

1 **ProbeTools: Designing hybridization probes for targeted genomic sequencing**  
2 **of diverse and hypervariable viral taxa**

3

4 Kevin S. Kuchinski <sup>1\*</sup>, Jun Duan <sup>1</sup>, Chelsea Himsworth <sup>2,3</sup>, William Hsiao <sup>1,4</sup>, Natalie A. Prystajecky <sup>1,5</sup>

5

6 <sup>1</sup> Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver, British Columbia,  
7 Canada

8 <sup>2</sup> Animal Health Centre; British Columbia Ministry of Agriculture, Food, and Fisheries; Abbotsford, British  
9 Columbia, Canada

10 <sup>3</sup> School of Population and Public Health; University of British Columbia; Vancouver, British Columbia, Canada

11 <sup>4</sup> Faculty of Health Sciences; Simon Fraser University; Burnaby, British Columbia, Canada

12 <sup>5</sup> Public Health Laboratory; British Columbia Centre for Disease Control; Vancouver, British Columbia, Canada

13 \* Corresponding author

14 **ABSTRACT**

15 **Background:** Sequencing viruses in many specimens is hindered by excessive background  
16 material from hosts, microbiota, and environmental organisms. Consequently, enrichment of  
17 target genomic material is necessary for practical high-throughput viral genome sequencing.  
18 Hybridization probes are widely used for enrichment in many fields, but their application to viral  
19 sequencing faces a major obstacle: it is difficult to design panels of probe oligo sequences that  
20 broadly target many viral taxa due to their rapid evolution, extensive diversity, and genetic  
21 hypervariability. To address this challenge, we created ProbeTools, a package of bioinformatic  
22 tools for generating effective viral capture panels, and for assessing coverage of target sequences  
23 by probe panel designs *in silico*. In this study, we validated ProbeTools by designing a panel of  
24 3,600 probes for subtyping the hypervariable haemagglutinin (HA) and neuraminidase (NA)  
25 genome segments of avian-origin influenza A viruses (AIVs). Using *in silico* assessment of AIV  
26 reference sequences and *in vitro* capture on egg-cultured viral isolates, we demonstrated  
27 effective performance by our custom AIV panel and ProbeTools' suitability for challenging viral  
28 probe design applications.

29 **Results:** Based on ProbeTool's *in silico* analysis, our panel provided broadly inclusive coverage  
30 of 14,772 HA and 11,967 NA reference sequences. 90% of these HA and NA references  
31 sequences had 90.8% and 95.1% of their nucleotide positions covered *in silico* by the panel  
32 respectively. We also observed effective *in vitro* capture on a representative collection of 23 egg-  
33 cultured AIVs that included isolates from wild birds, poultry, and humans and representatives  
34 from all HA and NA subtypes. 42 of 46 HA and NA segments had over 98.3% of their  
35 nucleotide positions significantly enriched by our custom panel. These *in vitro* results were

36 further used to validate ProbeTools' *in silico* coverage assessment algorithm; 89.2% of *in silico*  
37 predictions were concordant with *in vitro* results.

38 **Conclusions:** ProbeTools generated an effective panel for subtyping AIVs that can be deployed  
39 for genomic surveillance, outbreak prevention, and pandemic preparedness. Effective probe  
40 design against hypervariable AIV targets also validated ProbeTools' design and coverage  
41 assessment algorithms, demonstrating their suitability for other challenging viral capture  
42 applications.

43

#### 44 **KEYWORDS**

45 Influenza A viruses, avian influenza viruses, viral genomics, hybridization probe capture,  
46 targeted genomic sequencing, viral surveillance

47

#### 48 **BACKGROUND**

49 Most viral specimens are characterized by low amounts of viral genomic material and excessive  
50 background from viral hosts and environmental organisms. Consequently, practical viral genome  
51 sequencing requires targeted enrichment for confident detection and accurate genotyping,  
52 especially in high-throughput surveillance and clinical applications [1-3]. Hybridization probe  
53 capture methods have been used for viral target enrichment [4-7], but designing probe oligo  
54 sequences for many viruses can be a major obstacle due to extensive genomic diversity and  
55 hypervariability within and between viral taxa [8-13].

56 Probe panels are typically designed by enumerating probe-length sub-sequences (k-mers)  
57 from reference sequences. The simplest approach to designing probes for hypervariable taxa is to  
58 enumerate k-mers from an exhaustive collection of reference sequences, thereby including as

59 much genomic divergence in the design space as possible [7-8]. This approach becomes  
60 problematic, however, when redundant probe sequences are enumerated from repeated instances  
61 of conserved genomic loci.

62 A few strategies have been used to address this redundancy problem. One common  
63 strategy is to cluster similar k-mers after they have been enumerated [6-7]. Another strategy is to  
64 align candidate probe sequences against select reference genomes to identify and retain only  
65 those probes targeting divergent genotypes [8]. Redundancy has also been addressed by  
66 constraining the design space to a limited number of representative reference genomes, selected  
67 either by manual curation or clustering [9-12]. Some of these strategies have been supplemented  
68 with multiple sequence alignments over hypervariable loci or entire genomes so that probes are  
69 designed from consensus and degenerate sequences [9-10].

70 Spacing between probe sequences is another complicated design consideration. Regular  
71 spacing (tiling) is the most common approach because it is easy to implement, but it does not  
72 ensure optimal positioning of probes. Reducing the spacing increases the likelihood that some  
73 enumerated probes are optimally positioned, but it also increases the number of probe candidates  
74 and any associated computation to collapse redundancy among them. Creating the smallest  
75 possible panel of probes that optimally covers the entire target space quickly becomes an  
76 intractable computational problem, one that had led to increasingly complicated approaches  
77 including sophisticated minimization of loss functions [13].

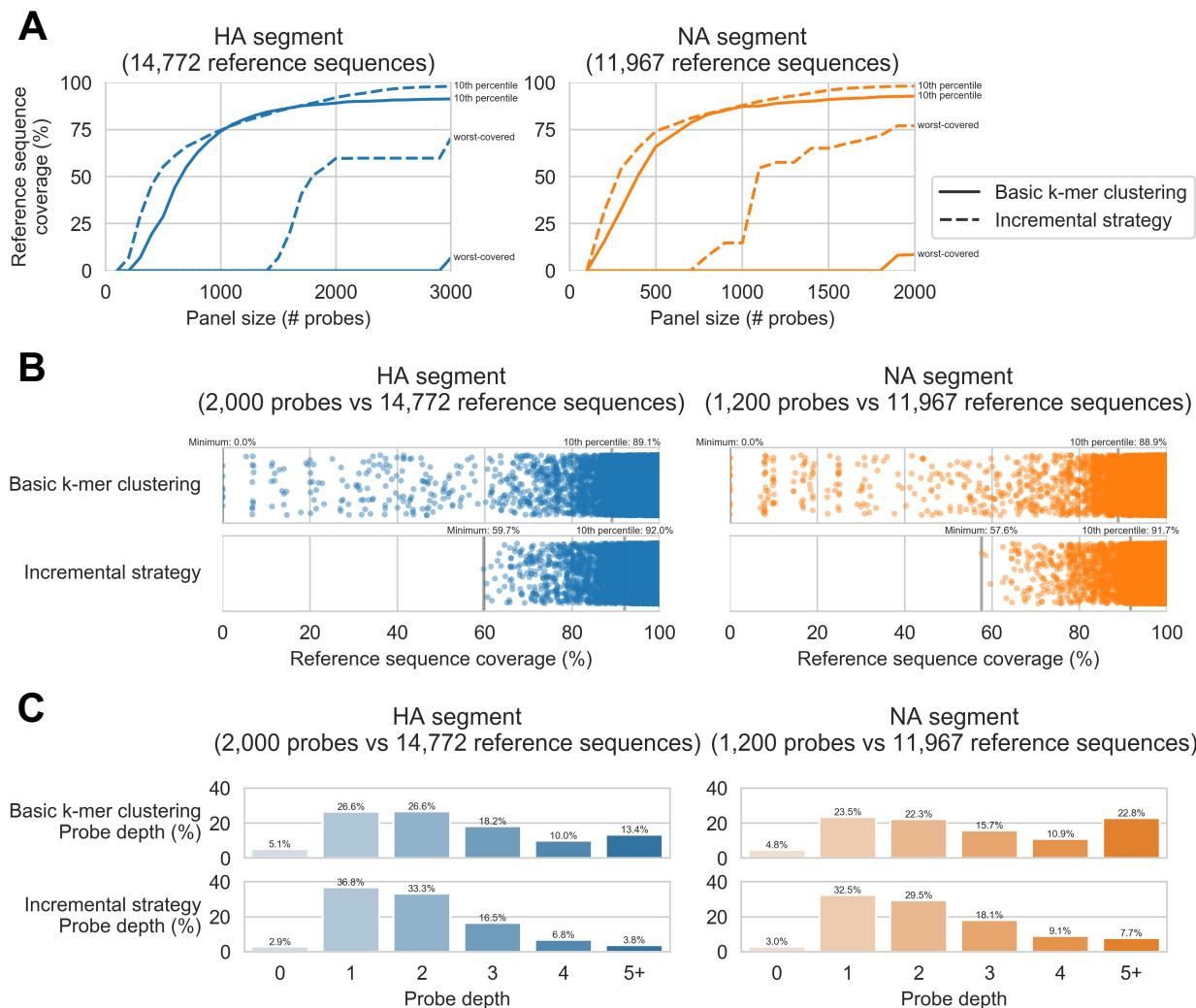
78 Efforts to address viral hypervariability have resulted in several elaborate probe design  
79 algorithms. Unfortunately, these have largely been implemented on a study-by-study basis and  
80 have not resulted in general-purpose software tools that can be easily used by others. Meanwhile,  
81 among the handful of published probe design packages, there is only one option that specifically

82 addresses viral hypervariability [13]. The rest are intended for comparatively conserved  
83 eukaryotic genomes and are inadequate for many viral applications [14-17]. This leaves  
84 virologists with limited options for designing their own hybridization probes, especially if they  
85 have minimal capacity for custom programming, sophisticated mathematics, and experimental  
86 bioinformatics.

87 Here, we present ProbeTools, a user-friendly command line software package for  
88 designing compact probe panels against diverse viral taxa and other hypervariable genomic  
89 targets. It provides easy-to-use modules for generating probes and assessing panel coverage of  
90 provided target sequences. We demonstrate ProbeTools' effectiveness by designing capture  
91 panels for avian-origin influenza A viruses (AIVs). These viruses are subtyped by two  
92 hypervariable viral surface proteins called haemagglutinin (HA) and neuraminidase (NA),  
93 making them an appropriately challenging case study for ProbeTools. The genome segments  
94 encoding these proteins have diversified into 16 avian-origin HA subtypes and 9 avian-origin  
95 NA subtypes, giving rise to 144 possible combinations and the HxNx nomenclature used in both  
96 animal and human contexts (e.g. H1N1, H3N2, H5N1, H7N9). Furthermore, each of these  
97 subtypes has diverged into numerous clades, many of which have been only partially  
98 characterized [12, 18-19].

99 AIV lineages have varying potential for spillover from wild birds into poultry and  
100 humans [20-25], posing a perennial threat to agriculture and public health. Some lineages cause  
101 costly outbreaks of severe disease in poultry flocks which, in turn, expose humans to potentially  
102 dangerous zoonotic influenza infections. This threatens economic disruption, future pandemic  
103 crises, and new types of seasonal influenza, which remains an important global health burden  
104 and among the ten leading causes of death worldwide [12, 21-31]. Consequently, surveillance of

105 AIVs in wild birds is a cornerstone of outbreak prevention and pandemic preparedness [12, 20,  
106 32-33]. An effective panel of AIV-specific probes would be instrumental for these genomics-  
107 based surveillance efforts.


108 In this study, we designed and validated a compact panel of 3,600 probes for detecting  
109 and subtyping AIVs. Our results showed broad inclusivity against all avian-origin HA and NA  
110 subtypes based on *in silico* predictions against of tens-of-thousands of AIV reference sequences.  
111 We also demonstrated successful captures *in vitro* on a representative collection of 23 egg-  
112 cultured AIVs.

113

## 114 RESULTS

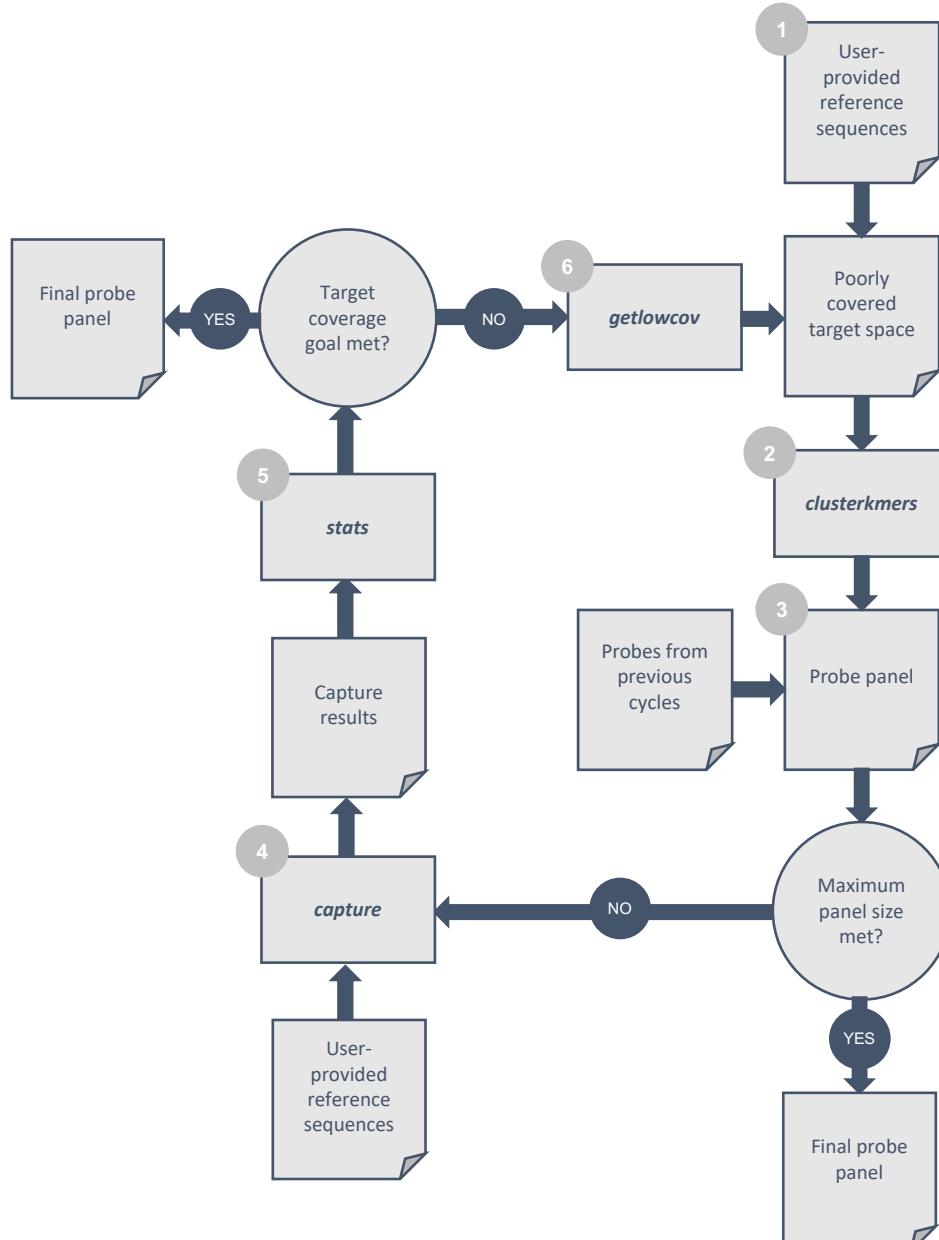
115 **Assessing basic k-mer clustering and marginal improvements to target coverage with  
116 additional probes:** We began by assessing probe design against hypervariable targets with a  
117 basic k-mer clustering algorithm, wherein all 120-mers were enumerated from a target space of  
118 AIV reference sequences then clustered based on 90% nucleotide sequence identity. We used  
119 this strategy, implemented in the ProbeTools *clusterkmers* module, to generate probe panels of  
120 increasing size against 14,772 HA segment reference sequences and 11,967 NA segment  
121 reference sequences. We then used the ProbeTools *capture* module, which aligns probe  
122 sequences against target sequences, to assess target space coverage, *i.e.* the percentage of  
123 nucleotide positions in each target sequence covered by at least one probe in the panel (Figure  
124 1A, solid lines). As expected, panels with more probe sequences provided better target space  
125 coverage, however we observed diminishing marginal improvements for both HA and NA  
126 genome segments. We also noted that reference sequences with no probe coverage remained in  
127 the target space past the point of diminishing marginal returns. These results highlighted two

128 limitations of the basic k-mer clustering approach: HA and NA segments remained undetected  
129 despite designing additional probes, and additional probes provided only modest and diminishing  
130 improvements to the distribution of target coverage.  
131



132

133 **Figure 1: Incremental design strategy improves upon basic k-mer clustering for probe panel design.** Panels  
134 were designed against target spaces of 14,772 haemagglutinin (HA) and 11,967 neuraminidase (NA) genome  
135 segment reference sequences. The ProbeTools *clusterkmers* module was used to make panels using basic k-mer  
136 clustering and the *makeprobes* module was used to make panels with an incremental strategy. For each panel, probe  
137 coverage of reference sequences was assessed *in silico* using the ProbeTools *capture* module. A) For both strategies,


138 increasing panel size improved the 10<sup>th</sup> percentile of reference sequence coverage with diminishing marginal  
139 increases, but incrementally designed panels achieved more extensive coverage at larger panel sizes. Incrementally  
140 designed panels also provided better coverage of the worst-covered reference sequence using fewer probes. B)  
141 Incrementally designed panels shifted coverage distributions upwards for the worst-covered reference sequences.  
142 Each reference sequence in the target space is represented as a dot, plotted according to its probe coverage.  
143 Coverage of the worst-covered reference sequence and 10<sup>th</sup> percentile of all reference sequences are indicated above  
144 the axis. C) Incrementally designed panels improved reference sequence coverage by re-distributing probes from  
145 regions with deep coverage (4 or more probes) to regions with shallow coverage (2 or fewer probes).

146

147 **Improving target coverage with incremental panel design focused on poorly covered**  
148 **targets:** To address the limitations we observed with basic k-mer clustering, we devised an  
149 incremental design strategy to improve marginal coverage increases, especially for poorly  
150 covered targets. In this strategy, basic k-mer clustering was used to design panels in smaller  
151 batches of 100 probes. After adding each batch to the growing panel, target space regions  
152 without probe coverage were identified using the *capture* module. These low coverage regions  
153 were then extracted with another ProbeTools module called *getlowcov* and used as a new target  
154 space for designing the next batch. In this way, each subsequent batch of probes was focused on  
155 regions not already covered by the panel.

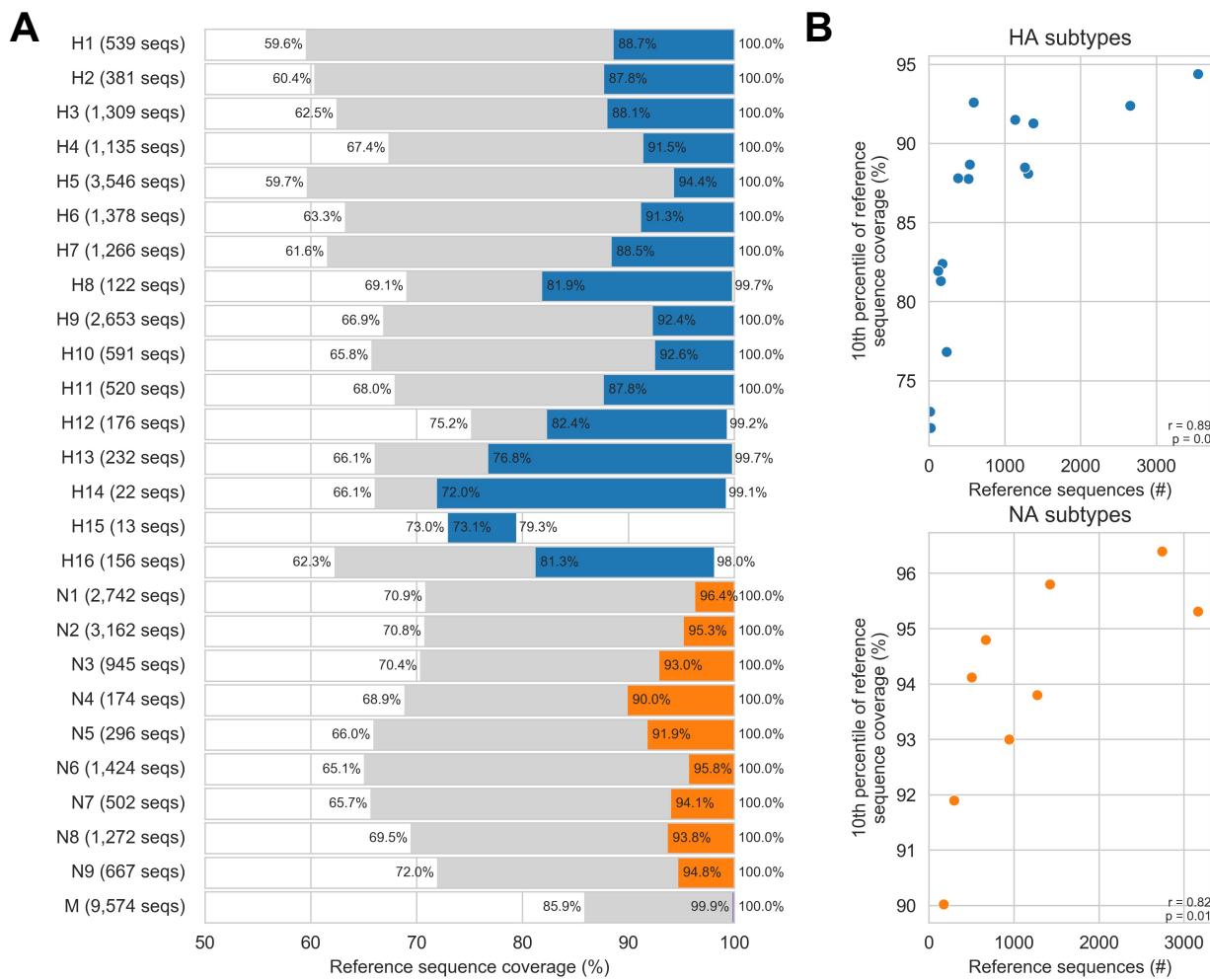
156 We compared target space coverage for panels designed with this incremental strategy  
157 against panels designed above using basic k-mer clustering (Figure 1). The incremental strategy  
158 provided higher 10<sup>th</sup> percentiles of coverage, especially for HA panels larger than 2000 probes  
159 and NA panels larger than 1200 probes (Figure 1A). Furthermore, the incremental strategy  
160 provided better coverage for the worst-covered reference sequences (Figure 1AB). We also  
161 compared depth of probe coverage, *i.e.* the number of probes covering each nucleotide position  
162 in target sequences (Figure 1C). This comparison suggested that the incremental strategy

163 improved target coverage by redistributing probes from positions with deep coverage to shallow  
164 coverage. Based on the observed performance improvements of the incremental strategy, it was  
165 implemented as an additional self-contained ProbeTools module called *makeprobes* (Figure 2).  
166



167  
168 **Figure 2: ProbeTools *makeprobes* module implements a generalized incremental design algorithm.** 1) The user  
169 provides a FASTA formatted file containing target sequences, which forms the total target space and become the

170 poorly covered target space for the first loop of the design cycle. 2) The ProbeTools *clusterkmers* module generates  
171 a batch of probe sequences from the poorly covered target space using its k-mer clustering algorithm. 3) The latest  
172 batch of probes is combined with probes from previous batches to generate the current probe panel. If the size of the  
173 current probe panel meets the maximum panel size set by the user, the design loop ends and the current panel  
174 becomes the final panel, otherwise... 4) The ProbeTools *capture* module determines which nucleotide positions in  
175 the total target space are covered by the current probe panel. 5) The ProbeTools *stats* module calculates the 10<sup>th</sup>  
176 percentile of target coverage from the *capture* module results. If the target coverage goal set by the user is met, the  
177 current probe panel becomes the final probe panel, otherwise... 6) The *getlowcov* module extracts low coverage  
178 regions of the target space from the *capture* module results. These become the new poorly covered target space, and  
179 the design loop repeats.


180

181 **Predicted coverage of HA and NA subtypes by AIV\_v1 panel:** Using the incremental strategy  
182 implemented in the ProbeTools *makeprobes* module, we generated an AIV-targeting probe panel  
183 called AIV\_v1. It was composed of 1,935 HA-specific probes and 1,435 NA-specific probes. We  
184 also included 184 probes targeting the highly conserved matrix segment (M) which is the  
185 standard AIV diagnostic target [24, 38]. We then used the ProbeTools *capture* module to predict  
186 probe coverage using the AIV\_v1 panel for all 36,313 AIV reference sequences in the target  
187 space. The minimum, maximum, and 10<sup>th</sup> percentile of reference sequence coverage was  
188 calculated for each HA and NA subtype and the M segment (Figure 3A).

189 We observed that M segments had the best coverage followed by NA subtypes then HA  
190 subtypes, reflecting the comparative levels of genomic diversity within these genome segments.  
191 No reference sequence had less than 59.6% coverage, which is sufficient for segment and  
192 subtype identification. HA subtypes H5, H7, and H9 are considered high priority for AIV  
193 surveillance because they frequently cause agricultural outbreaks and novel influenza infections  
194 in humans [23-26, 38]; 90% of H5, H7, and H9 reference sequences had at least 94.4%, 88.5%,

195 and 92.4% probe coverage respectively. We also noted a significant positive monotonic  
196 association between a subtype's target coverage distribution and number of reference sequences  
197 from that subtype in the target space (Figure 3B). This indicated that over-representing subtypes  
198 in the target space resulted in preferential design and better probe coverage for these targets, *e.g.*  
199 the high priority subtypes H5, H7, and H9.

200



201

202 **Figure 3: The ProbeTools-designed AIV\_v1 panel provided broadly inclusive coverage *in silico* of avian-  
203 origin HA subtypes, NA subtypes, and M segments.** The AIV\_v1 panel of 3,600 probes was designed using the  
204 ProbeTools *makeprobes* module. It was composed of 1,935 haemagglutinin (HA) segment-specific, 1,435  
205 neuraminidase (NA) segment-specific, and 184 matrix (M) segment-specific probes. A) Coverage predictions

206 against 36,313 reference sequences were generated with the ProbeTools *capture* module and stratified by subtype  
207 for HA and NA segments. The minimum, 10<sup>th</sup> percentile, and maximum of probe coverage against reference  
208 sequences from each subtype/segment are indicated. B) A significant positive monotonic association was observed  
209 between the number of sequences from a subtype in the target space and that subtype's 10<sup>th</sup> percentile of coverage.  
210 Each dot represents an HA or NA subtype, and the results of Spearman's rank correlation test are indicated on the  
211 plots.

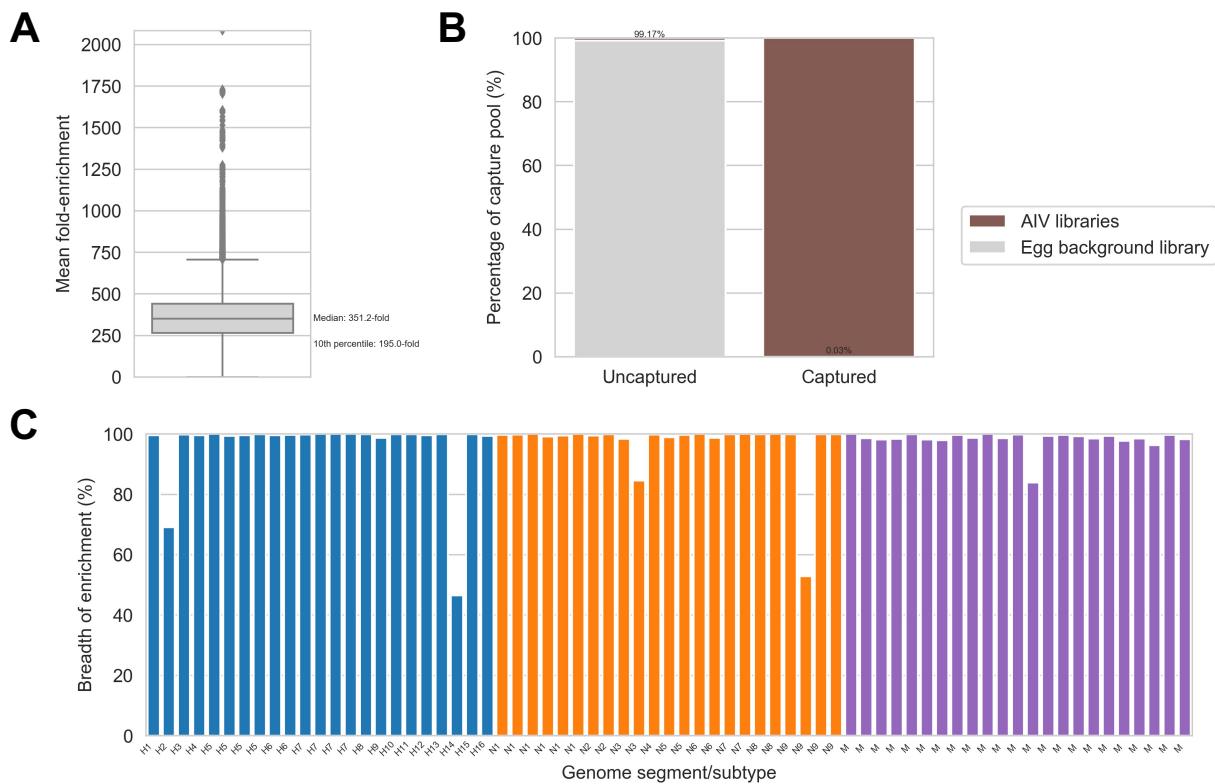
212

213 ***In vitro* capture of diverse egg-cultured influenza isolates:** After assessing the AIV\_v1 panel  
214 *in silico*, we had it synthesized and used it to perform *in vitro* captures on a collection of diverse  
215 egg-cultured AIV isolates (Table 1). We ensured that each avian-origin HA and NA subtype was  
216 represented in the collection, and we included isolates from wild birds, poultry, and humans. The  
217 collection contained 22 egg cultures, including one mixed infection, providing 23 viruses and 69  
218 distinct HA, NA, and M segments for *in vitro* capture.

219

220 **Table 1: Representative collection of egg-cultured avian influenza virus isolates.** Isolates were selected to  
221 provide representation of each avian-origin haemagglutinin (HA) and neuraminidase (NA) subtype as well as  
222 infections from poultry, wild bird, and human hosts. Each specimen was given a name based on an abbreviation of  
223 its host type and a sequential number (P for poultry, WB for wild bird, and H for human). Poultry and wild bird  
224 isolates were obtained from the Canadian Food Inspection Agency's National Centre for Foreign Animal Disease  
225 (CFIA NCFAD), and human isolates were obtained from the Public Health Agency of Canada's National  
226 Microbiology Laboratory (PHAC NML). Isolate subtypes were confirmed in-house by genome sequencing.

| Specimen name | Host type | Strain name                       | HA subtype | NA subtype | Source laboratory |
|---------------|-----------|-----------------------------------|------------|------------|-------------------|
| P1            | Poultry   | A/Turkey/Ontario/844-2/2006       | H6         | N1         | CFIA<br>NCFAD     |
| P2            | Poultry   | A/Chicken/Germany/N/1949          | H10        | N7         |                   |
| P3            | Poultry   | A/Turkey/Ontario/18-2/2000        | H7         | N1         |                   |
| P4            | Poultry   | A/Emu/Texas/39924/1993            | H5         | N2         |                   |
| P5            | Poultry   | A/Turkey/Ontario/6118/1967        | H8         | N4         |                   |
| P6            | Poultry   | A/Chicken/Quebec/IM-109/2010      | H6         | N1         |                   |
| WB1           | Wild bird | A/Duck/British Columbia/26-2/2005 | H5         | N2         |                   |


|      |           |                                        |        |       |      |
|------|-----------|----------------------------------------|--------|-------|------|
| WB2  | Wild bird | A/Swan/Alberta/OTH33-8/2009            | H1     | N1    |      |
| WB3  | Wild bird | A/Teal/Germany/Wv632/2005              | H5     | N1    |      |
| WB4  | Wild bird | A/Duck/Alberta/C-16/2007               | H7     | N7    |      |
| WB5  | Wild bird | A/Duck/Australia/341/1983              | H15    | N8    |      |
| WB6  | Wild bird | A/Duck/Alberta/60/1976                 | H12    | N5    |      |
| WB7  | Wild bird | A/Gull/Maryland/4/1977                 | H13/H7 | N6/N3 |      |
| WB8  | Wild bird | A/Pheasant/Washington/37349/1985       | H9     | N9    |      |
| WB9  | Wild bird | A/Mallard/Gurjev/263/1982              | H14    | N5    |      |
| WB10 | Wild bird | A/Duck/British Columbia/14/1999        | H4     | N6    |      |
| WB11 | Wild bird | A/Duck/Prince Edward Island/274.1/2006 | H16    | N3    |      |
| WB12 | Wild bird | A/Duck/Alberta/431/2006                | H3     | N8    |      |
| WB13 | Wild bird | A/Pintail/Alberta/293/1977             | H2     | N9    |      |
| WB14 | Wild bird | A/Mallard/Manitoba/OTH27-1186/2017     | H11    | N9    |      |
| H1   | Human     | A/Alberta/01/2014                      | H5     | N1    | PHAC |
| H2   | Human     | A/Anhui/1/2013                         | H7     | N9    | NML  |

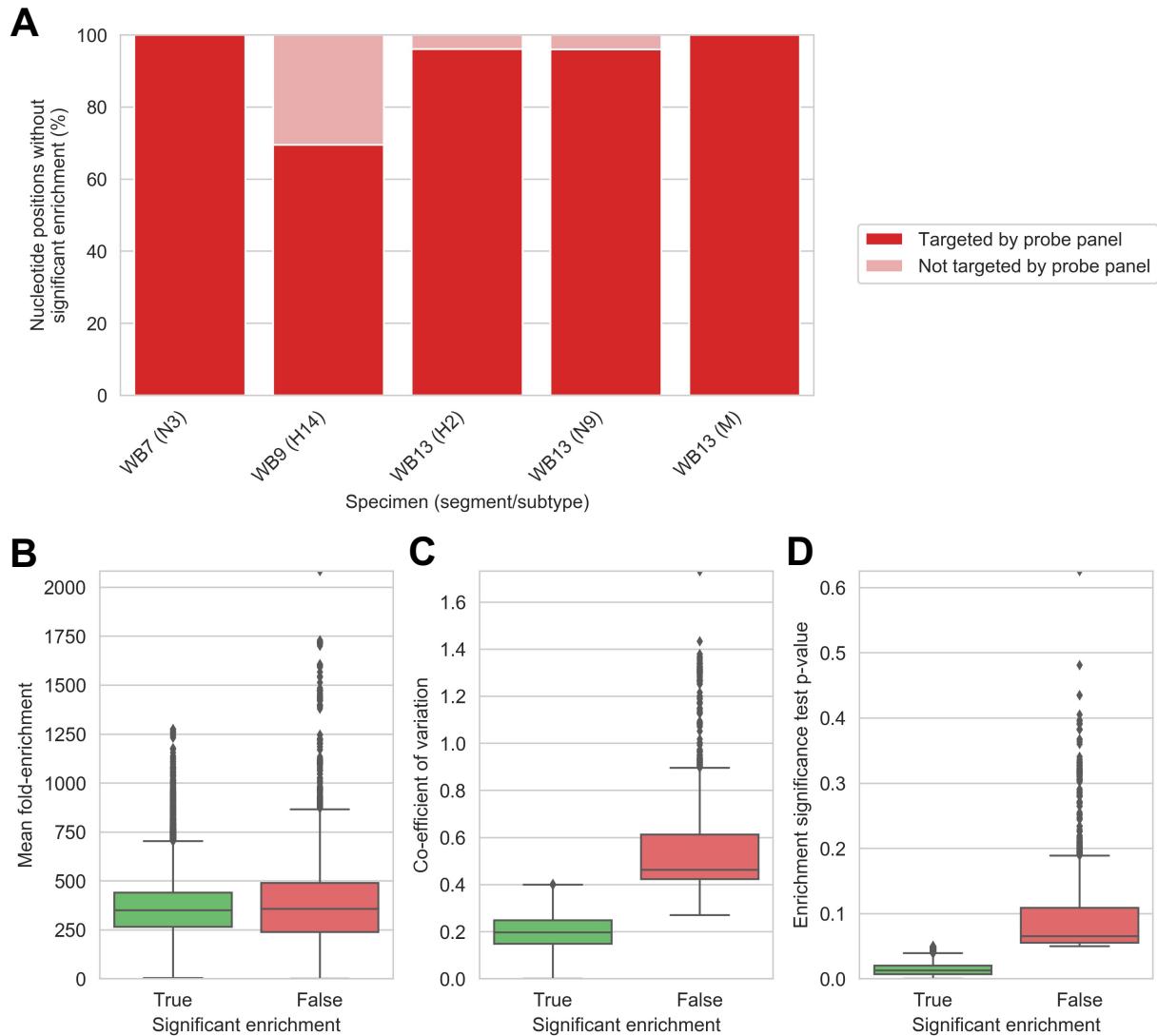
227

228 Sequencing libraries were prepared from each isolate then pooled. AIV library pools  
229 were diluted 1:100 (ng/ng) in libraries of background material made from mock-infected egg  
230 cultures, then captured three times independently using the AIV\_v1 panel. Pre- and post-capture  
231 pools were sequenced to calculate mean fold-enrichment at each nucleotide position in these 69  
232 HA, NA, and M segments. Half of all nucleotide positions had a mean fold-enrichment greater  
233 than 351.2-fold, and 90% of nucleotide positions had a mean fold-enrichment greater than 195.0-  
234 fold (Figure 4A). We also calculated the percentage of the capture pools composed of  
235 background material from the mock-infected egg cultures, then compared these percentages pre-  
236 and post-capture (Figure 4B). Before capture, the mean background percentage was 99.17%, but  
237 this was reduced to 0.03% following capture. Together, these data demonstrate effective

238 enrichment of AIV material and removal of background by probe capture with the AIV\_v1  
239 panel.

240




241  
242 **Figure 4: Effective *in vitro* capture of egg-cultured avian influenza virus isolates using the ProbeTools-  
243 designed AIV\_v1 panel.** The AIV\_v1 panel of 3,600 probes was designed using ProbeTools, and it was used to  
244 capture sequencing libraries made from a representative collection of 23 egg-cultured avian influenza viruses (AIVs)  
245 (described in Table 1). AIV libraries were pooled together, diluted 1:100 (ng/ng) in libraries of background material  
246 made from mock-infected egg cultures, then captured three times independently. A) Pre- and post-capture pools  
247 were sequenced to calculate fold-enrichment at each nucleotide position in the haemagglutinin (HA), neuraminidase  
248 (NA), and matrix (M) genome segments of these isolates (mean of three independent replicates). B) Background  
249 material from mock-infected egg cultures was effectively removed during probe capture. C) Breadth of enrichment,  
250 *i.e.* the percentage of nucleotide positions that were significantly enriched by probe capture, was calculated for each  
251 HA, NA, and M genome segment in these isolates.

252

253 We also used these *in vitro* results to assess breadth of enrichment, *i.e.* the percentage of  
254 nucleotide positions in each HA, NA, and M segment that had been significantly enriched by  
255 probe capture (Figure 4C, Table S1). Breadth of enrichment was greater than 96.3% for 64 of 69  
256 segments in the collection, and it was not less than 46.5% for any segment, which is sufficient  
257 for segment and subtype identification. Nine isolates contained high priority H5, H7, and H9  
258 segments, all of which had greater than 98.7% breadth of enrichment. This included two isolates  
259 from zoonotic human infections (H5N1 and H7N9), which were extensively enriched despite the  
260 absence of reference sequences from human infections in the target space used for probe design.

261 We further examined the five segments with less than 96.3% breadth of enrichment to  
262 understand why they were apparently not captured in full. First, we used the ProbeTools *capture*  
263 module to assess if the AIV\_v1 panel lacked probes targeting their particular genome segment  
264 sequences. We observed that most positions without significant enrichment were nonetheless  
265 extensively covered by the probe panel (Figure 5A). This indicated that insufficient design by  
266 ProbeTools was not a major explanation for the lack of significant capture of these segments.

267



268

269 **Figure 5: Lack of significant enrichment in segments with lower breadths of enrichment was due to**  
270 **experimental variation between capture replicates instead of insufficient probe design.** A representative  
271 collection of 23 egg-cultured avian influenza viruses was captured three times independently using the ProbeTools-  
272 designed AIV\_v1 panel. A) ProbeTools *capture* was used to predict probe panel coverage of positions without  
273 significant enrichment from 5 genome segments with breadths of enrichment less than 96%. These positions were  
274 extensively targeted by probes in the AIV\_v1 panel. B) Fold-enrichment was comparable for positions with and  
275 without significant enrichment. The difference in distribution means was only 1.09-fold, although it was statistically  
276 significantly ( $p < 0.0001$ , Welch's t-test) due to the large number of nucleotide positions involved in the comparison  
277 ( $n = 96,376$  and  $n = 3,082$  for positions with and without significant enrichment respectively). C) Variation in fold-

278 enrichment between three independent replicates was significantly higher for positions that did not achieve  
279 significant enrichment ( $p < 0.0001$ , Levene's test). D) Most positions with insignificant enrichment narrowly failed  
280 the enrichment test's pre-determined alpha level of 5%.

281

282 Next, we assessed whether experimental factors were responsible for nucleotide positions  
283 in these segments failing to achieve statistically significant enrichment. Fold-enrichment values  
284 between positions with and without significant enrichment were comparable, but variation  
285 between capture replicates were significantly different, with higher variation for positions that  
286 were not significantly enriched (Figure 5BC). Despite this source of experimental variation, and  
287 the limited number of replicates that was practical for us to perform, only 3.1% of nucleotide  
288 positions across all HA, NA, and M segments were impacted, and most of these positions only  
289 barely failed the enrichment significance test (half achieved a  $p$ -value  $< 0.07$ ) (Figure 5D).  
290 Overall, our *in vitro* capture results demonstrated that the ProbeTools-designed AIV\_v1 panel  
291 performed well on real viral isolates, effectively removing background material and providing  
292 high breadths of enrichment across HA, NA, and M segment targets.

293

294 **Comparison of *in silico* probe coverage prediction and *in vitro* probe capture enrichment:**  
295 ProbeTools relies on *in silico* coverage assessment by the *capture* module, both for final panel  
296 evaluation and for identifying poorly covered sequences during incremental design. To validate  
297 ProbeTools' coverage assessment algorithm, we examined how closely its *in silico* predictions  
298 agreed with *in vitro* capture results on egg-cultured AIV isolates.

299

|                   |       | Significantly enriched |                |                 |
|-------------------|-------|------------------------|----------------|-----------------|
|                   |       | False                  | True           | Total           |
| Targeted by panel | False | 761 (0.8%)             | 7,678 (7.7%)   | 8,439 (8.5%)    |
|                   | True  | 2,321 (2.3%)           | 88,698 (89.2%) | 91,019 (91.5%)  |
|                   | Total | 3,082 (3.1%)           | 96,376 (96.9%) | 99,458 (100.0%) |

300

301 **Figure 6: *In silico* predictions of probe coverage by ProbeTools were highly concordant with actual *in vitro***

302 enrichment of egg-cultured AIV isolates.

303 A representative collection of 23 egg-cultured avian influenza viruses

304 was captured three times independently using the ProbeTools-designed AIV\_v1 panel. Pre- and post-capture pools

305 were sequenced to determine which nucleotide positions in the haemagglutinin (HA), neuramindase (NA), and

306 matrix (M) genome segments of these isolates had been significantly enriched. The ProbeTools *capture* module was

307 used to assess which nucleotide positions of these HA, NA, and M genome segments were targeted by the

308 ProbeTools-designed panel. Each cell indicates the number of nucleotide positions meeting the corresponding *in*

309 *silico* prediction and *in vitro* capture conditions.

309

310 Using the ProbeTools *capture* module, we determined which nucleotide positions in the

311 egg-cultured AIVs were predicted to be covered by the AIV\_v1 probe panel. We then compared

312 these predictions to our *in vitro* capture results to see if significant enrichment had actually

313 occurred at these nucleotide positions (Figure 6). Predicted probe coverage and significant

314 enrichment results were concordant for 89.2% of nucleotide positions. Only 2.3% of nucleotide

315 positions targeted by the AIV\_v1 panel were not significantly enriched. These were concentrated

316 in the five segments discussed above that were impacted by variability between replicates

317 (Figure S1). We also noted that 7.7% of nucleotide positions were significantly enriched despite

318 not being targeted by the AIV\_v1 panel, a phenomenon that was observed in most segments  
319 across all isolates (Figure 6 and Figure S1). We attribute this to the capture of larger fragments  
320 containing untargeted sequences adjacent to the location annealed by the probe. It might also  
321 indicate that local alignment parameters used by ProbeTools *capture* are more conservative than  
322 actual annealing thermodynamics. Either way, these results showed that ProbeTools predictions  
323 generally reflected actual capture of target genomic material, and *in silico* predictions more often  
324 underestimated panel performance when predictions were incorrect.

325

## 326 **DISCUSSION**

327 This study highlighted some important considerations when designing panels using ProbeTools.  
328 Foremost among these was the effect of target space composition on panel inclusivity. In this  
329 AIV case study, we noted a significant positive monotonic association between panel coverage  
330 and the number of reference sequences representing a particular subtype in the target space.  
331 Based on how the ProbeTools algorithm ranks probe candidates by the number of k-mers in the  
332 cluster they represent, it stands to reason that over-representing similar taxa (which would  
333 contain many similar k-mers) would bias the resulting panel towards these taxa.

334 Consequently, ProbeTools users should have a thorough knowledge of the contents of  
335 their target space and the possible sources of sampling bias in the databases from which they  
336 obtain their reference sequences. In the case of AIVs, the agricultural impacts and public health  
337 threats of certain HA subtypes have led to more frequent sequencing of these subtypes and  
338 accessioning of their genome sequences in popular databases. For our panel, this contributed to  
339 bias towards subtypes like H5, H7 and H9. Whether this is a benefit or limitation will depend on  
340 the intended application. In the context of outbreak prevention and pandemic preparedness, a

341 panel biased towards taxa that are known for their agricultural impact and zoonotic potential is  
342 beneficial. If the objective is to characterize viral diversity and ecology in wildlife, however, this  
343 could be a limitation.

344 To obtain the best results, ProbeTools users should purposefully curate their target space  
345 to serve their probe capture objectives. Users may want to identify taxa whose detection is a  
346 priority and over-represent them in the target space. Conversely, users may want to ‘flatten’ their  
347 target space to ensure no particular taxa, clades, subtypes, *etc* dominate. This could be done  
348 manually, by selecting specific sequences to represent relevant groups, or it could be attempted  
349 bioinformatically by pre-clustering target sequences, providing the number and length of target  
350 sequences do not make this computationally prohibitive.

351 Another strategy could be to use the various ProbeTools modules to extract low coverage  
352 sequences from specific groups whose target sequences have poor probe coverage after a core  
353 panel is designed. For instance, had H15 subtype AIVs been a surveillance priority in this study,  
354 supplemental H15-specific probes could have been designed by running the *capture*, *getlowcov*,  
355 and *makeprobes* modules on the H15 subset of target sequences after noting their comparatively  
356 low coverage by the main panel. In this way, the modular nature of ProbeTools and the relatively  
357 simple-to-understand algorithms within each module empower users to experiment and find  
358 creative solutions. This flexibility is instrumental for tailoring probe panels to the needs of the  
359 user and their specific viral capture application.

360

## 361 CONCLUSIONS

362 In this study, we used ProbeTools to create an effective and broadly inclusive panel of  
363 hybridization capture probes for subtyping AIVs. Our results show the utility of this panel as a

364 tool for AIV surveillance, outbreak prevention, and pandemic preparedness. They also  
365 demonstrate that ProbeTools can effectively design probes against hypervariable genomic targets  
366 like avian-origin HA and NA segments. This validation of ProbeTools' core design and coverage  
367 assessment algorithms shows that they are suitable for other challenging design applications, *e.g.*  
368 other viruses with hypervariable genes and pan-viral capture panels targeting multiple diverse  
369 taxa.

370 An increasing frequency of zoonotic outbreaks, epidemics, and pandemic crises has  
371 renewed interest in characterizing viral diversity at the interface of wildlife, livestock, game, and  
372 humans [39-42]. Genomic sequencing is becoming central to these One Health ventures, and  
373 viral capture panels will need designing and updating as our knowledge of viral threats continues  
374 to expand [43-44]. The on-going COVID-19 pandemic has also demonstrated the value of viral  
375 genomics to public health [45-48], resulting in unprecedented investments in sequencing  
376 capacity at public health laboratories. This will expand routine genomics for numerous common  
377 pathogens, requiring the development of new target enrichment protocols. ProbeTools can  
378 facilitate probe design tasks for all of these endeavours.

379

## 380 METHODS

381 **ProbeTools modules:** ProbeTools consists of five main modules written in Python (v3.7.3) that  
382 perform essential tasks in the probe design process. ProbeTools is freely available under the MIT  
383 License. It can be installed easily using the Anaconda/Miniconda package and environment  
384 manager. Alternatively, it can be installed via the Python Package Index, followed by separate  
385 installation of its VSEARCH and BLASTn dependencies. Installation instructions, source code,

386 documentation, and usage examples are available at

387 <https://github.com/KevinKuchinski/ProbeTools>.

388 The *clustermers* module enumerates and clusters probe-length k-mers from user-  
389 provided target sequences. 1) K-mers are enumerated using a sliding window that advances by a  
390 specified number of bases. 2) K-mers are clustered based on nucleotide sequence similarity using  
391 VSEARCH cluster\_fast [34]. 3) Centroid sequences from each cluster are ranked by the size of  
392 the cluster they represent. Centroids from larger clusters are assumed to be better probe  
393 candidates by virtue of having similarity to more k-mers in the target space. By default,  
394 *clustermers* enumerates 120-mers, advancing the window one base at a time, and it clusters  
395 using a nucleotide sequence identity threshold of 90%. Previous studies have observed effective  
396 hybridization between targets and probes with this degree of sequence similarity [9, 11].

397 The *capture* module predicts how well user-provided probe sequences cover user-  
398 provided target sequences. 1) Each probe sequence is locally aligned against each target  
399 sequence using BLASTn [35]. 2) Alignments are filtered, retaining those with a minimum  
400 sequence identity over a minimum alignment length. 3) Subject alignment start and end  
401 coordinates are extracted from the BLASTn results to determine which nucleotide positions in  
402 the target sequences are covered by probes. By default, *capture* requires 90% sequence identity  
403 over at least 60 bases to assign probe coverage to the aligned positions.

404 The *getlowcov* module uses the output of *capture* to extract genomic regions with low  
405 coverage from the provided targets. This allows for additional probe design focused on poorly  
406 covered regions of the target space. This module returns all sub-sequences where a minimum  
407 number of consecutive bases were covered by fewer than a specified number of probes. By

408 default, *getlowcov* returns all sub-sequences over 40 bases in length where all bases in the sub-  
409 sequence were covered by zero probes.

410 The *stats* module uses the output of *capture* to calculate coverage statistics. For each  
411 provided target, it calculates the percentage of nucleotide positions covered by varying numbers  
412 of probes (“target coverage” and “probe depth”).

413 The *makeprobes* module chains the previous modules together to implement a  
414 generalized incremental design strategy (Figure 2). In this strategy, probes are designed in  
415 batches, and regions of the target space with probe coverage are removed between batches so  
416 that additional probes are focused on poorly covered areas. This module can be used as a  
417 convenient departure point for custom designs. The user is only required to provide target  
418 sequences and select a batch size. They can optionally specify a maximum panel size and target  
419 space coverage goal. The *makeprobes* module iterates through its design loop, adding batches of  
420 probes to the panel until the maximum panel size is met, the target space coverage goal is  
421 achieved, or no further probes can be generated.

422

423 **Preparation of AIV target space:** All available full-length influenza A virus genome segment  
424 sequences from avian hosts were downloaded from the Influenza Research Database  
425 ([www.fludb.org](http://www.fludb.org)) on Dec 5, 2017 [36]. Sequences containing degenerate bases were removed to  
426 avoid low quality entries. Sequences were then clustered using VSEARCH cluster\_fast (v1.0.7)  
427 [34] with a 100% sequence identity threshold to remove redundant entries. The remaining entries  
428 were used as our final AIV target space (described in Table 2).

429

430 **Table 2: Avian influenza virus reference sequences used as target space in this study.** Full-length genome  
431 segment sequences from avian hosts were downloaded from the Influenza Research Database ([www.fludb.org](http://www.fludb.org)).

432 Sequences containing degenerate bases were removed, then the remaining sequences were clustered using a 100%  
433 nucleotide sequence identity threshold to discard redundant entries. This provided a final target space of 36,313  
434 reference sequences representing all avian-origin haemagglutinin (HA) subtypes, neuraminidase (NA) subtypes, and  
435 matrix (M) segments.

| Genome segment | Subtype         | Reference sequences in target space (#) | Target space size (KB) |
|----------------|-----------------|-----------------------------------------|------------------------|
| HA             | H1              | 539                                     | 939.1                  |
|                | H2              | 381                                     | 664.0                  |
|                | H3              | 1,309                                   | 2,267.6                |
|                | H4              | 1,135                                   | 1,944.1                |
|                | H5              | 3,546                                   | 6,129.7                |
|                | H6              | 1,378                                   | 2,361.3                |
|                | H7              | 1,266                                   | 2,148.5                |
|                | H8              | 122                                     | 209.9                  |
|                | H9              | 2,653                                   | 4,498.9                |
|                | H10             | 591                                     | 1,005.4                |
|                | H11             | 520                                     | 897.5                  |
|                | H12             | 176                                     | 301.5                  |
|                | H13             | 232                                     | 405.4                  |
|                | H14             | 22                                      | 38.3                   |
|                | H15             | 13                                      | 22.7                   |
|                | H16             | 156                                     | 271.7                  |
|                | HA untyped      | 733                                     | 1,254.8                |
|                | <b>HA total</b> | <b>14,772</b>                           | <b>25,360.4</b>        |
| NA             | N1              | 2,742                                   | 3,804.9                |
|                | N2              | 3,162                                   | 4,498.5                |
|                | N3              | 945                                     | 1,347.3                |
|                | N4              | 174                                     | 249.8                  |
|                | N5              | 296                                     | 427.4                  |
|                | N6              | 1,424                                   | 2,037.0                |
|                | N7              | 502                                     | 718.4                  |
|                | N8              | 1,272                                   | 1,822.9                |
|                | N9              | 667                                     | 948.5                  |
|                | NA untyped      | 783                                     | 1,116.6                |
|                | <b>NA total</b> | <b>11,967</b>                           | <b>16,971.0</b>        |
| <b>M</b>       | <b>none</b>     | <b>9,574</b>                            | <b>9,582.4</b>         |

436

437 **AIV\_v1 probe panel design:** The AIV\_v1 panel was designed against our final AIV target  
438 space using the ProbeTools *makeprobes* module as follows: 2,000 probes were designed against  
439 HA targets in 20 batches of 100 probes; 1,500 probes were designed against NA targets in 15  
440 batches of 100 probes, and 200 probes were designed against M targets in 20 batches of 10

441 probes. All designs were conducted using *makeprobes*'s default parameters with ProbeTools  
442 v0.0.5, VSEARCH v1.0.7, and BLASTn v2.2.31.

443 The top-ranked 1,935 HA probes, 1,435 NA probes, and 184 M probes were combined  
444 into the final panel. Additional probes were added to the panel for potential control and  
445 validation applications, including 36 probes targeting the common reference strain A/Puerto  
446 Rico/8/34 and 10 probes targeting synthetic spike-in DNA oligomers with randomly generated  
447 artificial sequences. This provided a final panel of 3,600 probes (a breakpoint in the  
448 manufacturer's pricing structure), which was synthesized as a custom panel by Twist Bioscience  
449 (San Francisco, CA, USA). Sequences for probes in the AIV\_v1 panel are provided in  
450 Supplemental Material 1.

451  
452 **Preparation of sequencing libraries from egg-cultured influenza isolates:** Detailed laboratory  
453 procedures for the following are provided in Supplemental Material 2. RNA extracted from egg-  
454 cultured AIV isolates was provided by the Canadian Food Inspection Agency's National Centre  
455 for Foreign Animal Disease (Winnipeg, Manitoba, Canada) and the Public Health Agency of  
456 Canada's National Microbiology Laboratory (Winnipeg, Manitoba, Canada). cDNA was  
457 prepared from each isolate using a previously described method [37]. cDNA was also prepared  
458 from a mock-infected egg culture to generate background genomic material for diluting capture  
459 pools. cDNA was fragmented by sonication, then prepared into sequencing libraries for Illumina  
460 platforms with unique dual index barcodes. Adapter-ligated cDNA was split into three separate  
461 barcoding reactions, providing three separately barcoded replicate libraries for each isolate.

462

463 **Probe capture enrichment and genomic sequencing of libraries prepared from egg-cultured**  
464 **influenza isolates:** Detailed laboratory and bioinformatic procedures for the following are  
465 provided in Supplemental Material 2. 1) Three pools were prepared, with each pool containing  
466 one replicate library from each AIV isolate. These pools were sequenced in-house on Illumina  
467 MiSeq to generate full HA, NA, and M segment sequences for each isolate and to confirm HA  
468 and NA subtypes. 2) Each pool was diluted in 1:100 (ng/ng) in one of three replicate libraries of  
469 background genomic material that had been prepared from a mock-infected chicken egg.  
470 Aliquots of each diluted pool were sequenced pre-capture at Canada's Michael Smith Genome  
471 Sciences Centre (Vancouver, BC) on one Illumina HiSeq X lane to establish baseline HA, NA,  
472 and M segment abundance. 3) Each diluted pool was independently captured using the AIV\_v1  
473 probe panel. Captured pools were then sequenced in-house on Illumina MiSeq to assess target  
474 enrichment of HA, NA, and M segments post-capture.

475  
476 **Analysis of significant probe capture enrichment for egg-cultured AIV isolates:** 1) Pre- and  
477 post-capture depths of coverage were determined by mapping each library's sequencing reads to  
478 the HA, NA, and M segment sequences of its corresponding AIV isolate. 2) Depths of coverage  
479 were normalized by dividing raw pre- and post-capture read depths by the total reads in the  
480 corresponding pre- and post-capture pools (Table S2). 3) For each library, fold-enrichment at  
481 each nucleotide position was calculated by dividing the normalized post-capture read depth by  
482 the normalized pre-capture read depth. 4) For each AIV isolate, mean fold-enrichment was  
483 calculated at every nucleotide position from the fold-enrichment values of its three independently  
484 captured replicate libraries. 5) Mean fold-enrichment values and their standard deviations were

485 used to determine if significant enrichment had occurred at all nucleotide positions using a one-  
486 sample T-test against the fixed value of one-fold enrichment with an alpha level of 5%.

487

## 488 DECLARATIONS

489 **Ethics approval and consent to participate:** Not applicable.

490

491 **Consent for publication:** Not applicable.

492

493 **Availability of data and materials:** ProbeTools v0.0.5 source code, which was used to design  
494 the final probe panel and assess its coverage of target sequences *in silico* for this manuscript, is  
495 available on GitHub at <https://github.com/KevinKuchinski/ProbeTools>. FASTA files of the HA,  
496 NA, and M genome segment reference sequences used as a target space for design and  
497 assessment in this manuscript (described in Table 2) are provided as part of the ProbeTools  
498 v0.0.5 release. The sequences of the AIV\_v1 probe panel are also provided as part of the  
499 ProbeTools v0.0.5 release, and they are also included in this manuscript's supplemental  
500 information as Supplemental Material 1. Data from the *in vitro* captures are provided in BAM  
501 format with pre- and post-capture libraries mapped to the HA, NA, and M genome segment  
502 sequences of their corresponding egg-cultured AIV isolate. These can be accessed from the  
503 NCBI Short Read Archive as part of BioProject PRJNA796698. Total read counts used to  
504 normalize depths of coverage in these libraries are provided in the manuscript's supplemental  
505 material as Table S2.

506

507 **Competing interests:** The authors declare that they have no competing interests.

508

509 **Funding:** This work was funded through research grants from Genome British Columbia  
510 (UPP025), Investment Agriculture Foundation of British Columbia (A0822), and the CANARIE  
511 Research Software Program (RS3-073).

512

513 **Authors' contributions:** KK designed and implemented the ProbeTools algorithms, wrote the  
514 ProbeTools source code, designed the AIV\_v1 probe panel, prepared sequencing libraries,  
515 performed probe captures and in-house sequencing, analyzed the data, and wrote the manuscript.  
516 JD performed preliminary studies with k-mer clustering, assisted with the design and  
517 implementation of the ProbeTools algorithms, and provided guidance on bioinformatic data  
518 analysis. CH helped assemble the validation collection of egg-cultured AIV isolates, ensured  
519 relevant strains were included, and provided direction for AIV probe panel design to ensure its  
520 suitability for agricultural surveillance applications. WH provided guidance on implementing  
521 ProbeTools algorithms, best practices for constructing and distributing bioinformatics tools and  
522 packages, and bioinformatic data analysis. NP provided guidance on experiment design for *in*  
523 *vitro* captures, troubleshooting for library preparation, probe capture, and sequencing of egg-  
524 cultured AIV isolates, and provided direction for AIV probe panel design to ensure its suitability  
525 for public health surveillance applications. All authors reviewed and contributed comments on  
526 the manuscript.

527

528 **Acknowledgements:** We would like to acknowledge the efforts of all laboratories world-wide  
529 who have submitted genomic sequences to the Influenza Research Database. Dr. Yohannes  
530 Berhane and Matthew Suderman at the Canadian Food Inspection Agency's National Centre for

531 Animal Disease were instrumental in providing diverse egg-cultured AIV validation material  
532 from wild birds and poultry. We also thank Dr. Agatha Jassem at the British Columbia Centre for  
533 Disease Control's Public Health Laboratory and Dr. Nathalie Bastien at the Public Health  
534 Agency of Canada's National Microbiology Laboratory for providing H5N1 and H7N9  
535 validation material from human infections. Additionally, we thank Tracy Lee at the British  
536 Columbia Centre for Disease Control's Public Health Laboratory for providing primers used to  
537 generate cDNA from AIV egg-cultures.

538

## 539 REFERENCES

- 540 1. Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput  
541 Sequencing for the Detection and Characterization of RNA Viruses. *Front Microbiol*. 2021  
542 Feb 22;12:621719.
- 543 2. Xiao M, Liu X, Ji J, Li M, Li J, Yang L, Sun W, Ren P, Yang G, Zhao J, Liang T, Ren H,  
544 Chen T, Zhong H, Song W, Wang Y, Deng Z, Zhao Y, Ou Z, Wang D, Cai J, Cheng X, Feng  
545 T, Wu H, Gong Y, Yang H, Wang J, Xu X, Zhu S, Chen F, Zhang Y, Chen W, Li Y, Li J.  
546 Multiple approaches for massively parallel sequencing of SARS-CoV-2 genomes directly  
547 from clinical samples. *Genome Med*. 2020 Jun 30;12(1):57.
- 548 3. Houldcroft CJ, Beale MA, Breuer J. Clinical and biological insights from viral genome  
549 sequencing. *Nat Rev Microbiol*. 2017 Mar;15(3):183-192.
- 550 4. Depledge DP, Palser AL, Watson SJ, Lai IY, Gray ER, Grant P, Kanda RK, Leproust E,  
551 Kellam P, Breuer J. Specific capture and whole-genome sequencing of viruses from clinical  
552 samples. *PLoS One*. 2011;6(11):e27805.

553 5. Paskey AC, Frey KG, Schroth G, Gross S, Hamilton T, Bishop-Lilly KA. Enrichment post-  
554 library preparation enhances the sensitivity of high-throughput sequencing-based detection  
555 and characterization of viruses from complex samples. *BMC Genomics*. 2019 Feb  
556 26;20(1):155.

557 6. Brown JR, Roy S, Ruis C, Yara Romero E, Shah D, Williams R, Breuer J. Norovirus Whole-  
558 Genome Sequencing by SureSelect Target Enrichment: a Robust and Sensitive Method. *J  
559 Clin Microbiol*. 2016 Oct;54(10):2530-7.

560 7. Wylezich C, Calvelage S, Schlottau K, Ziegler U, Pohlmann A, Höper D, Beer M. Next-  
561 generation diagnostics: virus capture facilitates a sensitive viral diagnosis for epizootic and  
562 zoonotic pathogens including SARS-CoV-2. *Microbiome*. 2021 Feb 20;9(1):51.

563 8. Wylie TN, Wylie KM, Herter BN, Storch GA. Enhanced virome sequencing using targeted  
564 sequence capture. *Genome Res*. 2015 Dec;25(12):1910-20.

565 9. O'Flaherty BM, Li Y, Tao Y, Paden CR, Queen K, Zhang J, Dinwiddie DL, Gross SM,  
566 Schroth GP, Tong S. Comprehensive viral enrichment enables sensitive respiratory virus  
567 genomic identification and analysis by next generation sequencing. *Genome Res*. 2018  
568 Jun;28(6):869-877.

569 10. Bonsall D, Ansari MA, Ip C, Trebes A, Brown A, Klenerman P, Buck D; STOP-HCV  
570 Consortium, Piazza P, Barnes E, Bowden R. ve-SEQ: Robust, unbiased enrichment for  
571 streamlined detection and whole-genome sequencing of HCV and other highly diverse  
572 pathogens. *F1000Res*. 2015 Oct 13;4:1062.

573 11. Briese T, Kapoor A, Mishra N, Jain K, Kumar A, Jabado OJ, Lipkin WI. Virome Capture  
574 Sequencing Enables Sensitive Viral Diagnosis and Comprehensive Virome Analysis. *mBio*.  
575 2015 Sep 22;6(5):e01491-15.

576 12. Xiao Y, Nolting JM, Sheng ZM, et al. Design and validation of a universal influenza virus  
577 enrichment probe set and its utility in deep sequence analysis of primary cloacal swab  
578 surveillance samples of wild birds. *Virology*. 2018;524:182-191.

579 13. Metsky HC, Siddle KJ, Gladden-Young A, Qu J, Yang DK, Brehio P, Goldfarb A, Piantadosi  
580 A, Wohl S, Carter A, Lin AE, Barnes KG, Tully DC, Corleis B, Hennigan S, Barbosa-Lima  
581 G, Vieira YR, Paul LM, Tan AL, Garcia KF, Parham LA, Odia I, Eromon P, Folarin OA,  
582 Goba A; Viral Hemorrhagic Fever Consortium, Simon-Lorière E, Hensley L, Balmaseda A,  
583 Harris E, Kwon DS, Allen TM, Runstadler JA, Smole S, Bozza FA, Souza TML, Isern S,  
584 Michael SF, Lorenzana I, Gehrke L, Bosch I, Ebel G, Grant DS, Happi CT, Park DJ, Gnrke  
585 A, Sabeti PC, Matranga CB. Capturing sequence diversity in metagenomes with  
586 comprehensive and scalable probe design. *Nat Biotechnol*. 2019 Feb;37(2):160-168.

587 14. Chafin TK, Douglas MR, Douglas ME. MrBait: universal identification and design of  
588 targeted-enrichment capture probes. *Bioinformatics*. 2018 Dec 15;34(24):4293-4296.

589 15. Beliveau BJ, Kishi JY, Nir G, Sasaki HM, Saka SK, Nguyen SC, Wu CT, Yin P. OligoMiner  
590 provides a rapid, flexible environment for the design of genome-scale oligonucleotide in situ  
591 hybridization probes. *Proc Natl Acad Sci U S A*. 2018 Mar 6;115(10):E2183-E2192.

592 16. Mayer C, Sann M, Donath A, Meixner M, Podsiadlowski L, Peters RS, Petersen M,  
593 Meusemann K, Liere K, Wägele JW, Misof B, Bleidorn C, Ohl M, Niehuis O. BaitFisher: A  
594 Software Package for Multispecies Target DNA Enrichment Probe Design. *Mol Biol Evol*.  
595 2016 Jul;33(7):1875-86.

596 17. Kushwaha SK, Manoharan L, Meerupati T, Hedlund K, Ahrén D. MetCap: a bioinformatics  
597 probe design pipeline for large-scale targeted metagenomics. *BMC Bioinformatics*. 2015 Feb  
598 28;16(1):65.

599 18. Dugan VG, Chen R, Spiro DJ, et al. The evolutionary genetics and emergence of avian  
600 influenza viruses in wild birds. *PLoS Pathog.* 2008;4(5):e1000076. Published 2008 May 30.

601 19. Wille M, Tolf C, Avril A, Latorre-Margalef N, Wallerström S, Olsen B, Waldenström J.  
602 Frequency and patterns of reassortment in natural influenza A virus infection in a reservoir  
603 host. *Virology.* 2013 Aug 15;443(1):150-60. doi: 10.1016/j.virol.2013.05.004. Epub 2013  
604 May 28.

605 20. Verhagen JH, Fouchier RAM, Lewis N. Highly Pathogenic Avian Influenza Viruses at the  
606 Wild-Domestic Bird Interface in Europe: Future Directions for Research and  
607 Surveillance. *Viruses.* 2021;13(2):212. Published 2021 Jan 30.

608 21. Widdowson MA, Bresee JS, Jernigan DB. The Global Threat of Animal Influenza Viruses of  
609 Zoonotic Concern: Then and Now. *J Infect Dis.* 2017;216(suppl\_4):S493-S498.

610 22. Mostafa A, Abdelwhab EM, Mettenleiter TC, Pleschka S. Zoonotic Potential of Influenza A  
611 Viruses: A Comprehensive Overview. *Viruses.* 2018;10(9):497. Published 2018 Sep 13.

612 23. Sutton TC. The Pandemic Threat of Emerging H5 and H7 Avian Influenza Viruses. *Viruses.*  
613 2018;10(9):461. Published 2018 Aug 28.

614 24. Peiris JS, de Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health. *Clin  
615 Microbiol Rev.* 2007;20(2):243-267.

616 25. Watanabe T, Watanabe S, Maher EA, Neumann G, Kawaoka Y. Pandemic potential of avian  
617 influenza A (H7N9) viruses. *Trends Microbiol.* 2014;22(11):623-631.

618 26. Nuñez IA, Ross TM. A review of H5Nx avian influenza viruses. *Ther Adv Vaccines  
619 Immunother.* 2019;7:2515135518821625. Published 2019 Feb 22.

620 27. Macias AE, McElhaney JE, Chaves SS, Nealon J, Nunes MC, Samson SI, Seet BT, Weinke  
621 T, Yu H. The disease burden of influenza beyond respiratory illness. *Vaccine*. 2021 Mar  
622 15;39 Suppl 1:A6-A14.

623 28. Lafond KE, Porter RM, Whaley MJ, Suizan Z, Ran Z, Aleem MA, Thapa B, Sar B, Proschle  
624 VS, Peng Z, Feng L, Coulibaly D, Nkwembe E, Olmedo A, Ampofo W, Saha S, Chadha M,  
625 Mangiri A, Setiawaty V, Ali SS, Chaves SS, Otorbaeva D, Keosavanh O, Saleh M, Ho A,  
626 Alexander B, Oumzil H, Baral KP, Huang QS, Adebayo AA, Al-Abaidani I, von Horoch M,  
627 Cohen C, Tempia S, Mmbaga V, Chittaganpitch M, Casal M, Dang DA, Couto P, Nair H,  
628 Bresee JS, Olsen SJ, Azziz-Baumgartner E, Nuorti JP, Widdowson MA; Global Respiratory  
629 Hospitalizations–Influenza Proportion Positive (GRIPP) Working Group. Global burden of  
630 influenza-associated lower respiratory tract infections and hospitalizations among adults: A  
631 systematic review and meta-analysis. *PLoS Med*. 2021 Mar 1;18(3):e1003550.

632 29. Gordon A, Reingold A. The Burden of Influenza: a Complex Problem. *Curr Epidemiol Rep*.  
633 2018;5(1):1-9.

634 30. Sellers SA, Hagan RS, Hayden FG, Fischer WA 2nd. The hidden burden of influenza: A  
635 review of the extra-pulmonary complications of influenza infection. *Influenza Other Respir*  
636 *Viruses*. 2017 Sep;11(5):372-393.

637 31. GBD 2017 Influenza Collaborators. Mortality, morbidity, and hospitalisations due to  
638 influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of  
639 Disease Study 2017. *Lancet Respir Med*. 2019 Jan;7(1):69-89.

640 32. Global Consortium for H5N8 and Related Influenza Viruses. Role for migratory wild birds in  
641 the global spread of avian influenza H5N8. *Science*. 2016;354(6309):213-217.

642 33. Runstadler J, Hill N, Hussein IT, Puryear W, Keogh M. Connecting the study of wild  
643 influenza with the potential for pandemic disease. *Infect Genet Evol.* 2013;17:162-187.

644 34. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool  
645 for metagenomics. *PeerJ.* 2016 Oct 18;4:e2584.

646 35. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL.  
647 BLAST+: architecture and applications. *BMC Bioinformatics.* 2009 Dec 15;10:421.

648 36. Zhang Y, Aevermann BD, Anderson TK, Burke DF, Dauphin G, Gu Z, He S, Kumar S,  
649 Larsen CN, Lee AJ, Li X, Macken C, Mahaffey C, Pickett BE, Reardon B, Smith T, Stewart  
650 L, Suloway C, Sun G, Tong L, Vincent AL, Walters B, Zaremba S, Zhao H, Zhou L, Zmasek  
651 C, Klem EB, Scheuermann RH. Influenza Research Database: An integrated bioinformatics  
652 resource for influenza virus research. *Nucleic Acids Res.* 2017 Jan 4;45(D1):D466-D474.

653 37. Zhou B, Donnelly ME, Scholes DT, St George K, Hatta M, Kawaoka Y, Wentworth DE.  
654 Single-reaction genomic amplification accelerates sequencing and vaccine production for  
655 classical and Swine origin human influenza a viruses. *J Virol.* 2009 Oct;83(19):10309-13.

656 38. Spackman E, Senne DA, Myers TJ, et al. Development of a real-time reverse transcriptase  
657 PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. *J*  
658 *Clin Microbiol.* 2002;40(9):3256-3260. doi:10.1128/JCM.40.9.3256-3260.2002

659 39. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P. Global  
660 trends in emerging infectious diseases. *Nature.* 2008 Feb 21;451(7181):990-3.

661 40. Smith KF, Goldberg M, Rosenthal S, Carlson L, Chen J, Chen C, Ramachandran S. Global  
662 rise in human infectious disease outbreaks. *J R Soc Interface.* 2014 Dec 6;11(101):20140950.  
663 doi: 10.1098/rsif.2014.0950.

664 41. Carroll D, Daszak P, Wolfe ND, Gao GF, Morel CM, Morzaria S, Pablos-Méndez A, Tomori  
665 O, Mazet JAK. The Global Virome Project. *Science*. 2018 Feb 23;359(6378):872-874. doi:  
666 10.1126/science.aap7463.

667 42. Lipkin WI, Firth C. Viral surveillance and discovery. *Curr Opin Virol*. 2013 Apr;3(2):199-  
668 204. doi: 10.1016/j.coviro.2013.03.010. Epub 2013 Apr 17.

669 43. Gardy JL, Loman NJ. Towards a genomics-informed, real-time, global pathogen surveillance  
670 system. *Nat Rev Genet*. 2018 Jan;19(1):9-20. doi: 10.1038/nrg.2017.88. Epub 2017 Nov 13.

671 44. Kress WJ, Mazet JAK, Hebert PDN. Opinion: Intercepting pandemics through genomics.  
672 *Proc Natl Acad Sci U S A*. 2020 Jun 23;117(25):13852-13855. doi:  
673 10.1073/pnas.2009508117. Epub 2020 Jun 3.

674 45. Khoury MJ, Holt KE. The impact of genomics on precision public health: beyond the  
675 pandemic. *Genome Med*. 2021;13(1):67. Published 2021 Apr 23. doi:10.1186/s13073-021-  
676 00886-y

677 46. Grad YH, Lipsitch M. Epidemiologic data and pathogen genome sequences: a powerful  
678 synergy for public health. *Genome Biol*. 2014 Nov 18;15(11):538. doi: 10.1186/s13059-014-  
679 0538-4.

680 47. Sintchenko V, Holmes EC. The role of pathogen genomics in assessing disease transmission.  
681 *BMJ*. 2015 May 11;350:h1314. doi: 10.1136/bmj.h1314.

682 48. Armstrong GL, MacCannell DR, Taylor J, Carleton HA, Neuhaus EB, Bradbury RS, Posey  
683 JE, Gwinn M. Pathogen Genomics in Public Health. *N Engl J Med*. 2019 Dec  
684 26;381(26):2569-2580.

685