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ABSTRACT 

 45 

Ductal carcinoma in situ (DCIS) is considered a non-invasive precursor to breast cancer, and 

although associated with an increased risk of developing invasive disease, many women with 

DCIS will never progress beyond their in situ diagnosis. The path from normal duct to 

invasive disease is not well understood, and efforts to do so are hampered by the substantial 

heterogeneity that exists between patients and even within patients. Using gene expression 50 

analysis, we have generated a 8Timeline9 of disease progression, utilising the variability 

within patients and combining >2,000 individually micro-dissected ductal lesions from 145 

patients into one continuous trajectory. Using this Timeline we show there is a progressive 

loss in basal layer integrity, coupled with two epithelial  to  mesenchymal transitions (EMT), 

one early in the timeline and a second just prior to cells leaving the duct. We identify early 55 

processes and potential biomarkers,  including CAMK2N1, MNX1, ADCY5, HOXC11 and 

ANKRD22, whose reduced expression is associated with the progression of DCIS to invasive 

breast cancer.  
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Introduction 

Ductal carcinoma in situ (DCIS) is considered to be a non-invasive precursor to breast cancer, and 

when found is associated with an approximate 10-fold increased risk of developing an invasive 75 

carcinoma 1. However, over half of untreated DCIS patients may never develop breast cancer 2,3. 

Despite this, conventional treatment typically comprises either mastectomy or breast conserving 

surgery coupled with radiation. In order to treat women most effectively and reduce unnecessary 

treatment, it is vital that we understand more about DCIS and what factors influence the risk of 

progression to invasive disease. At present, the path from normal ductal epithelium to invasive 80 

ductal carcinoma (IDC) remains poorly understood. Current thinking suggests that there is a step-

wise progression from a normal duct, through atypical ductal hyperplasia (ADH), to DCIS 

followed by microinvasion from the duct to established invasive ductal carcinoma. While the 

ductal epithelium is typically comprised of a mixture of luminal and basal-like cells, ADH and 

DCIS are expansions of the luminal compartment 4, with the presence of nuclear and/or 85 

architectural atypia. Distinguishing DCIS from ADH is one of the most difficult challenges in 

breast pathology, and there is marked inter-observer variability, suggesting that not all disease 

states are easily categorized by morphology alone. In addition, distinguishing low-risk from high-

risk DCIS lesions can be difficult at best. A number of studies have examined transcriptional 

differences between normal ductal tissue, ADH, DCIS, and IDC 5-8; however, there has been little 90 

agreement surrounding genes that mark transitions between tissue states, and studies have often 

been limited by patient number and tissue quality.  
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Here we describe the analyses of a large-scale transcriptomic study of over 2700 pathologically 

annotated and individually micro-dissected regions from 145 fresh-frozen patient biopsies. 95 

Focusing largely on DCIS, we combined 1624 RNAseq libraries from DCIS with 394 libraries 

from IDC, 258 from atypical ductal lesions, 237 from benign ductal lesions and a further 211 

libraries from normal mammary epithelium. Using this data, we were able to describe the evolution 

of tissue states from the transcriptional changes characteristic of very early lesions, through 

progression toward, and development of invasive carcinoma. This pseudo-8timeline9 of disease 100 

progression revealed processes characteristic of different points along the path from normal 

epithelium to IDC. Considering both Pure DCIS (where no IDC was found in that patient, nor 

diagnosed from that patient during 10+ years of care) and DCIS from patients diagnosed with co-

occurring IDC, we saw that the position of individual lesions on the timeline was not dictated 

solely by patient diagnosis. Even among lesions derived from patients having only DCIS, there 105 

existed a range of developmental stages, as defined along our timeline, that mirrored those seen in 

patients that progressed to IDC. We also found that position along the timeline was not determined 

by ER/PR or Her2 status similar to a prior finding detailing a trajectory of changes surrounding 

tumour stroma9, thus potentially indicating that early stage disease results from changes in the 

same core processes for both of ER+ and ER- negative lesions.   110 

 

 

 

 

 115 
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Results 

The cohort 

145 Frozen tissue biopsies, kindly donated to Duke University, were microdissected for DCIS, 

IDC and other ductal regions of interest (see methods for further details). Each individual lesion 120 

was carried through for RNA sequencing and quality control checks (see Supplementary methods). 

We found that 68% of patients had DCIS mRNA expression patterns that matched their clinical 

scoring for estrogen receptor (ER/ ESR1), progesterone receptor (PR/ PGR), and human epidermal 

growth factor receptor 2 (Her2/ ERBB2), (Table S4). Of  44 patients (32%) that did not, 6 showed 

a clear difference in ER status, 29 showed a clear difference in PR status, and 8 showed a clear 125 

difference in Her2 status (where Her2 had been clinically scored). It must be acknowledged, 

however, that where IDC was found in the clinical diagnostic biopsy, it is the IDC that was scored 

for these markers and not the DCIS, and scoring is based on a number of factors, such as the 

percentage of invasive tumour cells with nuclear staining as well as the average staining intensity. 

Within the IDC samples, we also found that 68% of patients matched their clinical scoring for ER, 130 

PR, and Her2, and the remaining 32% (13 patients) showed distinct deviations in their RNA 

expression from that of the clinical scoring. Four patients had a clear difference in RNA expression 

signatures for ESR1, PGR and ERBB2, between their DCIS and IDC. These findings are consistent 

with the well-established heterogeneity within this disease, and in some cases, we found that 

different DCIS samples scored differently even within the same tissue section, most often for PGR. 135 

 

Triple-Negative DCIS cluster separately 

To assess whether there were any distinct groups of DCIS samples, we carried out Principal 

component analysis (PCA) followed by uniform manifold approximation and projection (UMAP) 
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using only DCIS samples (Fig. 1A) This revealed that the majority of samples largely group 140 

together, however Basal-like (as defined by AIMS10) triple negative (TN) DCIS samples, with low 

expression for ESR1 (ER), PGR (PR) and ERBB2 (Her2) (Fig. 1B), form a distinct cluster away 

from other DCIS samples, including other non-basal-like TN DCIS samples (Fig. 1A and see fig. 

S1 for all sample subtype classifications by patients). This is in line with a recent study looking at 

DCIS subtypes 11. Differential expression analysis between this Basal-like TN cluster against the 145 

other clusters revealed that the pioneer factor, Forkhead Box A1, FOXA1 and Melanophilin, 

MLPH mRNA levels were significantly reduced in this cluster as compared to the other subtypes.  

Other genes showing a strong association with this group are Carbonic anhydrase 12 (CA12), 

transcription factors SPDEF, FOXC1, and ELF5, sodium channel epithelial subunit, SCNN1A, and 

pyridoxyl kinase, PDXK (Fig. 1C). FOXA1 and, MLPH are among other genes annotated as being 150 

more highly expressed in luminal cells compared to basal cells, and vice-versa for ELF5, in studies 

of mouse mammary glands 12.  

 

FOXA1 has recently been highlighted as a potentially useful marker for triple negative breast 

cancer 13, and its expression has been suggested to act as a repressor for a subset of basal signature 155 

genes 14. The association of FOXA1 and triple-negative status has not previously been examined 

in DCIS, and reports thus far have dismissed a role for FOXA1 as a subtype marker for DCIS as 

no correlation could be seen with protein expression and that of ER 15,16. Here we also observed 

that FOXA1 expression does not systematically differ between ER+ and ER- samples, and its 

reduced expression is only associated with the basal-like TN samples. The substantial overlap 160 

between TN-associated markers identified here, and those found by other studies on invasive breast 
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cancer (including MLPH, CA12, FOXA1, SPDEF, FOXC1), suggest there is a clear distinction of 

this subtype even at the pre-invasive stage 17-19.  

 

Fig. 1 Triple negative DCIS has a transcriptome distinct from other DCIS subtypes.  UMAP 165 

plots illustrating expression patterns in 1414 DCIS samples by (A) AIMS subtype, (B) 

ESR1/PGR/ERBB2 gene expression, and (C) expression of genes that correlate with triple negative 

status in DCIS. 

 

Two gene networks dominate expression differences between co-occurring DCIS and early 170 

invasive breast cancer  

We sought to leverage our extensive datasets to  identify transcriptional differences between DCIS 

and co-occurring IDC. This would act as a starting point in identifying genes that may be related 

to the progression towards IDC. We compared the two tissue types from DCIS + IDC patients, 
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(only for those where we had useable data for both tissue types within a patient), N = 33. Using 175 

this criterion, we aimed to compare samples that were most closely matched to minimise inherent 

inter-patient variability. We carried out differential expression analysis between the two tissue 

groups and found 401 significantly differentially expressed genes (DEGs). Taking the 53 genes 

with an Adj. P value < 0.00001, we used STRING 20 to examine their connectivity. We were 

surprised to find that the genes formed two main, highly interconnected networks, with very few 180 

unconnected genes (Fig. 2A). Gene Ontology (GO) term analysis on these two networks revealed 

an enrichment for upregulated (in IDC over DCIS) genes involved in both extracellular matrix 

(EM) organisation (FDR 2.5E-16, Fold Enrichment; 29) and cell adhesion (FDR 1.8E-6,  Fold 

Enrichment; 7) and down-regulated genes associated with both epidermis development (FDR 

5.3E-8, Fold Enrichment; 18) and epithelial development (FDR 1.6E-06, Fold Enrichment; 7). 185 

Specific genes included in each cluster network are frequently associated with these processes, 

such as FN1 (Fibronectin) and the collagen genes (COL1A2, COL1A1, COL12A, COL3A1, 

COL5A2). Other genes, such as MMP11 (matrix metalloproteinase 11) and POSTN (Periostin) are 

involved in epithelial cell adhesion and migration, and THBS2 (Thrombospondin 2), a mediator of 

cell-cell and cell-matrix interactions. The second cluster network includes DSC3 and DSG3, 190 

reported to be expressed only in myoepithelial cells within the basal cell layer, KRT5, KRT14, 

KRT6B and KRT15, markers for basal epithelial cells, and KLK5 and KLK7, considered to be 

involved in desquamation 21. We noted a substantial overlap between genes in this cluster and 

those found to be differentially expressed in basal cells (as compared to luminal cells) in mouse 

and human mammary glands 22,23. Considered together, these data could suggest that the 195 

expression changes we observe in the down-regulated genes may be reflective of a loss in the basal 

compartment of the duct. Carrying out the same differential analysis on a per subtype basis had 
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limited statistical power for all but the Luminal A subtype, due to the reduced sample sizes (Her2 

N = 6, LumB N = 3, Basal N = 3, Normal Like N = 3). However, we did find many of the 53 genes 

from the combined analysis also ranked highly in the individual subtype analyses, with Basal 200 

patients sharing the least (DEGs can found in Table S5). 

 

 

 

 205 

 

Fig. 2 Differentially expressed genes between DCIS and co-occurring IDC. (A) String 

connectivity with k-means clustering [3 clusters] of the top 53 significant genes. (B) Expression 

distribution for example genes that showed a progressive shift among different tissue groups.  

The Spearman rank correlation (between expression and ordered tissue groups) is given as r = rho. 210 
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A pseudo 8timeline9 of DCIS progression from normal epithelium to IDC 215 

Given the strong presence of just two dominant processes that appeared to be contributing to the 

transition from DCIS to IDC, we examined how the integrity of the basal layer and the EM may 

differ in our other tissue types, or disease statuses (Pure DCIS or Not Pure DCIS).  Looking at 

these same 53 genes we noted in some cases a progressive shift from expression levels in normal 

ductal tissue to that seen in IDC (Fig. 2B and fig. S3). Interestingly, for some genes, some DCIS 220 

samples displayed an expression pattern that was more reflective of normal epithelium while others 

more closely resembled IDC, even if the samples were isolated from the same patient. This led us 

to hypothesize that some DCIS samples are more closely related to their normal counterparts and 

others more related to their invasive counterparts, and that perhaps this indicated a possible 

continuum of tissue states represented during disease progression, within an individual patient. 225 

 

To explore this idea, we used these same 53 selected genes that best separated DCIS from IDC 

(Adj.P <0.00001) to perform a pseudo-time analysis using a fitted principal curve onto a PCA plot 

of all our samples (Fig. 3A). We saw that the normal and benign epithelial tissue samples 

aggregated towards one end of the fitted curve and IDC tissue and DCIS with co-occurring IDC 230 

clustered at the other., despite the normal and atypia samples not factoring into the selection of 

these genes. We then ordered all tissue samples, normal, benign, atypia, DCIS and IDC, by their 

projection onto the principle curve, creating a pseudo-timeline. We created a heatmap showing 

expression changes for these genes along the pseudo-timeline, with sample order matching that 

from the projected principal curve (Fig. 3B). This 8timeline9 of early breast cancer seemed to reveal 235 

how fundamental processes were associated with progression toward invasive disease.  Position 

along the timeline was independent of ER/PR/Her2 status. Moreover, triple negative samples, 
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despite clustering away from other samples on a UMAP when using all genes (Fig, 1A), or even a 

UPMAP created with just these 53 genes (fig. S4), did not drive the separation on a PCA. This 

analysis therefore captured the major expression changes shared across most patients, rather than 240 

any particular subtype. We observed a gradual loss of expression for genes involved in the 

epidermis/epithelial development, as we transition from the more normal-like/early-stage DCIS to 

the later stage DCIS samples and IDC samples. This suggests a progressive breakdown of 

epithelial architecture, most likely reflecting a loss of integrity in the basal epithelium. 

We carried out XCell analysis 24 to look for changes in cell type contributions that may occur along 245 

this transition, and found further support for epithelial loss with a gradual decline in the enrichment 

for epithelial cells within each sample when placed in the order of the timeline (fig. S6).  
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 Fig. 3  Generating a pseudo-timeline for DCIS. (A) PCA plot based on the most significant 250 

(p<0.00001) DEGs between DCIS and co-occurring IDC. All samples and their fitted principal 

curve shown (left), or with their projection onto the curve (right). (B) Heatmap showing expression 

of each of the 53 genes with samples ordered by their projection to the Principal Curve. Top bars 

indicate AIMS subtype classification, ERBB2, PGR and ESR1 status, age of patient at the time of 

consent, tissue classification group for each sample, and patient distribution. Relative expression 255 

is provided as log2 CPM minus the mean log2 CPM for each gene. E1 – E2 indicate the Early 

stage and L1 – L2 indicates the Late stage. The 8*9 assigned for 8Yellow Not Pure DCIS9 and 

8Orange IDC9 indicates samples used in the analysis comparing gene expression of DCIS vs IDC 

for co-occurring patients. 8Blue Not Pure DCIS9 and 8Red IDC9 are from tissue biopsies that did 

not have co-occurring DCIS and IDC in the same sections and were therefor not used for this 260 

expression analysis. (C) Boxplots illustrating per sample expression data for highly differential 

genes found when comparing samples in the Early group (E1-E2) with those in the Late  group 

(L1-L2). Differential expression analysis was done using limma-voom and p-values were adjusted 

for multiple testing using Benjamini-Hochberg correction. Centre line represents the median, box 

limits represent upper and lower quartiles, whiskers represent 1.5x the interquartile range. Each 265 

point represents a sample. 

 

 

To understand better the changes that occur just within DCIS as they progress closer to the 

transcriptomic patterns of IDC, we compared  DCIS samples from the early part of the time line 270 

(Fig. 3b E1-E2) with DCIS samples from the later part of the timeline (Fig. 3b L1-L2) we found a 

number of smooth muscle related genes were down regulated in the later stages with TAGLN, 
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CALD1, MYL9 and ACTA2 being most significant (Fig. 3c, Table S5). In addition, along with the 

Collagen genes Col1A2 and Col3A1. LUM (Lumican), encoding a small leucine-rich proteoglycan 

found to be associated with EMT, invasion and metastasis 25, and HTRA3 (High-Temperature 275 

requirement Factor A3) were found to have the greatest fold change (Fig. 3c). Caldesmon (CALD1) 

has recently been shown to be upregulated in the epithelium of mammary ducts in both mice and 

humans during lactation 26 however its role in the progression of DCIS to IDC has not previously 

been shown. To visualise the protein distribution in samples representative of different stages of 

the time line we carried out imaging mass cytometry (IMC) (Fig. 4).  280 
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Fig. 4 Imaging Mass cytometry of ductal regions from Patient sample CBZ (LumA subtype).  

The single slide was analysed in one continuous scan and magnified regions retained the same 

intensity threshold. (A) shows the H&E section, this same section was destained and used for IMC. 

Boxed areas indicate the corresponding magnified regions shown in Ai,ii and iii. (B) shows E-285 

Cadherin and SMA, with corresponding boxed areas for i, ii and iii. (C) Shows CK14 and nuclear 

stain DNA-191, with corresponding boxed areas for i, ii and iii.  (D) shows Caldesmon and 

Lumican and (E) shows SMA and Caldesmon, with corresponding boxed areas for i, ii and iii. 

Numbers on the H&E images indicate regions with expression data from adjacent sections. (F) 

shows the relative gene expression of Cald1 and Lum (as in Fig.3B) with all samples ordered along 290 

the timeline. Numbers above and below pair up with numbers in (A) and mark the position on the 

Timeline for the two (adjacent) data points corresponding to each region.  

 

 

 295 

As can be seen from the representative slide shown in Figure 4 (where all images are taken from 

a single slide imaged in one continuous scan),  protein staining for Cald1,  Smooth Muscle Actin 

(SMA), and to a lesser extent Cytokeratin 14 (CK14) appear to overlap in localization,  and the 

level of intensity, representative of  ion count, is comparative to the relative RNA expression level 

within the corresponding lesions from the adjacent tissue section (Fig. 4F). Those regions located 300 

early in the time line (4, 5, and 6 – parts ii from Fig. 4) have a relatively intact layer of Cald1-

expressing cells surrounding the duct, whereas regions further along the timeline (1, 2, 3 and 7 – 

parts i and iii from Fig. 4) show a much more broken or absent layer of Cald1-expressing cells. 

Regions towards the very end of the timeline (8 and 9 – parts iii) are starting to upregulate Cald1 
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expression and this can be visualised in areas around the duct.  The underlying reason for this 305 

observation remains unknown however. It is possible that Cald1 is staining fibroblast cells 

surrounding the ducts, as this marker is frequently associated with this cell type 27 . Cald1 positive 

cells located around regions 8 and 9 (Fig. 4Eiii) may be an alternative form of cancer associated 

fibroblast (CAF), noted to have a different staining pattern with SMA compared to other regions. 

This is supported by a recently published study describing a shift in fibroblast phenotype, from 310 

normal fibroblasts lining the DCIS ducts, to cancer associated fibroblasts lining DCIS ducts in 

patients that later developed IDC9.  A prior study on glioma neovascularization has also described 

differential expression of splicing variants of Cald1 in tumour vessels as compared to normal 

vessels, resulting in upregulation at the protein expression level within the tumour. This was seen 

to be correlated with a down regulation of the tight junction proteins occludin and Zo-1 – important 315 

regulators of mammary epithelia permeability 28. As our RNAseq data was not able to reveal 

transcript variants, we cannot yet attribute this change in expression towards the later end of the 

Timeline to any particular splice variants. Protein expression for Lumican also appears to follow 

the trajectory indicated by the timeline, however in this patient, is strongest in the earlier parts of 

the timeline.  320 

Previous studies have suggested a similar breakdown of myoepithelium during the progression 

towards IDC, using human breast cancer cell lines and a few select markers 29, and very recently 

a study of  human breast tissue with known markers of myoepithelial cells9,, lends support to the 

broader set of expression changes that can be referenced to our timeline.  

 325 
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The epithelial to mesenchymal transition marks both the early and late stages in the timeline 

The timeline revealed a wave in expression of genes relating to the extracellular matrix and cell 

adhesion,  suggestive of a migratory phenotype, initiating relatively early along the continuum and 330 

one later, coinciding with the inclusion of the IDC samples (see Fig. 3B).  As prior studies 30 have 

indicated that multiple DCIS lesions within an individual patient may be of shared origin, one 

might imagine that an early loss of adhesion might facilitate spread throughout ductal networks, 

indeed ~40% of patients with a DCIS diagnosis, are found to have multifocal disease 31, as defined 

by more than one distinct site of DCIS.  Subsequent proliferation and filling of ducts may see a 335 

return of cell adhesion with a loss of this property again preceding or coinciding with invasion.  

 

To gain a greater understanding of processes that could be occurring along the timeline, we applied 

the entire transcriptome, to the MSigDB Hallmarks database to look for gene set signatures. We 

found the expression pattern of genes associated with the Epithelial to mesenchymal transition 340 

(EMT) hallmark signature to closely mirror many of those genes in our time line (Fig. 5A and 

fig.S8), and also reflected the position of the principal curve along PC2 in our PCA (see Fig. 3a).  

It has long been proposed that cells within DCIS lesions undergo an EMT along their path toward 

invasiveness, however, the ability to position our samples along a disease trajectory has allowed 

us to detect that EMT not only occurs in samples along the timeline at the transition to invasive 345 

disease, but also at a second time, much earlier in the disease timeline, when the epithelial 

architecture surrounding the duct presumably remains intact (region E1 to E2 of Fig. 3B).  

 

The emergence of EMT at very early time points in disease could suggest that cells require this  

process to migrate though the ductal system, disseminating and forming multifocal DCIS. 350 
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Following an early dissemination phase, cells may again adopt a more epithelial character as they 

become proliferative, with a later acquisition of mesenchymal features coinciding with exit of 

tumour cells from the duct. The possibility of both an early and late EMT phase could be something 

to consider when using EMT markers to group DCIS cells into those that may be pre-invasive 

versus more indolent.  EMT potentially occurring twice during the progression from normal 355 

epithelium to IDC might suggest that it is alone insufficient to enable invasion but that it must be 

coupled to breakdown of the myoepithelium for transformed cells to escape from the confines of 

the duct. 

 

Cell proliferation increases after the early EMT phase 360 

We also identified additional processes within the MSigDB Hallmarks database that were not 

represented by our 53 Timeline genes, yet  still correlated with changes in tissue states along the 

path between normal epithelium and invasive disease. We observed what appeared to be an altered 

regulation of the G2/M checkpoint signature in the early stages of the timeline (fig. S7), however 

only a subset of genes were actually contributing to the signal. On closer examination we found 365 

that these genes were all associated with proliferation, including genes identified as being key to 

the proliferation signature (MYBL2, BUB1 and PLK1) 32. This increase in expression of 

proliferation genes appears to initiate just after the first peak in expression of EMT related genes 

(Fig 5B), supporting the notion that after migration through the ducts, cells resettle proliferate as 

they occupy new sites.  370 
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         375 

 

Fig. 5 Predominant Hallmark signatures that vary along the timeline.  

 (A)  Single sample GSEA (ssGSEA) score for the Epithelial to Mesenchymal transition Hallmark 

signature. Samples are ordered according to the projected principle curve. (B) Heatmap showing 

expression of key proliferation genes (CCND1 – Top2A) and key EMT (CDH2-SNAI2) genes. 380 

Samples were ordered according to the projected principal curve. Relative expression is provided 

as log2 CPM minus the mean log2 CPM for each gene.  

 

Reduced expression of GLTSCR2 and perturbation of ribosomal biogenesis  is an early DCIS 

event  385 

As we generated what appeared to be a progression timeline, we next sought to identify genes that 

may be altered during the earliest stages of disease initiation. For this we focused first on the DEGs 

between all normal (hereafter normal refers to the non-neoplastic normal and benign tissues) tissue 

samples and all Pure DCIS (with the notion that Pure DCIS samples are less likely to be influenced 

by the transcriptional changes that come with the presence of IDC) . We then looked for shared 390 

genes also significant between normal and DCIS only using samples in the very early part of the 

timeline (prior to E1 in Fig. 3). In doing this we retained the added strength of a large data set by 

using all samples, but removed the strong expression signature that arose from the onset of 
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increased proliferation and EMT (that came after E1 in Fig. 3) . We found GLTSCR2, also known 

as PICT-1, to be the most significant DEG when using all normal and all Pure DCIS samples (FC; 395 

1.7 Adj. P; 2.8e-69) and more highly expressed in the normal tissue samples (fig. S9). This was 

also one of most significant DEGs in the very early timeline samples (FC; 0.9, Adj. P; 1.6e-14). 

GLTSCR2, is thought to act as a tumour suppressor 33,34 and has been shown to translocate to the 

nucleoplasm, provoked by ribosomal stress, where it interacts with, and stabilizes, p53 to inhibit 

cell cycle progression 35. Decreased expression was seen to delay DNA repair and abolish G2/M 400 

checkpoint activation 33. The ribosomal proteins RPL5 and RPS6 are, after GLTSCR2, the most 

significantly down regulated genes when comparing all Pure DCIS samples with all normal ductal 

tissue, (FC; 1.3e-66 and 1.1e-57 respectively), and both genes were also among the most 

significant DEGs when comparing samples from the very early timeline.  In addition to their role 

in the ribosome, RPL5 and RPS6 have been shown to be essential for the activation of p53 in 405 

response to DNA damage 36. Pairing the top 100 DEGs between all Pure DCIS and all normal 

samples, with highly significant DEGs (Adj. P < 1e-10) from the same comparison using only the 

very early samples, we found 44 overlapping genes, with 19 of these related to ribosomal 

biogenesis (Table S1). Although ribosomal proteins appear to function in a variety of different 

ways, there is increasing evidence for their role in tumour development 37,38, and it is possible that 410 

what we are observing at the early stages of the timeline could reflect their involvement in the 

initiation of DCIS. In addition to ribosomal-related genes, we also observed a significant down 

regulation of the transcription factor NFIB, encoding the Nuclear Factor I B, in DCIS samples, 

with this gene being the most significant DEG when comparing DCIS with normal epithelium 

samples taken from the very early timeline (FC; 1.3e-28) (fig. S9). NFIB is part of the NFI gene 415 

complex, together with NFIA, NFIC and NFIX and recent work has described NFIC as being a 
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regulator of ribosomal genes within the pancreas 39. However, the ribosomal genes affected by 

NFIC share very little in common with the genes we find most differential in our analysis, and as 

yet no other work has associated NFIB with modified expression of ribosomal genes, thus the 

expression changes here could be reflective of an additional process in early disease.   420 

Current understanding of the transcription factor, Nfib, in breast cancer associates the over 

expression of this gene with metastasis 40,41, however, it has also been demonstrated using a 

prostatic mouse model that heterozygous and homozygous loss of Nfib can lead to epithelial 

hyperplasia 42.  RNAseq analysis from this same study, comparing NFIB-/-  to NFIB+/+ prostatic 

grafts, identified 138 DEGs, some of which, such as FOXC1 and SOX10, are also differential in 425 

our analyses of both early timeline samples, and in all normal vs DCIS samples, suggesting a 

shared role for Nfib in both prostate and mammary epithelial tissue.   

 

Progression along the disease timeline follows divergent paths depending on hormonal status 

In contrast to the early stages of disease, we see a divergence in dominant hallmark signatures later 430 

in the Timeline when we look at samples grouped by oestrogen receptor status (fig. S7). Not 

surprising the Oestrogen Response signatures are up in ER+ samples as they progress closer to 

IDC, and this is not observed in ER- samples. The later stage of the timeline for ER- samples 

appears to engage an immune response as reflected by a substantial rise in both the Interferon 

Gamma and Interferon Alpha response signatures. We also see a reduction in the Oxidative 435 

Phosphorylation signature in ER- samples. 
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Potential indicators of progression competence within early-stage lesions 440 

The ability to discriminate DCIS lesions that have a higher potential to progress to invasive disease 

would have enormous impact in the clinic. We therefore asked whether we could identify 

indicators of progression potential that could be used even if a patient presented with DCIS and no 

evidence of invasive disease. The position of a patient9s DCIS sample along the timeline did not 

appear to be indicative of that patients9 diagnosis, i.e. Pure DCIS or IDC (mean difference in 445 

position on the timeline between Pure DCIS and Not Pure DCIS – 130; p-0.11; Welch two sample 

t-test), this is in contrast to a recent study, describing Pure DCIS patients as having a less intact 

myoepithelium as compared to those that later developed IDC9, indeed we did not see an 

enrichment for Pure DCIS patients in the later end of our timeline where samples display reduced 

expression for epithelial related genes 43. Having the transcriptomes of micro-dissected lesions 450 

ordered along a timeline of progression however, offers the opportunity to probe a more 

comprehensive dataset with unbiased markers. Given that our timeline indicates a distribution of 

DCIS expression phenotypes, we examined DCIS samples from three groups:  those 8early9 in the 

timeline (region E1 to E2, Fig. 3B), in the middle of the timeline (between E2 and L1) and late in 

the timeline, adjacent to the IDC-enriched region (region L1 to L2). Comparing the transcriptome 455 

of Pure DCIS to Not Pure DCIS revealed 308 DEGs for samples within the early part of the 

timeline, 206 for the mid region, and just 90 for the late stage of the timeline.  The difference in 

the number of DEGs as we progress along the Timeline supports our ordering of samples and 

suggests that the distinction between samples derived from Pure DCIS patients and patients where 

DCIS is associated with invasive disease becomes less apparent as the disease progresses along 460 

the timeline. This might be expected if lesions are converging on a phenotype similar to that of 
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invasive disease. Interestingly, comparing DCIS samples with IDC samples, both from the very 

late region of the Timeline (past L2) found no consistent DEGs.  

 

To search for potential markers that could distinguish patients who would be more or less likely 465 

to progress to IDC, we first looked at the early region of the timeline, comparing samples from 

those patients with Pure DCIS to those patients who were diagnosed with IDC  (concurrent, or at 

any timepoint after the biopsy was taken) – NOT Pure DCIS . We identified DEGs where the DCIS 

samples associated with an IDC diagnosis had a bimodal or skewed distribution of expression 

values, and the samples from Pure DCIS patients had an oppositely skewed pattern. We identified 470 

7 such genes: CAMK2N1, MNX1, HOXC10, HOXC11, ADCY5, ANKRD22, and HOTAIR. All 

showed a distribution of expression values that were lower in the DCIS associated with IDC 

samples as compared to Pure DCIS (Fig. 6A).  If these genes were early indicators of progression 

potential, one might imagine that their expression changes would be enriched among all DCIS 

samples as they became more similar to IDC along the timeline.  We therefore compared the 475 

distribution of expression values in all DCIS samples from the early part of the timeline (region 

E1 to E2, Fig. 3B) to all DCIS samples from late in the timeline (region L1 to L2). To differing 

degrees, all except CAMK2N1 showed a general decrease in the distribution of expression values 

in later stage samples (as defined by the timeline, Fig. 6A).   

 480 

Differences in the distribution of expression values for CAMK2N1 were exclusively linked to 

patient status (Pure DCIS versus Not Pure DCIS). Its expression remained discriminatory in all 

stages of the timeline, though it did not reach significance in later stages. This gene encodes a 

recently identified inhibitor of Calcium/calmodulin-stimulated protein kinase II, a protein thought 
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to be involved in various cellular processes including cell proliferation, mammary gland lumen 485 

formation, and cancer cell metastasis. Expression of this protein kinase (CAMK2) is also predictive 

of poor breast cancer patient prognosis 44. CAMK2N1 itself has been reported as a prognostic 

marker for ovarian cancer 45 and plays a tumour suppressive role in prostate cancer 46 and glioma 

47, and in comparing all Pure DCIS with all other DCIS samples, is significantly down regulated 

in Not Pure DCIS samples (Fig. 6B). 490 

 

HOXC11, HOXC10 and MNX1 each contain a homeobox domain, and HOTAIR is an antisense 

RNA whose source locus is found within a cluster of HOXC genes, between HOXC11 and 

HOXC12. Homeodomain proteins function as transcription factors, regulating gene expression and 

cell differentiation during development, and have been frequently associated with cancer 495 

progression, where they are either up or down regulated, depending on the Hox family member 

and cancer type. A recent study modelling the growth expansion of DCIS posited an initial rapid 

expansion phase, followed by a long-term steady phase were cells were predicted to be in a cell 

density induced quiescent state 48. Notably, down regulation of HOXC10, HOXC11 or MNX1 has 

been reported to reduce cell proliferation in a variety of different cancers 49-52, so could suggest a 500 

possible quiescent state prior to invasion. Similarly, knockdown of  the  ankyrin repeat domain 22 

gene, ANKRD22,  inhibited the proliferation, invasion and epithelial-to-mesenchymal transition of 

breast cancer cells 53, and a number of studies have reported high levels of expression being 

associated with poor outcome in non-small cell lung cancer 54 and prostate cancer 55, an inverse 

correlation to what we observe here with a ductal in situ disease. The adenylate cyclase 5 gene, 505 

ADCY5, is thought to be regulated by the tumour suppressor gene FOXP1, and knockdown of 
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FOXP1 was followed by a significant upregulation of genes attributed to chemokine signalling 

pathways, including ADCY5 56.  

 

HOTAIR has previous been identified as a segregation marker between two clusters of DCIS 57, 510 

however this prior study noted that an upregulation of HOTAIR was associated with a more 

8aggressive9 cluster of DCIS. This aggressive cluster however, was predominantly triple-negative 

disease, whereas our groups were not segregated by subtype, and the DCIS samples in the latter 

part of our timeline were predominantly not triple negative. Other studies have reported an 

upregulation of HOTAIR when comparing human cancers to adjacent non-cancerous tissue 58, and 515 

we also found that this LncRNA showed lower expression in our normal epithelium samples, albeit 

at levels similar to what we see in the DCIS associated with IDC samples from the early part of 

the timeline. . 

 

As HOXC10, HOXC11 and HOTAIR loci are closely linked on the same chromosome, it seemed 520 

possible that the changes in expression that we observe could have resulted from copy number 

loss; however, we do not see a similarly reduced expression for HOXC12 or HOXC8, the two 

adjacent genes.  

 

To provide a foundation for future validation studies, we wondered whether we could use any 525 

combination of these markers to associate patients from this study, with the presence of IDC. We 

formulated a decision tree, focusing on protein coding genes which may be more routinely 

evaluable clinically. Because of its ability to segregate the samples from the Pure DCIS group from 

the Not Pure DCIS group in all timeline categories, we placed CAMK2N1 at the top of the tree, 
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separating high and low expression categories. We then explored different ways of using 530 

information on the expression of MNX1, HOXC11, ANKRD22, and ADCY5, as in no scenario did 

HOXC10 seem to add additional discriminatory power. We found that simply tallying the number 

of these 8progressor9 genes that were down-regulated enabled us to bin patients into groups within 

the decision tree.  These 4 markers, plus CAMK2N1, enriched for patients who did not progress to 

IDC by 3.6-fold using the criteria of  0 - 1 gene down regulated and CAMK2N1 high (Lower 535 

Hazard group)  (36% vs 10%, -  patients from the Pure DCIS group vs patients with an IDC 

diagnosis), whereas 3-4 genes down regulated or CAMK2N1 low (Higher Hazard group) enriched 

for patients that received a diagnosis of IDC by 1.7-Fold (71% vs 42% - patients with an IDC 

diagnosis vs patients from the Pure DCIS group) (fig. S10). This difference within the Higher 

Hazard category, may suggest that many more patients might have progressed to IDC had they not 540 

been treated. This percentage is consistent with current research suggesting that between 13-53% 

of patients with untreated DCIS will progress to invasive disease 59.  Interestingly, we noticed that 

the majority of Her2-positive patients in the Pure DCIS group fell into the Low Hazard group  (6 

out of 8); however, we did not see this enrichment in the Not Pure DCIS group. Previous studies 

have noted a higher proportion of Her2-positive DCIS cases compared with that seen in invasive 545 

disease, and it has previously been suggested that a Her2 DCIS may actually be less likely to 

progress to IDC 60, our findings here would support this hypothesis. We next sought to identify 

additional markers that could segregate the Lower Hazard group, further differentiating those 

patients with Pure DCIS from those diagnosed with IDC. We found SCGB2A1, encoding 

Mammaglobin B, to be significantly differential between the two groups and able to provide 550 

further discrimination between patients (Fig. 6B). High expression of SCGB2A1 was frequently 

associated with high expression of SCGB2A2 and SCGB1D2, encoding Mammaglobin A and 
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lipophilin B. Expression differences at both the RNA and protein level of SCGB1D2 have also 

been observed in a prior study of 24 patients, comparing DCIS with and without progression to 

IDC5. All three proteins are members of the secretoglobin superfamily and are known to be 555 

upregulated in breast cancer, with SCGB2A2 and SCGB1D2 forming a multiprotein complex 61. 

Using this additional marker, we were able to place 29% of Pure DCIS patients into the Lower 

Hazard group whereas just 3% of those with IDC fell into the Lower Hazard group (Table S2 

shows expression values for high and low expression of each gene). Taking the subset of patients, 

where we found only DCIS in our tissue biopsy (DCIS with IDC patients and Pure DCIS patients), 560 

and blinded by any diagnosis of IDC from other tissue biopsies from the same patient, we were 

also able to discriminate those who had been diagnosed with IDC using our markers (Fig. 6C). 

 

We next sought to understand why some patients with Pure DCIS, while being grouped into the 

Higher Hazard category, according to our marker set, had however, not been diagnosed with IDC. 565 

For this we first compared all patients high for CAMK2N1 and low for SCGB2A1, with reduced 

expression of 3-4 progressor genes (N = 25 patients diagnosed with IDC; N = 7 patients with Pure 

DCIS). We found PHGR1, THRSP and SERPINA5 to be highly differential between the two 

groups, with increased expression in Pure DCIS (Fig. 6B and Table S3). Although these genes 

were frequently co-expressed, we found THRSP able to best segregate the Pure DCIS patients from 570 

those patients diagnosed with IDC (Fig. 6C). We did not find this gene to be additionally 

informative for any other group on the decision tree. THRSP encodes the Spot14 (S14) protein, 

which regulates fatty acid synthesis in mammary epithelial cells 62. Over expression of this protein 

was seen to reduce the tumour latency period in mice and increase proliferation; however, this 

same study showed an overwhelming reduction in lung metastasis in these same mice compared 575 
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to controls or THRSP knockout mice. This gene, along with other genes involved in fatty acid 

biosynthesis, was also found to be down regulated in invasive growth compared to in situ growth 

in a mouse model of DCIS63. Similarly, upregulation of SerpinA5 has been linked to reduced 

metastatic and invasion potential in both ovarian and breast cancer 64,65. Comparing Pure DCIS 

with Not Pure DCIS for all samples with reduced expression for 3-4 progressor genes we found a 580 

number of DEGs (Table S3) previously associated with invasion and metastatic potential that were 

expressed at consistent levels (correlating with reduced metastasis) for all Pure DCIS samples, 

including SERPINE2 and SLPI, both genes found to influence metastasis and contribute to vascular 

mimicry in a mouse model of breast cancer 66. These Pure DCIS samples were also predominantly 

located in the later stage of our timeline (L1-L2 region), suggesting they may lie at the point when 585 

they need to acquire the capacity to leave the duct as the next step in their progression. 

 

The functional diversity of these markers may indicate that multiple factors must come together 

for DCIS to progress to invasive breast cancer. Although we have proposed possible progression 

markers that will require more extensive validation, it still remains to be seen whether, and how, 590 

each of these may play a role in this disease. A recent study 7 also looking at potential biomarkers 

of DCIS progression, identified the genes FGF2, GAS1 and SFRP1 as being markers of in situ 

progression, suggesting their downregulation contributed to the invasiveness of epithelial cells. In 

support of this we also see that these 3 genes are notably down regulated as samples are arrayed 

along the timeline. These previously described genes, although discriminatory between DCIS at 595 

early, and DCIS at later points on the timeline, were not differential between Pure DCIS patients 

and DCIS patients diagnosed with IDC, at any time point on the timeline.  
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Fig. 6 Genes displaying potential as indicators of progression from DCIS to IDC. (A) 600 

Cumulative frequency plots for differential genes between early timeline Pure DCIS and early 

timeline Not Pure DCIS. X axis shows the gene expression in log2 counts per million (CPM), Y 

axis shows the cumulative fraction of samples with the corresponding expression value or lower. 

Significance values reflect the Fisher9s test for a difference between cumulative fraction of all 

early DCIS compared to all late DCIS. (B) Expression of i. CAMK2N1 for all DCIS samples,  ii. 605 

of SCGB2A1 for all patients in the Low Hazard group – 1 progressor gene down regulated and 

CAMK2N1 high, and iii. THRSP for all patients 3-4 progressor genes down regulated, CAMK2N1 

high and SCGB2A1 low. Centre line represents the median, box limits represent upper and lower 

quartiles, whiskers represent 1.5x the interquartile range. Each point represents a sample. 

 (C) Separation of patients with no IDC identified in our tissue sample. 31 patients were never 610 

diagnosed with IDC after 10+ years, 53 patients were diagnosed with IDC in a secondary biopsy. 

Black/ white regions reflect the proportion of patients with each diagnosis (Pure DCIS vs with 
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IDC) within each node. Boxes in the low THRSP layer reflect the number of  THRSP low patients 

from the node above. 

 615 

Discussion 

Though widespread screening for breast cancer has detected disease in many more women at an 

early stage, a corresponding decrease in breast cancer deaths has not been forthcoming. (Breast 

Cancer Facts and Figures 2019-2020 – American Cancer Society).  Instead, many more women 

are receiving treatment for non-invasive disease, which may include chemo- or radiotherapy, 620 

coupled with breast-conserving surgery or mastectomy. Numerous studies indicate that a 

substantial fraction of women with a diagnosis of DCIS would never progress to life-threatening 

invasive disease67,68. Therefore, many women are being needlessly overtreated using therapies 

with significant and long-term deleterious side effects.  This realization provokes an urgent call 

for a better understanding for the development of DCIS and ways to discriminate those who will 625 

progress to invasive disease, and thus require more aggressive treatment, from those who are 

unlikely to do so and who may opt for less extensive interventions.  Our transcriptomic analysis 

of this large data set has enabled us to identify processes that may characterize the progression of 

DCIS from initiation to invasive disease and to identify candidate biomarkers, which may be 

associated with  progression. Though these particular markers will need to be validated in 630 

independent and larger cohorts, the generation of these hypotheses illustrates the utility of this 

large-scale dataset for the broader community.   

 

 

 635 
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Methods 

Extended material and methods information is available within the relevant sections within 

supplementary information. 640 

 

Material collection 

Freshly frozen tissues were donated for research by a cohort of women having undergone a 

medically indicated diagnostic breast core biopsy, following an abnormal mammogram with 

suspected malignancy. Multiple adjacent sections were cut from each tissue core. Guided by 645 

pathological annotation, regions of IDC, DCIS, atypia, benign, and normal epithelium were 

isolated by laser-capture micro-dissection with regions of the same individual lesions taken from 

3 adjacent sections. RNAseq libraries were made using the SMARTer ultra-low RNA kit V3 

(Takara Bio USA, Mountain View, CA, USA).  and analysed individually (i.e., lesions from 

adjacent sections were not pooled) from each sample region and were quality filtered. A total of 650 

2222 libraries from 143 patients passed our quality metrics and were taken forward for subsequent 

analyses (Table S4). Each sample was classified into the generally accepted subtype groups 

(Luminal A, Luminal B, Basal-like, Her2-enriched and Normal-like) using Absolute Intrinsic 

Molecular Subtyping (AIMS) (fig. S1) 10.  

 655 

Patient and sample group assignment 

Patients were assigned to one of four categories; Pure DCIS - where ipsilateral IDC had not been 

reported in the patient, neither at the time, nor in follow up appointments during more than 10 
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years since original diagnosis (details Table S4), N = 31; DCIS+IDC - Where the biopsy dissected 

featured both DCIS and IDC lesions, N=45; DCIS with IDC - Where the biopsy dissected only 660 

featured DCIS however the patient had been diagnosed with IDC (from clinical or pathology 

biopsies, or at a later time), N = 55; IDC – where no DCIS was found in the dissected biopsy, but 

had been diagnosed in additional biopsies; N = 2. Or where no DCIS was diagnosed in any of the 

biopsies N = 4. normal epithelium, benign ducts, and atypia were taken from the same biopsies as 

above where present in the section or from additional patients diagnosed with DCIS in other 665 

biopsies (fig. S2 shows clustering of all samples). Samples coming from patients in categories 

DCIS+IDC and DCIS with IDC are collectively grouped as 8NOT Pure9.  

 

Differential expression analysis 

Differential expression analysis was done using Limma-Voom, due to its ability to handle large 670 

datasets and replicate measurements for the same sample. First, expressed genes were selected by 

the 8filterByExpr9 function.  Calculation of normalization factors was carried out using the TMM 

method. To correct for multiple samples coming from the same patient, we used a double 8voom9 

approach, including a 8duplicationCorrection9 step with blocking based on patient. Fitting was 

done using 8ImFit9 (with blocking and correction applied if applicable), followed by construction 675 

and calculation of contrasts using 8contrast.fit9 function followed by 8eBayes9. A gene was 

considered to be differentially expressed if the Benjamini-Hochberg adjusted p-value was <0.05. 

 

Pseudo-time analysis 

A differential expression analysis was carried out as described, between DCIS and IDC samples, 680 

taken from only those patients with data from both tissue types. This was followed by a Principle 
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Component Analysis (PCA) using only the most significant genes (p<0.00001, n=53). Remaining 

samples for DCIS, IDC, normal, benign and atypical epithelium, were then embedded onto this 

PCA to reveal the major patterns in the data and avoid grouping solely based on patient. Since the 

different tissue types were positioned on the PCA in a biologically meaningful order, we fitted a 685 

principle curve to the data and projected the samples onto the curve to arrange them by their 

predicted pseudo-time order. Linear methods such as ordering along PC1 have previously worked 

well for single cell data69 and we did not expect to be able to describe bi- or multifurcation events. 

We chose a principal curve over using PC1 to order the samples due to its ability to capture the 

expression wave along PC2. We note that arranging the samples according to their position on a 690 

UMAP embedding resulted in largely the same order (see fig.S5).  

 

Gene set enrichment analysis 

The R Bioconductor package RITAN (v.1.10.0) was used for gene set enrichment analysis using 

the MSigDB Hallmarks database. All protein-coding genes were used as a background. Terms 695 

with FDR-adjusted p-value < 1e-5 are listed. To determine enrichment across the timeline, we used 

a sliding window of 100 samples, moving 50 samples at a time, compared to all remaining samples. 

For the ssGSEA we used the GSVA package70 from R Bioconductor with the <ssgsea= method.   

 

Imaging Mass Cytometry (IMC) 700 

Previously stained H&E slides (used for annotation purposes prior to LCM)  were first de-stained 

using a combination of ethanol and acidic ethanol (see Supplementary methods, IMC section for 

further details). Heat induced antigen retrieval was carried out in Tris-EDTA for 20 minutes, slides 

were then cooled and blocked prior to overnight incubation with metal conjugated antibodies; 
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Anti-Caldesmon (Abcam; ab215275), Anti-Lumican (Abcam; ab198974) Anti-cytokeratine 14 705 

(ab236439), Smooth Muscle Actin (SMA) (Thermofisher; 14-9760-82) and E-Cadherin (BD 

Biosciences; 610182). Slides were then imaged using the Hyperion Imaging Mass Cytometer 

(Fluidigm).  IMC datasets, saved by the Hyperion instrument as .mcd files, were initially converted 

to the Zarrformat, preserving the entire signal dynamic range and metadata, using a custom python 

script described previously71 and available at https://github.com/IMAXT/imc-nuclear-710 

segmentation. The resulting zarr datasets were visualized using a custom-made IMC viewer tool, 

also written in python, operating on a jupyter notebook instance (also described in the same 

publication and available at https://github.com/IMAXT/imaxt-image). 

 

Patient marker classifier for group assignment on the decision tree.  715 

High and low expression of each marker gene was based on the majority segregation between Pure 

DCIS and Not Pure DCIS. Table S2 provides additional information regarding the expression 

levels for each gene. A patient was placed in a group based on a minimum of 2 samples 

representing the 8associated with IDC= expression levels, this being low MNX1, low HOXC11, 

low ANKRD22, low ADCY5, High SCGB2A1, low Camk2N1 and low THRSP. Two patients were 720 

removed from the decision trees as data was only available for 1 sample.  
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Supplementary Materials and Methods 

Patient tissues 

Freshly frozen breast tissue was analysed under a Duke University IRB approved Tissue Use 

Protocol Pro00059726.  These biopsies were originally consented for tissue banking and study 

under the Duke Breast SPORE grant (Pro00014678), the DUHS Biospecimen Repository and 

Processing Core (BRPC) Facility protocol, the DOD TVA tissue bank (Protocol #Pro00045965), or 

the DOD CTRA tissue bank (Protocol #Pro00044981).  Primary breast cancer specimens were 

collected from women with an abnormal mammogram suspicious for malignancy and undergoing 

a medically indicated diagnostic breast core biopsy sampling who were willing to donate cores of 

tissue for research. After obtaining informed consent, a diagnostic core biopsy was conducted, 

and additional research cores were obtained. The research cores were frozen immediately in OCT 

embedding compound in the vapor phase of a liquid nitrogen bath or on dry ice and held frozen 

at -80 C until a definitive diagnosis was made by pathologic assessment of the diagnostic 

cores.  At time of definitive diagnosis, H&E stained frozen section slides were prepared from the 

research core biopsies and compared with the results from the diagnostic cores by a pathologist 

with expertise in breast pathology.  Tissue was stored in a locked and monitored -80C freezer 

until it was used for this study. 

Tissue preparation 

Frozen tissue biopsies were sectioned under RNAse clean conditions. Ten serial sections of each 

were taken, with two sections per slide – 6 sections (10µM) on PEN slides and 4 sections (5µM) 

on glass slides. The first and last (glass) slides were subjected to H&E staining, mounted and 

annotated by an experienced pathologist. Remaining sections were mounted on PEN slides, and 

stored for a maximum 1 week, before H&E staining immediately prior to micro-dissection.  

H&E staining 

Sections were fixed in 75% ethanol for 40 seconds followed by 30 seconds in RNAse free water. 

Sections were then treated with Hematoxylin solution (Harris Modified, Sigma-Aldrich) for 30 

seconds, washed in water for 30 seconds in three different containers, before being dipped into 

Blueing reagent (0.1 % NH4OH, Sigma-Aldrich ) for 30 seconds followed by Eosin solution (Sigma-

Aldrich ) for 10 seconds. Lastly sections were dehydrated in rising ethanol concentrations (70, 95 

and 99.5% ethanol, 30 seconds each) and air dried.  

Laser capture micro-dissection 

Lesions were first paired up with the pathologist annotated regions, and each lesion was 

identified in all tissue sections prior to dissection. IDC lesions (and occasionally DCIS lesions) were 

more variable in their distribution through the sections and no lesion was dissected if it was not 

clear that we could identify the same lesion in the neighbouring section. Tissues were cut using 

a drop in the tube cap- laser dissection (LCM)  microscope (Leica DM6000R/CTR6500) using the 

Leica LMD7000 system (Leica Microsystems CMS GmbH, Wetzlar, Germany). Images were taken 

(and confirmed by the pathologist) and cells were dissected under 10X or 20X magnification, with 

the minimal laser power necessary. Isolated cells were collected in 9µl of lysis buffer (for RNAseq 

library preparation). The tubes were then snap frozen on dry ice (with tissue remaining in the 
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cap) and tubes stored upside at - 80 °C until further processing. Lesions were collected over 3 

adjacent sections and each individual dissection corresponded to 1 RNAseq library preparation, 

for example a biopsy with 3 DCIS containing ducts had 9 individually dissected regions, 9 RNAseq 

preparations and represented 9 samples for expression data, which were then subject to the 

below described quality filtering. 

  

Imaging Mass Cytometry (IMC) 

De-staining of H&E slides. H&E-stained slides were submerged in 100% xylene for up to 72 

hours (less time for those slides more recently stained with H&E), to ease the removal of the 

coverslip. Slides were rinsed twice, one minute each in fresh 100% xylene to remove any 

residual adhesive. Following, slides were rehydrated in fresh absolute ethanol, 3 times for 1 

minute each, to remove the eosin stain. Slides were then placed in 1% acid alcohol (HCl in 70% 

ethanol) for one minute with gentle agitation to remove Haematoxylin stain. Finally, slides were 

rinsed twice in water.  

Tissue antibody labelling. De-colourised H&E-stained sections (5uM) initially used for tissue 

annotation before the laser capture microdissection in the study were re- used for antibody 

labelling. The slides were directly subjected to antigen retrieval after H&E de-staining. Heat-

induced epitope retrieval was conducted in a water bath at 95oC in Tris-EDTA (pH=9.2) buffer 

for 20 minutes. Following cooling, slides were blocked with 3% BSA (Sigma) in TBS containing 

0.3% Triton X-100 (Sigma-Aldrich) for 1h at RT. Slides were then incubated with metal-tagged 

antibodies overnight at 4oC. Following incubation, slides were first washed twice with 

TBS/0.1%Tween 20 and then twice with TBS. Finally, slides were rinsed once with water and 

incubated with 0.5μM Cell-ID Intercalator-Ir (Fluidigm, 201192B) at RT. After 15 minutes slides 

were briefly rinsed with water and air-dried for at least 30 minutes before IMC acquisition.  

Antibodies. Lanthanide metal-labelled antibodies conjugated in-house using Fluidigm9s 
MaxPar9s antibody conjugation kit (Fludigm).  

Anti-Caldesmon (Abcam ab215275) - this antibody has been validated by abcam, including with 

a knockout validation, it also stains positive regions that correlate with other publications (e.g. 

Stevenson et al. 2020 in references)  and the Human Protein Atlas which use different 

Caldesmon antibodies.  

Anti-Lumican (Abcam ab198974) - This antibody has been validated by Abcam with WB and 

Flow. There is no direct validation in our tissue of study, however, the intensity level does partly 

correlate with RNA expression level from adjacent sections.  

Anti-cytokeratine 14 (CK14) (Abcam ab236439) - this antibody has been validated by abcam, 

including with a knockout validation, it also stains positive regions that correlate with multiple 

publications and the Human Protein Atlas , all of which use different ck14 antibodies.  

Smooth Muscle Actin (SMA) (Thermofisher 14-9760-82) - This antibody has been validated by 

Thermo and others that have submitted publications using this antibody (32). There is relative 

expression and WB validation. It also stains positive regions of the breast that correlate with 

multiple publications and the Human Protein Atlas , all of which use different SMA antibodies.  
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E-Cadherin (BD Biosciences 610182) - This antibody is noted by BD to have some degree of 

cross reactivity to P-Cadherin. With both proteins sharing localisation within the mammary 

gland as shown by The Human Atlas. The use of this antibody is more for visualization of the 

tumour location, and we are making no reference to the level of staining for this antibody.  

Imaging mass cytometry acquisition. IMC images were acquired using the Hyperion Imaging 

Mass Cytometer (Fluidigm). The air-dried slide was loaded into the imaging module, where an 

optical preview of the ROIs was recorded for laser ablation. Tissues were ablated by a UV-laser 

spot-by-spot, line-by-line at a resolution of 1 um and a frequency of 200 Hz. Further details can 

be found within the main methods sections. 

RNA sequencing Preparation 

Samples were processed according to manufacturer9s instructions with 15 cycles of pcr 

amplification using the SMARTer ultra-low RNA kit V3 (Takara Bio USA, Mountain View, CA, USA). 

Amplified cDNA was fragmented using the Covaris LE220 sonicator (Covaris, Woburn, MA) 

according to the manufacturer's instruction to yield a target fragment size of 200 bps. The 

sequencing library was then prepared from fragmented cDNA using NuGEN Ovation Ultralow 

Multiplex System (NuGEN, San Carlos, CA, USA) with 12 cycles of PCR. Finished libraries were 

purified from free adaptor product using RNAClean XP beads (Beckman Coulter Genomics, Brea, 

CA, USA). The resulting purified libraries were quantitated using a Qubit (Thermo Fisher Scientific, 

Waltham, MA USA) and the Kapa library quantification kits (Roche Life Science, Indianapolis, IN 

USA). The size range of the libraries was confirmed by the Agilent 2100 Bioanalyzer and the 

Agilent 4200 TapeStation (Agilent Technologies, Palo Alto, CA, USA). An equal amount of DNA 

was used to pool up to 6 samples per pool.  

 

RNA-seq alignment and quantification 

Raw reads were aligned to the GRCh38/hg38 reference genome using STAR (65),⁠ 
(v2.5.2, --alignIntronMax 200000   --alignMatesGapMax 200000   --chimSegmentMin 
15   --chimJunctionOverhangMin 15, Gencode V25 gene models). Gene counts were derived using 
featureCounts (v1.4.3) with default options and Illumina iGenomes Refseq annotations 
(corresponding to GCF_000001405.30). 
 

Quality assessment of RNA-seq data 

We obtained 2724 initial samples for analysis after excluding failed libraries with <1 million raw 
reads, <15 % uniquely mapping reads, or <5 % of the raw reads mapping to genes.  
 

For each tissue type (DCIS, IDC, normal epithelium, benign epithelium, atypical epithelium,) we 
then applied the following additional filtering. Limma-Voom (66) was used to calculate TMM 
normalization factors and convert the normalized counts to log2 counts per million (CPM) values. 
A three-step filtering procedure was employed to remove low-quality samples based on their 
global gene expression patterns. First, the Pearson correlation between each sample and the 
mean log2(CPM) was calculated and the worst sample was iteratively removed and the mean re-
calculated, this was repeated until all remaining samples had correlation ≥0.70 (≥0.65 for IDC 
samples due to their increased heterogeneity) to the mean. Second, individual samples that were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.01.482529doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482529
http://creativecommons.org/licenses/by-nc-nd/4.0/


more correlated to the mean of all samples than to the mean derived from the patient in question 
were excluded. Third, the correlation between each sample and the mean log2(CPM) for samples 
from same patient, was calculated and the worst sample was iteratively removed and the mean 
re-calculated until all remaining samples had Pearson correlation ≥0.80 (≥0.75 for IDC samples). 
 

The thresholds were chosen to remove only samples that were either failed or were of 
considerably less quality compared with other samples from the same tissue and/or patient. In 
addition, during further validation we noticed that this filtering procedure excluded more basal 
samples than any other molecular subtype and we therefore opted to use more lenient 
thresholds for those samples (DCIS samples predicted to be basal were filtered using the IDC 
thresholds, and IDC samples predicted to be basal were filtered using ≥0.60 and ≥0.70 as 
thresholds). 
 

In total, 414 samples were removed by the first filter, 43 by the second, and 45 by the third filter, 
resulting in 2222 retained samples in the final dataset, representing 1230 distinct lesions from 
143 patients, with 274 lesions present as a single sample, 902 lesions present as two samples 
derived from different sections, and 48 lesions present as three separate samples. All samples 
and filtering results are listed in Supplementary Table 4. 
 

Molecular subtype classification 

Molecular subtypes (Her2, Normal, Basal, LumA, LumB) were assigned using the AIMS package68 

⁠ from R Bioconductor applied on the expression counts matrix. RNA expression levels for ESR1, 
PGR and ERBB2 were established based on the both triple negative samples and the natural 
thresholds set after clustering samples. Log2cpm for each gene; ESR1: 6, PGR: 6 and ERBB2: 10.5. 
 

Clustering of DCIS samples 

Clustering and visualizations were done in R using all DCIS samples. The Limma-Voom 
8filterByExpr9 function was used to select genes expressed in at least 5% of the samples (n=19366). 
Raw counts were TMM-normalized and transformed into log2(CPM) values. To visualize the data 
and to reduce the variation driven by patient differences, we applied principal component 
analysis (PC analysis; PCA) using the 8prcomp9 function with default settings. The number of PCs 
used in the subsequent clustering and UMAP steps was selected as the minimum number of PCs 
required to explain >30% of the total variance in the data (13 PCs). Hierarchical clustering was 
done using the 8hclust9 function and the ward.D2 agglomeration method. The resulting tree was 
cut into five clusters, with triple negative samples forming 1 of the clusters. UMAP visualization 
was done using the 8umap9 function from the umap package with default settings except 
increasing the number of epochs to 500, minimum distance to 0.2 and neighbours to 100 to 
reduce patient-specific effects.  
 

UMAP visualization of all samples 

Visualization of all samples with UMAP was done in R. The Limma-Voom 8filterByExpr9 function 
was used to select genes expressed in at least one of the tissue types (n=19661). Raw counts 

were TMM-normalized and transformed into log2(CPM) values. A PCA was constructed using 

the 8prcomp9 function with default settings. UMAP visualization was done using the 8umap9 
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function from the uwot package with default settings except setting the number of PCs to the 

minimum number of PCs required to explain >30% of the total variance in the data (16 PCs), 

increasing the number of epochs to 500, minimum distance to 0.2 and neighbours to 100 to 

reduce patient-specific effects 

 

Differential expression analysis 

Differential expression analysis was done using Limma-Voom. First, expressed genes to include 
were selected by the 8filterByExpr9 function using the design matrix as a guide, followed by 
calculation of normalization factors using the TMM method. To correct for the data structures 
with multiple samples coming from the same patient, we used a double 8voom9 approach, 
including a 8duplicateCorrection9 step with blocking based on patient. If no patient duplication 
was present in the contrast, we used a standard approach with a single application of 8voom9. 
Fitting was done using 8lmFit9 (with blocking and correction applied if applicable), followed by 
construction and calculation of contrasts using 8contrast.fit9 function followed by 8eBayes9. A gene 
was considered to be differentially expressed if the adjusted p-value was <0.05. 
 

Pseudo-time analysis 

A differential expression analysis was done, as described above, between DCIS and IDC samples 
taken from the same patients, followed by a PCA using the most significant genes (p<0.00001, 
n=53). Remaining DCIS and IDC samples from patients without both types were projected onto 
this PCA embedding, together with samples from normal, benign and atypical epithelium. Since 
the different tissue types were positioned on the PCA in a biologically meaningful order, we fitted 
a principal curve to the data and projected the samples onto it to allow us to arrange them by 
their predicted pseudo-time order. We note that arranging them according to their position on a 
UMAP embedding resulted in largely the same order. 
 

Cell type enrichment analysis using xCell 

Cell type enrichment scores were calculated using xCell (25) applied to FPKM-transformed 

counts. All studied samples (2222) were processed together. To study the change in epithelial 

cell enrichment across the timeline, we sorted the samples in timeline order and calculated a 

linear regression fit using the 8lm9 function in R. Confidence intervals of the correlation 
coefficient r2 and the fitted line were estimated by bootstrapping using residual resampling 

with 10000 replicates. 

 

Gene set enrichment analysis 

The R Bioconductor package RITAN (v.1.10.0) was used for gene set enrichment analysis using the 
MSigDB Hallmarks database All protein-coding genes were used as a background. Terms with FDR-
adjusted p-value < 1e-5 are listed. To determine enrichment across the timeline, we used a sliding 
window of 100 samples, moving 50 samples at a time, compared to all remaining samples. 
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Patient marker classifier  

High and low expression was based on the majority segregation between Pure DCIS and Not Pure 

DCIS. Table S2 provides the expression values in log2 Counts per Million (CPM) for each marker. 

 

A patient was placed in a group on the decision tree based on a minimum of 2 samples 

representing the <associated with IDC= expression levels, this being low MNX1, low HOXC11, low 

ANKRD22, low ADCY5, High SCGB2A1, low CAMK2N1 and low THRSP. Two patients were removed 

from the decision trees as data was only available for 1 sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.01.482529doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482529
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

Table S1 Ribosomal biogenesis genes significantly down regulated in DCIS compared to normal 

tissue.  

All – refers to analysis comparing all normal/benign tissues with Pure DCIS 

Very early – refers to analysis comparing normal tissues with DCIS tissues in the very early part 

of the timeline.  

Gene list represents the cluster of highly significant genes that were shared between All analysis 

and very early analysis 
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Table S2 Gene expression thresholds. 

Distinction for high and low expression for each gene used in the classification (in log2 counts per 

million (CPM)).  

 

 

 

 

 
 

Table S3 Differential genes in the High Hazard group. 

Genes distinguishing Pure DCIS from DCIS associated with IDC (Not Pure DCIS) in the Higher 

Hazard group of patients. Differential genes are from analysis first using only patients with 

CAMK2N1 high / SCGB2A1 low and reduced expression of 3-4 progressor genes, and then second 

using all patients with reduced expression of 3-4 progressor genes, regardless of CAMK2N1 or 

SCGB2A1 expression.  

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.01.482529doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482529
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure S1. Patient subtype classification. 

Number of samples (after filtering) assigned with each AIMS subtype classification, from each 

patient. We found 52% of patients had mixed AIMS classifications for their DCIS samples, and 

46% having mixed classifications for their IDC samples. 
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Figure S2.  Sample clustering. 

Principal component analysis (PCA) followed by uniform manifold approximation and projection 

(UMAP) for all samples that passed quality filters. (A) All samples coloured by their AIMS subtype 

classification. (B) All samples coloured by which patient they came from. (C) Distribution of each 

tissue type – coloured - against all samples – grey. (D) Distribution of each DCIS group – coloured 

– against all samples – grey.  
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Figure S3.  Differentially expressed genes between DCIS and co-occurring IDC. 

Expression distribution for example genes that showed a progressive shift among different tissue 

groups. Each sample is represented by a grey dot and a kernel density plot is over laid.  

 

 

 
 

 

Figure S4. UMAP visualization using the same 53 genes that were used to construct the PCA plot 

in Fig. 3a. UMAP separates the samples more strongly by subtype compared with PCA and most 

triple-negative (basal) samples cluster separately. 
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Figure S5. Ranking of samples across UMAP2 and across the principal curve, using the same 53 

genes used to construct the PCA plot in Fig. 3a. 

 

 

 
 

Figure S6. Epithelial cell enrichment calculated using xCell.  

All samples are sorted in timeline order. The line indicates the linear regression fit with a 95% 

confidence interval. 
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Figure S7. Related to Figure 4. Hallmark signatures up along the Timeline. 

 Up (A) and down (B) for all ER positive samples. Up (C) and down (D) for all ER negative. Samples 

in order of Timeline. Sample average is calculated for each bin and compared to the average for 

all samples 
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Figure S8.  Epithelial to Mesenchymal transition occurs twice in the timeline 

Heatmap showing relative gene expression for genes listed within the Epithelial to Mesenchymal 

transition Hallmark signature. Samples were ordered according to the projected principal curve. 

Bars to the left of the heat map reflect the differential expression analysis between the 100 samples 

in that block against all other samples. Genes that were significantly up- (red) or down-regulated 

(blue) are highlighted. The threshold for being red or blue was p.adj.<0.05. 
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Figure S9. Differentially Expressed genes found when comparing normal/ benign ductal tissue 

to DCIS samples. 

Expression distribution of samples in Log2 counts per million (CPM). Left panel show all samples 

with each tissue type, right panel show samples in the very early timeline. * indicates Adj. P value. 
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Figure S10. Decision tree for all samples.  

Separation of all patients A. diagnosed with IDC, N = 98 [2 patients excluded (see supplementary 

methods)], and  B.  that were never diagnosed with IDC (Pure DCIS), N = 31. Black bars represent 

the proportion of the total that fall in that node, e.g. N = 2 is 2% where the total is 98 or 6.4% 

where the total is 31. Boxes in the low THRSP layer represent the proportion of the group above. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.01.482529doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482529
http://creativecommons.org/licenses/by-nc-nd/4.0/

