Coreoidea (i.e., exon- and transcript-derived baits combined).
Pentatomomorpha-Coreoidea (PC) dual baits	Loci targeted by Pentatomomorpha-derived UCE baits as well as by exon-derived or transcript-derived baits (i.e., Coreoidea-derived baits).

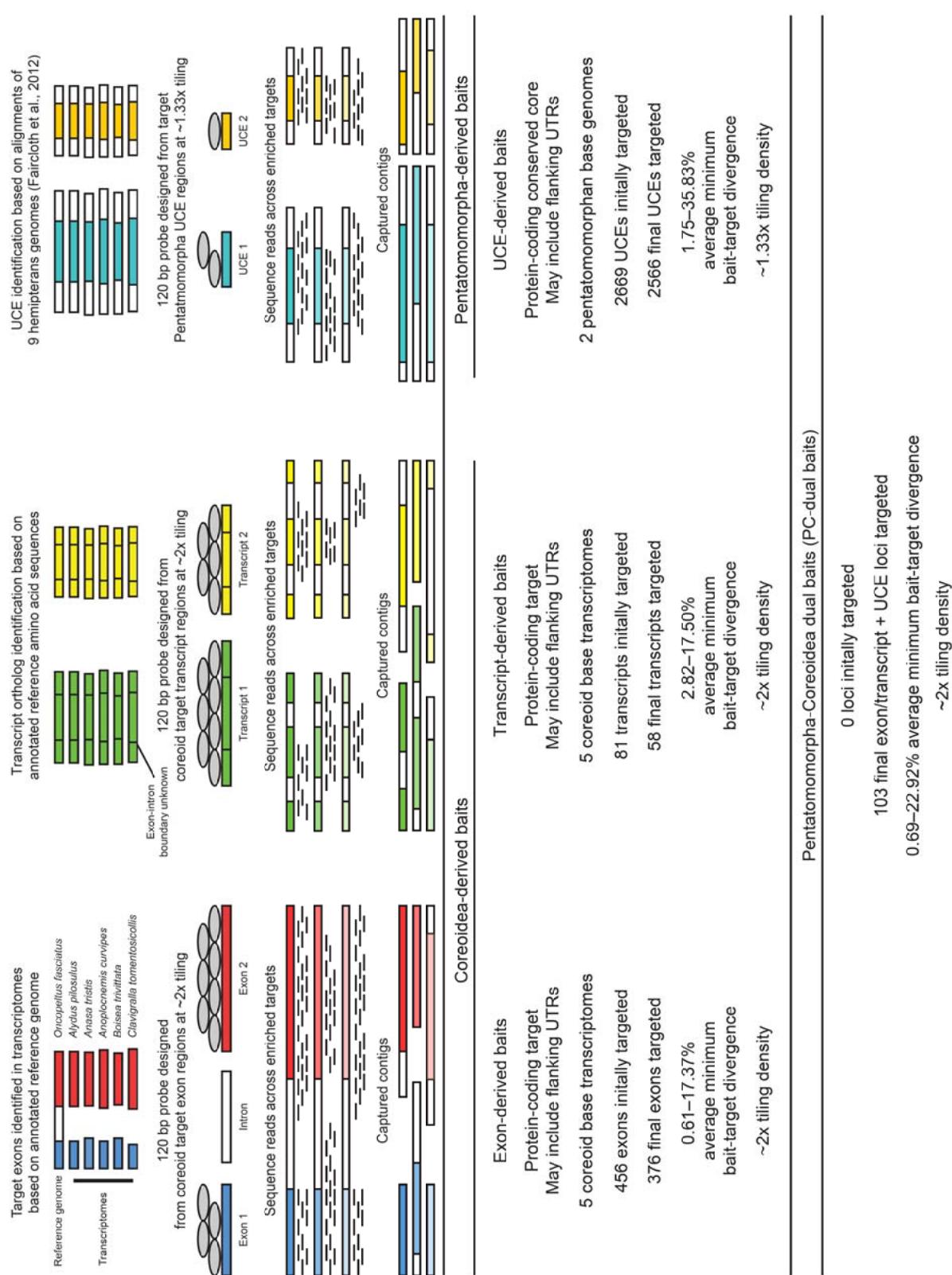
865 Figures

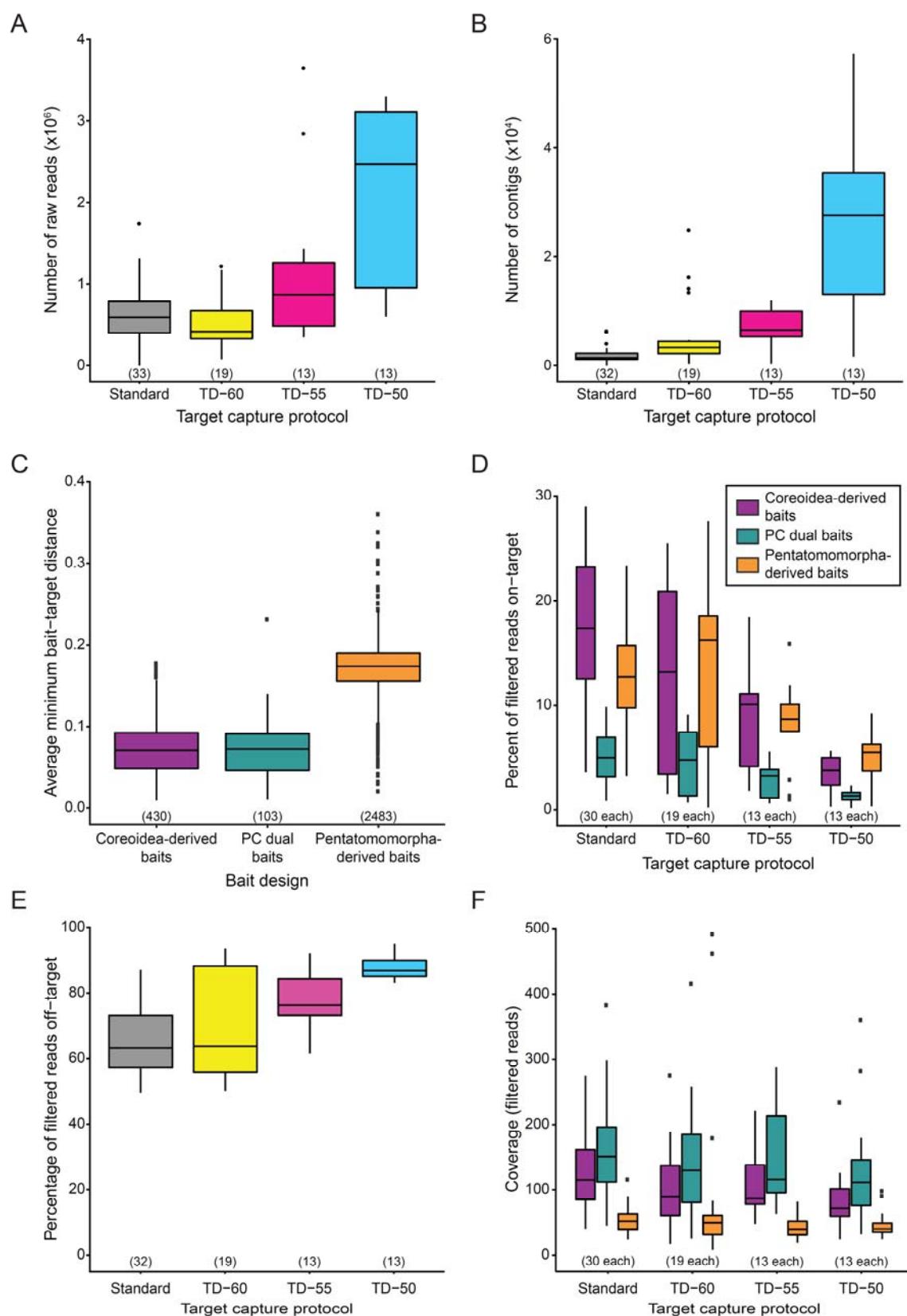
866 Figure 1. Experimental target capture set-up. Hybridization temperatures across time (in hours)
867 are reported. Abbreviations: TD-60, touchdown hybridization approach starting at 65°C for 12
868 hrs followed by 62°C for 12 hrs and ending at 60°C for 12 hrs; TD-55, touchdown hybridization
869 approach starting at 65°C for 12 hrs followed by 60°C for 12 hrs and ending at 55°C for 12 hrs;
870 TD-50, touchdown hybridization approach starting at 65°C for 9 hrs followed by 60°C for 9 hrs,
871 55°C for 9 hrs, and ending at 50°C for 9 hrs.

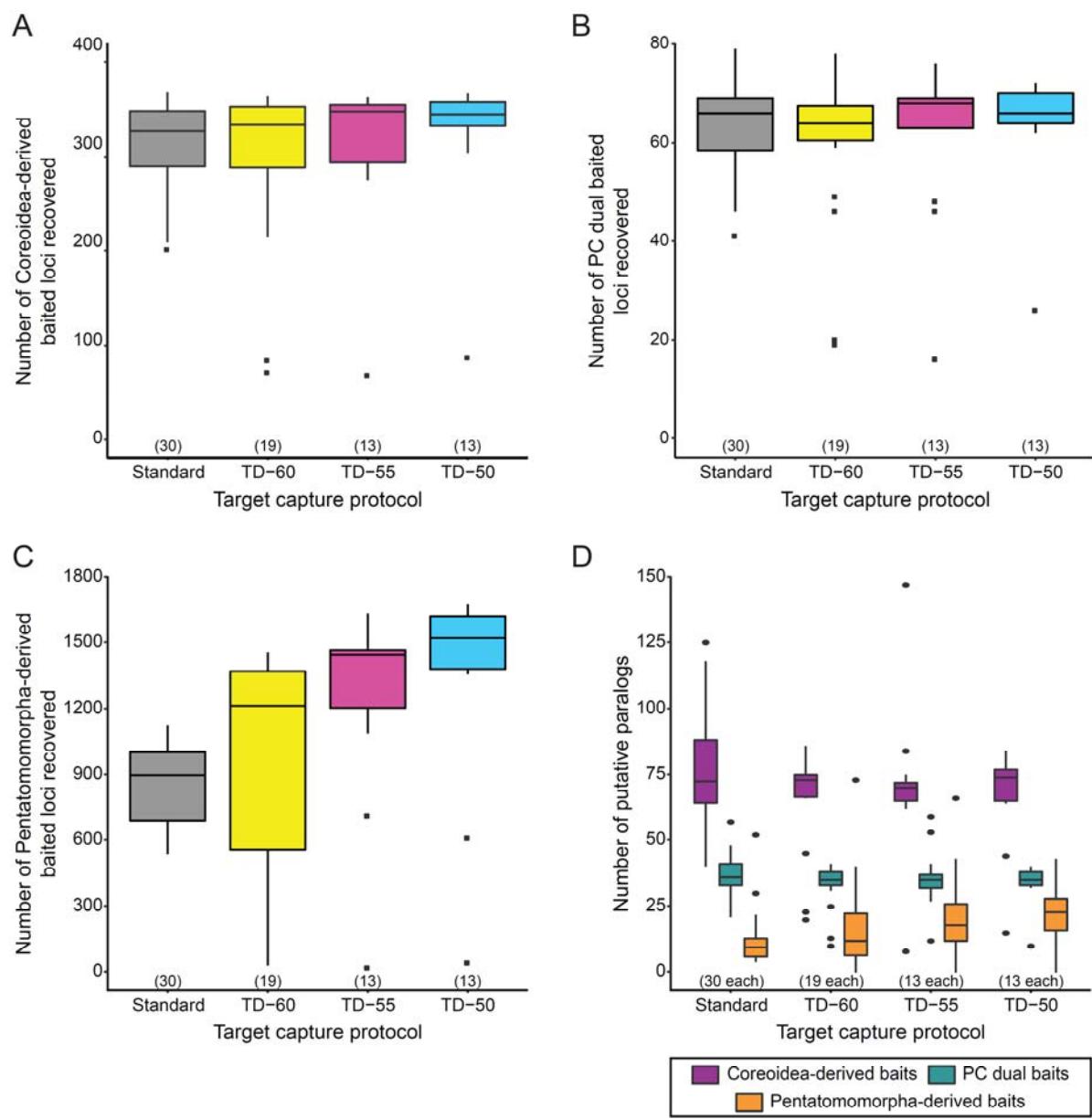

872
873 Figure 2. Design and properties of bait used in this study. Abbreviations: bp, base pair; UCE,
874 ultraconserved element; UTR, untranslated region.

875
876 Figure 3. (A) Effects of target capture protocols on the total number of raw reads and (B)
877 assembled contigs. (C) Average minimum bait-target distances and (D) percentage of filtered
878 reads on-target by bait design strategy. (E) Effects of target capture protocols on the percentage
879 of filtered reads off-target. (F) Effects of target capture protocols on coverage by bait design
880 strategy. Numbers in parentheses above x-axis denote sample size. Abbreviations: PC dual baits,
881 loci targeted by both Pentatomomorpha- and Coreoidea-derived baits; see Fig. 1 for additional
882 abbreviations.

883
884 Figure 4. Effects of target capture protocols on the number of loci captured by (A) Coreoidea-
885 derived baits, (B) PC dual baits, and (C) Pentatomomorpha-derived baits. (D) Effects of target
886 capture protocols on the number of putative paralogs of loci captured by bait design strategy.
887 Numbers in parentheses above x-axis denote sample size. Abbreviations: see Figs. 1 and 3.

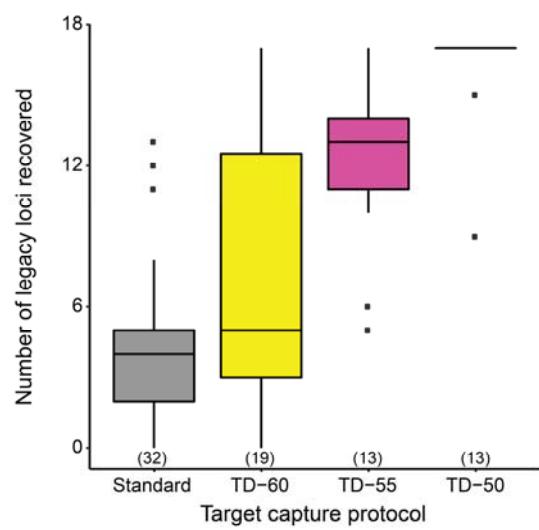

888
889 Figure 5. Effects of target capture protocols on the total number of legacy loci recovered.
890 Numbers in parentheses above x-axis denote sample size. Abbreviations: see Fig. 1.


891



892

893



896

897

898

899 Supplementary material

900 Table S1. Information regarding sample age, preservation method, and DNA extraction and
901 library preparation protocols used. Abbreviations: DNeasy, Qiagen, DNeasy Blood and Tissue
902 Kit; DNQIA, DNeasy with Qiagen QIAquick PCR Purification Kit.

903
904 Table S2. Target capture experimental design. Freshly preserved samples or samples preserved
905 dried were subjected to the standard and TD-60 protocols, respectively, prior to the start of this
906 study. Abbreviations: TD-60, touchdown hybridization approach starting at 65°C for 12 hrs
907 followed by 62°C for 12 hrs and ending at 60°C for 12 hrs; TD-55, touchdown hybridization
908 approach starting at 65°C for 12 hrs followed by 60°C for 12 hrs and ending at 55°C for 12 hrs;
909 TD-50, touchdown hybridization approach starting at 65°C for 9 hrs followed by 60°C for 9 hrs,
910 55°C for 9 hrs, and ending at 50°C for 9 hrs.

911
912 Table S3. Summary data for raw and filtered sequence reads, reads on-target and coverage across
913 all targeted loci, and contigs. Abbreviations: FRO, filtered reads on-target; see Table S2 for
914 additional abbreviations.

915
916 Table S4. Summary data for on-target reads and coverage of targeted loci, partitioned based on
917 type of baits used. Abbreviations: Cov., coverage; exon, loci targeted by exon-derived baits; C-
918 baits, loci targeted by exon- or transcript-derived baits (i.e., Coreoidea-derived baits); transcript,
919 loci targeted by transcript-derived baits; PC dual, loci targeted by both Pentatomomorpha
920 ultraconserved element (UCE) baits and Coreoidea-derived baits (i.e., Pentatomomorpha-
921 Coreoidea dual baits); P-baits, loci targeted only by Pentatomomorpha-derived UCE baits; see
922 Tables S2 and S3 and Table 1 of main text for explanation of terms used.

923
924 Table S5. Summary data for captured loci targeted by exon-derived baits (376 loci targeted).
925 Abbreviations: see Tables S2–S4.

926
927 Table S6. Summary data for captured loci targeted by transcript-derived baits (58 loci targeted).
928 Abbreviations: see Tables S2–S4.

929
930 Table S7. Summary data for captured loci targeted by Pentatomomorpha-Coreoidea dual baits
931 (103 loci targeted). Abbreviations: see Tables S2–S4.

932
933 Table S8. Summary data for captured loci targeted by Pentatomomorpha-derived baits (2566 loci
934 targeted). Abbreviations: see Tables S2–S4.

935
936 Table S9. Summary data for legacy loci (15 mitochondrial [mtDNA] and two nuclear ribosomal
937 [rRNA] loci targeted). Abbreviations: see Table S2.

938
939 Table S10. Summary data for raw and filtered sequence reads, reads on-target and coverage
940 across all targeted loci, and contigs from 28 taxa that had 2,000,000 million raw reads
941 subsampled to equalize sequencing depth across capture conditions. Abbreviations: see Tables S2
942 and S3.

943
944 Table S11. Summary data for on-target reads and coverage of targeted loci, partitioned based on
945 type of baits used for 28 taxa that had 2,000,000 million raw reads subsampled to equalize
946 sequencing depth across capture conditions. Abbreviations: see Tables S2–S4 and Table 1 of
947 main text.

948
949 Table S12. Summary data for captured loci targeted by exon-derived baits (376 loci targeted)
950 from 28 taxa that had 2,000,000 million raw reads subsampled to equalize sequencing depth
951 across capture conditions. Abbreviations: see Tables S2–S4.

952
953 Table S13. Summary data for captured loci targeted by transcript-derived baits (58 loci targeted)
954 from 28 taxa that had 2,000,000 million raw reads subsampled to equalize sequencing depth
955 across capture conditions. Abbreviations: see Tables S2–S4.

956
957 Table S14. Summary data for captured loci targeted by Pentatomomorpha-Coreoidea dual baits
958 (103 loci targeted) from 28 taxa that had 2,000,000 million raw reads subsampled to equalize
959 sequencing depth across capture conditions. Abbreviations: see Tables S2–S4.

960
961 Table S15. Summary data for captured loci targeted by Pentatomomorpha-derived baits (2566
962 loci targeted) from 28 taxa that had 2,000,000 million raw reads subsampled to equalize
963 sequencing depth across capture conditions. Abbreviations: see Tables S2–S4.

964
965 Table S16. Summary data for legacy loci (15 mitochondrial [mtDNA] and two nuclear ribosomal
966 [rRNA] loci targeted) from 28 taxa that had 2,000,000 million raw reads subsampled to equalize
967 sequencing depth across capture conditions. Abbreviations: see Table S2.

968
969 Figure S1. (A) Effects of target capture protocols on mean contig. (B) Average minimum bait-
970 target distances by bait design strategy. (C) Effects of target capture protocols on the number of
971 filtered reads on-target by bait design strategy. (D) Effects of target capture protocols on
972 coverage by bait design strategy. (E) Effects of tiling strategy (Coreoidea-derived ~2x tiling
973 density; Pentatomomorpha-derived ~1.33x tiling density) on average coverage per locus (capture
974 loci exhibiting 0.05–0.10 average minimum bait-target divergences for each bait design strategy).
975 (F) Effects of target capture protocols on median locus lengths by bait design strategy. Numbers
976 in parentheses above x-axis denote sample size. See Tables S2–S4 for abbreviations.

977
978 Figure S2. Effects of target capture protocols on the number of loci captured by (A) exon-derived
979 baits and (B) transcript-derived baits. (C) Effects of target capture protocols on the number of
980 putative paralogs of loci captured by bait design strategy. Numbers in parentheses above x-axis
981 denote sample size. See Table S2 for abbreviations.

982
983 Figure S3. Effects of target capture protocols on (A) number of raw reads, (B) number of contigs,
984 (C) percentage of filtered reads on-target, and (D) coverage by sample preservation method.
985 Numbers in parentheses above x-axis denote sample size. See Tables S2–S4 for abbreviations.

986

987 Figure S4. Effects of target capture protocols on the number of loci captured with (A) Coreoidea-
988 derived baits, (B) PC dual baits, and (C) Pentatomomorpha-derived baits by sample preservation
989 method. Numbers in parentheses above x-axis denote sample size. See Tables S2–S4 for
990 abbreviations.

991

992 Figure S5. Effects of target capture protocols on the median length of loci captured with (A)
993 Coreoidea-derived baits, (B) PC dual baits, and (C) Pentatomomorpha-derived baits by sample
994 preservation method. Numbers in parentheses above x-axis denote sample size. See Tables S2–S4
995 for abbreviations.

996

997 Figure S6. Effects of target capture protocols on (A) the number of putative paralogs of loci
998 capture with Coreoidea-derived baits, (B) the number of putative paralogs of loci capture with PC
999 dual baits, (C) the number of putative paralogs of loci capture with Pentatomomorpha-derived
1000 baits, and (D) the number of legacy loci recovered by sample preservation method. Numbers in
1001 parentheses above x-axis denote sample size. See Tables S2–S4 for abbreviations.

1002

1003 Figure S7. Effects of target capture protocols on (A) number of raw reads, (B) number of contigs,
1004 (C) percentage of filtered reads on-target, and (D) coverage by library quality. Numbers in
1005 parentheses above x-axis denote sample size. See Tables S2–S4 for abbreviations.

1006

1007 Figure S8. Effects of target capture protocols on the number of loci captured with (A) Coreoidea-
1008 derived baits, (B) PC dual baits, and (C) Pentatomomorpha-derived baits by library quality.
1009 Numbers in parentheses above x-axis denote sample size. See Tables S2–S4 for abbreviations.

1010

1011 Figure S9. Effects of target capture protocols on the median length of loci captured with (A)
1012 Coreoidea-derived baits, (B) PC dual baits, and (C) Pentatomomorpha-derived baits by library
1013 quality. Numbers in parentheses above x-axis denote sample size. See Tables S2–S4 for
1014 abbreviations.

1015

1016 Figure S10. Effects of target capture protocols on (A) the number of putative paralogs of loci
1017 capture with Coreoidea-derived baits, (B) the number of putative paralogs of loci capture with PC
1018 dual baits, (C) the number of putative paralogs of loci capture with Pentatomomorpha-derived
1019 baits, and (D) the number of legacy loci recovered by library quality. Numbers in parentheses
1020 above x-axis denote sample size. See Tables S2–S4 for abbreviations.

1021

1022 Figure S11. When controlling for sequencing depth, effects of target capture protocols on (A) the
1023 number of assembled contigs, (B) median contig length, (C) percentage of filtered reads on-target
1024 by bait design strategy, and (D) coverage by bait design strategy. Numbers in parentheses above
1025 x-axis denote sample size. See Tables S2–S4 for abbreviations.

1026

1027 Figure S12. When controlling for sequencing depth, effects of target capture protocols on the
1028 number of loci captured by (A) exon-derived baits, (B) transcript-derived baits, (C) PC dual baits,
1029 and (D) Pentatomomorpha-derived baits when sequencing depth is equalized across taxa and
1030 capture conditions, as well as (E) effects on the median locus length and (F) number of putative

1031 paralogs of loci captured by bait design strategy. Numbers in parentheses above x-axis denote
1032 sample size. See Tables S2–S4 for abbreviations.

1033

1034 Figure S13. When controlling for sequencing depth, effect of target capture protocols on the total
1035 number of legacy loci recovered. Numbers in parentheses above x-axis denote sample size. See
1036 Table S2 for abbreviations.