

1 Therapeutic targeting of differentiation state-dependent metabolic vulnerabilities 2 in DIPG

3 Nneka E. Mbah¹, Amy L. Myers¹, Chan Chung^{2,3}, Joyce K. Thompson⁴, Hanna S. Hong⁵, Peter
4 Sajjakulnukit⁶, Zeribe C. Nwosu¹, Mengrou Shan¹, Stefan R. Sweha^{2,7}, Daniella D. Maydan¹,
5 Brandon Chen^{1,8}, Li Zhang¹, Brian Magnuson^{9,16}, Zirui Zui¹⁰, Daniel R. Wahl¹¹, Luigi Franchi¹²,
6 Sameer Agnihotri¹³, Carl J. Koschmann¹², Sriram Venneti^{12,14‡}, Costas A. Lyssiotis^{1,15,16‡}

7 Affiliations:

- 8 1. Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109,
9 USA.
- 10 2. Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of
11 Michigan Medical School, Ann Arbor, MI 48109, USA.
- 12 3. Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST),
13 Daegu 42988, South Korea.
- 14 4. Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
- 15 5. Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA.
- 16 6. Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- 17 7. Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
- 18 8. Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
19 48109, USA.
- 20 9. Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI,
21 48109, USA.
- 22 10. Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- 23 11. Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109,
24 USA.
- 25 12. Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- 26 13. University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA.
- 27 14. Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- 28 15. Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of
29 Michigan, Ann Arbor, MI 48109, USA.
- 30 16. Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.

31 ‡ Correspondence

32 Lead Contact: Costas A. Lyssiotis; clyssiot@med.umich.edu

33 **ABSTRACT**

34 H3K27M diffuse intrinsic pontine gliomas (DIPG) exhibit cellular heterogeneity comprising less-
35 differentiated, stem-like glioma cells that resemble oligodendrocyte precursors (OPC) and more
36 differentiated astrocyte (AC)-like cells. H3K27M DIPG stem-like cells exhibit tumor-seeding
37 capabilities *in vivo*, a feature lost or greatly diminished in the more differentiated AC-like cells. In
38 this study, we established isogenic *in vitro* models of DIPG that closely recapitulated the OPC-
39 like and AC-like phenotypes of DIPG cells. Using these tools, we performed transcriptomics,
40 metabolomics, and bioenergetic profiling to identify metabolic programs operative in the different
41 cellular states. From this, we defined new strategies to selectively target metabolic
42 vulnerabilities within the specific tumor populations. Namely, we showed that the AC-like cells
43 exhibited a more mesenchymal phenotype and were thus sensitized to ferroptotic cell death. In
44 contrast, OPC-like cells upregulated cholesterol metabolism and mitochondrial oxidative
45 phosphorylation (OXPHOS) and were accordingly more sensitive to statins and OXPHOS
46 inhibitors. Additionally, statins and OXPHOS inhibitors showed efficacy and extended survival in
47 preclinical orthotopic models established with stem-like H3K27M DIPG cells. Together, this
48 study demonstrates that cellular subtypes within DIPGs harbor distinct metabolic vulnerabilities
49 that can be uniquely and selectively targeted for therapeutic gain.

50 **INTRODUCTION**

51 Diffuse intrinsic pontine gliomas (DIPG) are treatment-resistant and uniformly fatal pediatric
52 brain tumors. The prognosis of this brainstem tumor is dismal with a median overall survival of
53 9-12 months from diagnosis^{1,2}. Radiotherapy is the only therapy that has proven benefit in this
54 patient population. Several clinical trials with chemotherapy have failed to demonstrate any
55 additional survival benefit over radiation alone^{3,4}. It is therefore imperative to identify novel
56 strategies for targeting this aggressive and devastating disease.

57 Recent advances delineating the molecular underpinnings of DIPG revealed that approximately
58 80% of DIPGs and diffuse midline gliomas (DMGs) harbor a recurrent somatic lysine-to-
59 methionine mutation at position 27 of histone H3.1 (*HIST1H3B*) or H3.3 (*H3F3A*), collectively
60 called H3K27M. H3K27M results in global hypo-methylation on H3K27 sites, epigenetic
61 dysregulation, and altered gene transcription^{1,5-8}. Other activating mutations and aberrant gene
62 expression patterns identified in DIPG include *ACVR1*, *TP53*, and *ATRX* mutations, and
63 overexpression of transcriptional factors *OLIG1* and *OLIG2*⁹⁻¹¹.

64 Single-cell RNA sequencing studies analyzing over 3,000 H3K27M cells from six primary
65 H3K27M gliomas found that H3K27M DIPGs hijack developmental programs regulating lineage
66 differentiation of neural stem cells. Consequently, tumor cells undergo developmental arrest
67 and are locked in a less-differentiated state¹². This study also revealed that DIPGs contain a
68 heterogeneous population of cells, where the majority of tumor cells harbor characteristic
69 markers of 'oligodendrocyte precursor cells' (OPC-like), with stem-like and higher renewal
70 potential. The more differentiated-like H3K27M tumor cells exhibit an astrocytic-like (AC-like)
71 phenotype and represent a minority¹². Of note, in the context of DIPG cellular heterogeneity, the
72 H3K27M OPC-like cells are hypothesized to be the putative drivers of tumor growth and
73 aggressiveness and possess *in vivo* tumor-initiating potential compared to more differentiated
74 cells¹²⁻¹⁵.

75 Metabolic reprogramming is a hallmark of cancer that influences every aspect of cancer
76 biology^{16,17}. Indeed, in comparison to H3 wild-type (H3WT) tumor cells, H3K27M DIPG cells
77 enhance metabolic programs including glycolysis, glutaminolysis, and the tricarboxylic acid
78 (TCA) cycle, as well as increase the generation of α -ketoglutarate (α -KG). Of note, enhanced α -
79 KG production in H3K27M DIPG was shown to be critical for the maintenance of the preferred
80 global H3K27 hypomethylation status, indicating the important interplay between metabolic
81 reprogramming and epigenetic regulation¹⁸. Despite these emerging studies of metabolism in

82 H3K27M DIPG, the role of dysregulated metabolism, particularly in the context of how
83 metabolism impacts stemness and tumorigenicity in H3K27M DIPG, remains largely unknown.
84 Indeed, differential metabolic reprogramming can potentially regulate cancer stemness,
85 differentiation, and cell fate¹⁹. As a result, many aspects of rewired metabolism can provide
86 novel therapeutic liabilities within tumors that can be effectively leveraged for therapy.
87 In this study we sought to elucidate the metabolic dependencies operative in both the stem-like
88 tumorigenic H3K27M gliomas and the more differentiated cell state. By applying a systems
89 biology approach that incorporated metabolomics, transcriptomics, and biochemical analyses,
90 we uncovered several nodes of dysregulated metabolic and signaling pathways in the
91 tumorigenic OPC-like versus (vs.) the more differentiated AC-like DIPG populations. This study
92 collectively illustrates that DIPGs harbor perturbations in metabolic programs that can be
93 exploited for therapeutic benefits.

94 **RESULTS**

95 ***In vitro* modeling of the differentiation state of H3K27M midline gliomas**

96 To study metabolic vulnerabilities associated with the distinctly heterogenous H3K27M DIPG,
97 we generated isogenic gliomaspheres (GS) and differentiated glioma cells (DGC) from three
98 patient-derived H3K27M DIPG cell lines: DIPG-007, DIPG-XIII and SF7761. It has been
99 previously established that the DIPG GS culture conditions (serum-free) enrich for malignant
100 cells that are less-differentiated and stem-like^{20,21}. Moreover, DIPG GS readily establish tumors
101 following stereotactic injection into the pons of mice¹². In contrast, culturing the tumor cells in the
102 presence of serum induces differentiation of H3K27M malignant glioma cells (i.e., DGC) and an
103 associated loss or substantially diminished *in vivo* tumorigenicity¹². Furthermore, in comparison
104 to the DGC, the GS model most closely recapitulates the phenotype of DIPG tumor-xenografts
105 and primary patient tumors^{12,20-22}.

106 We therefore maintained the isogenic cell lines either as tumorigenic GS cultures (i.e.,
107 unattached 3-D spheres cultured in serum-free media containing B27 supplements and growth
108 factors) or differentiated malignant cells (i.e., adherent monolayers cultured in the presence of
109 serum) (**Figure 1A; Supplementary Figure 1A**). Evaluation of the growth kinetics of GS vs.
110 DGC revealed that DIPG-007 and SF7661 GS proliferated at a markedly higher rate than their
111 DGC counterparts, indicating that the less differentiated and stem-like GS populations are far
112 more proliferative. The differentiation state did not influence proliferation rates in the DIPG-XIII
113 cells (**Figure 1B**).

114 **Transcriptomic analyses revealed GS are OPC-like and DGC are AC-like**

115 To characterize the molecular features of the DIPG GS and DGC, we performed RNA-
116 sequencing (RNA-seq) to compare the gene expression patterns of GS vs. DGC in these three
117 isogenic cell lines. Principal component (PC) analysis of the RNA-seq data revealed that the cell
118 lines clustered based on cell line differences and cellular differentiation status (namely, DGC or
119 GS) (**Supplementary Figures 1B-C**). PC1 vs. PC2 was shown to be driven by original cell line
120 differences and clustered based on cell line, irrespective of the differentiation state
121 (**Supplementary Figure 1B**). PC3 distinguished between GS and DGC, wherein the isogenic
122 lines clustered separately, suggesting that PC3 was influenced by the cellular differentiation
123 status. Strikingly, PC3 revealed that GS vs DGC gene expression patterns were more strongly
124 separated in DIPG-007 and SF7761 than in DIPG-XIII (**Supplementary Figure 1C**). These
125 observations suggest a potentially marked difference in the resultant phenotype of GS vs. DGC
126 in DIPG-007 and SF7761, which is less pronounced in DIPG-XIII.

127 We analyzed genes that were significantly altered (adjusted p-value < 0.0001) in GS vs. DGC
128 across the three cell lines (DIPG-007, 10276 total genes; SF7761, 9242 total genes; and DIPG-
129 XIII, 8425 total genes) and found 1329 genes and 1163 genes to be commonly upregulated and
130 downregulated, respectively (**Figures 1C-D**). The top 50 consistently upregulated and

131 downregulated genes common to the three isogenic lines revealed distinct gene signatures
132 associated with GS vs. DGC tumor populations. (**Supplementary Figure 1D-E**). Next, we
133 examined the gene expression of individual DIPG stemness and differentiation markers. GS
134 lines upregulated oligodendrocyte transcription factor 2 (*OLIG2*) (**Supplementary Figure 2A**),
135 the gene that encodes a transcription factor typically overexpressed in DIPG and critical for the
136 establishment of DIPG tumors *in vivo*²⁴. This difference was also observed at the protein level
137 (**Figure 1E**). In addition, other DIPG markers like oligodendrocyte transcription factor 1 (*OLIG1*)
138 and microtubule associated protein 2 (*MAP2*) were higher in GS compared to GDC
139 (**Supplementary Figures 2B-C**). SRY-box transcription factor 2 (*SOX2*), epidermal growth
140 factor receptor (*EGFR*), and Myc proto-oncogene (*MYC*) are genes whose upregulation is
141 associated with glioma stemness. Remarkably, these genes showed consistently higher
142 expression in DIPG-007 and SF7761 GS compared to their DGC counterparts, and this
143 contrasted with the modestly lower expression in DIPG-XIII GS vs. DGC (**Supplementary**
144 **Figures 2D-F**). Analysis of glial fibrillary acidic protein (*GFAP*), vimentin (*VIM*), and S100
145 calcium binding protein A10 (*S100A10*), which are typically associated with astrocytic-like
146 differentiated DIPG²⁵⁻²⁷, revealed substantial upregulation in DGC compared to GS across the
147 three lines (**Supplementary Figures 2G-I**).

148 Malignant H3K27M gliomas have been reported to include tumor cell types that exhibit four
149 gene signatures: namely, i) OPC-like cells, ii) cell cycle (CC), iii) oligodendrocytes (OL), and iv)
150 AC-like cells¹². We cross referenced our bulk RNA-seq gene expression data with that of the
151 published single-cell RNA-seq dataset¹² (GSE102130) that described the four gene signatures.
152 We found that the gene expression pattern observed in the GS showed increased enrichment
153 for the OPC-like gene signature, while the gene signature of the DGCs was consistent with an
154 AC-like phenotype (**Figure 1F**). Interestingly, individual gene expression trends observed in our
155 *in vitro*-generated isogenic GS vs. DGC cells (**Supplementary Figures 2A-I**) were also

156 recapitulated in the OPC-like vs. AC-like H3K27M cells defined in this published single-cell
157 RNA-seq dataset (**Figure 1G**).

158 Collectively, these data suggest that *in vitro* generated GS largely represent the OPC-like DIPG
159 phenotype, which is known to be less-differentiated, stem-like, and exhibit tumor-propagating
160 potential *in vivo*, while DGC represent the more differentiated AC-like phenotype. Accordingly,
161 the GS and DGC *in vitro* models developed herein molecularly mimic two distinct and
162 predominant populations in the heterogenous H3K27M DIPG tumor.

163 **GS gene signature predicts decreased survival of DIPG/DMG patients**

164 To determine the clinical relevance of the GS gene signature in predicting disease outcome and
165 survival of patients with H3K27M DIPG, we mined a patient dataset from Mackay et al.²⁸
166 containing gene expression and survival data for 76 H3K27M DIPG and DMG patients. We
167 segregated patients into “high GS” vs. “low GS” gene expression categories using unbiased K-
168 means clustering and applied Kaplan-Meier survival analysis to define upper quartile as “GS
169 high” vs. “GS low” tumors. The results revealed that patients with “GS high” tumors showed a
170 significantly decreased survival in comparison to patients in the “GS low” category within
171 H3K27M tumors (**Figure 1H**). This result supports our observation that “GS” gene signature,
172 which recapitulates those of the less differentiated OPC-like cells, represents the more
173 aggressive and tumorigenic cell-state of DIPG.

174 **OPC-like GS upregulate cholesterol metabolism and oxidative phosphorylation**

175 To interrogate the gene expression programs that distinguish the cell state among our isogenic
176 pairs, we performed gene set enrichment analyses (GSEA) on each of our RNA-seq dataset
177 from the three isogenic lines. Across the three lines, DIPG GS vs. DGC upregulated genes
178 were associated with the MYC pathway, PI3K/MTORC1 signaling, G2M checkpoint, DNA repair,
179 and E2F signaling (**Supplementary Figure 3A**). These pathways have been previously

180 reported to be upregulated in primary patient DIPG tumors and xenografts²⁸⁻³⁰, thereby
181 providing further confidence in our DIPG models and analyses. Furthermore, in at least two of
182 the three isogenic lines, we observed considerable DIPG GS enrichment of metabolic pathways,
183 namely cholesterol homeostasis and mitochondrial oxidative phosphorylation (OXPHOS)
184 (**Figure 1I**). In contrast, DIPG DGC upregulated genes associated with epithelial-mesenchymal
185 transition (EMT) (**Figure 1J**), xenobiotic metabolism, inflammatory response, and transforming
186 growth factor (TGF) β signaling (**Supplementary Figures 3B**). These findings suggested that
187 tumorigenic OPC-like GS may exhibit enhanced reliance on cholesterol metabolism and
188 mitochondrial OXPHOS programs, which could represent an actionable metabolic vulnerability.

189 **Steady-state metabolomics reveal distinct metabolic profiles of GS vs. DGC**

190 Given the metabolic signatures evident in the transcriptomic profiling, we performed liquid
191 chromatography-coupled mass spectrometry (LC/MS)-based metabolomics³¹ to gain a deeper
192 understanding of metabolic differences between the DIPG cellular differentiation states. These
193 data revealed that GS and DGC exhibit distinct metabolic landscapes (**Supplementary Figure**
194 **4**). By taking the average of the three isogenic lines, we found that compared to DGC, GS
195 showed a significant difference in nucleotide metabolism, lipid and sterol biosynthesis, and
196 amino acid metabolism (**Figures 2A-B**). Further, among the ~223 metabolites measured, we
197 found 70 that were significantly altered between GS and DGC. Of these, 45 metabolites were
198 highly increased, and 25 metabolites were decreased in GS compared to DGC (**Figure 2C**).

199 Several metabolites were significantly altered in glycolysis, the TCA cycle, and purine
200 biosynthesis pathway (**Supplementary Figure 5A**). Glycolytic metabolites were generally more
201 abundant in GS compared to DGC (**Figure 2D**), with several differences being greater than 10-
202 fold, particularly those in the preparatory phase of glycolysis. Pyruvate and lactate, products of
203 aerobic and anaerobic glycolysis, respectively, showed either no significant difference between
204 the isogenic states or were modestly altered (**Figure 2D**). Glycolysis connects to the TCA cycle

205 via the generation of acetyl CoA from CoA and pyruvate. Metabolites in the TCA cycle were
206 generally decreased in DIPG-007 and SF7761 GS compared to GDC, while few significant
207 differences were observed in the DIPG-XIII isogenic pair. An exception was malate, which was
208 significantly increased in GS across the three isogenic lines (**Figure 2E**). The metabolomics
209 studies also revealed increased levels of CoA and carnitine, key metabolites and rate-limiting
210 substrates in lipid and sterol biosynthetic pathways (**Supplementary Figure 5B**).

211 **Purine nucleotides are enriched in OPC-like GS**

212 Of the phosphorylated purine species detected, markedly higher levels of purine nucleotide
213 pools (> 50-fold in several cases) were observed in GS compared to DGC in DIPG-007 and
214 SF7761, including adenosine monophosphate (AMP), guanosine monophosphate (GMP),
215 inosine monophosphate (IMP), inosine diphosphate (IDP) and adenosine diphosphate (ADP)
216 (**Figure 2F**). With the exception of ADP, such differences were not observed in DIPG-XIII
217 (**Figure 2F**). Increased expression of genes encoding purine pathway enzymes were similarly
218 observed (**Supplementary Figure 5C**), including phosphoribosyl pyrophosphate synthetase 2
219 (*PRPS2*) which converts ribose-5-phosphate to phosphoribosyl pyrophosphate;
220 adenylosuccinate synthase 2 (*ADSS*) which converts IMP to adenylosuccinate;
221 adenylosuccinate lyase (*ADSL*) which converts adenylosuccinate to AMP; inosine
222 monophosphate dehydrogenase 1 (*IMPDH1*) which converts IMP to xanthine monophosphate
223 (XMP); and guanine monophosphate synthase (*GMPS*) which converts XMP to GMP. Indeed,
224 increased purine nucleotides pools have been demonstrated to be an intrinsic characteristic of
225 brain tumor-initiating glioma cells³².

226 **AC-like DGC accumulate metabolites associated with cellular differentiation**

227 Comparison of metabolite abundance in DGC relative to GS revealed increases on the order of
228 10-fold for taurine, creatine, creatinine, uric acid, and hydroxy proline (**Figure 2G**). These data

229 were provocative because taurine, creatine, and creatinine have been shown to be elevated in
230 oligodendrocytes generated by inducing differentiation of primary OPCs using triiodothyronine
231 (T3)³³. Moreover, exogenous taurine was shown to promote drug-induced differentiation of
232 primary OPC cells to OLs, and is presumed to be synthesized by cells to promote lineage
233 differentiation³³.

234 **AC-like DGC upregulate EMT pathway genes and are vulnerable to ferroptosis**

235 The results from our metabolomics studies identified several nodes of metabolism that differ
236 between GS and DGC. We next sought to assess if these differences in metabolic programming
237 provide therapeutic vulnerabilities. GSEA analysis illustrated that DGC upregulated genes
238 associated with epithelial mesenchymal transition (EMT) and TGF β signaling (**Fig 1J**;
239 **Supplementary Figure 3B**). This EMT signature was characterized by a general increase in
240 expression of EMT marker genes, including transforming growth factor beta 2 (*TGFB2*),
241 vascular cell adhesion molecule 1 (*VCAM1*), snail family transcriptional repressor 1 (*SNA1*),
242 matrix metallopeptidase 2 (*MMP2*) and matrix metallopeptidase 11 (*MMP11*) (**Figure 3A**).
243 Several recent studies have illustrated that the mesenchymal state of cancer cells exposes a
244 vulnerability to ferroptosis - a form of metabolic-stress cell death induced by inhibiting the GPX4
245 lipid peroxidase pathway^{34,35}. Ferroptosis can be induced by genetic or pharmacological
246 manipulations that impair cystine uptake, block glutathione (GSH) synthesis, or directly inhibit
247 activity of the central lipid peroxidase, GPX4³⁶ (**Figure 3B**). Based on this knowledge, we
248 hypothesized that DGC, owing to its high mesenchymal gene signature, would be susceptible to
249 GPX4 inhibition and ferroptosis.

250 Treatment of DIPG-007, SF7761, and DIPG-XIII DGC with the GPX4 inhibitor RSL3 led to
251 profound cell death by 48 hours (**Figure 3C**). To determine whether the RSL3-induced cell
252 death was indeed ferroptotic in nature, we demonstrated that pre-treating cells with the lipophilic
253 antioxidant ferrostatin-1 (Fer-1; a well-established inhibitor of ferroptosis³⁷) rescued cell death.

254 In contrast to DGC, GS cells underwent RSL3-induced cytotoxicity at much higher
255 concentrations, and more importantly, this effect could not be rescued by Fer-1. The lack of
256 rescue illustrates a ferroptosis-independent mechanism of cell death (**Figure 3D**). Next, we
257 assessed if RSL3 could induce lipid oxidation, a classic hallmark of ferroptosis, in DGC. Indeed,
258 treatment of DIPG-007 with RSL3 resulted in increased accumulation of lipid reactive oxygen
259 species (lipid ROS), as measured by C-11 BODIPY, which could be mitigated by pre-treating
260 cells with Fer-1 (**Figure 3E**).

261 To rule out other avenues of RSL3-induced cytotoxic cell death, DGC were pre-treated with
262 antioxidants and ferroptosis inhibitors (trolox, Fer-1), z-vad-fmk (apoptosis inhibitor),
263 bafilomycin-A1 (autophagic cell death inhibitor), or necrosulfonamide (necroptosis inhibitor).
264 Only the antioxidants rescued cell death induced by RSL3 in DIPG-007 DGC (**Figure 3F**),
265 indicating a ferroptotic-specific mechanism of cell death.

266 As an important control, we also investigated whether the resistance of GS to ferroptosis was
267 the result of culture media composition. To test this, we cultured freshly dissociated GS in
268 serum-containing DGC media and assessed RSL3-induced ferroptosis. GS displayed a similar
269 level of resistance to ferroptosis regardless of the media formulation (**Figure 3G**). These results
270 illustrate that the growth medium itself does not directly impact the susceptibility of DIPG cells to
271 ferroptosis. Rather, our data suggest that AC-like DGC have undergone the process of
272 differentiation and, thereby, harbor cell-intrinsic qualities that promote sensitivity to ferroptosis.
273 This is consistent with our hypothesis that the mesenchymal state of DGC sensitizes them to
274 GPX4 inhibition-induced ferroptosis.

275 **Cholesterol biosynthesis and mitochondrial OXPHOS are metabolic vulnerabilities in**
276 **OPC-like GS**

277 Cholesterol homeostasis and mitochondrial OXPHOS were the top upregulated metabolic
278 pathways by gene expression analysis in OPC-like GS (**Figure 1I**). Accordingly, we investigated
279 the sensitivity of GS vs. DGC to OXPHOS inhibitors (Phenformin, Metformin, IACS-010759) or
280 cholesterol biosynthesis inhibitors (statins). *In vitro* cultured DIPG-007 GS and DGC treated with
281 increasing drug concentrations revealed that GS were strikingly and selectively more sensitive
282 to Metformin, Phenformin, and IACS-010759 (**Figures 4A-C**), as well as to statins (Atorvastatin,
283 Fluvastatin, and Pitavastatin) (**Figures 4D-F**). Of the five clinically available lipophilic statins,
284 Pitavastatin, was most potent at reducing viability of DIPG-007 *in vitro* (**Supplementary Figure**
285 **6L**). Similar observations were made in SF7761 cells (**Suppl Figures 6A-D**). Neither DIPG-XIII
286 nor DIPG-XIII-P* (a subclone of the DIPG-XIII that exhibits increased aggressive growth *in vivo*)
287 demonstrated a consistent differential response to OXPHOS inhibitors. In contrast, their
288 differential response to statins ranged from modest (DIPG-XIII) to substantial (DIPG-XIII-P*)
289 (**Supplementary Figures 6E-H**). Notably, the murine cell line of P53 PDGFRA H3K27M DIPG
290 (PPK cells), which has been demonstrated to replicate the H3K27M DIPG biology³⁸ and was
291 similarly established in culture as either GS or DGC, also displayed differential sensitivity to
292 Phenformin and Pitavastatin (**Supplementary Figures 6J-K**).

293 To determine the mechanism of cytotoxicity induced by OXPHOS inhibition (Phenformin) and
294 statins (Pitavastatin), we treated DIPG-007 DGC and GS with equal concentrations of these
295 compounds and assessed PARP cleavage via western blot as a readout for apoptotic cell
296 death. The results showed modestly elevated levels of PARP cleavage in DIPG-007 GS but not
297 in DGC, demonstrating that the cytotoxic effects of statins and OXPHOS inhibition are at least
298 partially the result of induction of apoptosis cell death (**Figures 4G-H**).

299 In an attempt to invoke an even more potent cytotoxic effect using both pathway inhibitors,
300 DIPG-007 GS and murine PPK GS were treated with increasing doses of single agent
301 Pitavastatin, Phenformin, or the combination with the IC₂₅ or IC₅₀ of the respective combinatorial

302 compound. The results revealed modest sub-additive activity in DIPG-007 (**Supplementary**
303 **Figures 7A-B**). No additional cytotoxic benefit was found in murine PPK GS treated with either
304 Metformin or Phenformin in combination with Pitavastatin (**Supplementary Figures 7C-7F**).

305 **OPC-like GS depend on the sterol biosynthesis pathway for cholesterol**

306 Based on the upregulation of cholesterol metabolism gene expression (**Figure 1I**,
307 **Supplementary Figures 8A-C**) and the robust sensitivity of GS to statins, we hypothesized that
308 GS are metabolically dependent on intracellular cholesterol for survival. Statins inhibit HMG-
309 CoA reductase (HMGCR), the first step in the sterol biosynthesis pathway, whose outputs
310 include cholesterol, protein post-translational modifications (e.g., farnesyl, geranyl), steroid
311 hormones, and coenzyme Q10 (CoQ10)^{39,40} (**Figure 4I**). To determine the arm of the sterol
312 biosynthesis pathway involved in mediating GS sensitivity to statins, we treated DIPG-007 GS *in*
313 *vitro* with Pitavastatin alone or in combination with key intermediates of the sterol biosynthesis
314 pathway, including mevalonate, farnesyl pyrophosphate (FPP), or geranylgeranyl
315 pyrophosphate (GGPP) (**Figure 4I**). The results revealed that mevalonate, a rate limiting
316 metabolite in the sterol biosynthesis pathway, protected cells from effects of Pitavastatin
317 (**Figure 4J**). In addition, GGPP and FPP partially rescued Pitavastatin-induced loss of cell
318 viability (**Figures 4K-L**).

319 We next investigated whether addition of exogenous cholesterol, an end product of the
320 pathway, could similarly protect GS cells from Pitavastatin-induced cytotoxicity. Cholesterol
321 conjugated to methyl- β -cyclodextrin to promote cell permeability was added to cells in
322 combination with Pitavastatin. Here, we observed that cholesterol robustly rescued the loss of
323 viability induced by Pitavastatin, indicating a dependency of GS on cholesterol for survival
324 (**Figure 4M**). Similar observations were made using SF7761 and DIPG-XIII GS
325 (**Supplementary Figures 8D-G; 8I-J**). CoQ₁₀ acts as an electron shuttle between complexes II
326 and III of the electron transport chain and is thus an important mediator of OXPHOS. However,

327 CoQ₁₀ media supplementation did not protect cells to the same extent as cholesterol or
328 mevalonate. These results suggest that the cytotoxic effect of Pitavastatin is not the result of
329 indirect inhibition of mitochondrial respiration via limiting CoQ₁₀ biosynthesis (**Figure 4N**;
330 **Supplementary Figures 8H,8K**).

331 **OPC-like GS exhibit decreased bioenergetic capacity and activity**

332 To gain insights on why mitochondrial OXPHOS is a metabolic dependency in DIPG GS, we
333 evaluated the bioenergetic capacity of untreated GS compared to DGC using the Seahorse
334 extracellular flux analyzer. We monitored the oxygen consumption rate (OCR), which is an
335 indicator of mitochondrial respiration. The results showed that the basal OCR was significantly
336 lower in GS compared to DGCs in DIPG-007 and SF7761 but showed no significant difference
337 in DIPG-XIII (**Figures 5A-B**). Further, challenge with the ATP synthase inhibitor, oligomycin,
338 decreased respiration more severely in the GS. And, most strikingly, treatment with the
339 mitochondrial membrane potential uncoupler FCCP, which facilitates maximal oxygen
340 consumption in the mitochondria, revealed that the GS displayed markedly decreased OCR
341 compared to DGCs (**Figure 5A**). Consistent with the lack of differential sensitivity of DIPG-XIII
342 cells to OXPHOS inhibitors, there was no substantial difference in basal OCR and no response
343 to Oligomycin or FCCP in GS vs. DGC (**Figures 5A-B**). Next, we assessed spare respiratory
344 capacity (SRC), a measure of the difference between maximal oxygen consumption capacity
345 and basal oxygen consumption in the mitochondria. SRC was similarly reduced in GS vs. DGC
346 (**Figure 5C**). In alignment with our findings, cells with low SRC have been reported to be
347 relatively proliferative and, low SRC is associated with stem-like cells, while SRC is elevated in
348 the differentiated cells^{41,42} (**Figure 1B**).

349 The seeming discrepancy between the upregulated mitochondrial OXPHOS gene signature
350 (**Figure 1I**) and the decreased OCR and SRC parameters in the GS populations (**Figure 5B-C**)
351 motivated us to take a more detailed look at the bioenergetic charge in our cultures. To this end,

352 we interrogated our in-house metabolomics profiling dataset and determined both the adenylate
353 energy charge and the ATP/ADP ratio of the cells. The adenylate energy charge (AEC) of a cell
354 is an index of the energetic status of the cell that considers the differential intracellular levels of
355 the adenylate pool, namely adenosine triphosphate (ATP), adenosine diphosphate (ADP), and
356 adenosine monophosphate (AMP)^{43,44}. The AEC is calculated by applying the formula $[(ATP) +$
357 $0.5(ADP)]/ [(ATP) + (ADP) + (AMP)]$, which yields values between 0 and 1 wherein normal cells
358 remain in the 0.7 to 0.95 range^{43,44}. Assessment of the AEC in GS vs. DGC lines revealed that
359 the tumorigenic DIPG-007 and SF7761 GS displayed markedly lower AEC values compared to
360 their DGC counterparts (**Figure 5D**). This result is indicative of a consequent greater
361 dependency of GS on ATP-generating pathway(s), chief among which is mitochondrial
362 OXPHOS. Here again, modest but significant differences in the AEC values were observed for
363 DIPG-XIII. This result is consistent with our observation that DIPG-XIII GS do not demonstrate
364 the differential and selective sensitivity to OXPHOS inhibition.

365 Despite the variability in AEC among the isogenic DIPG pairs, the direct ratio of ATP to ADP
366 revealed substantially lower levels in GS across all lines (**Figure 5E**). Thus, the low energy
367 charge of GS indicates a DIPG metabolic state in which catabolic processes to regenerate ATP
368 are limiting, which may provide an explanation for the therapeutic susceptibility to OXPHOS
369 inhibition. Thus, we next analyzed glycolytic flux by measuring extracellular acidification rate
370 (ECAR) using the Seahorse bioanalyzer. While upstream glycolytic pools were greatly enriched
371 in DIPG-007 and SF7761 GS by metabolomics analysis (**Figure 2D**), ECAR was significantly
372 more pronounced in their respective DGC counterparts (**Figure 5F**). These results suggest that
373 DIPG-007 and SF7761 DGC can compensate for the inhibition of respiration through utilization
374 of glycolysis, which the GS appear unable to do, potentially because of glycolytic stalling as
375 reflected in the large metabolite pool sizes. In summary, these results reveal that OXPHOS
376 inhibitor-sensitive GS have lower OCR, SRC, AEC, and ECAR. This suggests that DIPG-007

377 and SF7761 GS exist in a lower and more vulnerable bioenergetic state than their DGC
378 counterparts, providing important insight into why OPC-like GS are highly sensitive to
379 mitochondrial targeting.

380 Mitochondrial SRC correlates with the capacity of cells to respond or adapt to stress conditions
381 (e.g. oxidative stress)⁴¹. We therefore hypothesized that the lower SRC in the GS would be
382 reflected in an increased susceptibility to ionizing radiation, the mainstay therapy for DIPG and a
383 well-established inducer of cytotoxic oxidative stress. To this end, we treated the DIPG isogenic
384 cells with varying doses of radiation and evaluated cell viability after 7 days. With the exception
385 of DIPG-XIII, the GS were markedly more sensitive to radiation treatment than DGC (**Figure**
386 **5G**).

387 **Cholesterol biosynthesis and OXPHOS inhibition decrease tumor burden and increase**
388 **overall survival of DIPG tumor bearing mice.**

389 Statins are used to lower cholesterol and protect from cardiovascular disease and represent one
390 of the most widely used drugs in the clinic, illustrating their safety and tolerability^{45,46}. Similarly,
391 biguanides, which act through OXPHOS inhibition^{47,48}, are clinically deployed to reduce blood
392 glucose in diabetes and have seen recent application in cancer trials, again illustrating the
393 potential for rapid deployment in clinical trials for DIPG. Furthermore, studies have shown that
394 biguanides can modestly transverse the blood brain barrier (BBB)^{49,50}, and some classes of
395 statins display brain penetrance, depending on the pharmacophore, including Pitavastatin^{51,52}.

396 Thus, to evaluate the effects of OXPHOS inhibitors and statins on tumor growth and overall
397 survival, we employed a preclinical orthotopic mouse model of DIPG in which bioluminescent
398 DIPG-007 cells, grown under GS conditions, were stereotactically injected into the pons of
399 immunodeficient mice. Tumor engraftment was confirmed via bioluminescent imaging (BLI) 3-
400 weeks post tumor implantation and mice were randomized into four arms receiving vehicle,

401 Pitavastatin (10mg/kg), Phenformin (50mg/kg) or a combination of both drugs, administered
402 intraperitoneally (**Figure 6A**). These treatment doses were determined from an in-house dose-
403 escalating tolerability study in which no signs of toxicity or weight loss were observed following
404 administration of the drugs over a 2-week course. Notably, treatment with Pitavastatin or
405 Phenformin resulted in the reduction in tumor volume based on BLI. Neither treatment adversely
406 impacted mouse body weight (**Figures 6B-C**). Consistent with our *in vitro* findings
407 (**Supplementary Figures 7A-B**), the combination of both drugs did not show improvement over
408 single agent alone. In addition, treatment with Pitavastatin or Phenformin significantly extended
409 the survival of DIPG-007 tumor-bearing mice, and here again, the combination did not provide
410 additional benefit (**Figure 6D**). Collectively, single agent metabolic inhibitors showed promising
411 results in providing survival benefits in this preclinical model of DIPG, demonstrating the
412 potential utility of targeting cholesterol biogenesis and mitochondrial respiration in DIPG
413 patients.

414 DISCUSSION

415 H3K27M DIPGs are characterized by intratumoral heterogeneity comprising distinct tumor cell
416 types, wherein the stem-like and tumor-initiating characteristics are driven by a population of
417 less-differentiated OPC-like glioma cells while the more differentiated AC-like glioma cells
418 represent a minority¹². We demonstrated that this tumor heterogeneity can be modeled *in vitro*
419 and is substantially recapitulated in isogenic DIPG GS and DGC, which are enriched for OPC-
420 like and AC-like gene signatures, respectively.

421 By applying a systems biology-driven approach that encompassed transcriptomics,
422 metabolomics, and bioenergetic analysis, we showed that the OPC-like and AC-like tumor
423 phenotypes harbor distinct metabolic vulnerabilities. Compared to DGC, the GS populations
424 showed higher levels of purine nucleotides. This finding is consistent with features of stem-like

425 brain tumor-initiating cells described in adult glioblastoma (GBM), which upregulate purine
426 synthetic intermediates to promote anabolic processes³². We also observed that GS exhibit
427 increased intracellular levels of upstream glycolytic intermediates by metabolomics, though the
428 rate of glycolysis (ECAR) was higher in DGC. These results suggest that glycolysis in GS may
429 be stalled at the level of Enolase, and, moreover, that DGC are better positioned to circumvent
430 the inhibition of mitochondrial respiration through enhanced glycolysis. Genotype-dependent
431 analysis of metabolism in DIPG previously revealed elevated glycolysis in H3K27M gliomas
432 compared to H3 wild-type tumors¹⁸. It will be important to test how the differentiation state
433 interacts with the genotype to regulate glycolysis.

434 Along these lines, metabolites such as taurine, creatine, creatinine, uric acid, and
435 hydroxyproline, which are reported to be associated with cellular differentiation of
436 oligodendrocytes, cardiomyocytes, mesenchymal and adipocytes^{33,53–55}, were found to be
437 upregulated in DGC. Indeed, taurine has been demonstrated to play a role in several biological
438 processes, including the prevention of mitochondria damage, stabilization of OXPHOS in
439 cardiomyocytes, and protection against endoplasmic reticulum (ER) stress. Creatine is involved
440 in ATP buffering and enhancing mitochondria function⁵³. Uric acid and hydroxy-proline have
441 been linked to neuronal differentiation of mesenchymal stem cells⁵⁴ and the differentiation of
442 retinal pericytes to adipocytes⁵⁵, respectively. These results suggest that these metabolites are
443 pertinent to cellular differentiation processes, irrespective of the cell of origin.

444 Our transcriptomics analysis revealed AC-like DGC exhibited an enhanced mesenchymal
445 phenotype. Based on this insight, we demonstrated that DGC were more sensitive to agents
446 that promote ferroptosis. Conversely, OPC-like GS cells, whose gene signature correlated with
447 higher disease aggressiveness and decreased overall survival in patients, upregulated
448 cholesterol metabolism and mitochondrial OXPHOS. Targeting these pathways with
449 Phenformin and Metformin (mitochondria complex I inhibitors) or statins (sterol biosynthesis

450 inhibitor) resulted in selective killing of GS compared to DGC *in vitro*. As a proof of principle, we
451 also demonstrated considerable *in vivo* activity of these metabolic inhibitors in an orthotopic
452 mouse model of DIPG (**Figure 6E**).

453 In DIPG-007, SF7761, and murine PPK isogenic pairs, the GS populations could be selectively
454 targeted by inhibiting OXPHOS. In contrast, DIPG-XIII isogenic pair showed a limited differential
455 phenotype to OXPHOS inhibition. Therefore, future studies with these models could help to
456 determine predictive biomarkers of sensitivity to OXPHOS targeting. It is conceivable that the
457 limited differential phenotype between DIPG-XIII GS and DGC in outcomes such as cell
458 proliferation, purine nucleotide pools, TCA cycle metabolites, OCR, SRC, energy charge,
459 sensitivity to radiation, and sensitivity to OXPHOS inhibitors may result from oncogenic
460 signaling related to *MYC* and *EGFR*. Indeed, the greater than two-fold upregulation of *MYC* and
461 *EGFR* seen in DIPG007 and SF7761 GS, in comparison to their GDC counterparts, was not
462 similarly observed in DIPG-XIII GS vs. DGC. Along these lines, a question that merits future
463 investigation is whether specific oncogenic signaling pathway(s) or transcription factor(s)
464 operating in distinct tumor subpopulations direct metabolic reprogramming. For instance, *MYC*
465 and *EGFR* have been reported to be critical for maintenance of the brain tumor-initiating cells in
466 adult glioblastoma^{56,57}.

467 The concentration of cholesterol is highest in the brain, at approximately 20% of total body
468 cholesterol⁵⁸. In addition, the majority of brain cholesterol results from *de novo* synthesis, rather
469 than uptake from circulation or peripheral tissues⁵⁹. These results may provide mechanistic
470 insight into the dependence of stem-like GS on cholesterol, and not on other outputs of the
471 sterol biosynthesis pathway. Further, astrocytes are known to be the predominant producers
472 and suppliers of cholesterol to other cells in the brain, including cancer cells⁶⁰. Indeed, a
473 dependency on cholesterol and the liver X receptors (LXR) axis as well as lanosterol synthase
474 has been reported in brain tumors^{61,62}. Our study, therefore, adds to the growing evidence of a

475 metabolic dependency of brain tumors on cholesterol and specifically presents cholesterol
476 targeting as a novel therapeutic inroad for stem-like and tumorigenic H3K27M midline gliomas.

477 Targeting DIPG via OXPHOS and cholesterol inhibition is a promising strategy in that the
478 inhibitors of these pathways are clinically approved drugs and have been evaluated as chemo-
479 sensitization agents in cancer clinical trials^{46,47}. Moreover, a number of statins are known to
480 penetrate the blood brain barrier^{51,52}. In addition, Metformin, a biguanide and analog of
481 phenformin, has been used in the clinic for several decades, and it is currently being tested in
482 several cancer clinical trials as a chemo-adjuvant. Importantly, it too displays some degree of
483 brain penetrance⁵⁰. Therefore, targeting mitochondria OXPHOS and cholesterol biosynthesis
484 could potentially have immediate clinical utility for DIPG patients. Lastly, given the limited
485 combinatorial activity of OXPHOS inhibitors and statins, future studies will be required to test
486 efficacy alongside ionizing radiation therapy.

487 Metabolic dependencies have been investigated in H3K27M gliomas in comparison to H3WT
488 tumors or normal brain tissue, and these studies have revealed dependencies on glucose and
489 glutamine metabolism¹⁸. To the best of our knowledge, this is the first study to investigate
490 differentiation-state dependent metabolic vulnerabilities in H3K27M DIPGs. Our study,
491 therefore, adds to the growing body of work on DIPG metabolism and presents novel actionable
492 metabolic vulnerabilities that can be leveraged to develop new treatment options for this
493 devastating disease. Indeed, the findings from this study are significant in that they provide a
494 framework for future investigations that could, by extension, have broad implication in the
495 rational design of precision treatment approaches for H3K27M DIPG patients based on tumor
496 composition and abundance of specific tumor cell-types.

497 **METHODS**

498 **Cell lines and culture conditions**

499 All cell lines used were routinely tested for mycoplasma and were validated by STR profiling.

500 HSJD-DIPG-007 (referred to as DIPG-007, H3.3K27M) was obtained from Dr. Rintaro

501 Hashizume, Northwestern University; RRID: CVCL_VU70. SU-DIPG-XIII (referred to as DIPG-

502 XIII, H3.3K27M) was obtained from Dr. Michelle Monje, Stanford University; RRID: CVCL_IT41.

503 SF188 (H3WT) and normal human astrocytes (NHA, H3WT) were obtained from Dr. Craig B.

504 Thompson, Memorial Sloan Kettering Cancer Center; RRID: CVCL_6948. SF7761 (H3.3K27M)

505 was purchased from Millipore Sigma (Cat.no. SCC126). All cells were cultured in a humidified

506 incubator at 37°C and 5% CO₂. DIPG007 and DIPG-XIII gliomaspheres were cultured in base

507 media containing equal parts Neurobasal A and DMEM/F12 with added HEPES buffer (10 mM),

508 MEM sodium pyruvate solution (1mM), MEM Non-Essential Amino Acids (1X), GlutaMAX-I

509 Supplement (1X), Antibiotic-Antimycotic (1X), and supplemented with fresh B27 (without vitamin

510 A), heparin (2 µg/mL), human-EGF (20 ng/mL), human-bFGF (20 ng/mL), PDGF-AA (10

511 ng/mL), and PDGF-BB (10 ng/mL). SF7761 gliomaspheres were cultured in a base media

512 containing Neurobasal A with added N2, B27, L-glutamine (2 mM), Pen/strep (1X), and

513 supplemented with fresh heparin (2 µg/mL), human-EGF (20 ng/mL), human-bFGF (20 ng/mL),

514 and BSA (45 ng/ml).

515 PPK cell line was received as a gift from Dr. Carl Koschmann, University of Michigan. PPK cells

516 were generated as an In Utero Electroporation (IUE) murine model of H3K27M glioma. IUE was

517 performed using sterile technique on isoflurane/oxygen-anesthetized pregnant C57BL/6 or CD1

518 females at E13.5. Tumors were generated with lateral ventricle (forebrain) introduction of

519 plasmids: (1) PB-CAG-DNp53-Ires-Luciferase (dominant negative TP53), (2) PB-CAG-

520 PdgfraD824V-Ires-eGFP (PDGFRA D842V), and (3) PB-CAG-H3.3 K27M-Ires-eGFP

521 (H3K27M), and therefore referred to as “PPK” model³⁸. PPK gliomaspheres were cultured in

522 base media containing Neurobasal-A medium (1X), MEM sodium pyruvate solution (1mM),
523 MEM Non-Essential Amino Acids (1X), L-glutamine (2 mM), Antibiotic-Antimycotic (1X), and
524 supplemented with fresh B27, N2, heparin (2 µg/mL), EGF (20 ng/mL), FGF (20 ng/mL).

525 Differentiated human and murine H3K27M glioma cells were generated by dissociating the
526 respective gliomaspheres into single cells with Accutase (Stemcell Technologies; # 07920) and
527 subsequently cultured and maintained in the respective base media supplemented with 10%
528 FBS for 14 days to generate a monolayer adherent culture. SF188 and NHA cells were cultured
529 in DMEM supplemented with FBS (10%), L-glutamine (2 mM), and Pen/strep (1X).

530 **Growth Assay**

531 Proliferation was calculated by automated counting of cells. Differentiated glioma cells or
532 gliomaspheres were dissociated into single cells with trypsin or Accutase, respectively.
533 Following this, 200,000 cells were plated in 60mm dishes, and cultured in their respective
534 growth media for up to 12 days with media replenished every 3 days. At the indicated time, cells
535 were dissociated using trypsin (differentiated cells) or Accutase (gliomaspheres) and
536 enumerated using the Countess II FL Automated Cell Counter.

537 **Drug treatment and viability assay**

538 The following compounds used in this study were purchased from Cayman Chemicals: (1S,3R)-
539 RSL3 (RSL3, # 19288), Ferrostatin-1 (#17729), z-vad-FMK (#14463), Necrosulfonamide
540 (#20844), Bafilomycin A-1 (#11038), Metformin (#13118), Phenformin (#14997), IACS-010759
541 (#25867), Atorvastatin (#10493), Fluvastatin (#10010334), Pitavastatin (#15414), Mevalonate
542 (#20348), Farnesyl Pyrophosphate (#63250), Geranylgeranyl Pyrophosphate (#63330), and
543 Coenzyme Q10 (#11506). Cholesterol-Water Soluble (Cholesterol–methyl-β-cyclodextrin,
544 #C4951) and Trolox (#238813) were purchased from Millipore Sigma. Equal numbers of
545 isogenic DIPG-007, SF7761, DIPG-XIII GS and DGCs were plated in white opaque 96-well

546 plate at 2,000-3,000 cells per well and incubated overnight. Cells were treated with compounds
547 at the indicated concentrations and length of time as described in the figure legend. At end
548 point, an equal volume of Cell Titer Glo (2.0) reagent (Promega, G9243) or 3D- Cell Titer Glo
549 (Promega, G9683) was added to each well and viability assessed according to manufacturer's
550 protocol. Luminescence was detected and measured using a SpectraMax M3 plate reader and
551 data analyzed with GraphPad Prism 8 software.

552 **Detection of Lipid ROS**

553 To assess levels of lipid ROS in cells, 200,000 DGCs were plated in a 6-well plate overnight and
554 treated with the indicated compounds. At end point, cells were washed twice with PBS and
555 stained for 20 minutes with 2 μ M C11-BODIPY (Invitrogen, D3861) in a phenol red-free media.
556 Following staining, cells were washed twice with PBS and dissociated to singles cells with
557 trypsin. The cells were then transferred to round-bottom 96-well plates on ice, co-stained with
558 Sytox-blue (Invitrogen, S34857) to distinguish viable cells, and analyzed on a ZE5 Cell analyzer
559 (Bio-Rad). C11-BODIPY signal was captured with the FITC channel. Analysis of data was
560 performed using FlowJo v.10 software.

561 **Seahorse Bioenergetics Assay**

562 The cellular bioenergetic state was analyzed using a Seahorse XF-96 Extracellular Flux
563 Analyzer (Agilent). The sensor cartridges were incubated in dH₂O overnight, and on the day of
564 the assay, the cartridges were hydrated in XF calibrant (Agilent) for 1 hour in a non-CO₂
565 incubator at 37°C. The hydrated cartridges were loaded with oligomycin (1 μ M), FCCP (1 μ M),
566 rotenone (0.1 μ M), and antimycin A (1 μ M) to perform the Mito stress test. Concurrently, 96-well
567 Seahorse cell culture plates were coated overnight with laminin, and on the day of the assay,
568 dissociated DIPG GS were washed and resuspended in a Seahorse XF RPMI media
569 (Agilent;103576) supplemented with XF Glutamine (Agilent;103579), 10mM glucose, MEM

570 sodium pyruvate solution (1mM), MEM Non-Essential Amino Acids (1X), human-EGF (20
571 ng/mL), human-bFGF (20 ng/mL), PDGF-AA (10 ng/mL), and PDGF-BB (10 ng/mL), while
572 dissociated DGCs were washed and resuspended in a Seahorse XF RPMI media
573 (Agilent;103576) supplemented with XF Glutamine (Agilent;103579), 10mM glucose, MEM
574 sodium pyruvate solution (1mM), and MEM Non-Essential Amino Acids (1X). DGC and GS
575 single cells (150,000 to 200,000 cells)were seeded on laminin-coated plates and allowed to
576 equilibrate for 30 minutes in a non-CO₂ incubator at 37°C. Data were then acquired on the
577 Seahorse analyzer. Following data acquisition, measurements were normalized based on cell
578 number using the CyQuant Cell Proliferation Assay (Invitrogen). For the Mito stress test, the
579 basal oxygen consumption rate (basal OCR) was determined based on basal OCR
580 measurements taken prior to addition of inhibitors. The spare respiratory capacity (SRC) was
581 determined by subtracting basal OCR from maximal OCR measurements. Seahorse analysis
582 was performed using the Wave 2.3 software.

583 **Metabolomics**

584 Metabolite extraction: To generate intracellular metabolite fractions, an equal number of GS and
585 DGCs were cultured in 6-well plates for 36 hours. Next the growth media was removed, cells
586 were lysed with ice-cold 80% methanol on dry ice for 20 minutes. Lysates were collected and
587 clarified by centrifugation. The metabolite load of intracellular fractions was normalized to
588 protein content of parallel samples and these volumes were then lyophilized in a SpeedVac.
589 Dried metabolite pellets were resuspended in 50:50 mixture of HPLC-grade methanol:dH₂O and
590 subjected to metabolomics analysis.

591 LC/MS-based Metabolomics: LC/MS-based Metabolomics was performed on an Agilent 1290
592 Infinity II LC-coupled to a 6470 Triple Quadrupole (QqQ) tandem mass spectrometer (MS/MS),
593 as previously described⁶³. Briefly, Agilent Masshunter Workstation Software LC/MS Data
594 Acquisition for 6400 Series Triple Quadrupole MS with Version B.08.02 was used for compound

595 optimization, calibration, and data acquisition. The QqQ data were pre-processed with Agilent
596 MassHunter Workstation QqQ Quantitative Analysis Software (B0700). For post-sample
597 normalization, total metabolite ion currents in each sample were summed, and this value was
598 applied proportionally to the sample values for proper comparisons, statistical analyses, and
599 visualizations among metabolites. Two-tailed t-test with a significance threshold level of 0.05
600 was applied to determine statistical significance between conditions. Graphs were generated
601 using GraphPad Prism 8.0 software. Heatmaps were generated and data clustered using
602 Morpheus Matrix Visualization and analysis tool (<https://software.broadinstitute.org/morpheus>).
603 Pathway analyses were conducted using MetaboAnalyst (<https://www.metaboanalyst.ca>).

604 **Energy Charge Calculation**

605 For each sample, the ion current from the LC/MS analysis for adenosine triphosphate (ATP),
606 adenosine diphosphate (ADP), and adenosine monophosphate (AMP) levels were enumerated,
607 and the adenylate energy charge (AEC) was calculated by applying the formula $[(ATP) +$
608 $0.5(ADP)] / [(ATP) + (ADP) + (AMP)]$. The ratio of ATP/ADP was evaluated by directly
609 determining the ratio of ATP to ADP metabolite levels in each cell line.

610 **RNA sequencing**

611 Total RNA was extracted from DIPG-007, SF7761, and DIPG-XIII GS and DGCs using the
612 RNeasy Mini Kit (Qiagen) according to the manufacturer's instructions. Strand-specific, poly-
613 A+ libraries were prepared using NEBNext Ultra II Directional RNA Library Prep Kit (New
614 England Biolab, E7760L), the Poly(A) mRNA Magnetic Isolation Module (New England Biolab,
615 E7490L), and NEBNext Multiplex Oligos for Illumina Unique Dual (New England Biolab,
616 E6440L). Sequencing was performed on the NovaSeq-6000 (Illumina), yielding 150-base,
617 paired-end reads. Library preparation and sequencing were performed by the University of
618 Michigan Advanced Genomics Core (Ann Arbor, MI).

619 The reads were trimmed using Trimmomatic v0.36⁶⁴ and the library qualities were assessed
620 using FastqQC v0.11 for trimmed reads
621 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). RSEM v1.3.1 and STAR v2.5.2a
622 were used to generate paired-end alignments and counts^{65,66}.
623 Differential gene expression analysis was performed using DESeq2 v1.26.0 and the *apeglm*
624 shrinkage estimator was used to adjust \log_2 fold-changes⁶⁷. Normalized counts were obtained
625 DESeq2 (default method; median of ratios). Differentially expressed genes were defined as
626 having adjusted p-value < 0.05 and fold change > 1.5 (up or down). Variance stabilized
627 transform (VST) gene counts were used in principal component analysis to identify the major
628 sources of variance and evaluate the similarity of replicates. The reference sequence hg38
629 (GRCh38) and annotations, including gene IDs, were obtained from GENCODE v29.
630 Differentially expressed genes were analyzed using GSEA using the HALLMARK gene sets.

631 **DIPG and DMGs dataset analysis**

632 The human DIPG and DMG dataset was mined from Mackay et al²⁸. Expression levels of NS
633 related genes in 76 H3K27M diffuse midline gliomas were segregated into high vs. low gene
634 expression categories using unbiased K-means clustering (K=2 to assign two groups). Kaplan-
635 Meier analysis was then performed between high (defined as upper quartile) vs. low (all
636 remaining samples) tumors to determine differences in overall survival. Data were analyzed by
637 the Log rank test.

638 **Western Blot**

639 To assess protein levels of OLIG2, DIPG-007, SF7761, DIPG-XIII GS and GDC were lysed in
640 RIPA buffer (Sigma, #R0278) containing protease (Roche, #04693132001) and phosphatase
641 (Sigma, #P5726) inhibitors. To determine changes in apoptosis markers, DIPG-007 DGC and
642 GS were treated as described in figure legends and lysed. Protein concentrations from whole

643 cell lysates were determined using Pierce BCA Protein Assay kit (#23227), according to the
644 manufacturer's protocol. Equal amounts of protein were subjected to separation on SDS-PAGE
645 and transferred to a methanol-activated PVDF membrane. Membranes were blocked with 5%
646 milk in TBST (Tris-buffered saline containing 0.1% Tween 20) followed by incubation with
647 primary antibodies diluted in 5% milk or BSA TBST at 4°C overnight. The following primary
648 antibodies and dilutions were used: H3 histone (Cell Signaling Technology, CST #4499S;
649 1:1000), H3K27M (CST #74829S; 1:1000), Tri-methyl-Histone H3 (K27) (CST #9733S; 1:1000),
650 Olig2 (CST #65915; 1:1000), PARP (CST #9542S; 1:1000), HSP90 (CST #4874S; 1:10,000)
651 and Vinculin (CST #13901S; 1:10,000). Following primary antibody incubation, the membranes
652 were washed 3 times with TBST and incubated with species-appropriate secondary antibodies
653 conjugated to horse radish peroxidase (HRP) at 1:10,000 dilution for 1 hour at room
654 temperature. Membranes were then washed 5X with TBST and chemiluminescence was
655 detected using Clarity (Biorad, #1705060) or Clarity Max (#1705062) ECL substrate. The signal
656 was captured with a Biorad Chemidoc imager and analyzed using Image Lab software.

657 **Mouse studies**

658 Animal experiments were performed after approval from the University of Michigan Committee
659 on Use and Care of Animals and were conducted as per NIH guidelines for animal welfare. All
660 animal procedures were approved by Institutional Animal Care & Use Committee (IACUC) at the
661 University of Michigan (IACUC approval # PRO00008865). Animals were housed and cared for
662 according to standard guidelines with free access to food and water. All experiments were
663 performed on NOD-SCID-IL2R gamma chain-deficient (NSG) mice that were 8–10 weeks old,
664 with males and females used equally. Animals, including littermates of the same sex, were
665 randomly assigned to control or treatment conditions.

666 ***In vivo* xenograft tumor studies**

667 Luciferase-expressing DIPG-007 GS (400,000 cells) suspended in 2 μ l PBS were injected into
668 the pons to establish orthotopic xenografts under anesthesia, as follows. NSG mice were
669 anesthetized with 75mg/kg dexmedetomidine and 0.25mg/kg ketamine by intraperitoneal
670 injection. Carprofen (5mg/kg) was used for analgesia. Mice were mounted on a stereotaxic
671 device. A small sagittal incision was made using a scalpel and a small hole was created using a
672 micro drill at 1.0 mm posterior and 0.8 mm lateral left from lambda. A sterile Hamilton syringe
673 was used to inject cells. Half of the cells were injected at 5 mm depth from the inner base of the
674 skull and the remaining cells were injected after 0.5 mm retraction in order to implant cells into
675 the pontine tegmentum. After surgery, 1mg/kg atipamezole solution was intraperitoneally
676 injected for anesthesia reversal. Tumor engraftment was confirmed by bioluminescence
677 imaging. Treatment commenced at 3 weeks post tumor implantation. The mice were
678 randomized into 4 groups receiving either vehicle (PBS), Pitavastatin (10mg/kg), Phenformin
679 (50mg/kg), or combination Pitavastatin (10mg/kg) and Phenformin (50mg/kg). The drugs were
680 administered intraperitoneally using a 5-day on/2-day off course for 9 weeks. Tumor size was
681 measured using bioluminescent imaging (IVIS) up to 10-weeks post-implantation, at which mice
682 were then monitored for end-point survival.

683 **Statistical Analysis**

684 Statistical analyses were performed using GraphPad Prism 8 (Graph Pad Software Inc). Two-
685 group comparisons were analyzed using the unpaired two-tailed Student's t test. Error bars
686 represent mean \pm standard deviation, unless noted otherwise, and the significance annotations
687 are indicated in each figure. A p-value < 0.05 was considered statistically significant. The
688 number and type of experimental replicates as well as the explanation of significant values are
689 indicated in the figure legends. All experiments were repeated at least twice.

690 **Data availability**

691 RNAseq data are deposited at the GEO public repository using the following identifier,
692 GSE197145. Raw metabolomics data are provided as Supplemental Table 1. All other datasets
693 generated and or analyzed during the study are available from the corresponding author on
694 reasonable request.

695 **Acknowledgements**

696 This work was funded by a joint Defeat DIPG and ChadTough Foundation fellowship award
697 (NEM); Alex's Lemonade Stand Foundation (SV and CAL); and the University of Michigan
698 Pediatric Brain Tumor Initiative (CK, SV, and CAL). Metabolomics studies performed at the
699 University of Michigan were supported by the Charles Woodson Research Fund and the UM
700 Pediatric Brain Tumor Initiative. Research reported in this publication was also supported by the
701 National Cancer Institutes of Health under Award Number P30CA046592 using the following
702 Cancer Center Shared Resource(s): Flow Cytometry Core, Tissue and Molecular Pathology
703 Core. Schematics and models were created using Biorender.com.

704 **Author contributions**

705 NEM and CAL conceived of and designed this study. NEM, CJK, SV and CAL planned and
706 guided the research. NEM, ALM, CC, JKT, HSH, PS, ZCN, MS, SRS, DM, BC, LZ, BM, ZZ
707 performed experiments, analyzed, and interpreted data. NEM, DRW, LF, SA, CJK, SV, and CAL
708 were involved in the conceptual design of experiments and proofreading of manuscripts. NEM
709 and CAL wrote the manuscript. SV and CAL supervised the work carried out in this study.

710 **Declaration of Interests**

711 C.A.L. has received consulting fees from Astellas Pharmaceuticals, Odyssey Therapeutics, and
712 T-Knife Therapeutics, and is an inventor on patents pertaining to Kras regulated metabolic

713 pathways, redox control pathways in pancreatic cancer, and targeting the GOT1-pathway as a
714 therapeutic approach. All other authors declare no competing interests.

715 **FIGURE LEGENDS**

716 **Figure 1: *In vitro* models of H3K27M DIPG molecularly mimic *OPC-like* and *AC-like* DIPG**
717 **and exhibit distinct gene expression programs.**

718 **A)** Schematic depicting the generation of isogenic DIPG gliomaspheres (GS) and differentiated
719 glioma cells (DGC): GS (3-D floating spheres) were cultured in serum-free tumor stem cell
720 (TSM) media containing growth factors and supplements. Monolayer (adherent) DGCs were
721 generated by dissociating GS to single cells and culturing for up to 14 days in TSM media
722 containing 10% fetal bovine serum (FBS). **B)** Growth kinetics of DIPG-007, SF7761 and DIPG-
723 XIII GS vs. DGC. **C-D)** Venn diagrams illustrating the overlap of significantly upregulated (**C**)
724 and downregulated (**D**) genes (adjusted p-value <0.0001) in GS vs. DGC across three isogenic
725 lines. **E)** Western blot for Olig2 in GS and DGC isogenic pairs of patient-derived DIPG cell lines.
726 HSP90 was used as a loading control. **F)** Analysis of the gene expression signature of DIPG GS
727 vs. DGC cross-referenced with patient gene signature capturing OPC-like, AC-like gene
728 signatures. **G)** Differential expression of DIPG genes in OPC-like and AC-like tumors from
729 patient single-cell RNAseq. **H)** Survival analysis of DIPG/DMG patients based on “GS high”
730 versus “GS low” gene signature. **I-J)** Representative “Hallmark” gene set enrichment analysis
731 (GSEA) indicating pathways that are **I)** upregulated and **J)** downregulated in isogenic DIPG GS
732 vs. DGC. GSEA plots show enrichment scores and include values for normalized enrichment
733 score (NES), nominal p-value (*P*), and false discovery rate (FDR) q-value.

734 **Figure 2: Metabolomic profiling of isogenic GS and DGC gliomas reveal differentiation**
735 **state-dependent metabolic features.**

736 **A)** Volcano plot indicating differential metabolite profiles in GS vs. GDC, presented as the
737 average expression value from the three cell lines; DIPG-007, SF7761, and DIPG-XIII. **B)**
738 Metabolic pathway enrichment as determined using MetaboAnalyst based on differential

739 metabolite abundance in GS vs. DGC. **C**) Venn diagram indicating the number of metabolites
740 significantly altered in GS vs. DGC across all three cell lines. **D-F**) Differential abundance of
741 select metabolites for **D**) glycolysis, **E**) tricarboxylic acid (TCA) cycle, and **F**) purine nucleotides
742 in DIPG-007, SF7761, and DIPG-XIII GS versus DGC. **G**) Highly enriched metabolites in DIPG
743 DGC vs. GS. Metabolite levels expressed as median centered fold change of GS relative to
744 DGC across the three isogenic lines (ns = not significant; * p < 0.05; ** p < 0.01; *** p < 0.001;
745 **** p < 0.0001). Error bars represent mean \pm SD. Source data are provided as a
746 Supplementary Table 1. F6P, fructose-6-phosphate; F1,6BP, fructose-1,6-bisphosphate; G3P,
747 glycerol-3-phosphate; DHAP, dihydroxyacetone phosphate; PEP, phosphoenolpyruvate, PYR,
748 pyruvate; LAC, lactate; Gln, glutamine; Glu, glutamate; Cit, citrate; Iso-cit, isocitrate; Aconi, cis-
749 Aconitate; α KG, alpha-ketoglutarate; Suc, succinate; Mal, malate; ADP, adenosine diphosphate;
750 GDP, guanosine diphosphate; AMP, adenosine monophosphate; IMP, inosine monophosphate;
751 IDP, inosine diphosphate; Hydro-Pro, hydroxy-proline.

752 **Figure 3: Ferroptosis is a metabolic vulnerability of AC-like DGC.**

753 **A**) Differential expression of genes associated with epithelial to mesenchymal transition (EMT)
754 in GS vs. DGC across DIPG-007, SF7761, and DIPG-XIII models. **B**) Simplified scheme
755 depicting the role of GPX4 in ferroptosis. **C, D**) Dose-response of DIPG-007, SF7761, and
756 DIPG-XIII **C**) DGC, and **D**) GS treated with vehicle (0.1% DMSO) or RSL3 with or without 1h
757 pre-treatment with 2 μ M ferrostatin-1 (Fer-1). Cell viability was assessed 48 hours post drug
758 treatment via Cell Titer Glo 2.0. **E**) Flow cytometry assessment of lipid ROS in DIPG-007 DGC
759 treated with either vehicle (DMSO 0.1%) or 1 μ M RSL3 for 6 hours, with or without 1h
760 pretreatment with 2 μ M Fer-1. C-11 BODIPY dye used to quantify intracellular lipid ROS and
761 data expressed as mean \pm SD of mean fluorescent intensity (MFI) (****p < 0.0001). **F**) Cell
762 viability of DIPG-007 DGC cultured in vehicle (0.1% DMSO) or 1 μ M RSL3 in the presence of
763 2 μ M Fer-1, 100 μ M Trolox, 2.5 μ M Necrosulfonamide (NSA), 25 μ M ZVAD-FMK (Z-VAD), or 1nM

764 baflomycin A1 (Baf-1). Viability was assessed 48 hours post drug treatment via Cell Titer Glo
765 2.0. Data expressed as a percentage of control (vehicle). Error bars represent mean \pm SD. **G**)
766 Cell viability of freshly dissociated DIPG-007 GS cultured in either GS growth media (TSM +
767 growth factors EGF and FGF), DGC growth media (TSM + 10% FBS), or GDC reduced serum
768 media (TSM + 2.5% FBS), followed by treatment with either vehicle (DMSO 0.1%) or different
769 doses of RSL3 with or without 1h pre-treatment with 2 μ M Fer-1. Cell viability was assessed 48
770 hours post drug treatment via Cell Titer Glo 2.0. Data expressed as a percentage of control
771 (vehicle). Error bars represent mean \pm SD.

772 **Figure 4: Cholesterol homeostasis and OXPHOS are targetable vulnerabilities in OPC-like**
773 **GS.**

774 **A-F)** Dose-response curves for DIPG-007 GS vs. DGC treated with indicated concentrations of
775 mitochondrial OXPHOS and complex I inhibitors **A)** Metformin, **B)** Phenformin, and **C)** IACS-
776 010759 (IACS), or statins **D)** Atorvastatin, **E)** Fluvastatin, and **F)** Pitavastatin for 3 days. Cell
777 viability assayed using the Cell Titer Glo 2.0 reagent and results expressed as a percent of
778 control (vehicle, 0.1% DMSO) and mean \pm SEM. **G, H)** Western blot of PARP cleavage
779 (apoptosis indicator) and Tubulin (loading control) in **G)** Phenformin treated and **H)** Pitavastatin
780 treated-DIPG007 DGC and GS. Cells were treated for 2 days at the indicated concentration. **I)**
781 Schematic of sterol biosynthesis pathway indicating key intermediates in the biosynthesis of
782 cholesterol and coenzyme Q₁₀. **J-N)** Cell viability of DIPG-007 GS following treatment with
783 vehicle (0.4% DMSO) or Pitavastatin (Pita) with and without co-treatment with **J)** Mevalonate
784 (Meva), **K)** farnesyl pyrophosphate (FPP), **L)** geranylgeranyl pyrophosphate (GGPP), **M)**
785 Cholesterol (Chol), and **N)** Coenzyme Q₁₀ (CoQ₁₀) at the indicated concentrations. Cell viability
786 assayed at 3 days post-treatment using the Cell Titer Glo 2.0 reagent and results expressed as
787 a percent of control and mean \pm SD (ns = not significant; * p < 0.05; ** p < 0.01; *** p < 0.001;
788 **** p < 0.0001).

789 **Figure 5: Bioenergetic properties of OPC-like GS and AS-like DGC.**

790 **A-C)** Bioenergetics analysis (Seahorse assay) of DIPG-007, SF7761, and DIPG-XIII GS and
791 DGC. **A)** Oxygen consumption rate (OCR); **B)** Basal OCR, **C)** Spare respiratory capacity (SRC).
792 Determination of **D)** energy charge calculated as $[(ATP) + 0.5(ADP)] / [(ATP) + (ADP) + (AMP)]$,
793 and **E)** ATP/ADP ratios in GS and DGC across all three isogenic DIPG pairs. **F)** Extracellular
794 acidification rate (ECAR) of DIPG-007, SF7761, and DIPG-XIII GS and DGC. Results
795 expressed as mean \pm SEM (ns = not significant; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p <
796 0.0001). **G)** Dose-response curves of radiation-treated DIPG-007, SF7761, and DIPG-XIII GS
797 and DGC. Cell viability assessed at 7 days post-treatment. Experiments were performed in
798 technical triplicates and expressed percentage of control (untreated cells) and as mean \pm SEM.

799 **Figure 6: Statin and Complex I inhibitors prolong survival in an orthotopic model of DIPG**

800 **A)** Schematic of *in vivo* experiment using DIPG-007 orthotopic xenograft model and
801 intraperitoneal administration of Pitavastatin (10mg/kg; n=10), Phenformin (50mg/kg; n=10), or
802 the combination (n=10) of both drugs at indicated doses or vehicle control (PBS; n=10). **B)** Body
803 weight of DIPG-007 tumor-bearing NSG mice following treatment. **C)** Quantitation of change in
804 tumor volume from bioluminescence imaging (BLI) over the course of week-3 to week-7 post-
805 tumor implantation. **D)** End-point survival analyses of treatment and control tumor-bearing mice.
806 **E)** Model of H3K27M DIPG intratumoral heterogeneity indicating specific vulnerabilities within
807 OPC-like and AC-like tumor populations and their respective targeting strategies.

808 **Supplementary Figure 1: Characterization and transcriptomics analysis of isogenic DIPG**
809 **models.**

810 **A)** Representative phase contrast microscopy images of patient-derived DIPG cell lines: DIPG-
811 007, SF7761, and DIPG-XIII, showing morphological differences between isogenic
812 gliomaspheres (GS) and differentiated glioma cells (DGC); scale bars indicate 1000 um. **B, C)**
813 Principal component analysis of RNA-seq data. **D, E)** Heatmaps indicating the top 50
814 consistently and significantly upregulated **D)** and downregulated **E)** genes common to all three
815 isogenic GS vs. DGC isogenic lines (adjusted p-value < 0.0001).

816 **Supplementary Figure 2: Transcriptomics analysis of gene markers in isogenic DIPG**
817 **models.**

818 Relative gene expression of DIPG stemness and differentiation markers in GS vs. DGC across
819 DIPG-007, SF7761, and DIPG-XIII. **A)** *OLIG2*, **B)** *OLIG1*, **C)** *MAP2*, **D)** *SOX2*, **E)** *EGFR*, **F)**
820 *MYC*, **G)** *GFAP*, **H)** *VIM*, **K)** *S100A10*. Gene expression normalized counts plotted from the bulk
821 transcriptomics analysis with technical replicates.

822 **Supplementary Fig. 3: Gene set enrichment pathway analysis (GSEA) of isogenic DIPG**
823 **cells.**

824 Representative gene set enrichment analysis (GSEA) indicating pathways that are **A)**
825 upregulated, and **B)** downregulated in DIPG GS vs. DGC across all three isogenic lines. GSEA
826 plots show enrichment scores and include values for normalized enrichment score (NES),
827 nominal p value (*P*), and false discovery rate (FDR) q value.

828 **Supplementary Fig. 4: Steady-state metabolomics profiling of isogenic DIPG cells.**

829 **A)** Heatmaps showing significantly altered ($p < 0.01$) and differential abundance of metabolites
830 seen in the three isogenic lines. Columns represent biological replicates; rows represent median
831 normalized metabolites within each pair of isogenic lines.

832 **Supplementary Fig. 5: Metabolic profile of isogenic DIPG cells.**

833 **A)** Schematic of central metabolic pathways highlighting connections in glycolysis, TCA cycle,
834 and purine biosynthetic pathways. **B)** Levels of CoA and Carnitine in DIPG-007, SF7761, and
835 DIPG-XIII GS vs. DGC population. Metabolites levels expressed as median centered fold
836 change of GS related to DGC levels across the three isogenic lines (ns = not significant; * $p <$
837 0.05; ** $p < 0.01$; *** $p < 0.001$; **** $p < 0.0001$). Error bars represent mean \pm SD. **C)** Relative
838 expression of genes (bulk RNA-seq data) encoding enzymes involved in purine biosynthesis in
839 DIPG-007, SF7761, and DIPG-XIII isogenic GS and DGC counterparts.

840 **Supplementary Figure 6: In vitro targeting of isogenic DIPG cultures with OXPHOS
841 inhibitors and Statins.**

842 **A-D)** Dose response curves of SF7761 GS and DGC treated with **A)** Phenformin, **B)** IACS-
843 010759 (IACS) **C)** Atorvastatin, and **D)** Fluvastatin. **E, F)** Dose response curves of DIPG-XIII GS
844 and DGC treated with **E)** Phenformin, and **F)** Fluvastatin. **G-I)** Dose response curves of DIPG-
845 XIII*P GS and DGC treated with **G)** Phenformin, **H)** Fluvastatin, and **I)** Atorvastatin. **J, K)** Dose
846 response of PPK (murine H3K27M) GS and DGC treated with **J)** Phenformin, and **K)**
847 Pitavastatin. **L)** Comparison of efficacy of various clinical statins (Atorvastatin, Fluvastatin,
848 Lovastatin, Pitavastatin, and Simvastatin) in DIPG-007 GS. For all cell lines and treatment, cell
849 viability was assayed using Cell Titer Glo 3 days post-treatment, except for DIPG-XIII*P in which
850 cell viability was assessed 7 days post-treatment. All results are expressed as percent of control
851 and mean \pm SD or mean \pm SEM.

852 **Supplementary Fig 7: Combined metabolic targeting of cholesterol biosynthesis and**
853 **OXPHOS in vitro.**

854 **A, B)** DIPG-007 GS treated for 3 days with different doses of Phenformin or Pitavastatin or in
855 combination with the IC₂₅, and IC₅₀, of the respective combinatorial compound. **C-F)** Murine
856 H3K27M PPK GS treated for 3 days with different doses of Phenformin, Metformin or
857 Pitavastatin or in combination with the IC₂₅, and IC₅₀, of the respective combinatorial compound.
858 Cell viability was assayed using Cell Titer Glo reagent and results expressed as a percentage of
859 control (DMSO) and mean ± SD

860 **Supplementary Fig. 8: Dependency of DIPG GS on cholesterol biosynthesis.**

861 **A-C)** Relative expression of genes encoding enzymes involved in cholesterol biosynthesis in
862 DIPG-007, SF7761, and DIPG-XIII GS and DGC counterparts. **D-H)** Cell viability of SF7761 GS
863 following treatment with vehicle (0.4% DMSO) or Pitavastatin (Pita) with and without co-treated
864 with Mevalonate (Meva), farnesyl pyrophosphate (FPP), geranylgeranyl pyrophosphate
865 (GGPP), Cholesterol (Chol), and Coenzyme Q₁₀ (CoQ₁₀) at the indicated concentrations. Cell
866 viability assayed at 3 days post-treatment using the Cell Titer Glo reagent and results expressed
867 as a percent of control and mean ± SD. **I-K)** Cell viability of DIPG-XIII GS following treatment
868 with vehicle (0.4% DMSO) or Pitavastatin (Pita) with and without co-treated with geranylgeranyl
869 pyrophosphate (GGPP), Cholesterol (Chol), and Coenzyme Q₁₀ (CoQ₁₀) at the indicated
870 concentrations. Cell viability assayed at 3 days post-treatment using the Cell Titer Glo reagent
871 and results expressed as a percent of control and mean ± SD (ns = not significant; * p < 0.05; **
872 p < 0.01; *** p < 0.001; **** p < 0.0001).

873 **REFERENCES**

- 874 1. Aziz-Bose, R. & Monje, M. Diffuse intrinsic pontine glioma: molecular landscape and
875 emerging therapeutic targets. *Curr Opin Oncol* **31**, 522–530 (2019).
- 876 2. Cohen, K. J., Jabado, N. & Grill, J. Diffuse intrinsic pontine gliomas-current management
877 and new biologic insights. Is there a glimmer of hope? *Neuro Oncol* **19**, 1025–1034 (2017).
- 878 3. Vitanza, N. A. & Monje, M. Diffuse Intrinsic Pontine Glioma: From Diagnosis to Next-
879 Generation Clinical Trials. *Curr Treat Options Neurol* **21**, 37 (2019).
- 880 4. Gallitto, M. *et al.* Role of Radiation Therapy in the Management of Diffuse Intrinsic
881 Pontine Glioma: A Systematic Review. *Adv Radiat Oncol* **4**, 520–531 (2019).
- 882 5. Wu, G. *et al.* Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas
883 and non-brainstem glioblastomas. *Nat Genet* **44**, 251–253 (2012).
- 884 6. Schwartzentruber, J. *et al.* Driver mutations in histone H3.3 and chromatin remodelling
885 genes in paediatric glioblastoma. *Nature* **482**, 226–231 (2012).
- 886 7. Khuong-Quang, D.-A. *et al.* K27M mutation in histone H3.3 defines clinically and
887 biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. *Acta Neuropathol*
888 **124**, 439–447 (2012).
- 889 8. Cooney, T. M., Lubanszky, E., Prasad, R., Hawkins, C. & Mueller, S. Diffuse midline
890 glioma: review of epigenetics. *J Neurooncol* **150**, 27–34 (2020).
- 891 9. Lulla, R. R., Saratsis, A. M. & Hashizume, R. Mutations in chromatin machinery and
892 pediatric high-grade glioma. *Science Advances* **2**, e1501354.
- 893 10. Wu, G. *et al.* The genomic landscape of diffuse intrinsic pontine glioma and pediatric
894 non-brainstem high-grade glioma. *Nat Genet* **46**, 444–450 (2014).
- 895 11. Mendez, F. M. *et al.* Epigenetic reprogramming and chromatin accessibility in pediatric
896 diffuse intrinsic pontine gliomas: a neural developmental disease. *Neuro Oncol* **22**, 195–206
897 (2020).
- 898 12. Filbin, M. G. *et al.* Developmental and oncogenic programs in H3K27M gliomas
899 dissected by single-cell RNA-seq. *Science* **360**, 331–335 (2018).
- 900 13. Suvà, M. L. & Tirosh, I. Single-Cell RNA Sequencing in Cancer: Lessons Learned and
901 Emerging Challenges. *Molecular Cell* **75**, 7–12 (2019).
- 902 14. Larson, J. D. *et al.* Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and
903 Drives Restricted Changes in Bivalent Gene Expression. *Cancer Cell* **35**, 140-155.e7 (2019).
- 904 15. Nagaraja, S. *et al.* Histone variant and cell context determine H3K27M reprogramming of
905 the enhancer landscape and oncogenic state. *Mol Cell* **76**, 965–980.e12 (2019).
- 906 16. Hanahan, D. Hallmarks of Cancer: New Dimensions. *Cancer Discov* **12**, 31–46 (2022).
- 907 17. Heiden, M. G. V. & DeBerardinis, R. J. Understanding the intersections between
908 metabolism and cancer biology. *Cell* **168**, 657–669 (2017).

909 18. Chung, C. *et al.* Integrated Metabolic and Epigenomic Reprograming by H3K27M
910 Mutations in Diffuse Intrinsic Pontine Gliomas. *Cancer Cell* **38**, 334-349.e9 (2020).

911 19. Baksh, S. C. & Finley, L. W. S. Metabolic Coordination of Cell Fate by α -Ketoglutarate-
912 Dependent Dioxygenases. *Trends in Cell Biology* **31**, 24–36 (2021).

913 20. Tsoli, M. *et al.* International experience in the development of patient-derived xenograft
914 models of diffuse intrinsic pontine glioma. *J Neurooncol* **141**, 253–263 (2019).

915 21. Xu, C. *et al.* Patient-derived DIPG cells preserve stem-like characteristics and generate
916 orthotopic tumors. *Oncotarget* **8**, 76644–76655 (2017).

917 22. Azzarelli, R., Simons, B. D. & Philpott, A. The developmental origin of brain tumours: a
918 cellular and molecular framework. *Development* **145**, dev162693 (2018).

919 23. Sonoda, Y. *et al.* Formation of intracranial tumors by genetically modified human
920 astrocytes defines four pathways critical in the development of human anaplastic astrocytoma.
921 *Cancer Res* **61**, 4956–4960 (2001).

922 24. Anderson, J. L. *et al.* The transcription factor Olig2 is important for the biology of diffuse
923 intrinsic pontine gliomas. *Neuro Oncol* **19**, 1068–1078 (2017).

924 25. Furnari, F. B. *et al.* Malignant astrocytic glioma: genetics, biology, and paths to
925 treatment. *Genes Dev.* **21**, 2683–2710 (2007).

926 26. Sosunov, A. A., McKhann, G. M. & Goldman, J. E. The origin of Rosenthal fibers and
927 their contributions to astrocyte pathology in Alexander disease. *Acta Neuropathologica
928 Communications* **5**, 27 (2017).

929 27. Yadav, V. N. *et al.* Therapeutic reversal of prenatal pontine ID1 signaling in DIPG.
930 2021.05.10.443452 (2021) doi:10.1101/2021.05.10.443452.

931 28. Mackay, A. *et al.* Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and
932 Diffuse Intrinsic Pontine Glioma. *Cancer Cell* **32**, 520-537.e5 (2017).

933 29. Lapin, D. H., Tsoli, M. & Ziegler, D. S. Genomic Insights into Diffuse Intrinsic Pontine
934 Glioma. *Front Oncol* **7**, 57 (2017).

935 30. Saratsis, A. M. *et al.* Comparative multidimensional molecular analyses of pediatric
936 diffuse intrinsic pontine glioma reveals distinct molecular subtypes. *Acta Neuropathol* **127**, 881–
937 895 (2014).

938 31. Sousa, C. M. *et al.* Pancreatic stellate cells support tumour metabolism through
939 autophagic alanine secretion. *Nature* **536**, 479–483 (2016).

940 32. Wang, X. *et al.* Purine synthesis promotes maintenance of brain tumor initiating cells in
941 glioma. *Nat Neurosci* **20**, 661–673 (2017).

942 33. Beyer, B. A. *et al.* Metabolomics-based discovery of a metabolite that enhances
943 oligodendrocyte maturation. *Nat Chem Biol* **14**, 22–28 (2018).

944 34. Viswanathan, V. S. *et al.* Dependency of a therapy-resistant state of cancer cells on a
945 lipid peroxidase pathway. *Nature* **547**, 453–457 (2017).

946 35. Lee, J., You, J. H., Kim, M.-S. & Roh, J.-L. Epigenetic reprogramming of epithelial-
947 mesenchymal transition promotes ferroptosis of head and neck cancer. *Redox Biol* **37**, 101697
948 (2020).

949 36. Mbah, N. E. & Lyssiotis, C. A. Metabolic regulation of ferroptosis in the tumor
950 microenvironment. *J Biol Chem* 101617 (2022) doi:10.1016/j.jbc.2022.101617.

951 37. Skouta, R. *et al.* Ferrostatins inhibit oxidative lipid damage and cell death in diverse
952 disease models. *J Am Chem Soc* **136**, 4551–4556 (2014).

953 38. Miklja, Z. *et al.* Everolimus improves the efficacy of dasatinib in PDGFR α -driven glioma.
954 *J Clin Invest* **130**, 5313–5325 (2020).

955 39. Edwards, P. A. & Ericsson, J. Sterols and Isoprenoids: Signaling Molecules Derived from
956 the Cholesterol Biosynthetic Pathway. *Annual Review of Biochemistry* **68**, 157–185 (1999).

957 40. Brown, A. J. Cholesterol, Statins and Cancer. *Clinical and Experimental Pharmacology
958 and Physiology* **34**, 135–141 (2007).

959 41. Marchetti, P., Fovez, Q., Germain, N., Khamari, R. & Kluza, J. Mitochondrial spare
960 respiratory capacity: Mechanisms, regulation, and significance in non-transformed and cancer
961 cells. *The FASEB Journal* **34**, 13106–13124 (2020).

962 42. Divakaruni, A. S., Paradyse, A., Ferrick, D. A., Murphy, A. N. & Jastroch, M. Analysis
963 and interpretation of microplate-based oxygen consumption and pH data. *Methods Enzymol*
964 **547**, 309–354 (2014).

965 43. Chapman, A. G., Fall, L. & Atkinson, D. E. Adenylate energy charge in *Escherichia coli*
966 during growth and starvation. *J Bacteriol* **108**, 1072–1086 (1971).

967 44. De la Fuente, I. M. *et al.* On the dynamics of the adenylate energy system: homeorhesis
968 vs homeostasis. *PLoS One* **9**, e108676 (2014).

969 45. Davies, J. T. *et al.* Current and Emerging Uses of Statins in Clinical Therapeutics: A
970 Review. *Lipid Insights* **9**, 13–29 (2016).

971 46. Chae, Y. K. *et al.* Statins as anti-cancer therapy; Can we translate preclinical and
972 epidemiologic data into clinical benefit? *Discov Med* **20**, 413–427 (2015).

973 47. Kourvelis, T. V. & Siegel, R. D. Metformin and cancer: new applications for an old drug.
974 *Med Oncol* **29**, 1314–1327 (2012).

975 48. Zi, F. *et al.* Metformin and cancer: An existing drug for cancer prevention and therapy.
976 *Oncol Lett* **15**, 683–690 (2018).

977 49. Jiang, W. *et al.* Repurposing phenformin for the targeting of glioma stem cells and the
978 treatment of glioblastoma. *Oncotarget* **7**, 56456–56470 (2016).

979 50. Yarchoan, M. & Arnold, S. E. Repurposing Diabetes Drugs for Brain Insulin Resistance
980 in Alzheimer Disease. *Diabetes* **63**, 2253–2261 (2014).

981 51. Sierra, S. *et al.* Statins as neuroprotectants: a comparative in vitro study of lipophilicity,
982 blood-brain-barrier penetration, lowering of brain cholesterol, and decrease of neuron cell death.
983 *J Alzheimers Dis* **23**, 307–318 (2011).

984 52. Sheppardson, N. E., Shankar, G. M. & Selkoe, D. J. Cholesterol level and statin use in
985 Alzheimer disease: II. Review of human trials and recommendations. *Arch Neurol* **68**, 1385–
986 1392 (2011).

987 53. Rosko, L., Smith, V. N., Yamazaki, R. & Huang, J. K. Oligodendrocyte Bioenergetics in
988 Health and Disease. *Neuroscientist* **25**, 334–343 (2019).

989 54. Yang, N., Xu, L., Lin, P. & Cui, J. Uric acid promotes neuronal differentiation of human
990 placenta-derived mesenchymal stem cells in a time- and concentration-dependent manner.
991 *Neural Regen Res* **7**, 756–760 (2012).

992 55. Vidhya, S., Ramya, R., Coral, K., Sulochana, K. N. & Bharathidevi, S. R. Free amino
993 acids hydroxyproline, lysine, and glycine promote differentiation of retinal pericytes to
994 adipocytes: A protective role against proliferative diabetic retinopathy. *Experimental Eye
995 Research* **173**, 179–187 (2018).

996 56. Wang, J. *et al.* c-Myc Is Required for Maintenance of Glioma Cancer Stem Cells. *PLoS
997 One* **3**, e3769 (2008).

998 57. Mazzoleni, S. *et al.* Epidermal Growth Factor Receptor Expression Identifies
999 Functionally and Molecularly Distinct Tumor-Initiating Cells in Human Glioblastoma Multiforme
1000 and Is Required for Gliomagenesis. *Cancer Res* **70**, 7500–7513 (2010).

1001 58. Dietschy, J. M. Central nervous system: cholesterol turnover, brain development and
1002 neurodegeneration. *Biol Chem* **390**, 287–293 (2009).

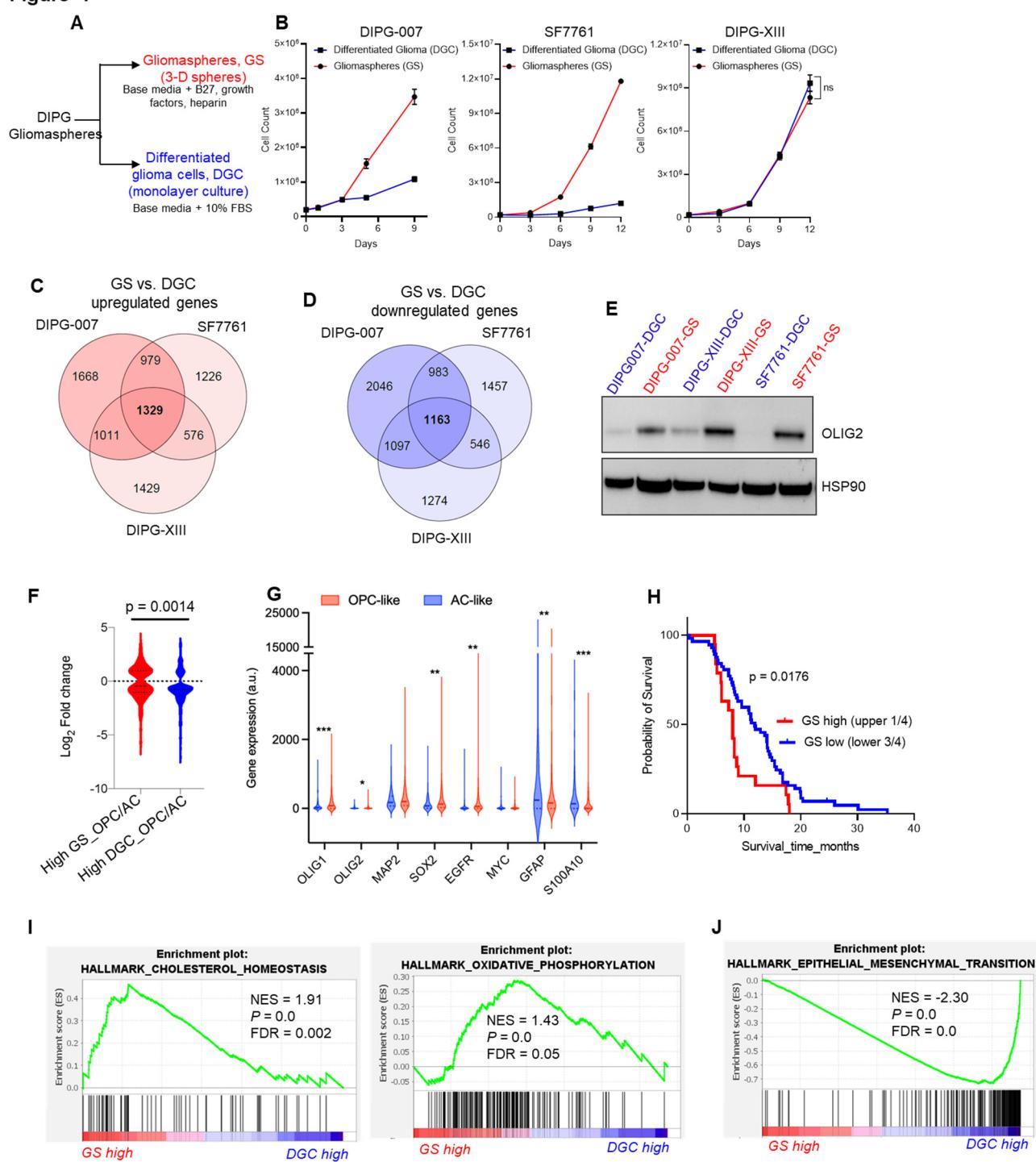
1003 59. Björkhem, I. & Meaney, S. Brain cholesterol: long secret life behind a barrier. *Arterioscler
1004 Thromb Vasc Biol* **24**, 806–815 (2004).

1005 60. Karten, B., Campenot, R. B., Vance, D. E. & Vance, J. E. Expression of ABCG1, but not
1006 ABCA1, correlates with cholesterol release by cerebellar astroglia. *J Biol Chem* **281**, 4049–4057
1007 (2006).

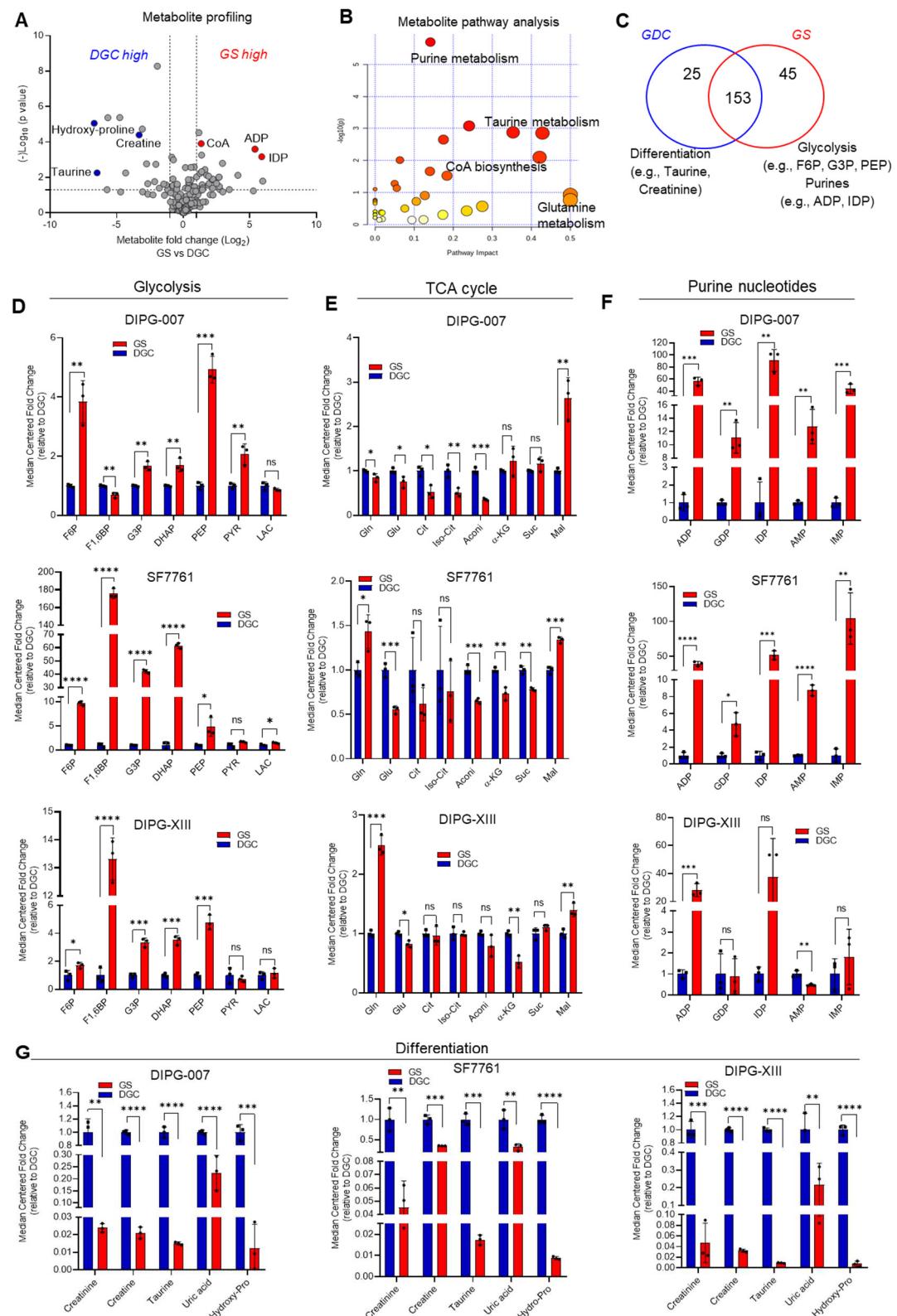
1008 61. Villa, G. R. *et al.* An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain
1009 Cancers. *Cancer Cell* **30**, 683–693 (2016).

1010 62. Phillips, R. E. *et al.* Target identification reveals lanosterol synthase as a vulnerability in
1011 glioma. *Proc Natl Acad Sci U S A* **116**, 7957–7962 (2019).

1012 63. Lee, H.-J., Kremer, D. M., Sajjakulnukit, P., Zhang, L. & Lyssiotis, C. A. A large-scale
1013 analysis of targeted metabolomics data from heterogeneous biological samples provides
1014 insights into metabolite dynamics. *Metabolomics* **15**, 103 (2019).


1015 64. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
1016 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

1017 65. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with
1018 or without a reference genome. *BMC Bioinformatics* **12**, 323 (2011).


1019 66. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21
1020 (2013).

1021 67. Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count
1022 data: removing the noise and preserving large differences. *Bioinformatics* **35**, 2084–2092
1023 (2019).

Figure 1

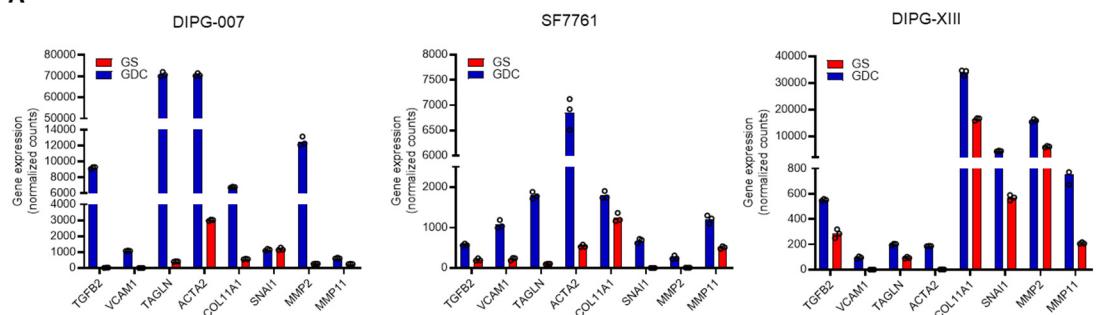


Figure 2

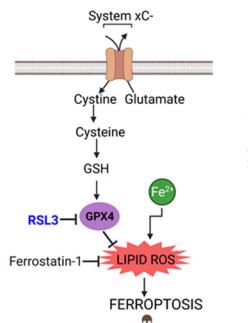
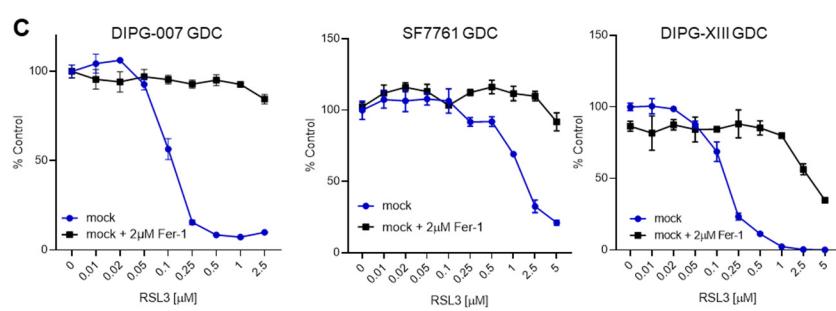
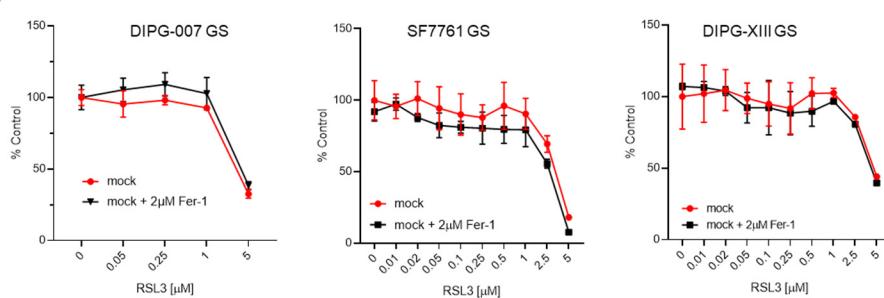
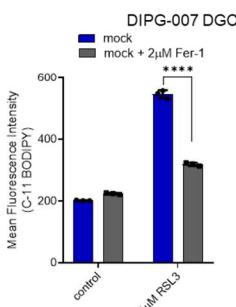
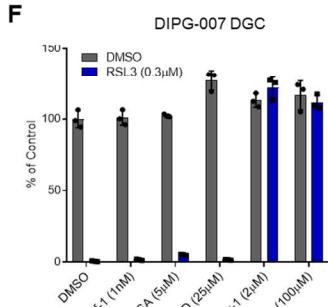


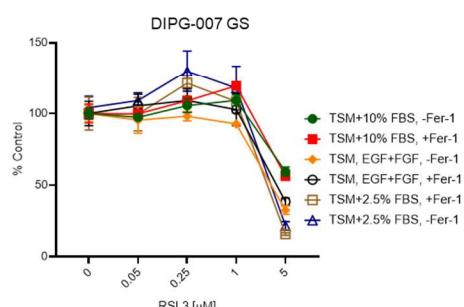
Figure 3

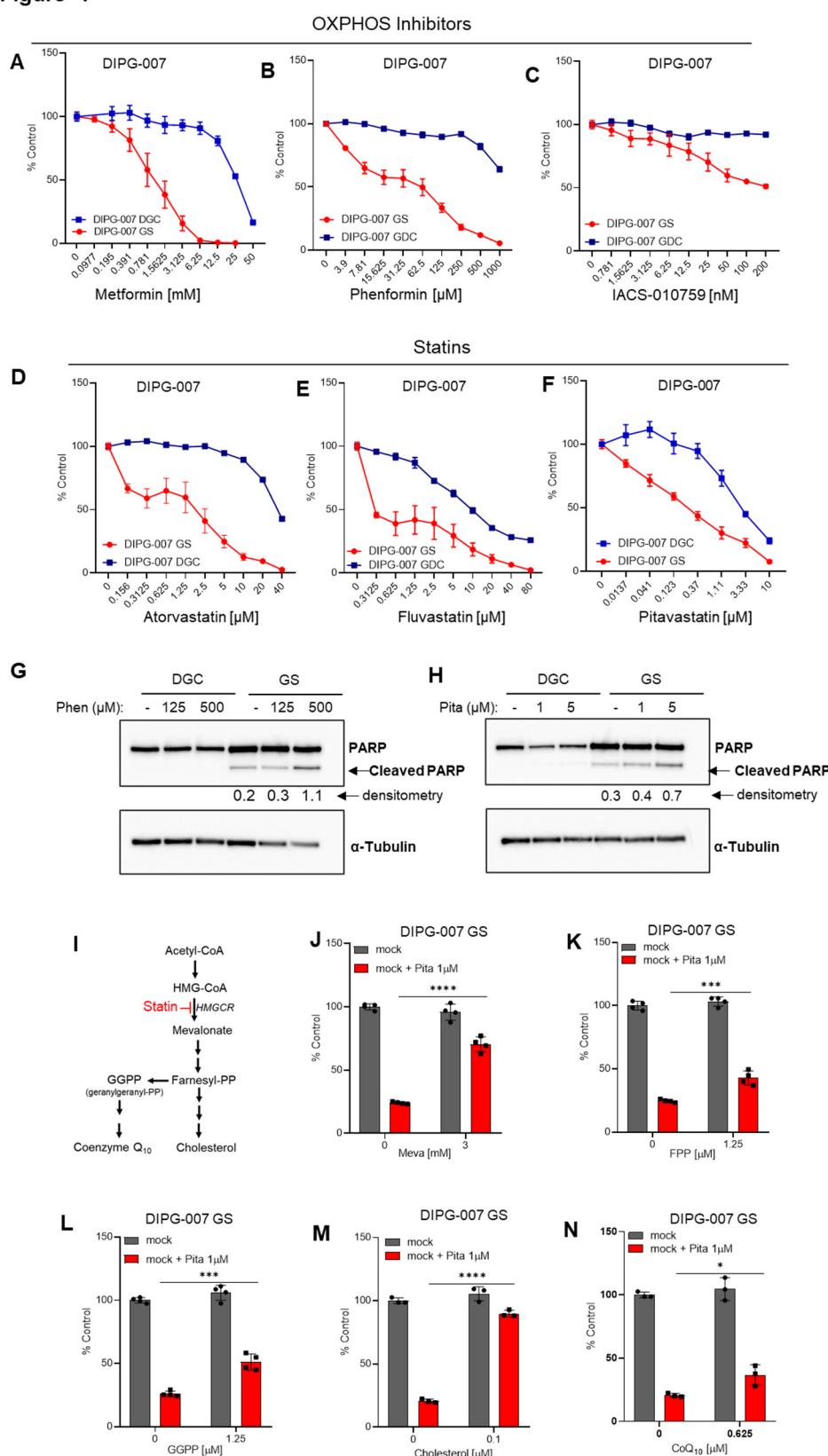

A

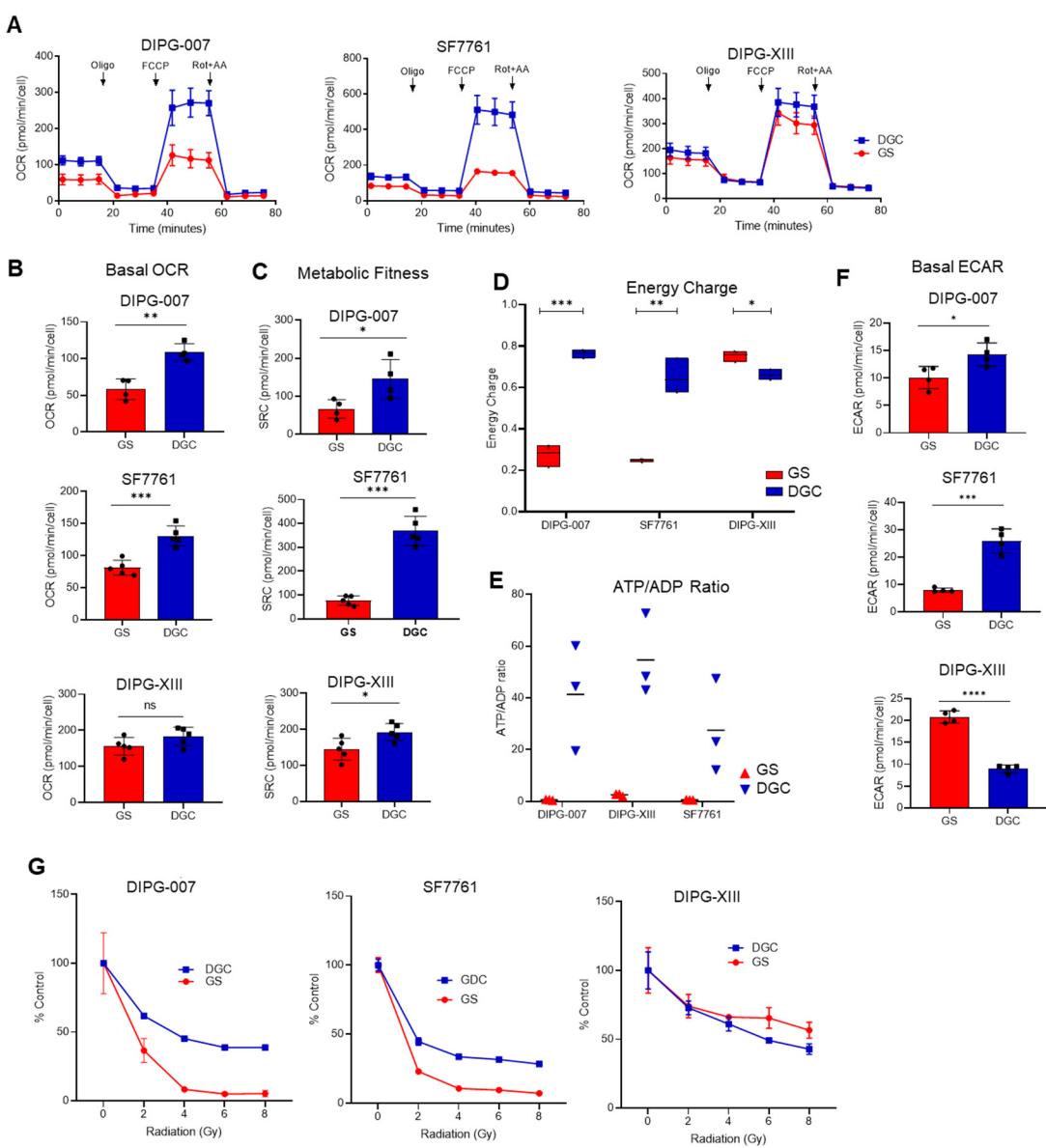

B

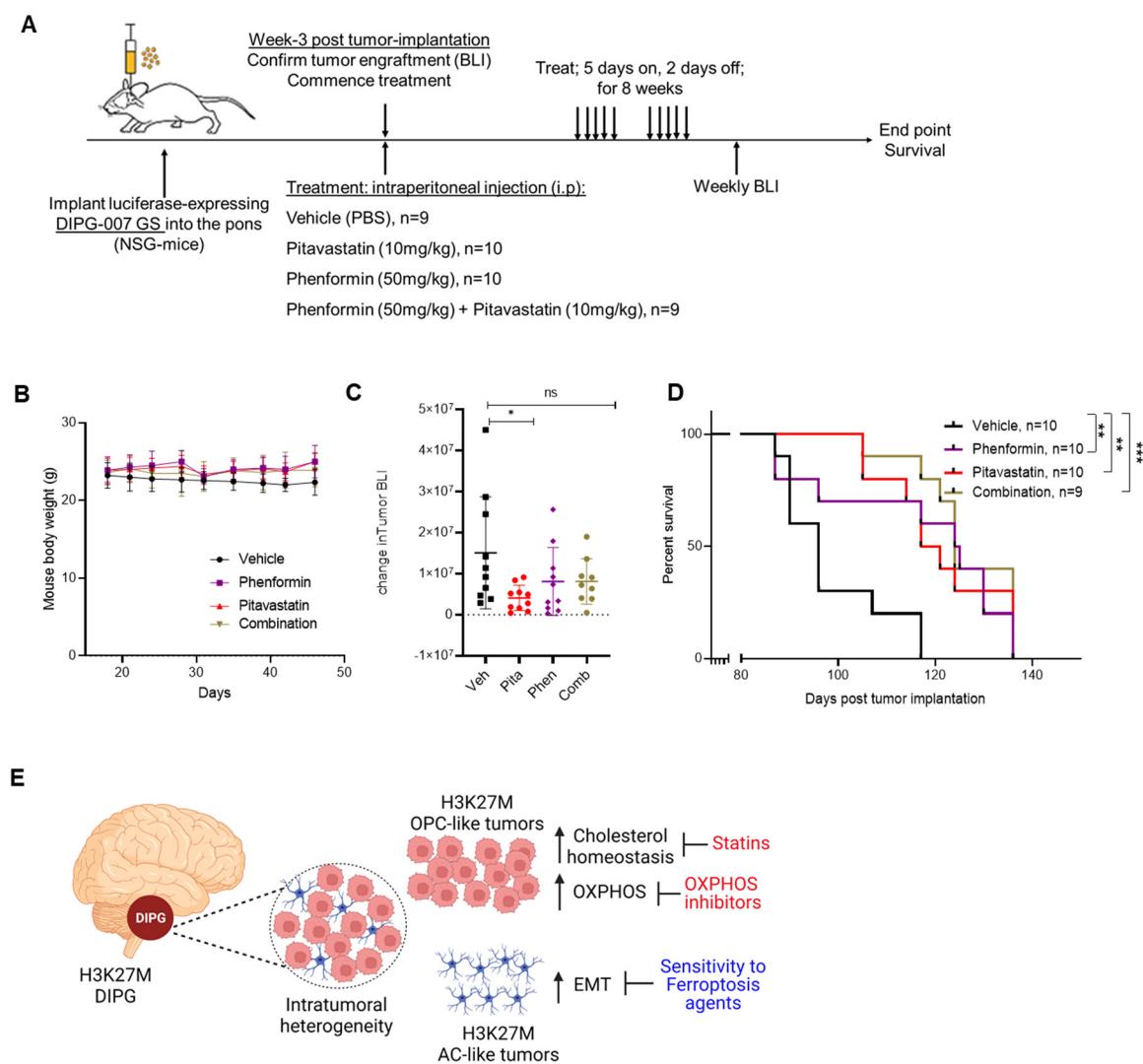

C

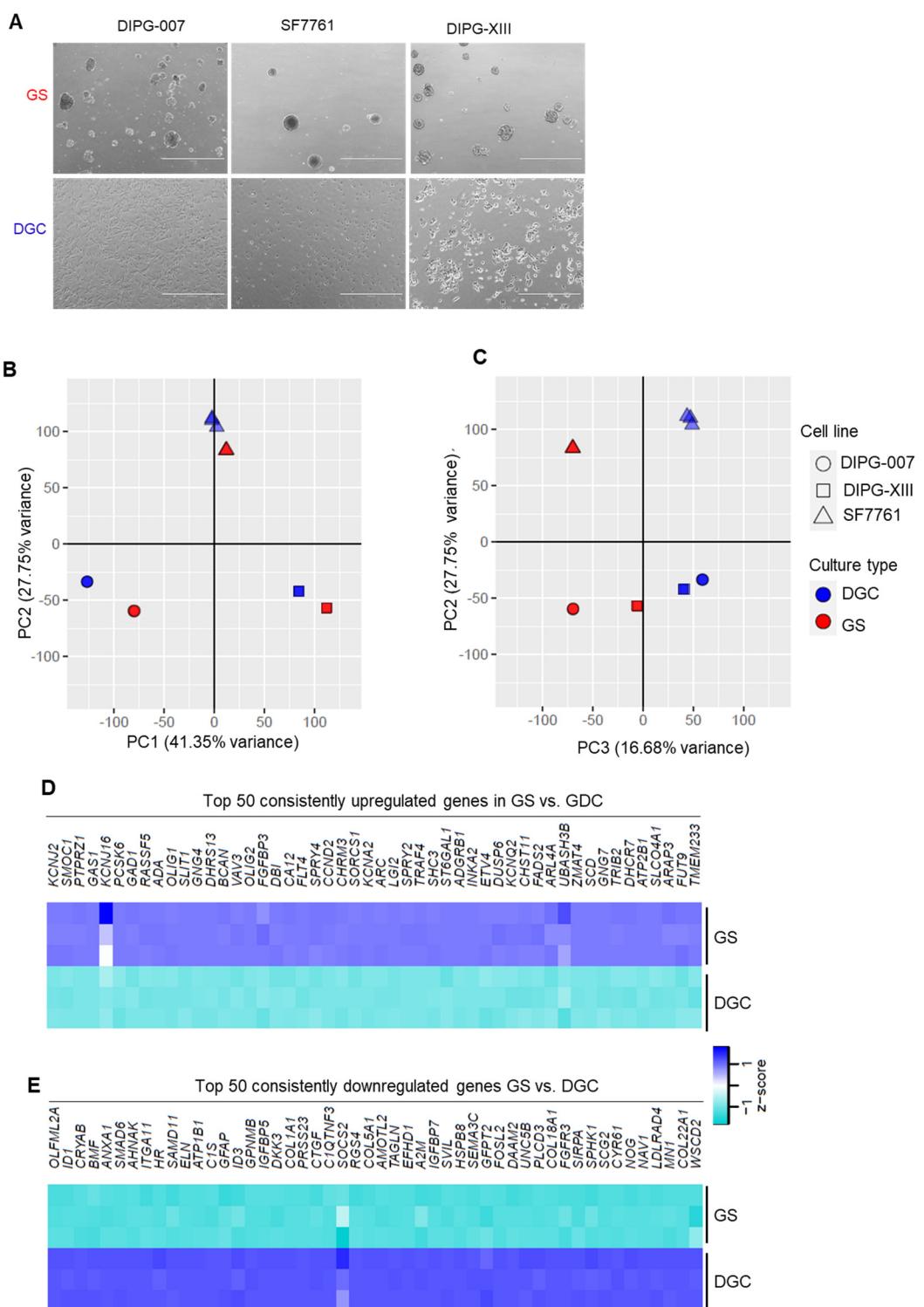

D

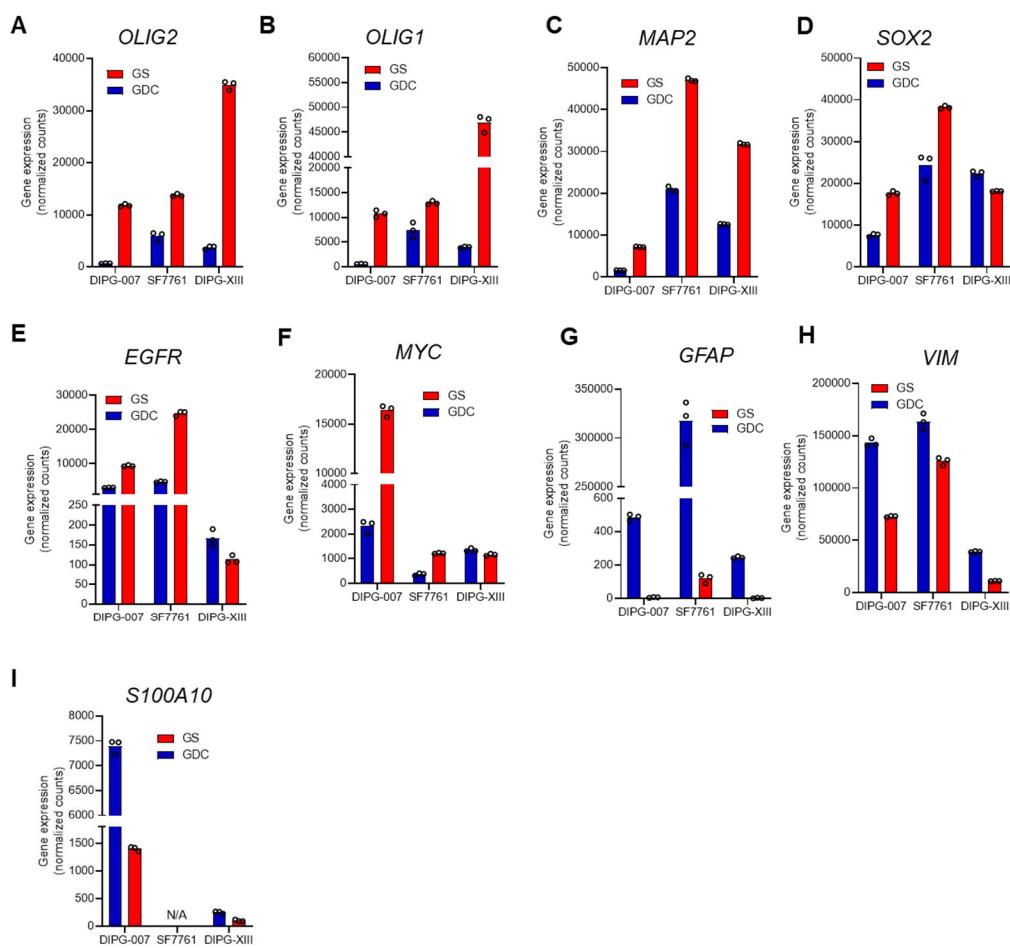

E


F

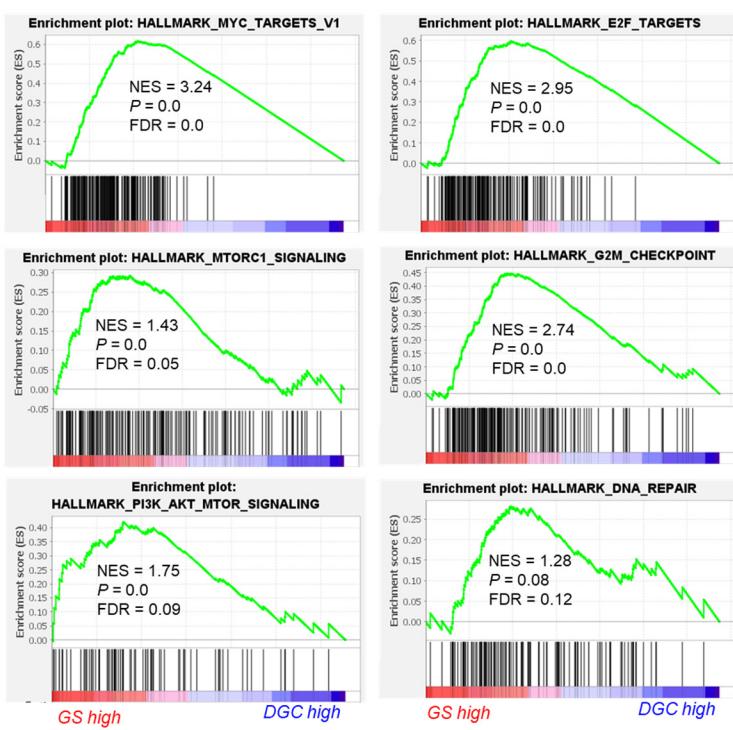

G


Figure 4

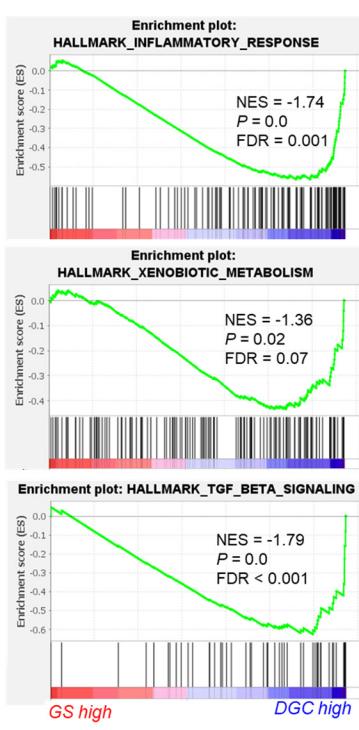

Figure 5


Figure 6

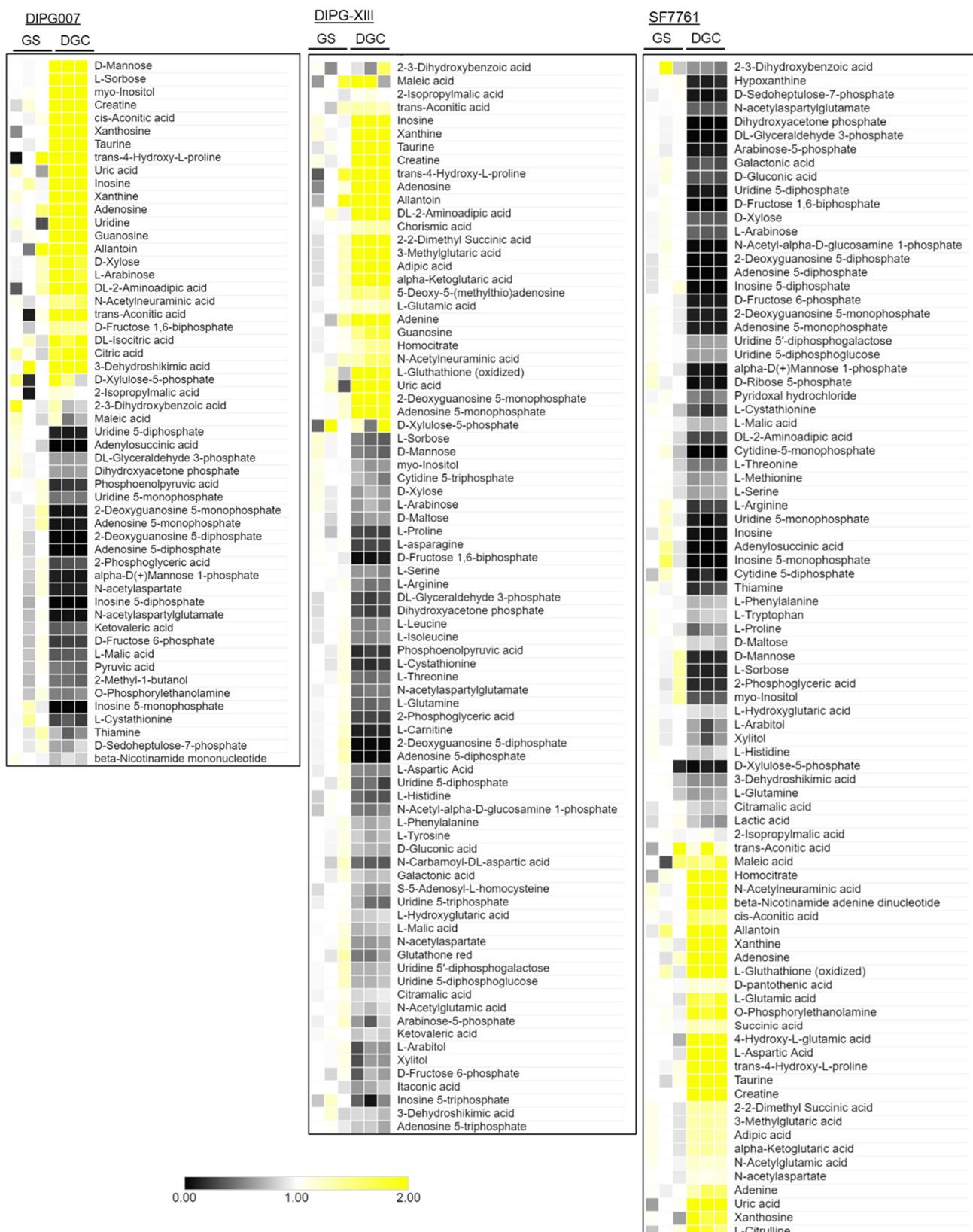
Supplementary Fig. 1

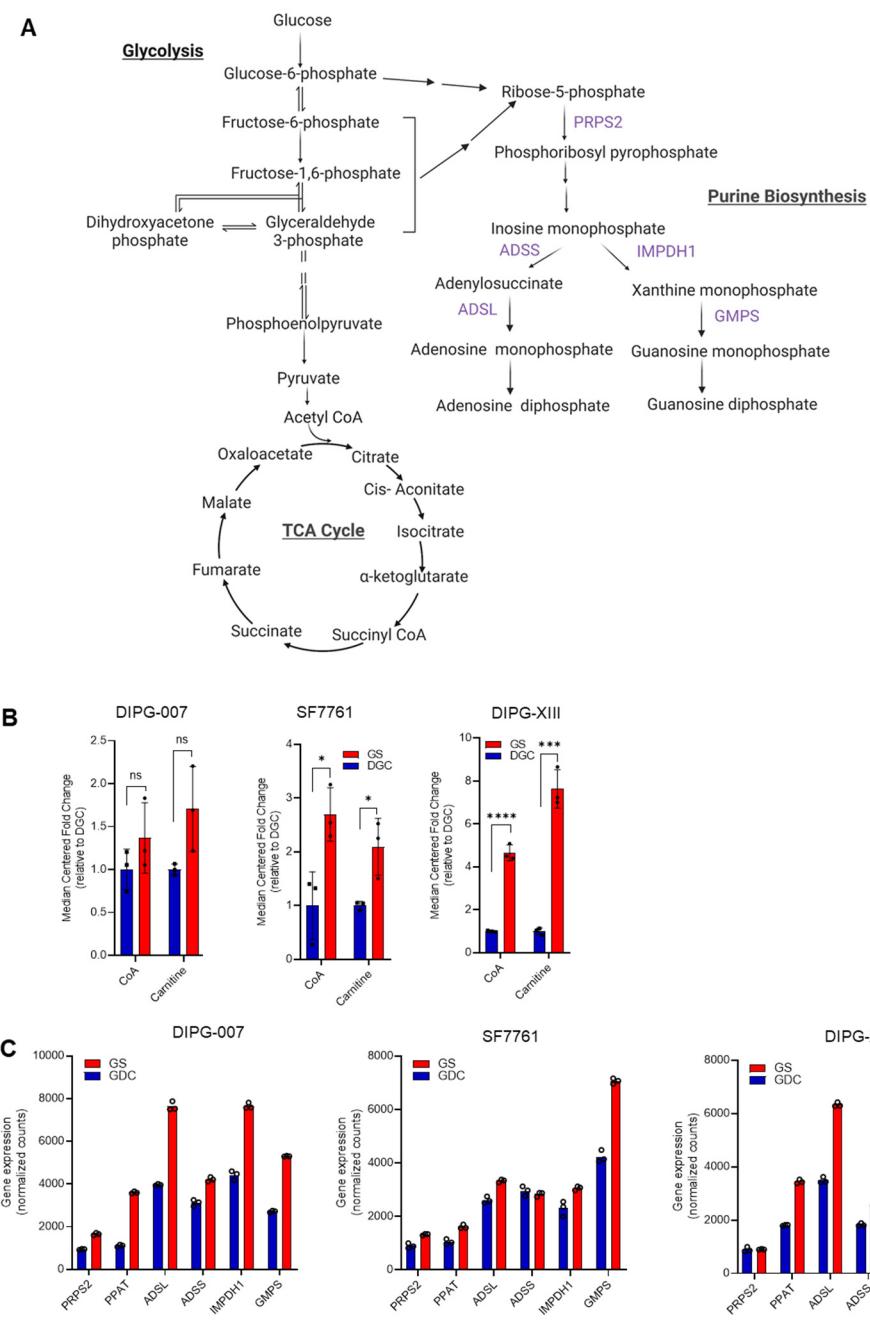


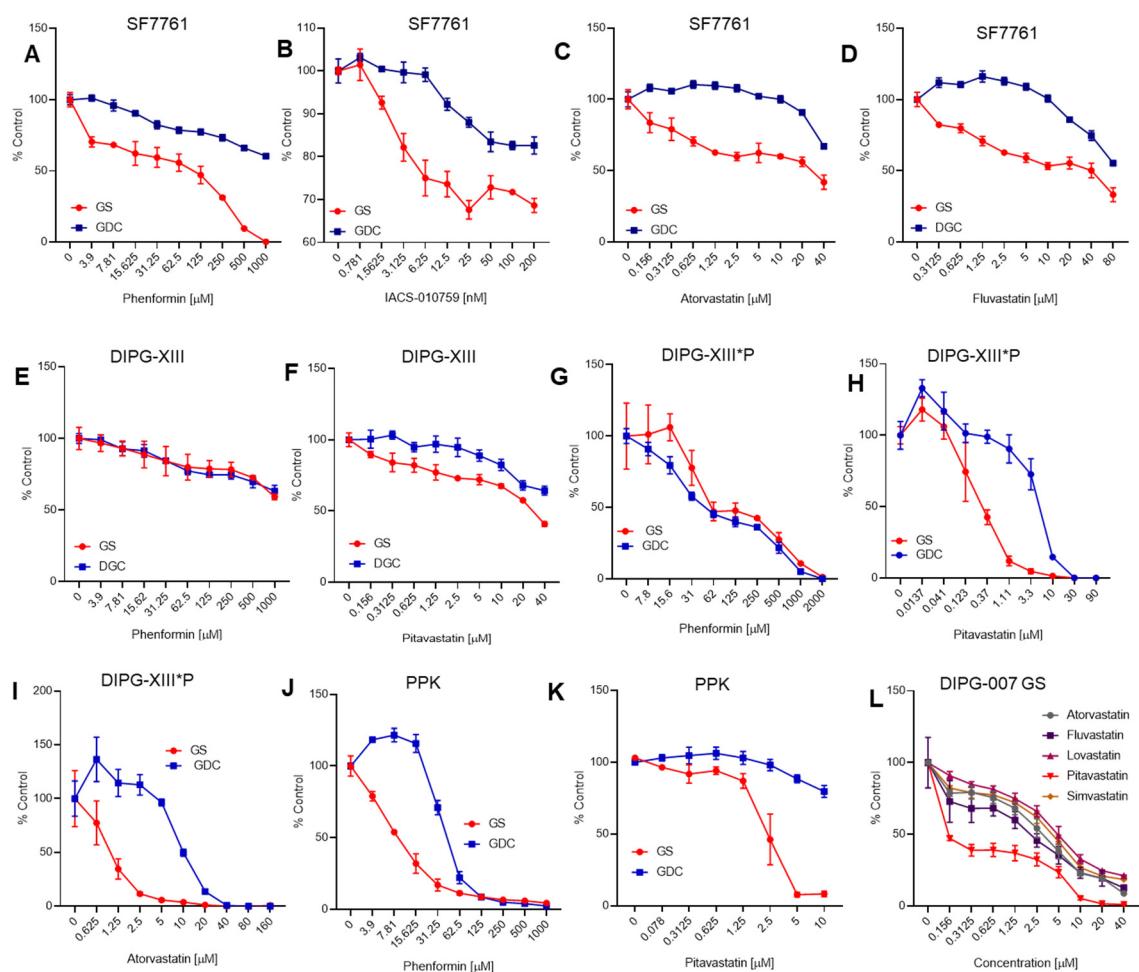
Supplementary Fig. 2

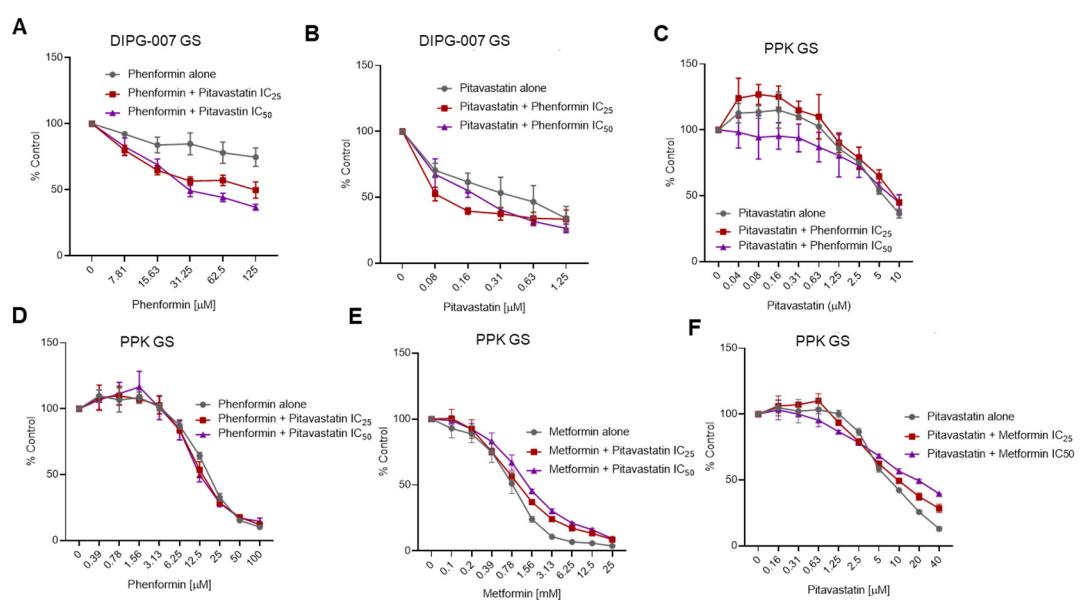


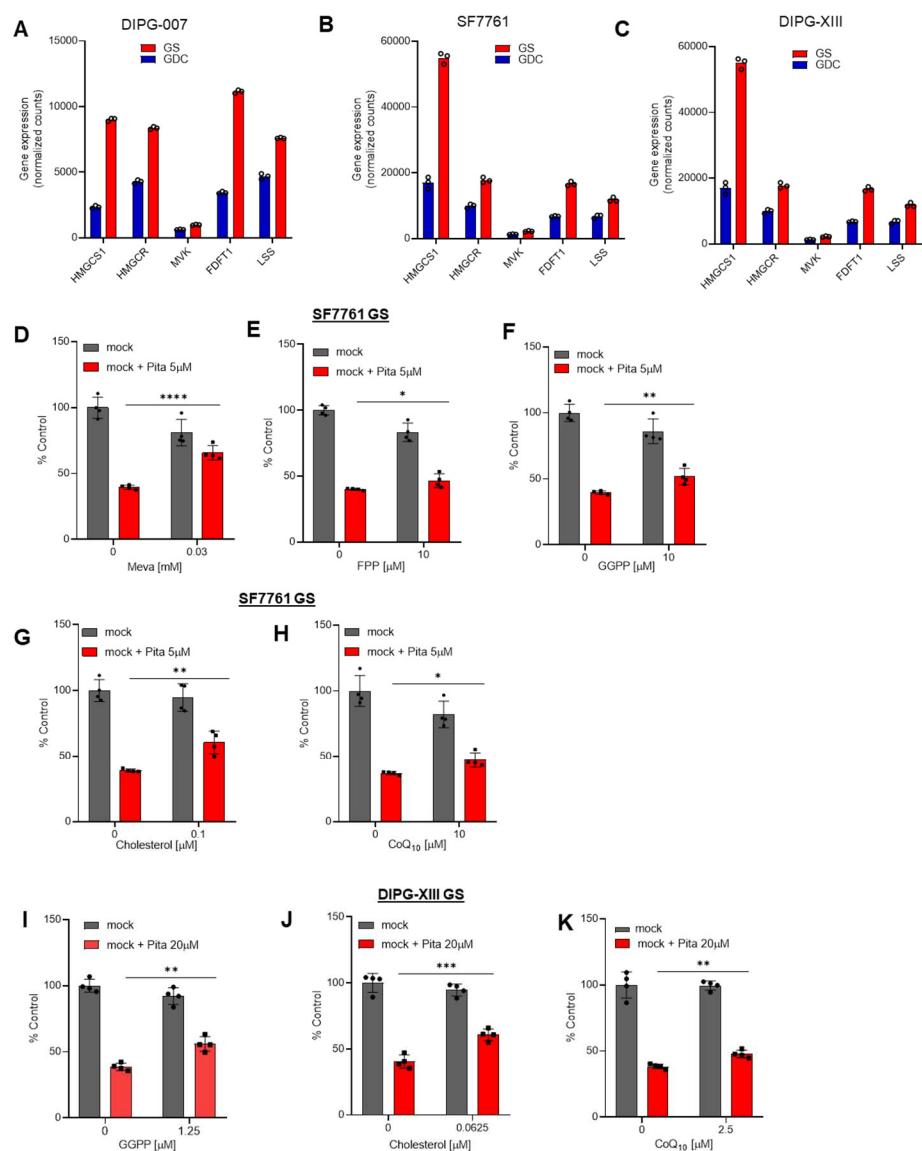
Supplementary Fig. 3


A


B


Supplementary Fig. 4


Supplementary Fig. 5


Supplementary Fig. 6

Supplementary Fig. 7

Supplementary Fig. 8

