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 2 

ABSTRACT 14 

Background: Sequencing viruses in many specimens is hindered by excessive background 15 

material from hosts, microbiota, and environmental organisms. Consequently, enrichment of 16 

target genomic material is necessary for practical high-throughput viral genome sequencing. 17 

Hybridization probes are widely used for enrichment in many fields, but their application to viral 18 

sequencing faces a major obstacle: it is difficult to design panels of probe oligo sequences that 19 

broadly target many viral taxa due to their rapid evolution, extensive diversity, and genetic 20 

hypervariability. To address this challenge, we created ProbeTools, a package of bioinformatic 21 

tools for generating effective viral capture panels, and for assessing coverage of target sequences 22 

by probe panel designs in silico. In this study, we validated ProbeTools by designing a panel of 23 

3,600 probes for subtyping the hypervariable haemagglutinin (HA) and neuraminidase (NA) 24 

genome segments of avian-origin influenza A viruses (AIVs). Using in silico assessment of AIV 25 

reference sequences and in vitro capture on egg-cultured viral isolates, we demonstrated 26 

effective performance by our custom AIV panel and ProbeTools9 suitability for challenging viral 27 

probe design applications. 28 

Results: Based on ProbeTool9s in silico analysis, our panel provided broadly inclusive coverage 29 

of 14,772 HA and 11,967 NA reference sequences. 90% of these HA and NA references 30 

sequences had 90.8% and 95.1% of their nucleotide positions covered in silico by the panel 31 

respectively. We also observed effective in vitro capture on a representative collection of 23 egg-32 

cultured AIVs that included isolates from wild birds, poultry, and humans and representatives 33 

from all HA and NA subtypes. 42 of 46 HA and NA segments had over 98.3% of their 34 

nucleotide positions significantly enriched by our custom panel. These in vitro results were 35 
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 3 

further used to validate ProbeTools9 in silico coverage assessment algorithm; 89.2% of in silico 36 

predictions were concordant with in vitro results. 37 

Conclusions: ProbeTools generated an effective panel for subtyping AIVs that can be deployed 38 

for genomic surveillance, outbreak prevention, and pandemic preparedness. Effective probe 39 

design against hypervariable AIV targets also validated ProbeTools9 design and coverage 40 

assessment algorithms, demonstrating their suitability for other challenging viral capture 41 

applications. 42 

 43 

KEYWORDS 44 

Influenza A viruses, avian influenza viruses, viral genomics, hybridization probe capture, 45 
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 47 

BACKGROUND 48 

Most viral specimens are characterized by low amounts of viral genomic material and excessive 49 

background from viral hosts and environmental organisms. Consequently, practical viral genome 50 

sequencing requires targeted enrichment for confident detection and accurate genotyping, 51 

especially in high-throughput surveillance and clinical applications [1-3]. Hybridization probe 52 

capture methods have been used for viral target enrichment [4-7], but designing probe oligo 53 

sequences for many viruses can be a major obstacle due to extensive genomic diversity and 54 

hypervariability within and between viral taxa [8-13]. 55 

Probe panels are typically designed by enumerating probe-length sub-sequences (k-mers) 56 

from reference sequences. The simplest approach to designing probes for hypervariable taxa is to 57 

enumerate k-mers from an exhaustive collection of reference sequences, thereby including as 58 
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much genomic divergence in the design space as possible [7-8]. This approach becomes 59 

problematic, however, when redundant probe sequences are enumerated from repeated instances 60 

of conserved genomic loci.  61 

A few strategies have been used to address this redundancy problem. One common 62 

strategy is to cluster similar k-mers after they have been enumerated [6-7]. Another strategy is to 63 

align candidate probe sequences against select reference genomes to identify and retain only 64 

those probes targeting divergent genotypes [8]. Redundancy has also been addressed by 65 

constraining the design space to a limited number of representative reference genomes, selected 66 

either by manual curation or clustering [9-12]. Some of these strategies have been supplemented 67 

with multiple sequence alignments over hypervariable loci or entire genomes so that probes are 68 

designed from consensus and degenerate sequences [9-10]. 69 

 Spacing between probe sequences is another complicated design consideration. Regular 70 

spacing (tiling) is the most common approach because it is easy to implement, but it does not 71 

ensure optimal positioning of probes. Reducing the spacing increases the likelihood that some 72 

enumerated probes are optimally positioned, but it also increases the number of probe candidates 73 

and any associated computation to collapse redundancy among them. Creating the smallest 74 

possible panel of probes that optimally covers the entire target space quickly becomes an 75 

intractable computational problem, one that had led to increasingly complicated approaches 76 

including sophisticated minimization of loss functions [13]. 77 

 Efforts to address viral hypervariability have resulted in several elaborate probe design 78 

algorithms. Unfortunately, these have largely been implemented on a study-by-study basis and 79 

have not resulted in general-purpose software tools that can be easily used by others. Meanwhile, 80 

among the handful of published probe design packages, there is only one option that specifically 81 
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addresses viral hypervariability [13]. The rest are intended for comparatively conserved 82 

eukaryotic genomes and are inadequate for many viral applications [14-17]. This leaves 83 

virologists with limited options for designing their own hybridization probes, especially if they 84 

have minimal capacity for custom programming, sophisticated mathematics, and experimental 85 

bioinformatics. 86 

Here, we present ProbeTools, a user-friendly command line software package for 87 

designing compact probe panels against diverse viral taxa and other hypervariable genomic 88 

targets. It provides easy-to-use modules for generating probes and assessing panel coverage of 89 

provided target sequences. We demonstrate ProbeTools9 effectiveness by designing capture 90 

panels for avian-origin influenza A viruses (AIVs). These viruses are subtyped by two 91 

hypervariable viral surface proteins called haemagglutinin (HA) and neuraminidase (NA), 92 

making them an appropriately challenging case study for ProbeTools. The genome segments 93 

encoding these proteins have diversified into 16 avian-origin HA subtypes and 9 avian-origin 94 

NA subtypes, giving rise to 144 possible combinations and the HxNx nomenclature used in both 95 

animal and human contexts (e.g. H1N1, H3N2, H5N1, H7N9). Furthermore, each of these 96 

subtypes has diverged into numerous clades, many of which have been only partially 97 

characterized [12, 18-19].  98 

AIV lineages have varying potential for spillover from wild birds into poultry and 99 

humans [20-25], posing a perennial threat to agriculture and public health. Some lineages cause 100 

costly outbreaks of severe disease in poultry flocks which, in turn, expose humans to potentially 101 

dangerous zoonotic influenza infections. This threatens economic disruption, future pandemic 102 

crises, and new types of seasonal influenza, which remains an important global health burden 103 

and among the ten leading causes of death worldwide [12, 21-31]. Consequently, surveillance of 104 
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AIVs in wild birds is a cornerstone of outbreak prevention and pandemic preparedness [12, 20, 105 

32-33]. An effective panel of AIV-specific probes would be instrumental for these genomics-106 

based surveillance efforts. 107 

In this study, we designed and validated a compact panel of 3,600 probes for detecting 108 

and subtyping AIVs. Our results showed broad inclusivity against all avian-origin HA and NA 109 

subtypes based on in silico predictions against of tens-of-thousands of AIV reference sequences. 110 

We also demonstrated successful captures in vitro on a representative collection of 23 egg-111 

cultured AIVs. 112 

 113 

RESULTS 114 

Assessing basic k-mer clustering and marginal improvements to target coverage with 115 

additional probes: We began by assessing probe design against hypervariable targets with a 116 

basic k-mer clustering algorithm, wherein all 120-mers were enumerated from a target space of 117 

AIV reference sequences then clustered based on 90% nucleotide sequence identity. We used 118 

this strategy, implemented in the ProbeTools clusterkmers module, to generate probe panels of 119 

increasing size against 14,772 HA segment reference sequences and 11,967 NA segment 120 

reference sequences. We then used the ProbeTools capture module, which aligns probe 121 

sequences against target sequences, to assess target space coverage, i.e. the percentage of 122 

nucleotide positions in each target sequence covered by at least one probe in the panel (Figure 123 

1A, solid lines). As expected, panels with more probe sequences provided better target space 124 

coverage, however we observed diminishing marginal improvements for both HA and NA 125 

genome segments. We also noted that reference sequences with no probe coverage remained in 126 

the target space past the point of diminishing marginal returns. These results highlighted two 127 
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limitations of the basic k-mer clustering approach: HA and NA segments remained undetected 128 

despite designing additional probes, and additional probes provided only modest and diminishing 129 

improvements to the distribution of target coverage. 130 

 131 

 132 

Figure 1: Incremental design strategy improves upon basic k-mer clustering for probe panel design. Panels 133 

were designed against target spaces of 14,772 haemagglutinin (HA) and 11,967 neuraminidase (NA) genome 134 

segment reference sequences. The ProbeTools clusterkmers module was used to make panels using basic k-mer 135 

clustering and the makeprobes module was used to make panels with an incremental strategy. For each panel, probe 136 

coverage of reference sequences was assessed in silico using the ProbeTools capture module. A) For both strategies, 137 

A

B

C
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increasing panel size improved the 10th percentile of reference sequence coverage with diminishing marginal 138 

increases, but incrementally designed panels achieved more extensive coverage at larger panel sizes. Incrementally 139 

designed panels also provided better coverage of the worst-covered reference sequence using fewer probes. B) 140 

Incrementally designed panels shifted coverage distributions upwards for the worst-covered reference sequences. 141 

Each reference sequence in the target space is represented as a dot, plotted according to its probe coverage. 142 

Coverage of the worst-covered reference sequence and 10th percentile of all reference sequences are indicated above 143 

the axis. C) Incrementally designed panels improved reference sequence coverage by re-distributing probes from 144 

regions with deep coverage (4 or more probes) to regions with shallow coverage (2 or fewer probes). 145 

 146 

Improving target coverage with incremental panel design focused on poorly covered 147 

targets: To address the limitations we observed with basic k-mer clustering, we devised an 148 

incremental design strategy to improve marginal coverage increases, especially for poorly 149 

covered targets. In this strategy, basic k-mer clustering was used to design panels in smaller 150 

batches of 100 probes. After adding each batch to the growing panel, target space regions 151 

without probe coverage were identified using the capture module. These low coverage regions 152 

were then extracted with another ProbeTools module called getlowcov and used as a new target 153 

space for designing the next batch. In this way, each subsequent batch of probes was focused on 154 

regions not already covered by the panel.  155 

We compared target space coverage for panels designed with this incremental strategy 156 

against panels designed above using basic k-mer clustering (Figure 1). The incremental strategy 157 

provided higher 10th percentiles of coverage, especially for HA panels larger than 2000 probes 158 

and NA panels larger than 1200 probes (Figure 1A). Furthermore, the incremental strategy 159 

provided better coverage for the worst-covered reference sequences (Figure 1AB). We also 160 

compared depth of probe coverage, i.e. the number of probes covering each nucleotide position 161 

in target sequences (Figure 1C). This comparison suggested that the incremental strategy 162 
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 9 

improved target coverage by redistributing probes from positions with deep coverage to shallow 163 

coverage. Based on the observed performance improvements of the incremental strategy, it was 164 

implemented as an additional self-contained ProbeTools module called makeprobes (Figure 2). 165 

 166 

 167 

Figure 2: ProbeTools makeprobes module implements a generalized incremental design algorithm. 1) The user 168 

provides a FASTA formatted file containing target sequences, which forms the total target space and become the 169 
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 10 

poorly covered target space for the first loop of the design cycle. 2) The ProbeTools clusterkmers module generates 170 

a batch of probe sequences from the poorly covered target space using its k-mer clustering algorithm. 3) The latest 171 

batch of probes is combined with probes from previous batches to generate the current probe panel. If the size of the 172 

current probe panel meets the maximum panel size set by the user, the design loop ends and the current panel 173 

becomes the final panel, otherwise...  4) The ProbeTools capture module determines which nucleotide positions in 174 

the total target space are covered by the current probe panel. 5) The ProbeTools stats module calculates the 10th 175 

percentile of target coverage from the capture module results. If the target coverage goal set by the user is met, the 176 

current probe panel becomes the final probe panel, otherwise... 6) The getlowcov module extracts low coverage 177 

regions of the target space from the capture module results. These become the new poorly covered target space, and 178 

the design loop repeats. 179 

 180 

Predicted coverage of HA and NA subtypes by AIV_v1 panel: Using the incremental strategy 181 

implemented in the ProbeTools makeprobes module, we generated an AIV-targeting probe panel 182 

called AIV_v1. It was composed of 1,935 HA-specific probes and 1,435 NA-specific probes. We 183 

also included 184 probes targeting the highly conserved matrix segment (M) which is the 184 

standard AIV diagnostic target [24, 38]. We then used the ProbeTools capture module to predict 185 

probe coverage using the AIV_v1 panel for all 36,313 AIV reference sequences in the target 186 

space. The minimum, maximum, and 10th percentile of reference sequence coverage was 187 

calculated for each HA and NA subtype and the M segment (Figure 3A). 188 

 We observed that M segments had the best coverage followed by NA subtypes then HA 189 

subtypes, reflecting the comparative levels of genomic diversity within these genome segments. 190 

No reference sequence had less than 59.6% coverage, which is sufficient for segment and 191 

subtype identification. HA subtypes H5, H7, and H9 are considered high priority for AIV 192 

surveillance because they frequently cause agricultural outbreaks and novel influenza infections 193 

in humans [23-26, 38]; 90% of H5, H7, and H9 reference sequences had at least 94.4%, 88.5%, 194 
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and 92.4% probe coverage respectively. We also noted a significant positive monotonic 195 

association between a subtype9s target coverage distribution and number of reference sequences 196 

from that subtype in the target space (Figure 3B). This indicated that over-representing subtypes 197 

in the target space resulted in preferential design and better probe coverage for these targets, e.g. 198 

the high priority subtypes H5, H7, and H9. 199 

 200 

 201 

Figure 3: The ProbeTools-designed AIV_v1 panel provided broadly inclusive coverage in silico of avian-202 

origin HA subtypes, NA subtypes, and M segments. The AIV_v1 panel of 3,600 probes was designed using the 203 

ProbeTools makeprobes module. It was composed of 1,935 haemagglutinin (HA) segment-specific, 1,435 204 

neuraminidase (NA) segment-specific, and 184 matrix (M) segment-specific probes. A) Coverage predictions 205 

A B
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against 36,313 reference sequences were generated with the ProbeTools capture module and stratified by subtype 206 

for HA and NA segments. The minimum, 10th percentile, and maximum of probe coverage against reference 207 

sequences from each subtype/segment are indicated. B) A significant positive monotonic association was observed 208 

between the number of sequences from a subtype in the target space and that subtype9s 10th percentile of coverage. 209 

Each dot represents an HA or NA subtype, and the results of Spearman9s rank correlation test are indicated on the 210 

plots. 211 

 212 

In vitro capture of diverse egg-cultured influenza isolates: After assessing the AIV_v1 panel 213 

in silico, we had it synthesized and used it to perform in vitro captures on a collection of diverse 214 

egg-cultured AIV isolates (Table 1). We ensured that each avian-origin HA and NA subtype was 215 

represented in the collection, and we included isolates from wild birds, poultry, and humans. The 216 

collection contained 22 egg cultures, including one mixed infection, providing 23 viruses and 69 217 

distinct HA, NA, and M segments for in vitro capture. 218 

 219 

Table 1: Representative collection of egg-cultured avian influenza virus isolates. Isolates were selected to 220 

provide representation of each avian-origin haemagglutinin (HA) and neuraminidase (NA) subtype as well as 221 

infections from poultry, wild bird, and human hosts. Each specimen was given a name based on an abbreviation of 222 

its host type and a sequential number (P for poultry, WB for wild bird, and H for human). Poultry and wild bird 223 

isolates were obtained from the Canadian Food Inspection Agency9s National Centre for Foreign Animal Disease 224 

(CFIA NCFAD), and human isolates were obtained from the Public Health Agency of Canada9s National 225 

Microbiology Laboratory (PHAC NML). Isolate subtypes were confirmed in-house by genome sequencing. 226 

Specimen 

name 

Host 

type 
Strain name 

HA 

subtype 

NA 

subtype 

Source 

laboratory 

P1 Poultry A/Turkey/Ontario/844-2/2006 H6 N1 

CFIA 

NCFAD 

P2 Poultry A/Chicken/Germany/N/1949 H10 N7 

P3 Poultry A/Turkey/Ontario/18-2/2000 H7 N1 

P4 Poultry A/Emu/Texas/39924/1993 H5 N2 

P5 Poultry A/Turkey/Ontario/6118/1967 H8 N4 

P6 Poultry A/Chicken/Quebec/IM-109/2010 H6 N1 

WB1 
Wild 

bird 
A/Duck/British Columbia/26-2/2005 H5 N2 
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WB2 
Wild 

bird 
A/Swan/Alberta/OTH33-8/2009 H1 N1 

WB3 
Wild 

bird 
A/Teal/Germany/Wv632/2005 H5 N1 

WB4 
Wild 
bird 

A/Duck/Alberta/C-16/2007 H7 N7 

WB5 
Wild 

bird 
A/Duck/Australia/341/1983 H15 N8 

WB6 
Wild 

bird 
A/Duck/Alberta/60/1976 H12 N5 

WB7 
Wild 

bird 
A/Gull/Maryland/4/1977 H13/H7 N6/N3 

WB8 
Wild 

bird 
A/Pheasant/Washington/37349/1985 H9 N9 

WB9 
Wild 

bird 
A/Mallard/Gurjev/263/1982 H14 N5 

WB10 
Wild 
bird 

A/Duck/British Columbia/14/1999 H4 N6 

WB11 
Wild 

bird 
A/Duck/Prince Edward Island/274.1/2006 H16 N3 

WB12 
Wild 

bird 
A/Duck/Alberta/431/2006 H3 N8 

WB13 
Wild 

bird 
A/Pintail/Alberta/293/1977 H2 N9 

WB14 
Wild 

bird 
A/Mallard/Manitoba/OTH27-1186/2017 H11 N9 

H1 Human A/Alberta/01/2014 H5 N1 PHAC 

NML H2 Human A/Anhui/1/2013 H7 N9 

 227 

Sequencing libraries were prepared from each isolate then pooled. AIV library pools 228 

were diluted 1:100 (ng/ng) in libraries of background material made from mock-infected egg 229 

cultures, then captured three times independently using the AIV_v1 panel. Pre- and post-capture 230 

pools were sequenced to calculate mean fold-enrichment at each nucleotide position in these 69 231 

HA, NA, and M segments. Half of all nucleotide positions had a mean fold-enrichment greater 232 

than 351.2-fold, and 90% of nucleotide positions had a mean fold-enrichment greater than 195.0-233 

fold (Figure 4A). We also calculated the percentage of the capture pools composed of 234 

background material from the mock-infected egg cultures, then compared these percentages pre- 235 

and post-capture (Figure 4B). Before capture, the mean background percentage was 99.17%, but 236 

this was reduced to 0.03% following capture. Together, these data demonstrate effective 237 
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enrichment of AIV material and removal of background by probe capture with the AIV_v1 238 

panel. 239 

 240 

 241 

Figure 4: Effective in vitro capture of egg-cultured avian influenza virus isolates using the ProbeTools-242 

designed AIV_v1 panel. The AIV_v1 panel of 3,600 probes was designed using ProbeTools, and it was used to 243 

capture sequencing libraries made from a representative collection of 23 egg-cultured avian influenza viruses (AIVs) 244 

(described in Table 1). AIV libraries were pooled together, diluted 1:100 (ng/ng) in libraries of background material 245 

made from mock-infected egg cultures, then captured three times independently. A) Pre- and post-capture pools 246 

were sequenced to calculate fold-enrichment at each nucleotide position in the haemagglutinin (HA), neuraminidase 247 

(NA), and matrix (M) genome segments of these isolates (mean of three independent replicates). B) Background 248 

material from mock-infected egg cultures was effectively removed during probe capture. C) Breadth of enrichment, 249 

i.e. the percentage of nucleotide positions that were significantly enriched by probe capture, was calculated for each 250 

HA, NA, and M genome segment in these isolates. 251 

 252 

A

C

B
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We also used these in vitro results to assess breadth of enrichment, i.e. the percentage of 253 

nucleotide positions in each HA, NA, and M segment that had been significantly enriched by 254 

probe capture (Figure 4C, Table S1). Breadth of enrichment was greater than 96.3% for 64 of 69 255 

segments in the collection, and it was not less than 46.5% for any segment, which is sufficient 256 

for segment and subtype identification. Nine isolates contained high priority H5, H7, and H9 257 

segments, all of which had greater than 98.7% breadth of enrichment. This included two isolates 258 

from zoonotic human infections (H5N1 and H7N9), which were extensively enriched despite the 259 

absence of reference sequences from human infections in the target space used for probe design. 260 

We further examined the five segments with less than 96.3% breadth of enrichment to 261 

understand why they were apparently not captured in full. First, we used the ProbeTools capture 262 

module to assess if the AIV_v1 panel lacked probes targeting their particular genome segment 263 

sequences. We observed that most positions without significant enriched were nonetheless 264 

extensively covered by the probe panel (Figure 5A). This indicated that insufficient design by 265 

ProbeTools was not a major explanation for the lack of significant capture of these segments. 266 

 267 
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 268 

Figure 5: Lack of significant enrichment in segments with lower breadths of enrichment was due to 269 

experimental variation between capture replicates instead of insufficient probe design. A representative 270 

collection of 23 egg-cultured avian influenza viruses was captured three times independently using the ProbeTools-271 

designed AIV_v1 panel. A) ProbeTools capture was used to predict probe panel coverage of positions without 272 

significant enrichment from 5 genome segments with breadths of enrichment less than 96%. These positions were 273 

extensively targeted by probes in the AIV_v1 panel. B) Fold-enrichment was comparable for positions with and 274 

without significant enrichment. The difference in distribution means was only 1.09-fold, although it was statistically 275 

significantly (p<0.0001, Welsh9s t-test) due to the large number of nucleotide positions involved in the comparison 276 

(n=96,376 and n=3,082 for positions with and without significant enrichment respectively). C) Variation in fold-277 

A

B C D
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enrichment between three independent replicates was significantly higher for positions that did not achieve 278 

significant enrichment (p<0.0001, Levene9s test). D) Most positions with insignificant enrichment narrowly failed 279 

the enrichment test9s pre-determined alpha level of 5%. 280 

 281 

Next, we assessed whether experimental factors were responsible for nucleotide positions 282 

in these segments failing to achieve statistically significant enrichment. Fold-enrichment values 283 

between positions with and without significant enrichment were comparable, but variation 284 

between capture replicates were significantly different, with higher variation for positions that 285 

were not significantly enriched (Figure 5BC). Despite this source of experimental variation, and 286 

the limited number of replicates that was practical for us to perform, only 3.1% of nucleotide 287 

positions across all HA, NA, and M segments were impacted, and most of these positions only 288 

barely failed the enrichment significance test (half achieved a p-value < 0.07) (Figure 5D). 289 

Overall, our in vitro capture results demonstrated that the ProbeTools-designed AIV_v1 panel 290 

performed well on real viral isolates, effectively removing background material and providing 291 

high breadths of enrichment across HA, NA, and M segment targets. 292 

 293 

Comparison of in silico probe coverage prediction and in vitro probe capture enrichment: 294 

ProbeTools relies on in silico coverage assessment by the capture module, both for final panel 295 

evaluation and for identifying poorly covered sequences during incremental design. To validate 296 

ProbeTools9 coverage assessment algorithm, we examined how closely its in silico predictions 297 

agreed with in vitro capture results on egg-cultured AIV isolates. 298 

 299 
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 300 

Figure 6: In silico predictions of probe coverage by ProbeTools were highly concordant with actual in vitro 301 

enrichment of egg-cultured AIV isolates. A representative collection of 23 egg-cultured avian influenza viruses 302 

was captured three times independently using the ProbeTools-designed AIV_v1 panel. Pre- and post-capture pools 303 

were sequenced to determine which nucleotide positions in the haemagglutinin (HA), neuramindase (NA), and 304 

matrix (M) genome segments of these isolates had been significantly enriched. The ProbeTools capture module was 305 

used to assess which nucleotide positions of these HA, NA, and M genome segments were targeted by the 306 

ProbeTools-designed panel. Each cell indicates the number of nucleotide positions meeting the corresponding in 307 

silico prediction and in vitro capture conditions. 308 

 309 

Using the ProbeTools capture module, we determined which nucleotide positions in the 310 

egg-cultured AIVs were predicted to be covered by the AIV_v1 probe panel. We then compared 311 

these predictions to our in vitro capture results to see if significant enrichment had actually 312 

occurred at these nucleotide positions (Figure 6). Predicted probe coverage and significant 313 

enrichment results were concordant for 89.2% of nucleotide positions. Only 2.3% of nucleotide 314 

positions targeted by the AIV_v1 panel were not significantly enriched. These were concentrated 315 

in the five segments discussed above that were impacted by variability between replicates 316 

(Figure S1). We also noted that 7.7% of nucleotide positions were significantly enriched despite 317 
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not being targeted by the AIV_v1 panel, a phenomenon that was observed in most segments 318 

across all isolates (Figure 6 and Figure S1). We attribute this to the capture of larger fragments 319 

containing untargeted sequences adjacent to the location annealed by the probe. It might also 320 

indicate that local alignment parameters used by ProbeTools capture are more conservative than 321 

actual annealing thermodynamics. Either way, these results showed that ProbeTools predictions 322 

generally reflected actual capture of target genomic material, and in silico predictions more often 323 

underestimated panel performance when predictions were incorrect. 324 

 325 

DISCUSSION 326 

This study highlighted some important considerations when designing panels using ProbeTools. 327 

Foremost among these was the effect of target space composition on panel inclusivity. In this 328 

AIV case study, we noted a significant positive monotonic association between panel coverage 329 

and the number of reference sequences representing a particular subtype in the target space. 330 

Based on how the ProbeTools algorithm ranks probe candidates by the number of k-mers in the 331 

cluster they represent, it stands to reason that over-representing similar taxa (which would 332 

contain many similar k-mers) would bias the resulting panel towards these taxa. 333 

Consequently, ProbeTools users should have a thorough knowledge of the contents of 334 

their target space and the possible sources of sampling bias in the databases from which they 335 

obtain their reference sequences. In the case of AIVs, the agricultural impacts and public health 336 

threats of certain HA subtypes have led to more frequent sequencing of these subtypes and 337 

accessioning of their genome sequences in popular databases. For our panel, this contributed to 338 

bias towards subtypes like H5, H7 and H9. Whether this is a benefit or limitation will depend on 339 

the intended application. In the context of outbreak prevention and pandemic preparedness, a 340 
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panel biased towards taxa that are known for their agricultural impact and zoonotic potential is 341 

beneficial. If the objective is to characterize viral diversity and ecology in wildlife, however, this 342 

could be a limitation.  343 

To obtain the best results, ProbeTools users should purposefully curate their target space 344 

to serve their probe capture objectives. Users may want to identify taxa whose detection is a 345 

priority and over-represent them in the target space. Conversely, users may want to 8flatten9 their 346 

target space to ensure no particular taxa, clades, subtypes, etc dominate. This could be done 347 

manually, by selecting specific sequences to represent relevant groups, or it could be attempted 348 

bioinformatically by pre-clustering target sequences, providing the number and length of target 349 

sequences do not make this computationally prohibitive.  350 

Another strategy could be to use the various ProbeTools modules to extract low coverage 351 

sequences from specific groups whose target sequences have poor probe coverage after a core 352 

panel is designed. For instance, had H15 subtype AIVs been a surveillance priority in this study, 353 

supplemental H15-specific probes could have been designed by running the capture, getlowcov, 354 

and makeprobes modules on the H15 subset of target sequences after noting their comparatively 355 

low coverage by the main panel. In this way, the modular nature of ProbeTools and the relatively 356 

simple-to-understand algorithms within each module empower users to experiment and find 357 

creative solutions. This flexibility is instrumental for tailoring probe panels to the needs of the 358 

user and their specific viral capture application. 359 

 360 

CONCLUSIONS 361 

In this study, we used ProbeTools to create an effective and broadly inclusive panel of 362 

hybridization capture probes for subtyping AIVs. Our results show the utility of this panel as a 363 
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tool for AIV surveillance, outbreak prevention, and pandemic preparedness. They also 364 

demonstrate that ProbeTools can effectively design probes against hypervariable genomic targets 365 

like avian-origin HA and NA segments. This validation of ProbeTools9 core design and coverage 366 

assessment algorithms shows that they are suitable for other challenging design applications, e.g. 367 

other viruses with hypervariable genes and pan-viral capture panels targeting multiple diverse 368 

taxa. 369 

An increasing frequency of zoonotic outbreaks, epidemics, and pandemic crises has 370 

renewed interest in characterizing viral diversity at the interface of wildlife, livestock, game, and 371 

humans [39-42]. Genomic sequencing is becoming central to these One Health ventures, and 372 

viral capture panels will need designing and updating as our knowledge of viral threats continues 373 

to expand [43-44]. The on-going COVID-19 pandemic has also demonstrated the value of viral 374 

genomics to public health [45-48], resulting in unprecedented investments in sequencing 375 

capacity at public health laboratories. This will expand routine genomics for numerous common 376 

pathogens, requiring the development of new target enrichment protocols. ProbeTools can 377 

facilitate probe design tasks for all of these endeavours. 378 

 379 

METHODS 380 

ProbeTools modules: ProbeTools consists of five main modules written in Python (v3.7.3) that 381 

perform essential tasks in the probe design process. ProbeTools is freely available under the MIT 382 

License. It can be installed easily using the Anaconda/Miniconda package and environment 383 

manager. Alternatively, it can be installed via the Python Package Index, followed by separate 384 

installation of its VSEARCH and BLASTn dependencies. Installation instructions, source code, 385 
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documentation, and usage examples are available at 386 

https://github.com/KevinKuchinski/ProbeTools. 387 

The clusterkmers module enumerates and clusters probe-length k-mers from user-388 

provided target sequences. 1) K-mers are enumerated using a sliding window that advances by a 389 

specified number of bases. 2) K-mers are clustered based on nucleotide sequence similarity using 390 

VSEARCH cluster_fast [34]. 3) Centroid sequences from each cluster are ranked by the size of 391 

the cluster they represent. Centroids from larger clusters are assumed to be better probe 392 

candidates by virtue of having similarity to more k-mers in the target space. By default, 393 

clusterkmers enumerates 120-mers, advancing the window one base at a time, and it clusters 394 

using a nucleotide sequence identity threshold of 90%. Previous studies have observed effective 395 

hybridization between targets and probes with this degree of sequence similarity [9, 11]. 396 

The capture module predicts how well user-provided probe sequences cover user-397 

provided target sequences. 1) Each probe sequence is locally aligned against each target 398 

sequence using BLASTn [35]. 2) Alignments are filtered, retaining those with a minimum 399 

sequence identity over a minimum alignment length. 3) Subject alignment start and end 400 

coordinates are extracted from the BLASTn results to determine which nucleotide positions in 401 

the target sequences are covered by probes. By default, capture requires 90% sequence identity 402 

over at least 60 bases to assign probe coverage to the aligned positions. 403 

The getlowcov module uses the output of capture to extract genomic regions with low 404 

coverage from the provided targets. This allows for additional probe design focused on poorly 405 

covered regions of the target space. This module returns all sub-sequences where a minimum 406 

number of consecutive bases were covered by fewer than a specified number of probes. By 407 
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default, getlowcov returns all sub-sequences over 40 bases in length where all bases in the sub-408 

sequence were covered by zero probes. 409 

The stats module uses the output of capture to calculate coverage statistics. For each 410 

provided target, it calculates the percentage of nucleotide positions covered by varying numbers 411 

of probes (<target coverage= and <probe depth=). 412 

The makeprobes module chains the previous modules together to implement a 413 

generalized incremental design strategy (Figure 2). In this strategy, probes are designed in 414 

batches, and regions of the target space with probe coverage are removed between batches so 415 

that additional probes are focused on poorly covered areas. This module can be used as a 416 

convenient departure point for custom designs. The user is only required to provide target 417 

sequences and select a batch size. They can optionally specify a maximum panel size and target 418 

space coverage goal. The makeprobes module iterates through its design loop, adding batches of 419 

probes to the panel until the maximum panel size is met, the target space coverage goal is 420 

achieved, or no further probes can be generated. 421 

 422 

Preparation of AIV target space: All available full-length influenza A virus genome segment 423 

sequences from avian hosts were downloaded from the Influenza Research Database 424 

(www.fludb.org) on Dec 5, 2017 [36]. Sequences containing degenerate bases were removed to 425 

avoid low quality entries. Sequences were then clustered using VSEARCH cluster_fast (v1.0.7) 426 

[34] with a 100% sequence identity threshold to remove redundant entries. The remaining entries 427 

were used as our final AIV target space (described in Table 2). 428 

 429 

Table 2: Avian influenza virus reference sequences used as target space in this study. Full-length genome 430 

segment sequences from avian hosts were downloaded from the Influenza Research Database (www.fludb.org). 431 
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Sequences containing degenerate bases were removed, then the remaining sequences were clustered using a 100% 432 

nucleotide sequence identity threshold to discard redundant entries. This provided a final target space of 36,313 433 

reference sequences representing all avian-origin haemagglutinin (HA) subtypes, neuraminidase (NA) subtypes, and 434 

matrix (M) segments. 435 

Genome segment Subtype 

Reference sequences in 

target space 

(#) 

Target space size 

(KB) 

HA 

H1 539 939.1 

H2 381 664.0 

H3 1,309 2,267.6 

H4 1,135 1,944.1 

H5 3,546 6,129.7 

H6 1,378 2,361.3 

H7 1,266 2,148.5 

H8 122 209.9 
H9 2,653 4,498.9 

H10 591 1,005.4 

H11 520 897.5 

H12 176 301.5 

H13 232 405.4 

H14 22 38.3 

H15 13 22.7 

H16 156 271.7 

HA untyped 733 1,254.8 

HA total 14,772 25,360.4 

NA 

N1 2,742 3,804.9 

N2 3,162 4,498.5 
N3 945 1,347.3 

N4 174 249.8 

N5 296 427.4 

N6 1,424 2,037.0 

N7 502 718.4 

N8 1,272 1,822.9 

N9 667 948.5 

NA untyped 783 1,116.6 

NA total 11,967 16,971.0 

M none 9,574 9,582.4 

 436 

AIV_v1 probe panel design: The AIV_v1 panel was designed against our final AIV target 437 

space using the ProbeTools makeprobes module as follows: 2,000 probes were designed against 438 

HA targets in 20 batches of 100 probes; 1,500 probes were designed against NA targets in 15 439 

batches of 100 probes, and 200 probes were designed against M targets in 20 batches of 10 440 
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probes. All designs were conducted using makeprobes9s default parameters with ProbeTools 441 

v0.0.5, VSEARCH v1.0.7, and BLASTn v2.2.31. 442 

The top-ranked 1,935 HA probes, 1,435 NA probes, and 184 M probes were combined 443 

into the final panel. Additional probes were added to the panel for potential control and 444 

validation applications, including 36 probes targeting the common reference strain A/Puerto 445 

Rico/8/34 and 10 probes targeting synthetic spike-in DNA oligomers with randomly generated 446 

artificial sequences. This provided a final panel of 3,600 probes (a breakpoint in the 447 

manufacturer9s pricing structure), which was synthesized as a custom panel by Twist Bioscience 448 

(San Francisco, CA, USA). Sequences for probes in the AIV_v1 panel are provided in 449 

Supplemental Material 1. 450 

 451 

Preparation of sequencing libraries from egg-cultured influenza isolates: Detailed laboratory 452 

procedures for the following are provided in Supplemental Material 2. RNA extracted from egg-453 

cultured AIV isolates was provided by the Canadian Food Inspection Agency9s National Centre 454 

for Foreign Animal Disease (Winnipeg, Manitoba, Canada) and the Public Health Agency of 455 

Canada9s National Microbiology Laboratory (Winnipeg, Manitoba, Canada). cDNA was 456 

prepared from each isolate using a previously described method [37]. cDNA was also prepared 457 

from a mock-infected egg culture to generate background genomic material for diluting capture 458 

pools. cDNA was fragmented by sonication, then prepared into sequencing libraries for Illumina 459 

platforms with unique dual index barcodes. Adapter-ligated cDNA was split into three separate 460 

barcoding reactions, providing three separately barcoded replicate libraries for each isolate. 461 

 462 
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Probe capture enrichment and genomic sequencing of libraries prepared from egg-cultured 463 

influenza isolates: Detailed laboratory and bioinformatic procedures for the following are 464 

provided in Supplemental Material 2. 1) Three pools were prepared, with each pool containing 465 

one replicate library from each AIV isolate. These pools were sequenced in-house on Illumina 466 

MiSeq to generate full HA, NA, and M segment sequences for each isolate and to confirm HA 467 

and NA subtypes. 2) Each pool was diluted in 1:100 (ng/ng) in one of three replicate libraries of 468 

background genomic material that had been prepared from a mock-infected chicken egg. 469 

Aliquots of each diluted pool were sequenced pre-capture at Canada9s Michael Smith Genome 470 

Sciences Centre (Vancouver, BC) on one Illumina HiSeq X lane to establish baseline HA, NA, 471 

and M segment abundance. 3) Each diluted pool was independently captured using the AIV_v1 472 

probe panel. Captured pools were then sequenced in-house on Illumina MiSeq to assess target 473 

enrichment of HA, NA, and M segments post-capture. 474 

 475 

Analysis of significant probe capture enrichment for egg-cultured AIV isolates: 1) Pre- and 476 

post-capture depths of coverage were determined by mapping each library9s sequencing reads to 477 

the HA, NA, and M segment sequences of its corresponding AIV isolate. 2) Depths of coverage 478 

were normalized by dividing raw pre- and post-capture read depths by the total reads in the 479 

corresponding pre- and post-capture pools (Table S2). 3) For each library, fold-enrichment at 480 

each nucleotide position was calculated by dividing the normalized post-capture read depth by 481 

the normalized pre-capture read depth. 4) For each AIV isolate, mean fold-enrichment was 482 

calculated at every nucleotide position from the fold-enrichment values of its three independently 483 

captured replicate libraries. 5) Mean fold-enrichment values and their standard deviations were 484 
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used to determine if significant enrichment had occurred at all nucleotide positions using a one-485 

sample T-test against the fixed value of one-fold enrichment with an alpha level of 5%. 486 
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