

1 Spatiotemporal analysis of axonal 2 autophagosome-lysosome dynamics 3 reveals limited fusion events trigger 4 two-step maturation

5 **Sydney E. Cason^{1†}, Saurabh S. Mogre^{2†}, Erika L.F. Holzbaur¹, Elena F. Koslover^{2*}**

*For correspondence:

ekoslover@ucsd.edu (EFK)

†Authors contributed equally

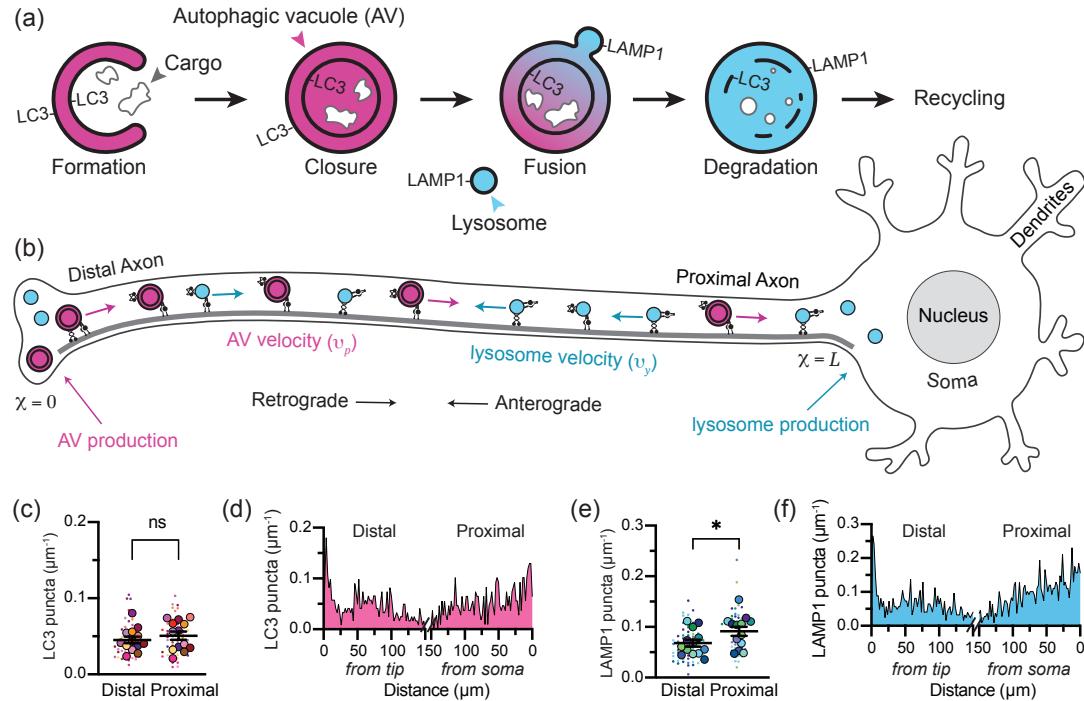
6 ¹Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA.;

7 ²Department of Physics, University of California San Diego, La Jolla, CA, USA.

8

9 **Abstract** Macroautophagy is a homeostatic process required to clear cellular waste including
10 aggregated proteins and dysfunctional organelles. Neuronal autophagosomes form
11 constitutively in the distal tip of the axon and are actively transported toward the soma, with
12 cargo degradation initiated en route. Cargo turnover requires autophagosomes to fuse with
13 lysosomes to acquire degradative enzymes; however, the timing and number of these fusion
14 events in the axon have proven difficult to detect using microscopy alone. Here we use a
15 quantitative model, parameterized and validated using data from live and fixed imaging of
16 primary hippocampal neurons, to explore the autophagosome maturation process on a cellular
17 scale. We demonstrate that retrograde autophagosome motility is independent from lysosomal
18 fusion, and that most autophagosomes fuse with only a few lysosomes by the time they reach
19 the soma. Furthermore, our imaging and model results highlight the two-step maturation of the
20 autophagosome: fusion with a lysosome or late endosome is followed by the slow degradation of
21 the autophagosomal inner membrane before actual cargo degradation can occur. Together,
22 rigorous quantitative measurements and mathematical modeling elucidate the dynamics of
23 autophagosome-lysosome interaction and autophagosomal maturation in the axon.

24



25 **Introduction**

26 Neurons are terminally differentiated cells that last throughout the lifetime of the organism. One
27 important pathway for maintaining cellular health and homeostasis over this long time period
28 is macroautophagy (hereafter: autophagy), the formation of "self-eating" double-membraned or-
29 ganelles that engulf and degrade cellular waste in order to recycle macromolecular components
30 (Figure 1A) (Yin *et al.*, 2016). Defects in neuronal autophagy are implicated in most neurodegener-
31 ative disorders including Parkinson's disease, Alzheimer's disease, and Amyotrophic Lateral Scler-
32 osis (Wong and Holzbaur, 2015). Further, genetically blocking autophagic vacuole (AV) formation
33 causes neurodegeneration in mice (Hara *et al.*, 2006; Komatsu *et al.*, 2006). Given the importance
34 of autophagy in the maintenance of neuronal homeostasis, it is essential to gain a quantitative
35 understanding of the pathway, to elucidate how perturbations in rates of autophagy may either
36 negatively or positively affect neuronal health.

37 Neuronal AVs form constitutively at synaptic sites and in the distal tip of the axon (Figure 1B),
38 where they clear aged proteins and organelles from the presynaptic region (Maday *et al.*, 2012;
39 Goldsmith *et al.*, 2022). However, the vast majority of protein and organelle production occurs in

40 the soma (*Misgeld and Schwarz, 2017; Farfel-Becker et al., 2019; Koltun et al., 2020*). Thus, neu-
41 ronal AVs must traverse the length of the axon, up to 1m in humans, to recycle their cargo (*Maday*
42 and *Holzbaur, 2014; Stavoe and Holzbaur, 2019*). AVs acquire molecular motors after formation
43 to drive their transit to the soma (*Fu et al., 2014; Cheng et al., 2015; Cason et al., 2021*). En route,
44 axonal AVs mature by fusing with endolysosomes, organelles containing the digestive enzymes
45 necessary to break down autophagosomal cargo (*Maday et al., 2012; Cason et al., 2021*). Degrada-
46 tively active endolysosomes, known as lysosomes, are produced in the soma and actively delivered
47 to the axon to fuse with AVs (*Farfel-Becker et al., 2019; Roney et al., 2021*). The maturation of AVs
48 during transport from the axonal tip to the soma is a well-studied phenomenon. However, it has
49 proven experimentally difficult to study the fusion between AVs and endolysosomes along the
50 axon, precluding a quantitative understanding of the spatiotemporal dynamics of maturation.

Figure 1. Neuronal autophagosomes form in the distal axon and fuse with lysosomes during transit to the soma. (a) Schematic illustrating the autophagy pathway. The developing phagophore engulfs cargo and seals its double membrane to form an autophagic vacuole (AV). The inner and outer membranes are initially decorated with lipidated LC3; however, the LC3 on the outer membrane is cleaved off following closure. AVs fuse with late endosomes and LAMP1-containing lysosomes to acquire degradative enzymes. The autophagic cargo is then broken down and the resulting macromolecules are recycled by the cell. (b) Schematic illustrating axonal autophagy. AV biogenesis primarily occurs in the distal tip of the axon, while lysosome biogenesis occurs in the soma. AVs are transported retrograde toward the soma, while lysosomes move processively in both anterograde and retrograde directions. During this microtubule-based transport, the two organelles encounter one another and have some probability of fusing to facilitate AV maturation. In this study, the distal axon is defined as within 250 μm of the axon tip and the proximal axon as within 250 μm of the soma, with the total axon length ($\chi = L$) determined experimentally. (c) Linear density of endogenous LC3 puncta, detected with RRID:AB_881433 or RRID:AB_11150489. $n = 13$ trials; unpaired t test ($p = 0.4504$). (d) Spatial distribution of LC3+ puncta. $n = 1059$ puncta; 2 μm bins. (e) Linear density of LAMP1 puncta, detected with RRID:AB_1026176 or RRID:AB_2134500. $n = 13$ trials; unpaired t test ($p = 0.0489$). (f) Spatial distribution of LAMP1 puncta. $n = 1720$ puncta; 2 μm bins.

The following figure supplements are available for Figure 1:

Figure 1-Figure supplement 1. Antibody validation.

Figure 1-Figure supplement 2. Axon length *in vitro*.

Figure 1-Figure supplement 3. Axonal AV density in live neurons.

51 Mathematical modeling has been used previously to explore the interactions between motile organelles in narrow cellular projections (*Mogre et al., 2020; Agrawal and Koslover, 2021*) such as neuronal axons and fungal hyphae. These studies highlighted the importance of the cross-sectional geometry of the cellular region, as well as organelle production rates and transport dynamics for understanding the interaction probability between organelles (*Agrawal and Koslover, 2021; Williams et al., 2016; Mogre et al., 2020, 2021*). We therefore sought to dissect the mechanisms underlying autophagosomal maturation in the axon by developing a spatially resolved quantitative model of this phenomenon, parameterized from experimental data.

59 In this work, we construct a comprehensive model of organelle transport, interaction, and maturation during axonal autophagy. The model reproduces features of organelle distribution and maturation observed using endogenous staining and live-cell imaging in primary hippocampal neurons. We incorporate the branched geometry of neuronal axons, and highlight the role of simple parameters including production rates, fusion probability, and motility dynamics. Furthermore, we show that AV maturation is in fact a two-step process, wherein AV-endolysosome fusion is followed by the slow degradation of the inner AV membrane before cargo breakdown can begin. Our quantitative model is used to extract a time-scale for this previously under-appreciated second step of AV maturation. The two-way interplay between experimental measurements and mathematical modeling presented in this work sheds light on the multi-step mechanisms and spatiotemporal distribution of neuronal autophagosome maturation.

70 Results

71 Autophagic vacuoles mature in the axon under endogenous conditions

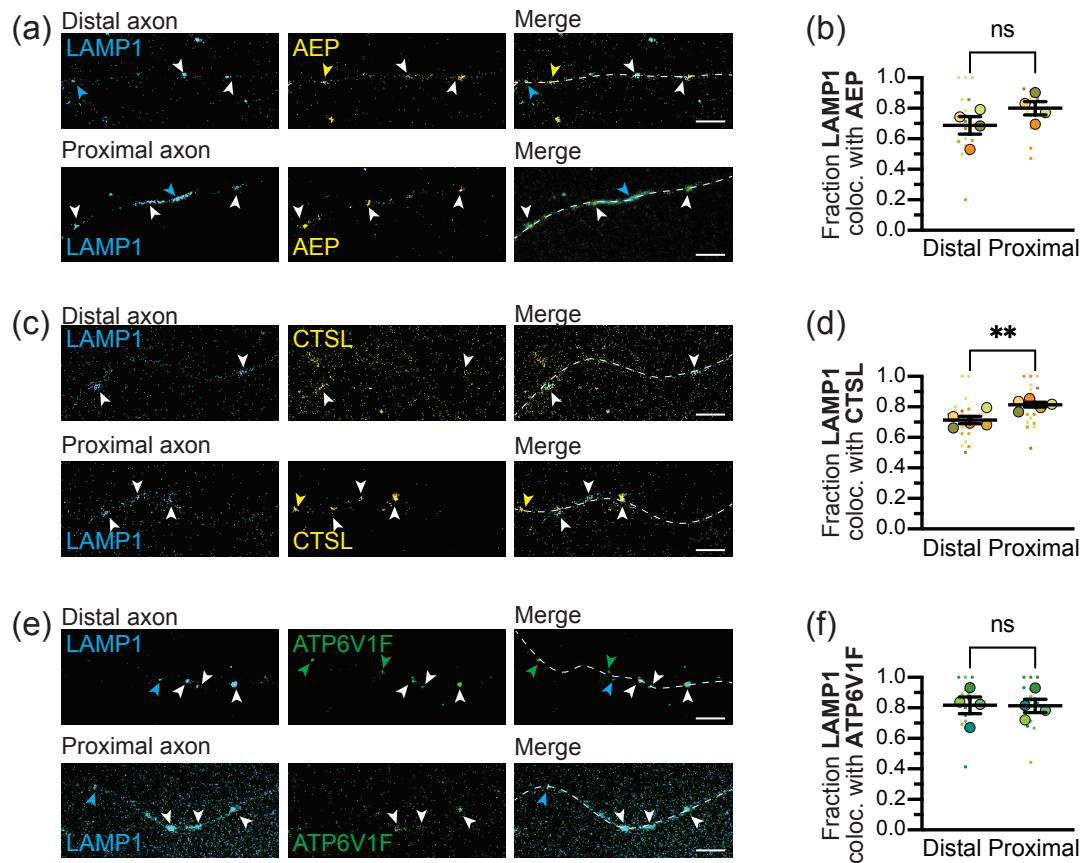
72 Previous studies both *in vitro* and *in vivo* have detected AV maturation by assessing colocalization 73 between fluorescent markers for lysosomes and AVs (*Maday et al., 2012; Stavoe et al., 2016; Hill et al., 2019; Cason et al., 2021*). Most commonly, the protein LC3 (microtubule associated protein 75 1 light chain 3) or one of its orthologs is used to label AVs. Lysosomes are commonly labeled by 76 lysosome-associated membrane protein 1 (LAMP1); however, LAMP1 also localizes to more immature 77 endocytic compartments and even Golgi-derived carrier vesicles, especially when overexpressed 78 (*Cheng et al., 2018; Farfel-Becker et al., 2019; Lie et al., 2021*). Additionally, we worried 79 exogenous overexpression of LC3 or LAMP1 may affect the quantity of AVs and/or endolysosomes, 80 given their roles in organelle biogenesis and turnover (*Yu et al., 2010; Ma et al., 2012; Shibutani and Yoshimori, 2014; Stavoe et al., 2019*). We therefore performed rigorous immunofluorescence 82 measurements to determine the density and spatial distribution of LC3-containing and LAMP1- 83 containing organelles in the axon under endogenous expression conditions.

84 In brief, we dissected primary rat hippocampal neurons at embryonic day 18, plated at a low 85 density on glass coverslips, then fixed and permeabilized without detergents after 7-10 days *in* 86 *vitro*. We then probed for LC3 or LAMP1 using two independent primary antibodies each that were 87 validated both commercially and in house (Figure 1—figure supplement 1). We used a primary 88 antibody against the microtubule-associated protein tau to trace axons (Figure 1—figure supplement 89 2) and facilitate the identification of proximal (within 250 μ m of the soma) and distal (within 90 250 μ m of the axon tip) axonal segments that did not overlap with adjacent cells. We then acquired 91 Z-stacks at 60 \times magnification and analyzed the resulting maximum projections to quantitate the 92 number of LC3 and LAMP1 puncta per μ m of axon.

93 The number of LC3 puncta in the distal and proximal axon were roughly the same, with an 94 average of 1 punctum every 20 μ m ($\approx 0.05\mu\text{m}^{-1}$) (Figure 1C). The linear density detected using 95 immunofluorescence is consistent with what we detect using fluorescently-tagged LC3 in the axons of 96 live primary hippocampal neurons and live iPSC-derived neurons (Figure 1—figure supplement 3), 97 as well as published studies quantifying LC3 in the axons of live primary dorsal root ganglia (DRG) 98 neurons ($\approx 0.05\mu\text{m}^{-1}$) (*Maday et al., 2012*) and primary cortical neurons ($\approx 0.06\mu\text{m}^{-1}$) (*Lee et al., 2011*). The distribution of LC3 in the distal axon showed a mildly higher density in the tip/growth

100 cone and a similar density along the proximal axon (Figure 1D).

101 LAMP1 puncta were slightly more dense, with the number of LAMP1 puncta marginally higher
102 in the proximal axon (1 punctum every $\approx 10\mu\text{m}$; $\approx 0.09\mu\text{m}^{-1}$) than the distal axon (1 punctum
103 every $\approx 15\mu\text{m}$; $\approx 0.07\mu\text{m}^{-1}$) (Figure 1E). The LAMP1 puncta density detected using immunofluo-
104 rescence is consistent with published studies quantifying LAMP1 puncta in live hippocampal (\approx
105 $0.08\mu\text{m}^{-1}$) (Boecker *et al.*, 2020) or iPSC-derived i³ neurons ($\approx 0.08\mu\text{m}^{-1}$) (Boecker *et al.*, 2020), and
106 slightly lower than that seen using fluorogenic lysosomal enzyme activity sensors in DRG neurons
107 ($\approx 0.14\mu\text{m}^{-1}$) (Farfel-Becker *et al.*, 2019). In the distal region, we observed some accumulation of
108 LAMP1 puncta in the axon tip/growth cone (Figure 1F).


109 Endogenous LAMP1 localizes to degradative compartments

110 Some recent studies have proposed that only a small fraction of axonal lysosomes are degra-
111 datively competent (Gowrishankar *et al.*, 2015; Cheng *et al.*, 2018; Farfel-Becker *et al.*, 2019). Studies
112 in non-neuronal cells have also proposed a lysosomal activity gradient wherein lysosomes closer to
113 the nucleus are more mature and proteolytically active than those farther from the nucleus (John-
114 son *et al.*, 2016; Ferguson, 2018). We therefore examined the degradative capacity of lysosomes
115 along the axon by measuring the colocalization between endogenous LAMP1 and the endogenous
116 lysosomal enzymes asparagine endopeptidase (AEP) and Cathepsin L (CTSL) (Figure 2A-D). Across
117 the axon, roughly three-quarters of the LAMP1 colocalized with lysosomal enzymes. Lysosomal
118 proteases require low pH to function, so we probed for the presence of the lysosomal vATPase,
119 which pumps protons across the membrane to achieve and maintain the lysosome's characteristic
120 low pH (≈ 4.8) (Johnson *et al.*, 2016). The vATPase subunit V1 is cytoplasmic and forms an activated
121 vATPase when interacting with the transmembrane V0 subunit. Therefore colocalization between
122 the V1 subunit (ATP6V1F) and membrane-bound LC3 suggests the formation of an active vATPase
123 on the AV membrane. Again, we saw about 80% colocalization in both the proximal and distal axon
124 (Figure 2E,F). These data suggest that the population of LAMP1-positive (LAMP1+) lysosomes along
125 the axon is primarily mature and degradatively competent.

126 Most AVs mature along the axon

127 Next, we quantified colocalization between LC3 and LAMP1 and found that roughly 50% of the AVs
128 in the distal axon colocalized with LAMP1 (Figure 3A,B). Considering our optical resolution (200nm)
129 these colocalized puncta likely represent fused or fusing organelles. A higher number of AVs were
130 positive for LAMP1 in the proximal axon; thus, an additional $\approx 25\%$ of AVs fused with a LAMP1+
131 organelle in the axon shaft during transit to the soma (Figure 3A,B). About 30% of the LAMP1 across
132 the axon colocalized with LC3, and there was no difference between the distal and proximal axon
133 (Figure 3-figure supplement 1).

134 To determine whether LC3-positive (LC3+) organelles were fusing with degradative lysosomes,
135 we assessed colocalization with endogenous lysosomal enzymes AEP and CTS. Roughly half of the
136 LC3 puncta in the distal axon colocalized with lysosomal enzymes (Figure 3C-F). Colocalization with
137 either enzyme increased in the proximal axon, indicating further fusion of AVs with endolysosomes
138 during translocation toward the soma. We also looked for colocalization of endogenous LC3 with
139 the V1 subunit of the vATPase, a marker of active proton pumps. Again, roughly half of the LC3
140 puncta in the distal axon colocalized with ATP6V1F, and an additional $\approx 30\%$ of AVs appeared to
141 acquire ATP6V1F during transit along the axon shaft (Figure 3G,H). We therefore conclude that half
142 of the axonal AV population fuses with a degradatively active lysosome prior to leaving the distal
143 axon, while an additional quarter of the axonal AV population fuses with an active lysosome along
144 the mid-axon prior to reaching the proximal axon and soma.

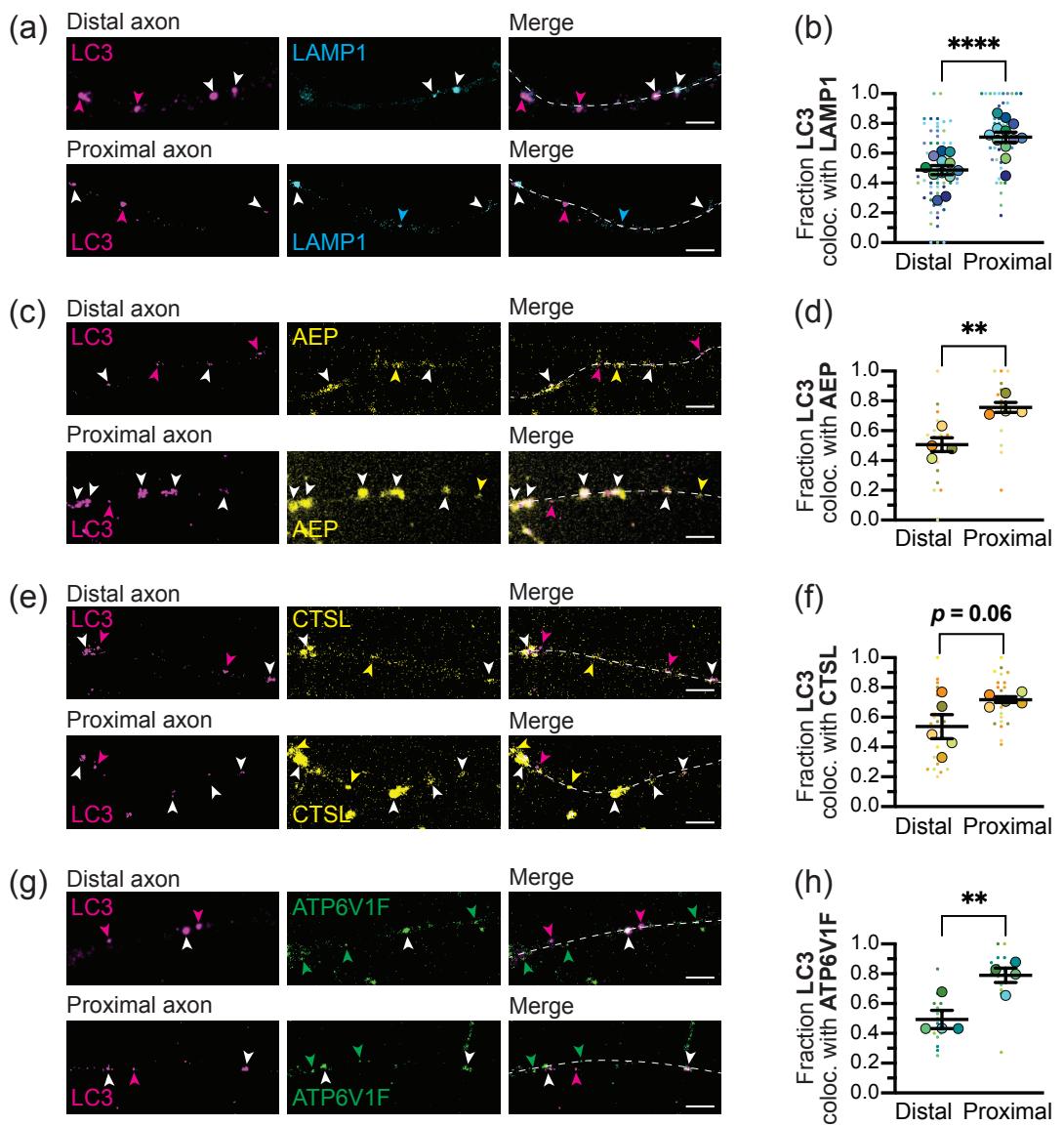
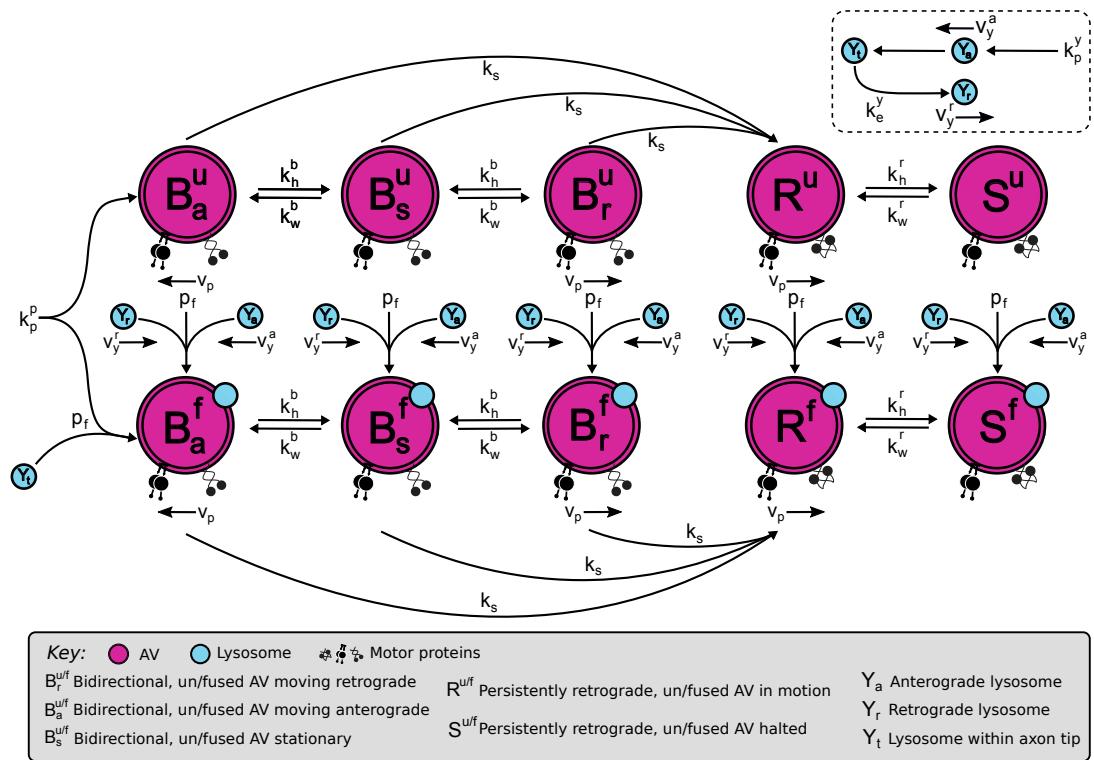


Figure 2. Lysosomes throughout the axon are degradatively competent. Maximum projections (a) and quantification (b) showing LAMP1 and asparagine endopeptidase (AEP) overlap in the distal and proximal axon. $n = 4$ trials; unpaired t test ($p = 0.1684$). Maximum projections (c) and quantification (d) showing LAMP1 and Cathepsin L (CTSL) overlap in the distal and proximal axon. $n = 5$ trials; unpaired t test ($p = 0.0073$). Maximum projections (e) and quantification (f) showing LAMP1 and V-type proton ATPase subunit F (ATP6V1F) overlap in the distal and proximal axon. $n = 4$ trials; unpaired t test ($p = 0.9588$). Dashed line represents axon. Cyan arrows, LAMP1 alone; yellow/green arrows, respective marker alone; white arrows, colocalization. Scale bar, 5 μ m. Fractions are all over the total LAMP1+ puncta in that region. Bars throughout show mean \pm SEM. Dashed line represents axon. ns, $p > 0.05$; **, $p < 0.01$.

145 **Mathematical modeling elucidates interplay of transport and fusion in autophagosome-
146 lysosome distributions**

147 We next proceeded to develop a coarse-grained mathematical model for axonal AV maturation
148 through fusion with endolysosomes. The model is parameterized against experimental data and
149 aims to elucidate how organelle transport and interaction parameters dictate the spatial distribu-
150 tion of lysosomes, AVs, and fusion events.

151 Because axons are much longer than they are wide, we simplify the model system to a one-
152 dimensional domain of length $L = 1055\mu\text{m}$, representing the average length of primary hippocam-
153 pal axons at 7-10 days *in vitro* (Figure 1—figure supplement 2). The model includes the biogenesis
154 of AVs in the distal axon tip (*Maday and Holzbaur, 2014*) and the production of lysosomes in the
155 soma (*Farfel-Becker et al., 2019*), along with switches between different motility states (*Fu et al.,*
156 *2014; Cason et al., 2021*) and AV-lysosome fusion events (Figure 4). We explore organelle distribu-
157 tions both with stochastic agent-based simulations of discrete particles and in a mean-field sense,
158 by solving for the continuous spatial densities of different organelle states.


Figure 3. Spatial distribution of LC3 colocalization with lysosomal markers under endogenous conditions. Maximum projections (a) and quantification (b) showing LC3 and LAMP1 overlap in the distal and proximal axon. $n = 12$ trials; unpaired t test ($p < 0.0001$). Maximum projections (c) and quantification (d) showing LC3 and AEP overlap in the distal and proximal axon. $n = 4$ trials; unpaired t test ($p = 0.0045$). Maximum projections (e) and quantification (f) showing LC3 and CTSL overlap in the distal and proximal axon. $n = 5$ trials; unpaired t test ($p = 0.0605$). Maximum projections (g) and quantification (h) showing LC3 and ATP6V1F overlap in the distal and proximal axon. $n = 4$ trials; unpaired t test ($p = 0.0090$). Magenta arrows, LC3 alone; cyan/yellow/green arrows, respective lysosomal marker alone; white arrows, colocalization. Scale bar, 5 μ m. Fractions are all over the total LC3 puncta in that region. Bars throughout show mean \pm SEM. Dashed line represents axon. ns, $p > 0.05$; *, $p < 0.05$; **, $p < 0.01$; ****, $p < 0.0001$.

The following figure supplement is available for Figure 2:

Figure 3-Figure supplement 1. LAMP1 puncta colocalized with LC3.

159 Model for AV transport and distribution

160 In the model, AVs are formed at the distal axon tip ($x = 0$) at rate k_p . Nascent AVs engage in short
161 bidirectional movements, or remain relatively stationary (Fu *et al.*, 2014; Cason *et al.*, 2021). In
162 the distal axon, the majority (roughly 80%) of LC3+ AVs move less than 10 μ m over the course of
163 a 1-3 minute video acquisition (Figure 5A). Such puncta are either completely stationary or in a

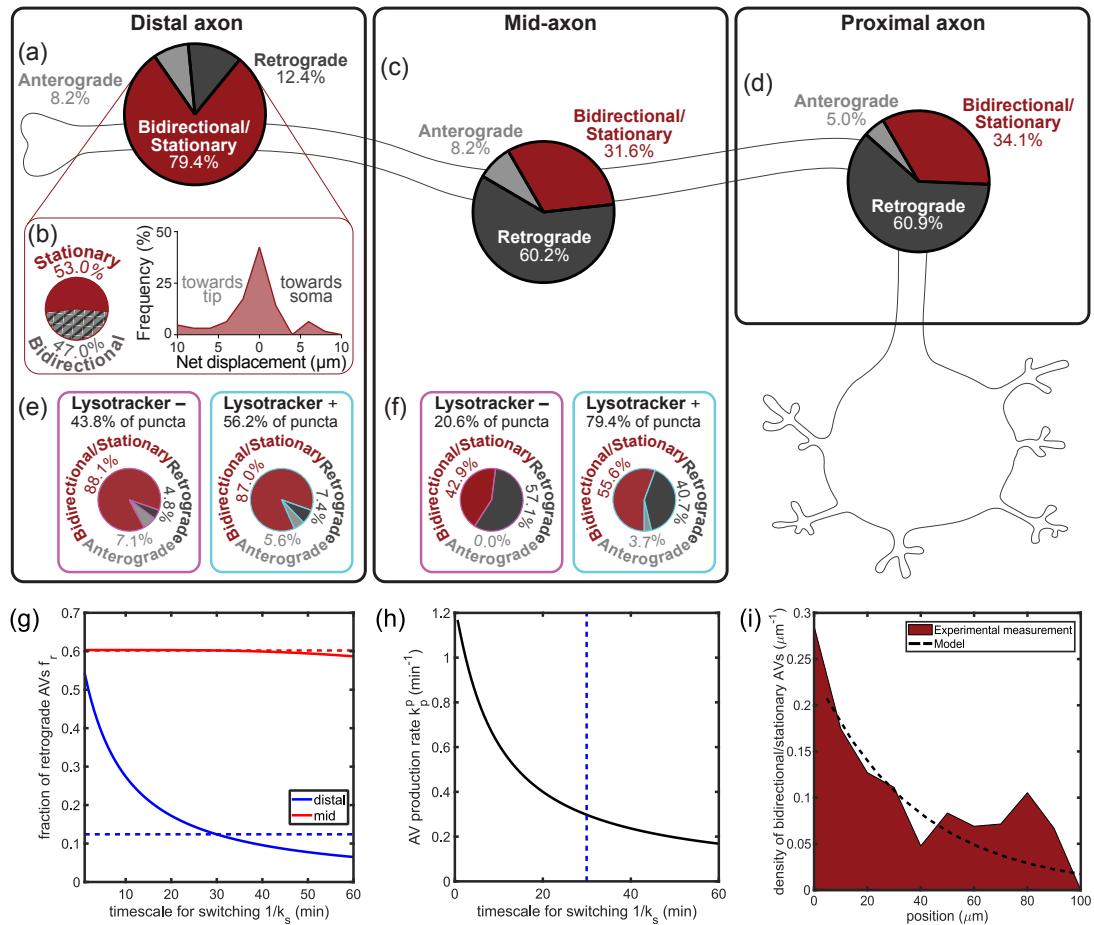


Figure 4. Mathematical model describes AV motility and endolysosome fusion as interconverting states. Magenta states indicate AVs, with top row corresponding to AVs that have not fused with an endolysosome and are bidirectional (B_a^u, B_r^u, B_s^u depending on current motion anterograde, retrograde, or stationary, respectively) or persistently retrograde (R^u : in motion, S^u : paused). Bottom row shows corresponding states for AVs that have fused with an endolysosome. Lysosome states (Y_a : anterograde, Y_r : retrograde, Y_t : tip localized) are shown in cyan. Transitions between states are marked by arrows with the corresponding transition rates labeled.

164 bidirectional state consisting of short anterograde or retrograde runs interspersed with stationary
 165 periods (Figure 5B). The pause-free velocity in the bidirectional state is set to $v_p = 0.75\mu\text{m/s}$ in both
 166 directions (Boecker *et al.*, 2020). The spatial densities of retrograde, anterograde, and stationary
 167 AVs in the bidirectional state are described by $B_r(x), B_a(x), B_s(x)$.

168 We subdivide this population of stationary/bidirectional AVs (with $< 10\mu\text{m}$ displacements) further
 169 by classifying as stationary all particles that have a range $< 3\mu\text{m}$ during the 1-3 minute imaging
 170 period. This gives the fraction stationary among the non-processive population as $f_s \approx 53\%$
 171 (Figure 5B). The remaining particles are classified as bidirectional. The average run-length in a
 172 consistent direction for such particles is estimated as $\lambda = 2\mu\text{m}$, corresponding to a rate constant
 173 $k_h^b = v_p/\lambda$ for transition from either the anterograde or retrograde into a stationary state. Given
 174 the approximately symmetric histogram of the AV displacements for the bidirectional/stationary
 175 population (Figure 5B), we assume that the bidirectional motion is largely unbiased, with rate con-
 176 stant $k_w^b/2$ for transitioning from a stationary state into either an anterograde or retrograde run.
 177 The restarting rate is estimated according to the observed stationary fraction, as $k_w^b = k_h^b(1/f_s - 1)$.

178 All bidirectional AVs have a constant rate k_s of switching to a processive retrograde motile state
 179 [density $R(x)$] with constant velocity v_p . While only 12.4% of LC3+ puncta are retrograde in the distal
 180 axon (Figure 5A), this fraction rises to $\approx 60\%$ in the mid-axon and proximal regions (Figure 5C,D),
 181 with concomitantly fewer bidirectional and stationary particles observed in those regions. Past
 182 studies of axonal autophagosome dynamics suggested that fusion with an endolysosome was a
 183 prerequisite for switching to retrograde motility (Cheng *et al.*, 2015). We analyzed the motility of
 184 AVs which did (Lysotracker+) or did not (Lysotracker-) colocalize with Lysotracker, a dye that labels

Figure 5. Production and motility switching rates determine spatial densities of bidirectional and retrograde AVs. (a) Motility of mCherry-LC3+ puncta in the distal axon ($n = 36$ cells). The majority of puncta exhibited nonprocessive motility ($< 10\mu\text{m}$ net displacement over the course of a 1-3 minute video), with $< 15\%$ moving anterograde ($\geq 10\mu\text{m}$ towards the tip) or retrograde ($\geq 10\mu\text{m}$ towards the soma). (b) Among the non-processive puncta (from $n = 13$ cells), approximately half are classified as stationary, with an overall trajectory range $< 3\mu\text{m}$. The remaining puncta are classified as bidirectional. (c) The displacement distribution among non-processive puncta is approximately symmetric, indicating unbiased motion. (d-e) Motility states of mCherry-LC3+ puncta within the mid- (b, $n = 40$ cells) or proximal (c, $n = 35$ cells) axon. The majority of puncta exhibited retrograde ($\geq 10\mu\text{m}$ towards the soma) motility. (f-g) Motility states of mCherry-LC3+ puncta within the distal (d) or mid-axon (e), separated based on the fusion state determined by colocalization with Lysotracker. The retrograde moving fraction ($\geq 10\mu\text{m}$ net displacement) among fused and unfused AVs was not significantly different within the distal ($n = 14$ cells, $p=0.6933$, Fisher's exact test) or mid-axon ($n = 7$ cells, $p = 0.6722$, Fisher's exact test). (h) From quantitative modeling, predicted fraction of AVs exhibiting retrograde motility within the distal (blue) and the mid axon (red), plotted against the timescale for switching ($\tau_s = 1/k_s$). The observed fractions within hippocampal axons are denoted by the corresponding dashed lines. (i) Model AV production rate k_p^P required to achieve the measured LC3+ density in the distal axon, plotted against the timescale for switching. The dashed line denotes the switching time obtained in (h) by fitting the retrograde fraction in the distal region. (i) Distribution of stationary/bidirectional AVs (with $\leq 10\mu\text{m}$ net displacement) in the distal axon. The dashed black line denotes the distribution predicted by the mathematical model ($B_s + B_r + B_a + S$).

185 acidified compartments and can therefore be used as a proxy for fusion with endolysosomes. In
186 both the distal and mid-axon, Lysotracker+ AVs were no more likely to exhibit retrograde motion
187 than Lysotracker- AVs, implying the motility switch is not connected to fusion (Figure 5E,F). To
188 minimize model parameters, we therefore assume a single constant switching rate regardless of
189 whether an AV has fused with an endolysosome.

190 Given our model assumes AVs are produced at the distal tip, we would expect that most LC3+
191 puncta found in the mid- and proximal axon must have arrived there after undergoing the switch
192 to a retrograde moving state. To account for the remaining stationary puncta observed in these
193 regions, we assume that a processively retrograde AV can switch into a temporary paused state
194 with rate k_h^r and can resume its retrograde motion with rate k_w^r . The density of such paused AVs
195 is defined by $S(x)$. The model is insensitive to the absolute rates k_h^r, k_w^r . However, the ratio k_h^r/k_w^r
196 sets the ratio for paused to retrograde AVs ($S(x)/R(x)$) throughout the mid- and proximal axon.

197 The mean-field model comprises a set of steady-state equations for the densities of AVs in each
198 state:

$$\frac{dB_a}{dt} = v_p \frac{dB_a}{dx} - (k_s + k_h)B_a + \frac{1}{2}k_w B_s = 0 \quad (1a)$$

$$\frac{dB_r}{dt} = -v_p \frac{dB_r}{dx} - (k_s + k_h)B_r + \frac{1}{2}k_w B_s = 0 \quad (1b)$$

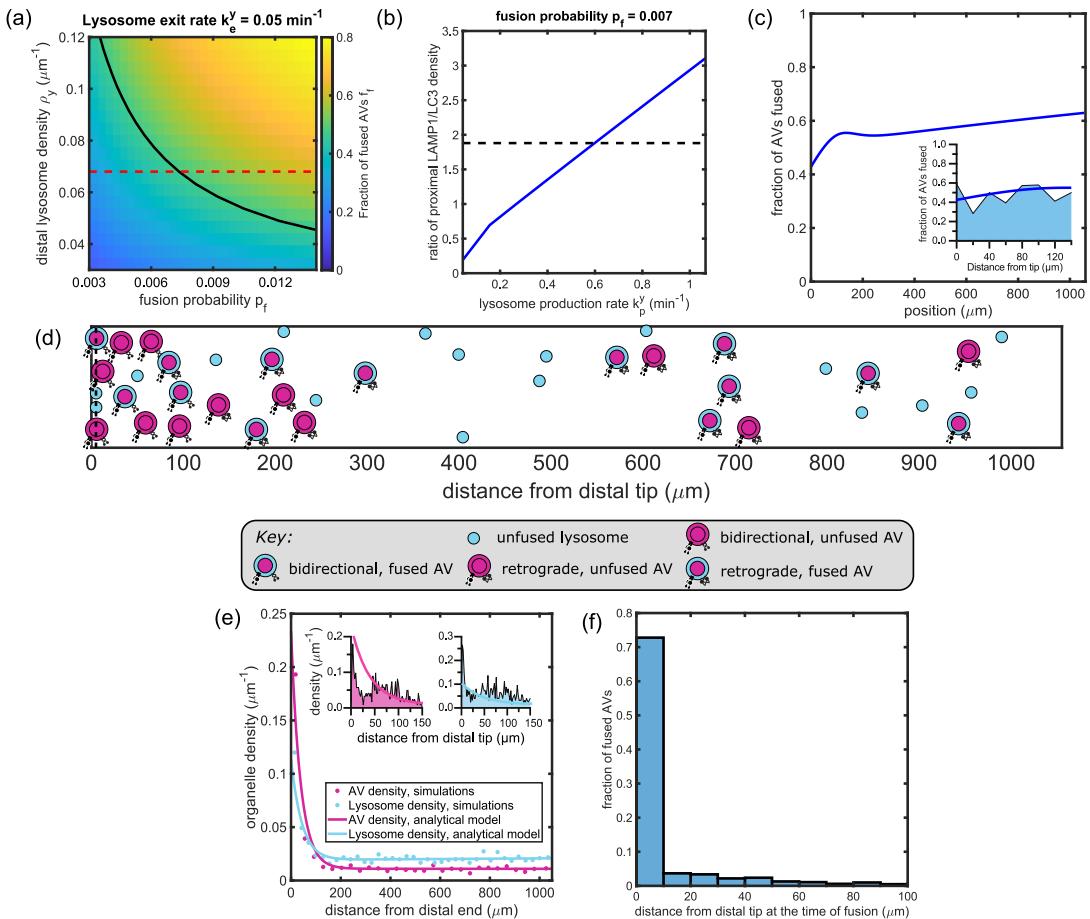
$$\frac{dB_s}{dt} = k_h(B_r + B_a) - (k_w + k_s)B_s = 0 \quad (1c)$$

$$\frac{dR}{dt} = -v_p \frac{dR}{dx} + k_s(B_r + B_a + B_s) - k_h^r R = 0 \quad (1d)$$

$$\frac{dS}{dt} = k_h^r R - k_w^r S = 0 \quad (1e)$$

$$v_p B_r(0) = k_p^p + v_p B_a(0), \quad B_a(L) = 0, \quad R(0) = 0, \quad (1f)$$

199 where the last trio of equations describes boundary conditions at the distal tip and the cell body.
200 These linear, homogeneous, first-order equations can be solved using standard matrix methods.
201 We note that the AV production rate k_p^p scales the total density of AVs in the domain and does not
202 affect the relative fraction in each state. We can thus directly fit the remaining unknown parameters
203 k_s, k_h^r by considering the fraction of AVs in the processively retrograde state in the distal and mid-
204 axonal regions, respectively. Specifically, we compute the fraction of retrograde AVs among those
205 in the distal region ($x < 250\mu\text{m}$) of the linear domain, as a function of the switching rate k_s (Figure 5F).
206 We compare this value to the experimentally measured fraction retrograde among distal AVs (\approx
207 0.124 ± 0.024 , pooled across $n = 36$ cells), defined as puncta that move in the retrograde direction
208 for $> 10\mu\text{m}$. The comparison allows us to extract a fitted parameter $k_s \approx 0.04\text{min}^{-1}$. In the absence
209 of AV pausing after they enter the retrograde state, we would expect the fraction retrograde in the
210 mid-axonal region to be close to 100%. We adjust the pausing rate to match the experimentally
211 observed mid-axon fraction retrograde of 60.2% (Figure 5C), setting the ratio $k_h^r/k_w^r \approx 0.66$.


212 The AV production rate can be fitted by scaling the average total density of AVs in the distal
213 region to match the experimentally measured value $\rho_p = 0.045 \pm 0.004\mu\text{m}^{-1}$ (Figure 1C). The fitted
214 value ($k_p^p \approx 0.30\text{min}^{-1}$; Figure 5H) is within the range previously reported in different neuronal cell
215 types ($0.12 - 0.6 \text{ min}^{-1}$) [Maday and Holzbaur, 2014].

216 The mathematical model predicts that the density of bidirectional autophagosomes should fall
217 off with distance away from the distal tip. The length-scale for this decrease depends on the rate
218 k_s of switching into the processive retrograde state, as well as the stopping and restarting rates for
219 bidirectional AVs. In Figure 5I we show that the model predictions are approximately consistent
220 with the observed distal distribution of stationary and bidirectional AVs.

221 Model for autophagosome-lysosome fusion

222 To explore fusion behavior, the distribution of lysosomes needs to be incorporated into the model.
223 We assume lysosomes are produced in the soma ($x = L$) with rate k_p^y . Upon biogenesis, lysosomes

222 enter the axon and move in the anterograde direction towards the axonal tip, at an effective ve-
 223 locity of $v_y^a = 1.4\mu\text{m/s}$. This effective velocity encompasses both the measured pause-free speed
 224 of anterograde lysosomes in hippocampal neurons and the frequency of pauses (Boecker *et al.*,
 225 2020). Lysosomes that reach the distal tip of the domain ($x = 0$) without fusing with an AV enter a
 226 halted state. From there, they have a constant rate k_e^y of initiating retrograde motion towards the
 227 soma at an effective velocity of $v_y^r = 1.1\mu\text{m/s}$, thus exiting the distal tip (Figure. 6A). The densities
 228 of anterograde and retrograde lysosomes are defined as $Y_a(x)$ and $Y_r(x)$, respectively. The halted
 229 state encompasses all lysosomes accumulated in the distal bud of the axon (Y_i) without resolving
 the precise spatial position within that distal bud.

Figure 6. Model for AV-endolysosome interaction dynamics predicts spatial distributions of fused and unfused organelles. (a) Fraction of AVs fused within the distal axon f_f , plotted against the fusion probability p_f , and the lysosome density in the distal region ρ_y . The tip-exit rate for lysosomes k_e^y is set to 0.05 per minute. The solid black line denotes observed value of f_f based on LC3+ puncta colocalized with LAMP1+ puncta in the distal axon. The dashed red line denotes the observed density of LAMP1+ puncta in the distal axon. (b) The ratio of the linear density of lysosomes to AVs in the proximal axon, plotted against the lysosome production rate. The dashed black line denotes the measured value determined by enumerating LAMP1+ and LC3+ puncta in the proximal axon. (c) Spatial variation in the fraction of AVs fused at different positions along the axon. The inset zooms into the distal region, overlaid with the experimentally observed distribution obtained by enumerating LC3+ puncta colocalized with LAMP1. (d) Snapshot from agent-based simulation of organelle dynamics, after reaching steady-state. For clarity, organelle size and axon cross-section (vertical axis) is not shown to scale. Video of simulation is provided as Figure 6 – Supplemental Video 1. (e) The linear density of LC3+ puncta (magenta) and LAMP1+ puncta (cyan) along the axon. Solid lines are obtained from mean-field model, and dots from stochastic simulations. Insets show comparison to experimentally measured densities in distal region, from Fig. 1(d,f). (f) Histogram of position at first fusion for individual AVs, extracted from simulated trajectories. Vertical axis is normalized to the overall number of AVs that undergo fusion before reaching the soma. The most distal 100 μm are shown.

230 We assume a constant probability of fusion p_f each time an AV and a lysosomal particle pass
 231 each other. Upon fusion, the endolysosome disappears, and the autophagosome is marked as
 232 fused. In our initial model, we assume that the ability of the AV to fuse with subsequent endolysosomes
 233 is lost after the initial fusion event. This is consistent with a model wherein the fusion machinery is inhibited following fusion (Saleeb *et al.*, 2019).

For a given retrograde-moving AV at position x , the flux of anterograde-moving lysosomes passing by it per unit time can be expressed as $(v_p + v_y^a)Y_a(x)$, where the prefactor is the relative velocity of the two particles. Similarly, the flux of retrograde lysosomes passing by a retrograde AV is given by $|v_p - v_y^r|Y_a(x)$, and analogous expressions can be formed for all combinations of lysosome motility (anterograde or retrograde) and AV motility (anterograde, retrograde, or stationary). The rate at which fusion occurs is proportional to this flux multiplied by the fusion probability. We therefore write the mean-field equations for unfused AV densities:

$$\frac{dB_a^u}{dt} = v_p \frac{dB_a^u}{dx} - \left(k_s + k_h^b + p_f |v_y^a - v_p| Y_a + p_f (v_p + v_y^r) Y_r \right) B_a^u + \frac{1}{2} k_w^b B_s^u = 0 \quad (2a)$$

$$\frac{dB_r^u}{dt} = -v_p \frac{dB_r^u}{dx} - \left(k_s + k_h^b + p_f (v_p + v_y^a) Y_a + p_f |v_y^r - v_p| Y_r \right) B_r^u + \frac{1}{2} k_w^b B_s^u = 0 \quad (2b)$$

$$\frac{dB_s^u}{dt} = k_h^b (B_r^u + B_a^u) - \left(k_w^b + k_s + p_f v_y^a Y_a + p_f v_y^r Y_r \right) B_s^u = 0 \quad (2c)$$

$$\frac{dR^u}{dt} = -v_p \frac{dR^u}{dx} + k_s (B_a^u + B_r^u + B_s^u) - \left(p_f (v_p + v_y^a) Y_a + p_f |v_y^r - v_p| Y_r \right) R^u - k_h^r R^u + k_w^r S^u = 0, \quad (2d)$$

$$\frac{dS^u}{dt} = k_h^r R^u - \left(k_w^r + p_f v_y^a Y_a + p_f v_y^r Y_r \right) S^u = 0 \quad (2e)$$

(2f)

where B_r^u , B_a^u , B_s^u are densities of unfused AVs in the bidirectional retrograde, anterograde, and stationary states, respectively. R^u and S^u denote densities of unfused AVs in the persistently retrograde state that are currently moving or paused, respectively. The corresponding equations for lysosome densities are given by

$$\frac{dY_a}{dt} = v_y^a \frac{dY_a}{dx} - p_f \left(|v_y^a - v_p| B_a^u + (v_p + v_y^a) (B_r^u + R^u) + v_y^a (B_s^u + S^u) \right) Y_a = 0 \quad (3a)$$

$$\frac{dY_r}{dt} = -v_y^r \frac{dY_r}{dx} - p_f \left((v_p + v_y^r) B_a^u + |v_y^r - v_p| (B_r^u + R^u) + v_y^r (B_s^u + S^u) \right) Y_r = 0, \quad (3b)$$

where Y_a and Y_r are the densities of lysosomes moving in the anterograde and retrograde direction, respectively. For this system of equations, the boundary conditions are:

$$v_y^a Y_a(0) = k_e^a Y_t + p_f (v_p B_a^u(0) + k_p^p) \quad (4a)$$

$$v_p B_r^u(0) = (1 - p_f Y_t) \left(k_p^p + v_p B_a^u(0) \right), \quad B_a^u(L) = 0, \quad R^u(0) = 0 \quad (4b)$$

$$v_y^r Y_r(0) = k_e^r Y_t, \quad v_y^a Y_a(L) = k_p^p, \quad (4c)$$

235 where the first equation gives the steady-state condition for lysosome halted at the distal tip.

236 This set of non-linear equations is solved numerically as described in the Methods to obtain
 237 the distributions of lysosomes and unfused AVs. The total density of fused AVs, corresponding to
 238 puncta labeled with both LC3 and LAMP1, can be found as $F(x) = R + S + B_r + B_a + B_s - (R^u +$
 239 $S^u + B_r^u + B_a^u + B_s^u)$. The total density of LAMP1+ puncta is $Y(x) = Y_a + Y_r + F$. We fit three additional
 240 model parameters pertaining to fusion and lysosome behavior (p_f , k_p^p , k_e^p) by matching three
 241 different metrics to experimentally observed data: the average density of LAMP1+ puncta in the
 242 distal region ($\rho_y^{\text{dist}} \approx 0.07 \mu\text{m}^{-1}$; Figure 1E), the fraction of AVs that have fused with a lysosome in
 243 the distal region ($f_f^{\text{dist}} \approx 0.5$) as measured by colocalization with LAMP1 (Figure 3B), and the ratio
 244 of LAMP1+ puncta to LC3+ puncta in the proximal region ($R^{\text{prox}} \approx 1.9$; Figure 1C,E). The distal and
 245 proximal regions are defined as segments of length 250 μm from the distal and proximal ends of

Table 1. Parameters for modeling organelle dynamics in autophagy

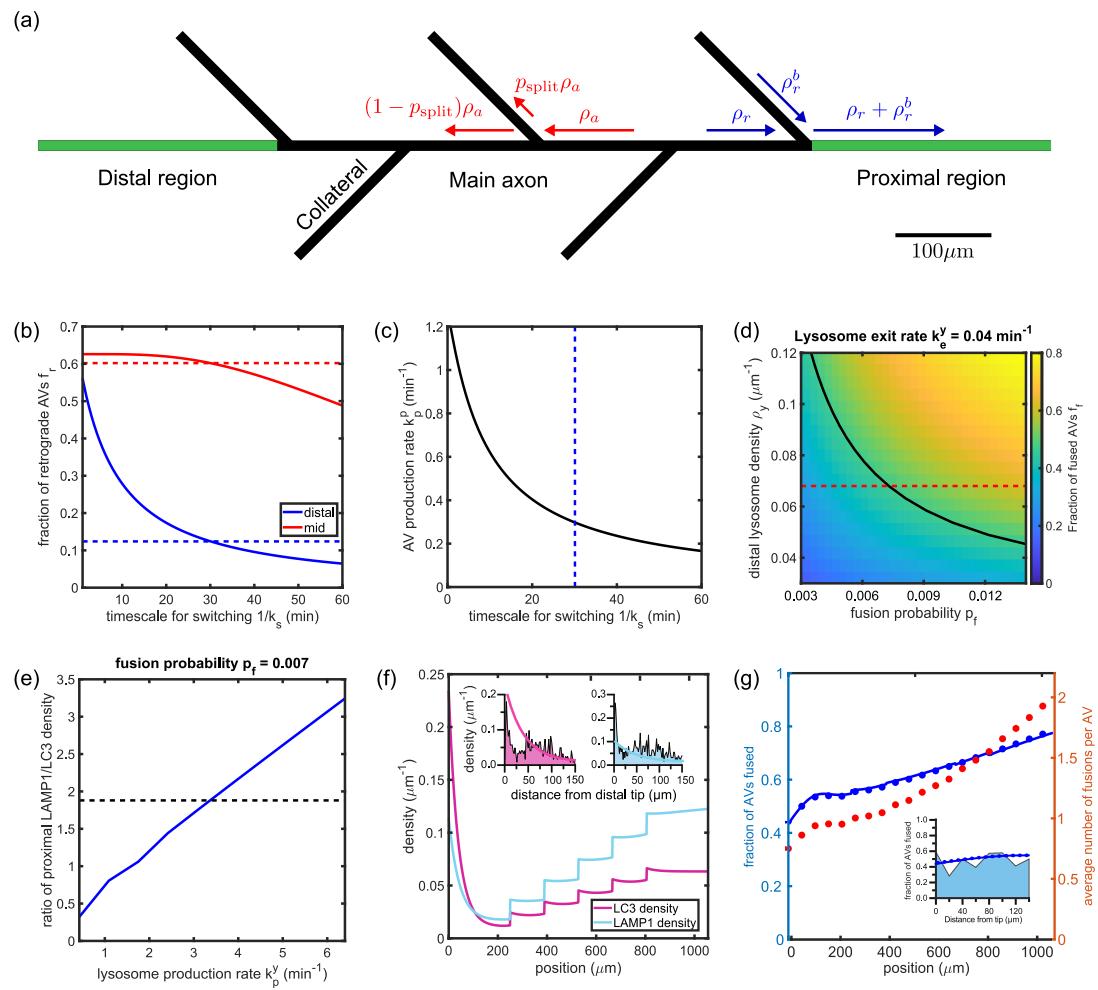
Fixed parameters					
Parameter	Description	Value	Reference		
L	Length of the main axon	1055 μm	Figure 1 S2		
v_p	AV velocity	0.75 $\mu\text{m/s}$	<i>Boecker et al. (2020)</i>		
v_y^a	Lysosome velocity (anterograde)	1.3 $\mu\text{m/s}$	<i>Boecker et al. (2020)</i>		
v_y^r	Lysosome velocity (retrograde)	1.1 $\mu\text{m/s}$	<i>Boecker et al. (2020)</i>		
Measurements					
Parameter	Description	Value	Reference		
ρ_p	Distal LC3 density	(0.045 \pm 0.004) μm^{-1}	Figure 1c		
ρ_y	Distal LAMP1 density	(0.068 \pm 0.007) μm^{-1}	Figure 1e		
R	Proximal LAMP1/LC3 ratio	1.88 \pm 0.11	Figure 1c,e		
f_f	Distal fused AV fraction	0.49 \pm 0.03	Figure 3b		
f_r	Distal retrograde AV fraction	0.12 \pm 0.02	Figure 5a		
Fitted parameters					
Parameter	Description	Value (linear)	Reference	Value (branched)	Reference
k_s	AV Retrograde switch rate	0.03 min^{-1}	Figure 5g	0.03 min^{-1}	Figure 7b
k_h^r/k_w^r	Retrograde AV halt rate (scaled)	0.66	-	0.60	-
k_p^p	AV production rate	0.30 min^{-1}	Figure 5h	0.30 min^{-1}	Figure 7c
p_f	Fusion probability	0.007	Figure 6a	0.007	Figure 7d
k_p^y	Lysosome production rate	0.60 min^{-1}	Figure 6b	3.37 min^{-1}	Figure 7e
k_e^y	Lysosome tip exit rate	0.05 min^{-1}	Figure 6a	0.04 min^{-1}	Figure 7d

246 the domain, respectively. The distal lysosomal density also includes those lysosomes halted in the
 247 distal tip. The resulting fitted parameter values are listed in Table 1.

248 The distal fraction fused f_f^{dist} is largely dependent on the fusion probability and the overall
 249 density of lysosomes in the distal region, regardless of the combination of production and exit
 250 rate that yields that density. We plot this fraction fused in Figure 6A, showing that a unique, low
 251 value of the fusion probability $p_f \approx 0.007$ matches both observations of the distal lysosomal density
 252 and the fraction of fused AVs in the distal region. The distal density of lysosomes is determined by
 253 the balance between the lysosomal production rate and their retrograde exit rate from the distal
 254 tip. A fixed value of this distal density can be achieved by low production but long pausing at the tip
 255 (low k_p^y and k_e^y) or rapid production and short pausing (high k_p^y and k_e^y). High production also implies
 256 that the proximal density of lysosomes will be higher, with approximately linear scaling (Figure 6B).
 257 We therefore used the measured ratio of LAMP1+ to LC3+ puncta in the proximal region to fit the
 258 appropriate value for $k_p^y \approx 0.56\text{min}^{-1}$.

259 Given the fitted model parameters, one key prediction is the spatial distribution of fused AVs.
 260 The fraction of AVs that have fused is plotted as a function of spatial position in Figure 6C, showing
 261 that much of the fusion occurs close to the distal tip, with only a gradual increase in fused fraction
 262 along the mid- and proximal axon. This result is consistent with experimental observations
 263 showing a relatively flat profile of fused fraction with distance from the distal tip (Figure 6C inset).

264 To further validate our mean-field model, we make use of stochastic simulations of lysosomal
 265 and AV particles in a linear domain (see Methods for details). The movement and switching of
 266 transport states for the simulated particles follow the same rules and use the same parameters as
 267 described above. Fusion occurs with probability p_f whenever the particles pass each other. Figure
 268 6D shows a steady-state snapshot of particle states and positions from a simulation using the fitted


parameters, and Figure 6-Supplemental Video 1 provides a corresponding video of the simulated particle motion. The spatial distributions of both LC3+ and LAMP1+ particles are similar for both the stochastic simulations and the mean-field model (Figure 6E). The simulations further enable direct tracking of where in the domain each individual AV becomes fused. This distribution of the position at first fusion (x_f) shows a strong peak at the distal tip (Figure 6F). Given our fitted model parameters, we expect most AVs to fuse either in the distal tip or very soon after exit from the tip, with a smaller broad tail in the distribution corresponding to those that fuse throughout the rest of the axon. We note that this is a prediction of the model, which assumes fusion probability is constant regardless of position or motility state. The predominance of fusions in the far distal tip and their paucity in the mid- and proximal axon is a direct consequence of the observed organelle densities and motility patterns, and the observation that half of AVs in the distal axon are in a fused state. This prediction matches the observation that the fraction fused is largely invariant with distance from the tip, within the distal region of the axon (Figure 6C, inset).

Another prediction of the basic model described here is that the overall density of AVs must fall off with increasing distance from the origin, over a length scale of a few hundred micrometers. This is an inherent consequence of the assumption that AVs are produced in the distal tip and slowly transition to retrograde motility, with only 12% of the distal AVs observed to have made this switch. Because bidirectional organelles spread out slowly from their point of origin, these assumptions imply that the AVs must pile up in the distal region compared to elsewhere in the axon. A modest fall-off in the density of LC3+ puncta is indeed observed within the distal region (Figure 6E, inset). However, the observed LC3+ density is similar in both the distal and proximal regions (Figure 1D). This observation is at odds with the prediction of the model that the proximal AV density should be only 24% of the distal density. One potential explanation for this discrepancy is the non-linear geometry of the axon, with multiple distal tips potentially producing AVs that converge in the proximal region. We therefore expand our model to consider a branched axonal architecture.

Collateral branches supply AVs to maintain a broad axonal distribution
Neuronal axons form multiple branches known as axon collaterals. The generation of these collaterals enables a neuron to establish robust connectivity with neighboring targets and plays an important role in the development of the central nervous system (Gallo, 2011; Kalil and Dent, 2014). We find that primary hippocampal neurons *in vitro* at DIV 7-10 have an average of $n_c \approx 5$ axon collaterals per neuron with an average length of $L_c \approx 164\mu\text{m}$ (Figure 7—figure supplement 1). In order to represent this axonal geometry, we extend our linear mean-field model to include collaterals as one-dimensional branches growing at intervals from the main axon.

Our branched model geometry consists of a single main axon along with five collaterals placed at equispaced intervals along the mid-axon, excluding the most distal and most proximal 250 μm regions (Figure 7A). Each collateral is taken to be a linear segment of equal length $L_c \approx 164\mu\text{m}$. The end point of each collateral is assumed to be functionally equivalent to the main axon tip, producing AVs at a fixed rate k_p^p and allowing lysosomes to halt when they reach the distal tip, followed by returning at rate k_e^y in the anterograde direction. Transport and fusion of AVs and endolysosomes along each branch and each segment of the main axon proceeds identically to the linear model. There are no preexisting studies on how anterograde organelles split between the main axon and a collateral when passing a junction point. In our model we make the relatively simple assumption that anterograde organelles split in proportion to the number of distal tips downstream of the junction. That is, the chances of entering the collateral are 1/2 at the most distal junction, 1/3 at the second-to-last junction, and so forth. This approach allows a similar number of organelles to reach each distal tip in the absence of fusion. Retrograde moving particles that pass a junction continue on upstream along the main axon.

The mean-field densities for AVs and lysosomes obey the same steady-state equations as the linear model (Eq. 1–4), with boundary conditions at the junctions set according to the anterograde

Figure 7. Mathematical model with branched axon morphology is consistent with measured organelle distributions. (a) Schematic of the branched axon geometry. All the distributions shown are within the main axon. Green sections indicate the extent of distal and proximal regions. Text in red and blue indicates the boundary conditions at branch junctions for anterograde and retrograde organelles, respectively. Scale bar: 100 μm. (b) Fraction of AVs exhibiting retrograde motility within the distal (blue) and the mid (red) regions of the main axon, plotted against the timescale for switching. Observed fractions in hippocampal neurons are shown with corresponding dashed lines. (c) AV production rate k_p^p required to achieve the measured LC3+ density in the distal axon, plotted against the timescale for switching. The dashed line denotes the switching time obtained in (b). (d) Fraction of AVs fused within the distal axon f_f , plotted against the fusion probability p_f , and the lysosome density in the distal region. The tip-exit rate for lysosomes k_e^y is set to 0.04 per minute. The solid black line denotes measured value of f_f based on LC3+ puncta colocalized with LAMP1+ puncta in the distal axon. The dashed red line denotes the density of LAMP1+ puncta observed in the distal axon. (e) The ratio of the lysosome density to AV density in the proximal axon, plotted against the lysosome production rate. Dashed black line denotes the measured value determined by enumerating LAMP1+ and LC3+ puncta in the proximal axon. (f) The linear density of LC3+ puncta (magenta) and LAMP1+ puncta (cyan) along the axon. The inset zooms into the distal region, showing the model prediction overlaid on experimentally observed LC3+ and LAMP1+ densities from Figure 1d and Figure 1f, respectively. (g) Spatial variation in the fraction of AVs fused at different positions along the axon. The solid blue line denotes the fraction fused in the base “one-and-done” model; blue markers give corresponding results for a modified model with unlimited fusion events (see Figure 7—figure supplement 2). The inset zooms into the distal region, overlaid with the experimentally observed distribution obtained by enumerating LC3+ puncta colocalized with LAMP1. Red markers denote the average number of fusions per AV for the unlimited fusion model.

The following figure supplements are available for Figure 7:

Figure 7—Figure supplement 1. Number and length of axon collaterals.

Figure 7—Figure supplement 2. Parameter fitting for modified model with unrestricted fusion

319 splitting law and the conservation of flux for retrograde organelles. The AV production rate k_p^p ,
320 retrograde switch rate k_s , and pausing rate for retrograde AVs k_h^r can again be obtained indepen-
321 dently of the lysosome dynamics by fitting to experimental values of the distal AV density and the
322 fraction of retrograde AVs in the distal and mid-axonal regions (Figure 7B,C). These fitted values
323 to not differ substantially from the unbranched case. Parameters for fusion probability (p_f) and
324 lysosome dynamics (k_p^y, k_e^y) can also be obtained using similar methods as described for the linear
325 model (Figure 7D,E). The fitted lysosome production rate for the branched model ($k_p^y = 3.6\text{min}^{-1}$) is
326 roughly 6-fold higher than the linear model ($k_p^y = 0.6\text{min}^{-1}$) to enable a similar density of lysosomes
327 to reach each individual distal tip. The fitted parameter values for the branched model are listed
328 in Table 1.

329 The predicted spatial densities of LC3 and LAMP1 puncta along the main axon are shown in
330 Figure 7F. At each branch junction point, the density of AVs increases as the retrograde organelles
331 coming from the collateral join those moving along the main axon. The predicted average density
332 of AVs in the proximal region is now approximately $\rho_p^{\text{prox}} \approx 0.06\mu\text{m}^{-1}$, slightly higher than the distal
333 density, and comparable to experimental measurements (Figure 1C,D). The model with branched
334 axon geometry also yields a relatively flat profile for the fraction of AVs that have fused with a lyso-
335 some (Figure 7G). While the distal fraction fused $f_f^{\text{dist}} = 0.5$ was used to fit the model parameters,
336 the proximal fraction fused $f_f^{\text{prox}} = 0.73$ is a prediction of the model that approximately matches
337 experimental measurements ($f_f^{\text{prox}} \approx 0.71 \pm 0.03$) (Figure 3B).

338 Modeling unlimited fusion yields a relatively low number of fusion events
339 Parameterized off experimental measurements, the branched axon model of AV and lysosome
340 dynamics accurately represents organelle densities in the distal and proximal regions, the typical
341 fraction of fused organelles within each region, and the fraction of organelles in different motility
342 states. We note that this model was developed under the assumption that each individual AV can
343 fuse with at most one endolysosome. However, the actual number of fusion events between an
344 autophagosome and lysosomes during transit along the axon is unknown. A variety of models
345 could be developed wherein the probability of fusion p_f decreases as a function of the number
346 of fusions already undergone or over time following the initial fusion event. The "one-and-done"
347 model proposed here constitutes an extreme case where this decrease is very steep so that each
348 AV immediately becomes incapable of fusion after the first such event.

349 We also consider a model for the opposite limit, where the number of fusions is unlimited and
350 the fusion probability remains constant, regardless of how many previous endolysosomes have
351 fused into a given AV. The equations for this alternate model are provided in the Methods section,
352 and the resulting organelle densities and fraction fused profile are shown in Figure 7 – figure sup-
353 plement 2. In principle, such a model could allow for a "snow-ball" effect where a single AV sweeps
354 up large numbers of endolysosomes in successive fusions, leaving very few of them to reach the
355 distal tips. However, given the fitted model parameters, we find that the average number of fu-
356 sions accumulated by each AV is quite small: less than 1 in the distal axon, and rising to 2 fusions
357 by the time an AV reaches the soma (Figure 7G, dashed red curve). This is a direct consequence
358 of the low value of the fitted fusion probability $p_f \approx 0.007$, which also leads to the fraction of AV
359 with at least one fusion being very similar in both the "one-and-done" and the "unlimited fusions"
360 model (Figure 7G, blue curves). Thus, a typical AV will have passed an average of ≈ 270 lysosomes
361 by the time it reaches the soma, but will only have fused with a couple of them.

362 The available data described here does not allow us to distinguish whether or not there is a
363 regulatory process that explicitly prevents an AV from fusing with multiple lysosomes. However,
364 our quantitative model demonstrates that there is not a 'snow-ball' effect wherein individual AVs
365 sweep up large numbers of lysosomes in multiple fusion events. Instead, the observed organelle
366 distributions imply that the average number of fusions per AV is quite low, with only a small fraction
367 of AV-endolysosome passage events resulting in fusion.

368 Autophagosome Maturation in Axons is a Two-Step Process

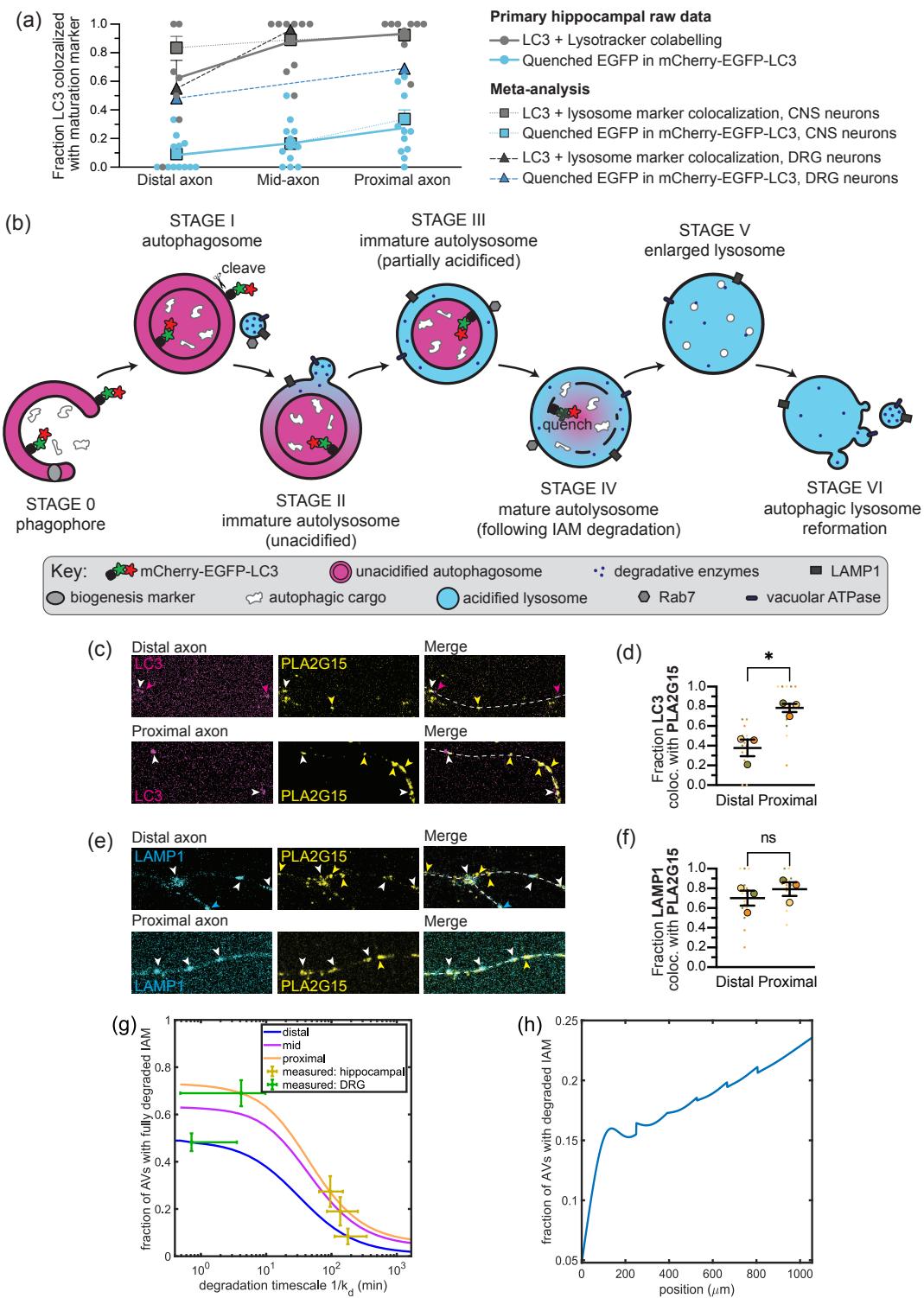

369 Through fusion with an endolysosome, an AV acquires degradative hydrolases and a vATPase
370 pump responsible for establishing and maintaining the acidic pH necessary for hydrolase func-
371 tion. In live-imaging studies, AV maturation can be assayed by measuring colocalization between
372 fluorescent LC3 and the dye LysoTracker, which labels acidified compartments. In our primary hip-
373 pocampal neurons, we find that the fraction of LC3+ puncta that colabel with LysoTracker is about
374 60% in the distal axon, with a slow increase to about 90% in the proximal axon (Figure 8A), similar to
375 the early peak in fusion events and long tail observed in the modeling (Figure 6C,F). These observa-
376 tions are consistent with published data in multiple neuronal cell types examining the localization
377 between LC3 and LysoTracker, LAMP1, and the late endosomal membrane protein Rab7 (Figure 8A,
378 Table 2) (Maday *et al.*, 2012; Maday and Holzbaur, 2014; Cheng *et al.*, 2015; Cason *et al.*, 2021). Ad-
379 ditionally, previous work using the fluorogenic enzymatic activity sensors MagicRed and MDW941,
380 which specifically fluoresce when cleaved by the lysosomal hydrolases Cathepsin B and glucocere-
381 brosidase respectively, showed similar high colocalization with LC3 in the distal axon (Farfel-Becker
382 *et al.*, 2019), again suggesting early fusion with active endolysosomes (Figure 8A, Table 2).

Table 2. Meta-analysis of autophagosome maturation in axons

Cell type	Marker	Distal	Mid	Proximal	Reference
Hippocampal	Rab7	88%	88%	85%	Cason <i>et al.</i> (2021)
Hippocampal	LAMP1	84%	91%	99%	Cason <i>et al.</i> (2021)
Hippocampal	LysoTracker	62%	88%	93%	Cason <i>et al.</i> (2021)
Hippocampal	quenched EGFP	8%	17%	27%	Cason <i>et al.</i> (2021)
Cortical	MagicRed	100%	-	-	Farfel-Becker <i>et al.</i> (2019)
iPSC-derived	quenched EGFP	10%	-	40%	Boecker <i>et al.</i> (2021)
DRG	Rab7	95%	95%	-	Cheng <i>et al.</i> (2015)
DRG	LAMP1	10%	97%	-	Maday <i>et al.</i> (2012)
DRG	LysoTracker	35%	96%	-	Maday <i>et al.</i> (2012)
DRG	MDW941	80%	-	-	Farfel-Becker <i>et al.</i> (2019)
DRG	quenched EGFP	48%	-	69%	Maday <i>et al.</i> (2012)

383 However, use of the dual-color LC3 reporter mCherry-EGFP-LC3 shows a very different rate of
384 AV maturation. This reporter fluoresces in the red and green wavelengths in nonacidified envi-
385 ronments, but only red in acidic environments due to the quenching of the EGFP moiety below
386 pH 5.8 (Campbell and Choy, 2001; Pankiv *et al.*, 2007). Thus, AVs fluorescing red and green can
387 be considered "immature" while those showing only mCherry fluorescence are "mature." Use of
388 this reporter in primary hippocampal or iPSC-derived cortical neurons revealed much slower acid-
389 ification than LysoTracker, with almost no AVs in the distal axon showing acidity-triggered EGFP
390 quenching (Figure 8A, Table 2) (Cason *et al.*, 2021; Boecker *et al.*, 2021). Furthermore, while all of
391 the other lysosomal markers labeled the vast majority of AVs by the mid- or proximal axon, less
392 than half of AVs in the proximal axon of primary hippocampal or iPSC-derived cortical neurons
393 demonstrated EGFP quenching (Cason *et al.*, 2021; Boecker *et al.*, 2021). The marked difference
394 between EGFP quenching and AV colabeling with other lysosome markers in these central nervous
395 system (CNS) neurons is illustrated in Figure 8A. Previous work in dorsal root ganglia (DRG) neurons
396 likewise shows a delay in EGFP quenching as compared with other markers of lysosomal fusion,
397 although the gap is not as large (Figure 8A, Table 2) (Maday *et al.*, 2012).

398 The double-membraned nature of AVs is key to reconciling these seemingly disparate obser-
399 vations (Figure 8B). During biogenesis, the growing phagophore (Stage 0) engulfs cargo such that
400 the cargo ends up inside the inner autophagosomal membrane (IAM), within the central lumen of
401 the closed autophagosome (Stage I). When an autophagosome and an endolysosome fuse, the en-
402 dolysosomal membrane becomes part of the outer membrane and the contents of the endolysoso-

Figure 8. Distal fusion with endolysosomes is followed by slow inner membrane degradation. Caption next page.

403 mal lumen are delivered into the intermembrane space. Thus, degradative enzymes and H^+ ions
 404 from the endolysosome specifically occupy the space between the outer and inner membranes.
 405 Because the volume of the intermembrane space is larger than the volume of the endolysosome,
 406 fusion will cause the pH to rise transiently (Stage II); however, since the fraction of AV colocalized

Figure 8. Distal fusion with endolysosomes is followed by slow inner membrane degradation. (a)

Across studies and cell types, markers for AV-endolysosome fusion (LAMP1, Rab7, Lysotracker, MagicRed, MDW941) are acquired more distally than the GFP moiety of mCherry-GFP-LC3 quenches. Circular points represent primary hippocampal raw data, $n = 8-12$ axons. Lines represent quantities estimated from previous studies (see Table 2). **(b)** When an AV fuses with an endolysosome, the endolysosome's contents enter the intermembrane space and its membrane proteins join the outer membrane. Following IAM degradation, the autophagic cargo, including mCherry-GFP-LC3, is exposed to lysosomal pH and proteases. Following degradation, the recyclable contents are exported and the remaining organelle is broken into smaller lysosomes. The rate of transition from fusion to membrane breakdown is denoted by k_d . **(c)** Maximum projections showing LC3 and phospholipase A2 group XV (PLA2G15) overlap in the distal and proximal axon. **(d)** Comparison of the total LC3+ puncta colocalized with PLA2G15 in the distal and proximal axon. $n = 3$ trials; unpaired t test ($p = 0.0127$). **(e)** Maximum projections showing LAMP1 and PLA2G15 overlap in the distal and proximal axon. **(f)** Comparison of the total LAMP1+ puncta colocalized with PLA2G15 in the distal and proximal axon. $n = 3$ trials; unpaired t test ($p = 0.4248$). Magenta arrows, LC3 alone; yellow arrows, PLA2G15 alone; cyan arrows, LAMP1 alone; white arrows, colocalization. Scale bar, 5 μ m. Fractions are all over the total LC3+ or LAMP1+ puncta in that region. Bars throughout show median \pm 95% confidence interval. ns, $p > 0.05$; ***, $p < 0.001$. **(g)** Modeled fraction of AVs with degraded inner membrane f_d , plotted as a function of the degradation time ($\tau_d = 1/k_d$). Plots shown are averages over the most distal (blue) and most proximal (orange) 250 μ m regions, along with the middle section (pink) of a modeled axon of length 1055 μ m. Parameters used in the model are the same ones extracted from Figure 7. The degradation times corresponding to measured values of f_d in the distal, mid-axon, and proximal regions are shown in yellow for hippocampal neurons, and in green for DRGs. **(h)** Distribution of the fraction of AVs with degraded IAM along the axon. The degradation rate is chosen to be the average of predicted values from **(g)** for hippocampal neurons.

407 with endolysosomal markers (Figure 3) is similar to the fraction of Lysotracker+ AVs (Figure 55E),
408 acidification of the intermembrane space, achieved by activity of vATPase pump(s) in the outer
409 membrane, likely occurs rapidly following fusion (Stage III). In non-neuronal cells (mouse embry-
410 onic fibroblasts), Lysotracker has been shown to specifically localize to the intermembrane space
411 and then collapse inward when the IAM is degraded (*Tsuboyama et al., 2016*).

412 Axonal AVs are condensed due to the narrow diameter of the axon and rarely appear as rings
413 after leaving the tip, making this intermembrane space and inner membrane collapse difficult to
414 resolve with conventional fluorescence microscopy. However, once the IAM is broken down we
415 would expect the central lumen and the cargo therein to be exposed to the acidic pH required to
416 activate enzymatic degradation (Stage IV). Unlike Lysotracker and the fluorogenic enzyme activity
417 sensors, the tandem mCherry-EGFP-LC3 marker localizes specifically to the inner lumen of the AV
418 (Figure 8B). Initially LC3 localizes to both the inner and outer membranes, conjugated to the lipid
419 phosphatidylethanolamine so the protein extends into the lumen on the inner membrane and into
420 the cytosol on the outer membrane (*Martens and Fracchiolla, 2020*). The protein extending into
421 the cytosol is cleaved by the autophagy protease ATG4 (*Kauffman et al., 2018*) leaving only the
422 luminal protein, and fluorophores, intact. Therefore quenching of the EGFP moiety can be used
423 as a specific readout of IAM degradation, indicating the point at which the IAM breaks down and the
424 luminal LC3 and other cargo are exposed to the acidic pH and degradative enzymes (Figure 8B).

425 A careful comparison of the tandem mCherry-EGFP-LC3 marker and other endolysosomal mark-
426 ers thus reveals autophagic maturation to be a two-step process. The first step involves fusion with
427 one or more endolysosomes to acquire degradative enzymes and trigger acidification of the inter-
428 membrane space, yielding an immature autolysosome. The second step involves breakdown of
429 the inner autophagosomal membrane to enable the enzymes and acidic environment to reach the
430 lumen, yielding a mature autolysosome.

431 **Modeling slow IAM degradation**

432 Several explanations could account for the distinct spatial distributions of AV-lysosome fusion and
433 IAM degradation in hippocampal neurons. One possibility is that the endolysosomes which fuse
434 with AVs in the distal region may be lacking the enzymes responsible for IAM degradation. Recently
435 the lysosomal lipase LPLA-2 was identified in *C. elegans* through a forward genetic screen as the

436 enzyme responsible for IAM breakdown (*Li et al., 2021*). We probed for the mammalian ortholog
437 phospholipase A2 group XV (PLA2G15) in fixed primary hippocampal neurons and found that en-
438 dogenous PLA2G15 was present in axons and colocalized with both endogenous LC3 and LAMP1
439 (Figure 8C-F). Specifically, about 40% of LC3+ puncta in the distal axon colocalized with PLA2G15,
440 increasing to about 80% in the proximal axon (Figure 8D). The majority of LAMP1+ puncta colo-
441 calized with PLA2G15 throughout the axon, with no significant difference between the distal and
442 proximal axon (Figure 8F). The colocalization between PLA2G15 and both LC3 and LAMP1 was very
443 similar to the colocalization with other lysosomal enzymes and the vATPase (Figures 2-3). We there-
444 fore conclude that the phospholipase required for IAM degradation is acquired in the initial AV-
445 endolysosome fusion event.

446 An alternative explanation for the different spatial profiles of AV-endolysosome fusion and IAM
447 degradation is a temporal gap: slow kinetics of the IAM degradation could allow time for the AVs
448 to reach the soma in many cases before completion. We explore this possibility, leveraging our pa-
449 rameterized one-and-done model for AV fusion in a branched axonal geometry (Figure 7). Namely,
450 we introduce a single new parameter k_d describing a constant-rate process for complete inner
451 membrane degradation in an AV that has undergone fusion with an endolysosome. The model
452 is then expanded to include a new set of states and spatial distributions ($B_r^d, B_s^d, B_a^d, R^d, S^d$) corre-
453 sponding to bidirectional, processively retrograde, and paused AV densities where IAM degra-
454 dation has been completed, following fusion with an endolysosome. The steady-state distributions
455 of such organelles obey a set of inhomogeneous linear equations that are solved as described in
456 Methods.

457 To obtain an estimate of the degradation rate k_d , we consider the fraction of all AVs that are in
458 the IAM-degraded state [$f_d = (B_r^d + B_s^d + B_a^d + R^d + S^d)/(B_r + B_s + B_a + R + S)$] averaged over the
459 distal and proximal axonal regions. These fractions are plotted as a function of the degradation
460 timescale $\tau_d = 1/k_d$ in Figure 8G. A single value of $\tau_d \approx 100\text{min}$ can account for the experimentally
461 observed low values of degraded fraction in both the distal ($f_d^{\text{dist}} \approx 8\%$) and proximal ($f_d^{\text{prox}} \approx 27\%$)
462 axon of hippocampal neurons. This timescale can be compared to the average time required for
463 a newly formed AV to enter the processive retrograde state ($1/k_s \approx 30\text{min}$) and to move from the
464 distal tip to the soma ($L/v_p \approx 20\text{min}$) in the fitted model. The predicted spatial profile for AVs with
465 a degraded inner membrane is nearly flat throughout most of the axon (Figure 8H), analogous to
466 the fraction of AVs that have undergone a fusion event.

467 We find it takes $\approx 100\text{min}$ following fusion to degrade the IAM of AVs in primary hippocampal
468 neurons (Figure 8G). The slow degradation kinetics account for the relatively small fraction of AVs
469 whose IAM is fully degraded by the time they reach the soma. By comparison, the larger fraction
470 of quenched EGFP in both proximal and distal regions of DRG neurons (Table 2) implies a much
471 shorter IAM degradation timescale in these neurons, similar to that seen in mouse embryonic
472 fibroblasts (*Tsuboyama et al., 2016*). Although detailed fitting is not carried out for this alternate
473 cell type, using the parameters obtained for hippocampal cells yields a rough estimate of $\tau_d \approx$
474 $1 - 10\text{ min}$ for the IAM degradation time in DRG neurons (Figure 8G). This could perhaps be due to
475 higher expression levels of phospholipase and/or enhanced phospholipase activity, possibilities to
476 be explored in future studies.

477 Discussion

478 The results of this study provide a quantitative perspective on the maturation of neuronal au-
479 tophagosomes, a key aspect of the autophagy pathway crucial to maintaining the recycling and
480 turnover of cell components. Previous work both *in vitro* and *in vivo* showed that autophagic vac-
481 uoles (AVs) form within the distal axon, then fuse with endolysosomes while moving in a retrograde
482 fashion towards the soma (*Maday et al., 2012; Stavoe et al., 2016; Hill et al., 2019*). Fusion with en-
483 dolysosomes provides AVs with degradative enzymes necessary to break down their cargo, as well
484 as the vATPase pump that is necessary to establish and maintain the acidic pH at which degra-
485 dative enzymes are active (*Yin et al., 2016*). However, the location and timing of fusion events and

486 their relationship to AV maturation remained largely unclear.

487 We leveraged endogenous staining of AV and endolysosomal proteins to quantify the colocalization
488 and spatial distribution of these organelles along the axons of primary rat hippocampal neurons,
489 thereby avoiding potential overexpression artifacts. We find that LAMP1 colocalizes readily
490 with both degradative hydrolases and active vATPase in both the distal and proximal axon (Figure
491 2). Note that our immunofluorescence is not quantitative and we are unable to detect the number
492 of vATPase complexes present on each endolysosomal structure. Recent work in nonneuronal
493 cells would predict endolysosomes in the periphery of the cell likely have only one vATPase each
494 (*Maxson et al., 2022*). We also cannot quantify the relative load of degradative enzymes, and our
495 CTSL antibody weakly cross-reacts with the immature form of CTSL, pro-CTSL; however, the presence
496 of AEP, a protease known to cleave pro-CTSL into mature CTSL, suggests mature CTSL is the
497 predominant form (*Maehr et al., 2005*). Thus, while we cannot measure degradative activity in a
498 fixed assay, we conclude the LAMP1+ endolysosomes in the axon are degradatively competent.

499 We find that roughly half of AVs have fused with at least one competent endolysosome by the
500 time they leave the distal axonal region, as measured by colocalization with LAMP1, degradative
501 enzymes, and the vATPase (Figure 3). Live-cell imaging of fluorescently tagged LC3 was used to es-
502 tablish the motility behavior of axonal AVs (Figure 5). We find that the majority of AVs in the distal
503 axon are stationary or display short, unbiased bidirectional motions, and that the majority of AVs
504 in the mid- and proximal axon move retrograde towards the soma, consistent with previous studies
505 (*Maday et al., 2012; Maday and Holzbaur, 2014; Cheng et al., 2015; Cason et al., 2021; Boecker
506 et al., 2021*). Furthermore, we find that endolysosomal fusion is independent from initiation of ret-
507 rograde transport, with no difference in motility measurements between AVs positive or negative
508 for the endolysosomal marker Lysotracker (Figure 5E,F).

509 While direct measurements of colocalization between different organelle labels can indicate
510 whether at least one fusion event has occurred, they cannot establish how many endolysosomes
511 a single AV has fused with, nor how many endolysosomes have passed without fusion. We there-
512 fore developed a mean-field mathematical model to describe the motility and fusion interactions
513 between AVs and endolysosomes, which allows us to translate the experimental measurements
514 into a quantitative picture of the behavior of these organelles. Our model is parameterized in
515 such a way as to reproduce a variety of experimental metrics, including distal and proximal densi-
516 ties of AVs and endolysosomes, the fraction of fused AVs in the distal region, and the fraction of
517 retrograde-moving AVs. The model shows that fusion of an AV with an endolysosome is expected
518 to be a rare event, with fewer than 1% of passage events resulting in a fusion. It also predicts
519 that a large fraction of AVs will undergo their first fusion while still in the distal region of the axon,
520 with only a gradual increase in fusions thereafter (Figure 6), consistent with observations in fixed
521 neurons.

522 Notably, we find that each AV is expected to fuse with only one to a few endolysosomes by the
523 time it reaches the soma. The comparison between quantitative modeling and experimental data
524 rules out the possibility of 'snow-balling' AVs that soak up large numbers of endolysosomes while
525 moving through the axon. This effect could be achieved by regulatory mechanisms that restrict
526 subsequent fusions (*Saleeb et al., 2019*) or simply as a result of the low probability of fusion upon
527 passing (*Saleeb et al., 2019; Li et al., 2020; Shen et al., 2021*). Specifically, we hypothesize that
528 the regulation of the SNARE protein syntaxin-17 (Stx17) may account for the relatively low num-
529 ber of fusion events predicted by the models. Stx17 resides in the AV outer membrane and forms
530 a complex with the SNAREs synaptosome-associated protein 29 (SNAP29) and vesicle-associated
531 membrane proteins 7 and 8 (VAMP7/8) to facilitate fusion (*Itakura et al., 2012*). Stx17 is tightly
532 regulated via posttranslational modifications, autoinhibition, and interaction with lysosomal mem-
533 brane proteins to prevent ectopic fusion events (*Saleeb et al., 2019; Li et al., 2020; Shen et al.,
534 2021*). Regardless of the precise mechanism, the limited number of fusions allows for a broad dis-
535 tribution of endolysosomes throughout the axon, making them available for interaction with other
536 organelles even in regions far away from the proximal axon where they are produced.

537 An interesting feature that arises from the quantitative model is the importance of axon geom-
538 etry in modulating the interactions and distribution of organelles. Specifically, a linear geometry
539 with AVs produced at the distal tip results in accumulation of AVs in the distal region and their de-
540 pletion in the proximal axon. This is a direct consequence of the initial bidirectional motion near
541 their production site, followed by unidirectional retrograde transport to an absorbing boundary at
542 the soma. However, in a branched axon where AVs are also produced at collateral branch tips, the
543 AVs are expected to be more broadly distributed throughout the axon (Figure 7). The lysosome
544 production rate at the soma must be ramped up concomitantly to enable a sufficient density of
545 lysosomes to reach the main axon and collateral branch distal tips.

546 Fusion with an endolysosome is only the first step in the maturation of an AV. Our results show
547 that nearly half of axonal AVs fuse with an endolysosome in the distal axon and exhibit concomitant
548 partial acidification as marked by the pH-sensitive Lysotracker dye. However, only a small fraction
549 of AVs become fully acidified, as indicated by the quenching of the EGFP moiety of mCherry-EGFP-
550 LC3 in the AV lumen, by the time they reach the proximal axon (Figure 8A). These observations
551 support a two-step model of autophagosome maturation, wherein fusion with an endolysosome
552 allows for the acquisition of endolysosomal markers and acidification of the space between the
553 outer and inner autophagosomal membrane (IAM), followed by the relatively slow degradation of
554 the IAM (*Tsuboyama et al., 2016*). It is only when the IAM is degraded that the AV lumen, including
555 mCherry-EGFP-LC3 and the autophagic cargo, becomes fully acidified and cargo degradation may
556 begin (Figure 8B). This model is consistent with data from multiple neuronal cell types, wherein
557 acquisition of endolysosomal markers precedes quenching of the mCherry-EGFP-LC3 reporter (Ta-
558 ble 2, Figure 8A).

559 We incorporate the additional IAM degradation step into our model, and extract a quantitative
560 estimate of the rate for this process (Figure 8I) using mCherry-EGFP-LC3 quenching as a readout of
561 IAM degradation. Notably, mCherry-EGFP-LC3 quenching is a marker for IAM degradation only if
562 the mCherry-EGFP-LC3 proteins on the outer autophagosomal membrane, which extend into the
563 cytosol, are cleaved. The protease ATG4 is responsible for cleaving LC3 and other members of
564 its protein family from the outer autophagosomal membrane (*Kauffman et al., 2018*). Given that
565 ATG4s are also involved in autophagosome formation (*Fujita et al., 2008; Agrotis et al., 2019*), they
566 are likely to be enriched in the distal axon and therefore we anticipate LC3 is rapidly cleaved from
567 nascent autophagosomes in the distal axon. Furthermore, work in *C. elegans* neurons showed that
568 ATG4 activity was required for autophagosome-lysosome fusion (*Hill et al., 2019*), thus mCherry-
569 EGFP-LC3 should be removed from the outer autophagosomal membrane prior to fusion with
570 endolysosomes. Therefore we conclude mCherry-EGFP-LC3 quenching is more likely a readout of
571 IAM degradation rather than a readout of ATG4 activity.

572 We find that a single IAM degradation rate constant is consistent with the mCherry-EGFP-LC3
573 quenching measurements taken in both the distal and the proximal axon regions. The average
574 IAM degradation time in primary hippocampal neurons ($\tau_d \approx 100\text{min}$) is more than an order of
575 magnitude longer than the time between fusion and IAM breakdown observed in mouse embry-
576 onic fibroblasts ($\approx 6.6\text{min}$) (*Tsuboyama et al., 2016*). However, the rate extracted for DRG neurons
577 (Figure 8G), derived from previously published data (*Maday and Holzbaur, 2014*), is relatively similar
578 to that seen in mouse embryonic fibroblasts (*Tsuboyama et al., 2016*). This highlights a difference
579 not only between neurons and non-neuronal cells, but also between neuronal cell types that will
580 need to be reconciled by future experimentation.

581 The modeling approach developed here serves as a framework for quantitatively understand-
582 ing how the interplay between organelle transport and interactions across space and time governs
583 autophagosome maturation. By combining modeling with direct measurements of organelle motil-
584 ity in live neurons and fusion under endogenous conditions we have reconciled multiple conflicting
585 studies of AV maturation and quantitatively connected organelle transport and fusion. Because
586 autophagy defects are implicated in a variety of neurodegenerative diseases, obtaining a clear pic-
587 ture of this pathway is an important step towards a mechanistic understanding of such disorders.

588 Materials and Methods

589 Primary hippocampal culture

590 Sprague Dawley rat hippocampal neurons at embryonic day 18 were obtained from the Neurons
591 R Us Culture Service Center at the University of Pennsylvania. Cells (immunofluorescence, 180,000
592 cells; live imaging, 200,000 cells) were plated in 20 mm glass-bottom 35 mm dishes (MatTek) that
593 were precoated with 0.5 mg/ml poly-L-lysine (Sigma Aldrich). Cells were initially plated in Attach-
594 ment Media (MEM supplemented with 10% horse serum, 33 mM D-glucose, and 1 mM sodium
595 pyruvate) which was replaced with Maintenance Media (Neurobasal [Gibco] supplemented with
596 33 mM D-glucose, 2 mM GlutaMAX (Invitrogen), 100 units/ml penicillin, 100 mg/ml streptomycin,
597 and 2% B-27 [ThermoFisher]) after 5-20 h. Neurons were maintained at 37 °C in a 5% CO₂ incu-
598 bator; cytosine arabinoside (Ara-C; final conc. 1 µM) was added the day after plating to prevent
599 glia cell proliferation. Where applicable, neurons (5-7 DIV) were transfected with 0.35-1.5 µg of
600 total plasmid DNA using Lipofectamine 2000 Transfection Reagent (ThermoFisher, 11668030) and
601 incubated for 18-24 h.

602 iPSC-derived neuron culture

603 Induced pluripotent stem cells (iPSC) from the KOLF2.1J lineage were cultured, induced, and trans-
604 fected exactly as described in *Pantazis et al. (2021)* with the following exception: to stably express
605 doxycycline-inducible hNGN2 using a PiggyBac delivery system, iPSCs were transfected with PB-
606 TO-hNGN2 vector (gift from M. Ward, NIH, Maryland) in a 1:2 ratio (transposase:vector) using Lipo-
607 fectamine Stem (ThermoFisher); after 72 hours, transfected iPSCs were selected for 48 hours with
608 0.5 µg/mL puromycin (Takara).

609 Immunofluorescence experiments and analysis

610 Neurons were fixed at 7-10 days *in vitro* for 30 minutes at room temperature using Bouin's solution
611 (SigmaAldrich, HT10132) supplemented with 8% sucrose and diluted 50% in Maintenance Media.
612 Bouin's solution was then removed and the cells were washed in PBS before being stored for up
613 to 6 months in PBS at 4°C. Cells were permeabilized for 8 minutes at -20°C in Optima Methanol
614 (ThermoFisher, A456-1) and washed in PBS, then blocked for 1 hour at room temperature in block-
615 ing solution (5% normal goat serum, 1% bovine serum albumin, 0.05% sodium azide). Primary
616 and secondary antibodies (see Table 3 for manufacturers and dilutions) were diluted in blocking
617 solution and each left on cells for 1 hour at room temperature, with 3 x 5 min washes in PBS after
618 each incubation. Cells were mounted in Prolong Gold (ThermoFisher, P36930) and imaged within
619 48 hours at 100x on a Perkin Elmer UltraView Vox spinning disk confocal on a Nikon Eclipse Ti Mi-
620 croscope with a Plan Apochromat Lambda 60x 1.40 NA oil-immersion objective and a Hamamatsu
621 EMCCD C9100-50 camera driven by Volocity (PerkinElmer). Z stacks were acquired in 0.1 – 0.2 µm
622 steps.

623 Analysis was performed on maximum z projections in ImageJ (<https://imagej.net/ImageJ2>). Us-
624 ing the tau staining, axons were straightened (line width = 20 pixels) specifically in regions where
625 they did not overlap with other cells. Because of the potential for cytoplasmic background staining,
626 analysis was performed manually. However, to avoid bias, any immunofluorescence under an spe-
627 cific intensity threshold (0.5% for LC3 antibodies; 1% for all other antibodies) was excluded. LC3+
628 or LAMP1+ structures were defined as punctae ≥ 2 and < 20 pixels in diameter and signals within
629 7 pixels (≈ 1 µm) were considered colocalized.

630 Live-cell neuron imaging and analysis

631 Where applicable, neurons were incubated with Lysotracker (25 nM) for 15-30 min, which was
632 then removed for imaging. Neurons were imaged in Imaging Media (HibernateE [Brain Bits] sup-
633 plemented with 2% B27 and 33 mM D-glucose). Autophagosome behavior was monitored in the
634 proximal (<250 µm from the soma), distal (<250 µm from the distal tip), or mid-axon of 7-8 DIV neu-
635 rons imaged at a rate of 1 timepoints/sec for 1-3 min. Neurons were imaged in an environmental

636 chamber at 37°C with a Apochromat 100 x 1.49 numerical aperture (NA) oil-immersion objective on
637 the spinning disk confocal described above. Only cells expressing moderate levels of fluorescent
638 proteins were imaged to avoid overexpression artifacts or aggregation. It should be noted that the
639 quality of the primary neuron dissections can affect autophagosomal motility, leading to variable
640 retrograde fractions.

641 Kymographs were generated in ImageJ using the MultiKymograph plugin (line width = 5) and
642 analyzed either in ImageJ. Puncta were classified as either anterograde (moving $\geq 10\mu\text{m}$ towards
643 the axon tip), retrograde (moving $\geq 10\mu\text{m}$ towards the soma), or stationary/bidirectional (net move-
644 ment $\leq 10\mu\text{m}$ during the video). Because fluorescent LC3 is cytosolic (as well as punctate) and neu-
645 rrites occasionally crossed in culture, raw videos were referenced throughout kymograph analysis
646 to ensure only real puncta (≥ 1.5 SD from the axon mean) were included in analyses. All comigra-
647 tion analyses were performed using kymographs.

Table 3. Reagents used in the study

Primary antibodies					
Target	Host	Dilution	Manufacturer	Cat#	RRID
LC3	Rabbit	1:250	Abcam	ab48394	AB_881433
LC3	Mouse	1:50	Santa Cruz	sc-376404	AB_11150489
LAMP1	Sheep	1:50-100	R and D Systems	AF4800	AB_1026176
LAMP1	Rat	1:50-100	DSHB	1d4b	AB_2134500
AEP	Sheep	1:100	R and D Systems	AF2058	AB_2234536
CTSL	Mouse	1:100	Novus	NB100-1775	AB_10124480
ATP6V1F	Mouse	1:100	Novus	NBP2-03498	AB_2904246
PLA2G15	Rabbit	1:125-150	Biorbyt	orb185108	AB_2904247
Tau	Chicken	1:300	Synaptic Systems	314 006	AB_2620049
Secondary antibodies					
Target	Conjugation	Dilution	Manufacturer	Cat#	
Sheep	Alexa Fluor 405	1:1000	Abcam	ab175676	
Rat	Alexa Fluor 405	1:1000	Abcam	ab175671	
Chicken	Alexa Fluor 488	1:1000	ThermoFisher	A11039	
Rabbit	Alexa Fluor 555	1:1000	ThermoFisher	A21429	
Mouse	Alexa Fluor 555	1:1000	ThermoFisher	A21424	
Sheep	Alexa Fluor 594	1:1000	ThermoFisher	A11016	
Rabbit	Alexa Fluor 647	1:1000	ThermoFisher	A31573	
Mouse	Alexa Fluor 647	1:1000	ThermoFisher	A32728	
Materials for live-cell imaging					
Material	Source				
mCherry-EGFP-LC3	Gift from T. Johansen, University of Tromsø				
mScarlet-LC3B	Subcloned from Addgene #21073 and Addgene #85054				
LAMP1-mNeon	Subcloned from Addgene #98882 into PGK vector				
LysoTracker DeepRed	ThermoFisher Cat #L12492				

648 **Statistics for cell-based experiments**

649 All statistical analyses were performed in Prism (GraphPad, San Diego, CA). Unless otherwise indicated,
650 n indicates the number of trials (superplotting) wherein at least 3 cells were analyzed per trial.
651 Neither parametricity nor preemptive sample-size (power) analyses were performed; how-

652 ever data appears normally distributed and post-hoc power calculations were used to confirm a
653 sufficient number of replicates were collected. Statistical measures are described in the legends.

654 **Parameter estimates for bidirectional motility**

655 We use live-cell dynamic imaging to extract estimates of the parameters describing AV bidirectional
656 motility. Kymographs for LC3+ puncta within the distal 250 μm of the axon were obtained at a tem-
657 poral resolution of 1frame/sec, for a total imaging period of 1 – 3 min. Manual tracing was used
658 to extract a total of 49 AV trajectories from the kymographs. For these trajectories, the net dis-
659 placement was used to classify AVs undergoing long-range retrograde motion ($> 10\mu\text{m}$ towards
660 the soma) or anterograde motion ($> 10\mu\text{m}$ towards the tip), with the remaining particles classified
661 as in a bidirectional/stationary state. Among the bidirectional/stationary particles, those whose
662 trajectory showed a range (maximal minus minimal position) below 3 μm were classified as station-
663 ary and the rest as bidirectional. Among the bidirectional trajectories, we extracted all segments
664 where the particles moved in a consistent direction (anterograde or retrograde) and found that
665 the average displacement during such segments was $\lambda \approx 1.82 \pm 0.16\mu\text{m}$, motivating our choice of a
666 2 μm run-length in the model.

667 **Steady state solutions for basic mathematical model**

668 The steady-state densities of AVs in different motility states on a linear domain (Eq. 1) were solved
669 using elementary matrix methods for a set of homogeneous first-order differential equations with
670 constant coefficients *Boyce et al. (2021)*. To solve for the steady-state distributions of unfused AVs
671 and endolysosomes (Eq. 2–4), we used the built-in solver `bvp4c` in Matlab **MATLAB (2021)**, which
672 provides a 4th-order method for solving boundary value problems on a set of linear regions. Code
673 for implementing the model for a given set of parameters is provided at <https://github.com/lenafabr/autophagyTransportModel>.

674 The process of solving for state densities on a branched axon remains the same as that for the
675 linear model within each branch and each contiguous segment of the main axon. Additional
676 boundary conditions at the junctions are given by:

$$\rho_r^{(m)}(l_m) + \rho_r^{(b)}(l_b) = \rho_r^{(m+1)}(0) \quad (5a)$$

$$\rho_a^{(m)}(l_m) = p_{\text{split}}\rho_a^{(m+1)}(0), \quad \rho_a^{(b)}(l_b) = (1 - p_{\text{split}})\rho_a^{(m+1)}(0), \quad (5b)$$

677 where $\rho_r^{(m)}$ and $\rho_r^{(b)}$ denote densities of retrograde organelles (B_r, R, Y_r) on a main axon segment and
678 on a branch, respectively; $\rho_a^{(m)}$ and $\rho_a^{(b)}$ denote densities of anterograde organelles (B_a, Y_a), and l_m, l_b
679 are the length of the corresponding main segment and branch. The splitting of densities at each
680 junction is determined by $p_{\text{split}} = 1/(b + 1)$, which is defined such that the fraction of organelles
681 proceeding each main segment is proportional to the number of distal tips downstream of that
682 segment.

683 **Modified model with unlimited fusions**

684 For the alternate model where each AV can fuse with an unlimited number of endolysosomes,
685 Eq. 1 for the total AV density in different motility states, and Eq. 2 for the densities of unfused AVs,
686 remain valid. The densities of endolysosomes are described by the following equations:

$$\frac{dY_a}{dt} = v_y^a \frac{dY_a}{dx} - p_f \left(|v_y^a - v_p| B_a + (v_p + v_y^a) (B_r + R) + v_y^a (B_s + S) \right) Y_a = 0 \quad (6a)$$

$$\frac{dY_r}{dt} = -v_y^r \frac{dY_r}{dx} - p_f \left((v_p + v_y^r) B_a + |v_y^r - v_p| (B_a + R) + v_y^r (B_s + S) \right) Y_r = 0, \quad (6b)$$

687 which enable fusion with all AVs regardless of their prior fusion state. The corresponding boundary
688 conditions are identical to Eq. 4b-c, with an altered condition on endolysosomes at the distal tip:

$$v_y^a Y_a(0) = k_y^e Y_t + p_f (v_p B_a(0) + k_p^p). \quad (7a)$$

682

683 For this set of equations, the endolysosome densities are computed by direct integration. The
 684 densities of unfused AVs (Eq. 2, 4b,c) are found using the boundary-value problem solver *bvp4c*.

An additional metric of interest for this model is the average number of fusions undergone by AVs found in different regions of the axon. We define the densities $B_r^*(x)$, $B_a^*(x)$, $B_s^*(x)$, $R^*(x)$ to correspond to the linear density of fusion counts in AVs that are in each of the motility states. For example, $B_r^*(x)/B_r(x)$ gives the average number of fusions among the bidirectional retrograde AVs found at position x along the axon. These fusion densities obey the following set of steady-state equations:

$$\frac{dB_a^*}{dt} = v_p \frac{dB_a^*}{dx} - (k_s + k_h)B_a^* + p_f \left(|v_y^a - v_p|Y_a + (v_p + v_y^r)Y_r \right) B_a + \frac{1}{2}k_w B_s^* = 0 \quad (8a)$$

$$\frac{dB_r^*}{dt} = -v_p \frac{dB_r^*}{dx} - (k_s + k_h)B_r^* + p_f \left((v_p + v_y^a)Y_a + |v_y^r - v_p|Y_r \right) B_r + \frac{1}{2}k_w B_s^* = 0 \quad (8b)$$

$$\frac{dB_s^*}{dt} = k_h (B_r^* + B_a^*) - (k_w + k_s)B_s^* + p_f \left(v_y^a Y_a - v_y^r Y_r \right) B_s = 0 \quad (8c)$$

$$\frac{dR^*}{dt} = -v_p \frac{dR^*}{dx} + k_s (B_a^* + B_r^* + B_s^*) - k_h R^* + p_f \left((v_p + v_y^a)Y_a + |v_y^r - v_p|Y_r \right) R + k_w^r S^* = 0, \quad (8d)$$

$$\frac{dS^*}{dt} = k_h^r R^* + p_f \left(v_y^a Y_a - v_y^r Y_r \right) S - k_w^r S^*, \quad (8e)$$

685 with boundary conditions at the distal tips and the soma:

$$v_p B_r^*(0) = p_f Y_t \left(k_p^p + v_p B_a(0) \right) + v_p B_a^*(0), \quad R^*(0) = 0, \quad B_a^*(L) = 0. \quad (9)$$

686 Once the endolysosome densities are computed, Eq. 8–9 form a set of linear nonhomogeneous
 687 equations that are solved using standard matrix methods (*Boyce et al., 2021*).

688 Steady state solutions for IAM degradation model

689 We define the density $B_a^i = B_a - B_a^u - B_a^d$, for AVs in the bidirectional anterograde state that have fused
 690 with an endolysosome but have not yet undergone full IAM degradation. Analogous densities are
 691 defined for the other motility states (B_r^i, B_s^i, R^i, S^i).

The dynamic equations for these fused AVs with intact IAM at steady state are given by

$$\frac{dB_a^i}{dt} = v_p \frac{dB_a^i}{dx} - (k_s + k_h^b + k_d)B_a^i + p_f \left(|v_y^a - v_p|Y_a + (v_p + v_y^r)Y_r \right) B_a^u + \frac{1}{2}k_w^b B_s^i = 0 \quad (10a)$$

$$\frac{dB_r^i}{dt} = -v_p \frac{dB_r^i}{dx} - (k_s + k_h^b + k_d)B_r^i + p_f \left((v_p + v_y^a)Y_a + |v_y^r - v_p|Y_r \right) B_r^u + \frac{1}{2}k_w^b B_s^i = 0 \quad (10b)$$

$$\frac{dB_s^i}{dt} = k_h^b (B_r^i + B_a^i) - (k_w^b + k_s + k_d)B_s^i + p_f (v_y^a Y_a + p_f v_y^r Y_r) B_s^u = 0 \quad (10c)$$

$$\frac{dR^i}{dt} = -v_p \frac{dR^i}{dx} + k_s (B_a^i + B_r^i + B_s^i) - (k_h^b + k_d)R^i + p_f \left((v_p + v_y^a)Y_a + |v_y^r - v_p|Y_r \right) R^u + k_w^r S^i = 0, \quad (10d)$$

$$\frac{dS^i}{dt} = k_h^r R^i - (k_w^r + k_d)S^i + p_f \left(v_y^a Y_a + v_y^r Y_r \right) S^u = 0 \quad (10e)$$

$$v_p B_r^i(0) = p_f Y_t \left(k_p^p + v_p B_a^u(0) \right) + v_p B_a^i(0), \quad B_a^i(L) = 0, \quad R^i(0) = 0, \quad (10f)$$

692 where k_d denotes the degradation rate and the endolysosome densities Y_a, Y_r , as well as the un-
 693 fused AV densities ($B_r^u, B_s^u, B_a^u, R^u, S^u$) are precalculated as previously described. Equations 10 can
 694 then be treated as a system of nonhomogeneous linear equations, solvable via standard matrix
 695 methods (*Boyce et al., 2021*).

696 Agent-based stochastic simulations for interacting organelles

697 Organelle interactions are simulated explicitly using custom written FORTRAN 90 code available
 698 at: <https://github.com/lenafabr/particleDynamics1D>. We simulate a linear domain ($0 < x < L$) of
 699 length $L = 1055\mu\text{m}$ with $x = 0$ denoting the distal axonal tip, and $x = L$ representing the soma.
 700 Point-particle endolysosomes spawn at the soma ($x = L$) and move towards the distal tip with a

701 velocity v_y^a . Upon reaching the distal end, the endolysosomes halt at the tip before engaging in
702 retrograde motility at a rate k_e^y with a velocity v_y^r . Point-particle AVs spawn at the distal tip ($x = 0$)
703 in a bidirectional state moving in the retrograde direction. Motile AVs in the bidirectional state
704 can halt with a rate k_h . Halted AVs resume motion at rate k_w , equally likely in the retrograde or
705 anterograde direction. AVs from all bidirectional states can switch to processive retrograde state
706 at a rate k_s . All motile AVs move at a velocity v_p , and have a rate k_h^r for pausing and a rate k_w^r for
707 restarting motility.

708 Interactions between an endolysosome and an AV occur whenever the two organelles cross
709 past each other. Each such passage event results in fusion with a probability p_f . A fusion event
710 destroys the lysosome, while the AV particle is marked as fused. The system is evolved forward
711 in time-steps of $\delta t = 0.14s$ for a total time of 4×10^4s , which is equivalent to $30L/v_p$. At each time
712 step, the particles step in the appropriate direction a distance $v\delta t$ (where v is the corresponding
713 particle velocity) and undergo a transition event with probability $1 - e^{-k\delta t}$ (where k is the rate for
714 that particular state transition).

715 Acknowledgements

716 This research was supported by NIH grant R01 NS060698 to E.L.F.H., NSF Graduate Research Fellowship-
717 ship (DGE-1845298) to S.E.C., NSF CAREER grant (1848057) to EFK and a Cottrell Scholar Award to
718 EFK. The authors declare no competing financial interests. We thank Andrea Stavoe, Alex Boecker,
719 Dan Dou, Anamika Agrawal, and Keaton Holt for insights and discussions.

720 Author contributions

721 Sydney E. Cason, Resources, Data curation, Formal analysis, Validation, Investigation, Visualization,
722 Methodology, Project administration, Writing—original draft and review/editing; Saurabh S.
723 Mogre, Conceptualization, Resources, Formal analysis, Investigation, Software, Validation, Visu-
724 alization, Methodology, Project administration, Writing—original draft and review/editing; Erika
725 L.F. Holzbaur, Supervision, Funding acquisition, Project administration, Writing—original draft and
726 review/editing Elena F. Koslover, Conceptualization, Supervision, Software, Funding acquisition,
727 Project administration, Writing—original draft and review/editing

728 References

729 **Agrawal A**, Koslover EF. Optimizing mitochondrial maintenance in extended neuronal projections. PLOS Com-
730 putational Biology. 2021; 17(6):e1009073.

731 **Agrotis A**, Pengo N, Burden JJ, Ketteler R. Redundancy of human ATG4 protease isoforms in autophagy and
732 LC3/GABARAP processing revealed in cells. Autophagy. 2019; 15(6):976–997.

733 **Boecker CA**, Goldsmith J, Dou D, Cajka GG, Holzbaur EL. Increased LRRK2 kinase activity alters neuronal au-
734 topophagy by disrupting the axonal transport of autophagosomes. Current Biology. 2021; .

735 **Boecker CA**, Olenick MA, Gallagher ER, Ward ME, Holzbaur EL. ToolBox: Live Imaging of intracellular organelle
736 transport in induced pluripotent stem cell-derived neurons. Traffic. 2020; 21(1):138–155.

737 **Boyce WE**, DiPrima RC, Meade DB. Elementary differential equations and boundary value problems. John Wiley
738 & Sons; 2021.

739 **Campbell TN**, Choy FY. The effect of pH on green fluorescent protein: a brief review. Mol Biol Today. 2001;
740 2(1):1–4.

741 **Cason SE**, Carman PJ, Van Duyne C, Goldsmith J, Dominguez R, Holzbaur EL. Sequential dynein effectors reg-
742 ulate axonal autophagosome motility in a maturation-dependent pathway. Journal of Cell Biology. 2021;
743 220(7):e202010179.

744 **Cheng XT**, Xie YX, Zhou B, Huang N, Farfel-Becker T, Sheng ZH. Characterization of LAMP1-labeled nondegrada-
745 tive lysosomal and endocytic compartments in neurons. Journal of Cell Biology. 2018; 217(9):3127–3139.

746 **Cheng XT**, Zhou B, Lin MY, Cai Q, Sheng ZH. Axonal autophagosomes recruit dynein for retrograde transport
747 through fusion with late endosomes. *Journal of Cell Biology*. 2015; 209(3):377–386.

748 **Farfel-Becker T**, Roney JC, Cheng XT, Li S, Cuddy SR, Sheng ZH. Neuronal soma-derived degradative lysosomes
749 are continuously delivered to distal axons to maintain local degradation capacity. *Cell reports*. 2019; 28(1):51–
750 64.

751 **Ferguson SM**. Axonal transport and maturation of lysosomes. *Current opinion in neurobiology*. 2018; 51:45–
752 51.

753 **Fu Mm**, Nirschl JJ, Holzbaur EL. LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven
754 transport of autophagosomes. *Developmental cell*. 2014; 29(5):577–590.

755 **Fujita N**, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, Yoshimori T. An Atg4B mutant
756 hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. *Molecular biology
757 of the cell*. 2008; 19(11):4651–4659.

758 **Gallo G**. The cytoskeletal and signaling mechanisms of axon collateral branching. *Developmental neurobiology*.
759 2011; 71(3):201–220.

760 **Goldsmith J**, Ordureau A, Harper JW, Holzbaur EL. Brain-derived autophagosome profiling reveals the engulf-
761 ment of nucleoid-enriched mitochondrial fragments by basal autophagy in neurons. *Neuron*. 2022; .

762 **Gowrishankar S**, Yuan P, Wu Y, Schrag M, Paradise S, Grutzendler J, De Camilli P, Ferguson SM. Massive accumu-
763 lation of luminal protease-deficient axonal lysosomes at Alzheimer's disease amyloid plaques. *Proceedings
764 of the National Academy of Sciences*. 2015; 112(28):E3699–E3708.

765 **Hara T**, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito
766 I, Okano H, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice.
767 *Nature*. 2006; 441(7095):885–889.

768 **Hill SE**, Kauffman KJ, Krout M, Richmond JE, Melia TJ, Colón-Ramos DA. Maturation and clearance of autophago-
769 somes in neurons depends on a specific cysteine protease isoform, ATG-4.2. *Developmental cell*. 2019;
770 49(2):251–266.

771 **Itakura E**, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to au-
772 tophagosomes for fusion with endosomes/lysosomes. *Cell*. 2012; 151(6):1256–1269.

773 **Johnson DE**, Ostrowski P, Jaumouillé V, Grinstein S. The position of lysosomes within the cell determines their
774 luminal pH. *Journal of Cell Biology*. 2016; 212(6):677–692.

775 **Kalil K**, Dent EW. Branch management: mechanisms of axon branching in the developing vertebrate CNS.
776 *Nature Reviews Neuroscience*. 2014; 15(1):7–18.

777 **Kauffman KJ**, Yu S, Jin J, Mugo B, Nguyen N, O'Brien A, Nag S, Lystad AH, Melia TJ. Delipidation of mammalian
778 Atg8-family proteins by each of the four ATG4 proteases. *Autophagy*. 2018; 14(6):992–1010.

779 **Koltun B**, Ironi S, Gershoni-Emek N, Barrera I, Hleihil M, Nanguneri S, Sasmal R, Agasti SS, Nair D, Rosenblum
780 K. Measuring mRNA translation in neuronal processes and somata by tRNA-FRET. *Nucleic Acids Research*.
781 2020 01; 48(6):e32–e32. <https://doi.org/10.1093/nar/gkaa042>, doi: 10.1093/nar/gkaa042.

782 **Komatsu M**, Waguri S, Chiba T, Murata S, Iwataji, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, et al. Loss
783 of autophagy in the central nervous system causes neurodegeneration in mice. *Nature*. 2006; 441(7095):880–
784 884.

785 **Lee S**, Sato Y, Nixon RA. Lysosomal Proteolysis Inhibition Selectively Disrupts Axonal Transport of Degradative
786 Organelles and Causes an Alzheimer's-Like Axonal Dystrophy. *Journal of Neuroscience*. 2011; 31(21):7817–
787 7830. <https://www.jneurosci.org/content/31/21/7817>, doi: 10.1523/JNEUROSCI.6412-10.2011.

788 **Li Y**, Cheng X, Li M, Wang Y, Fu T, Zhou Z, Wang Y, Gong X, Xu X, Liu J, et al. Decoding three distinct states of
789 the Syntaxin17 SNARE motif in mediating autophagosome-lysosome fusion. *Proceedings of the National
790 Academy of Sciences*. 2020; 117(35):21391–21402.

791 **Li Y**, Wang X, Li M, Yang C, Wang X. M05B5. 4 (Lysosomal phospholipase A2) promotes disintegration of au-
792 topagic vesicles to maintain *C. elegans* development. *Autophagy*. 2021; (just-accepted).

793 **Lie PP**, Yang DS, Stavrides P, Goulbourne CN, Zheng P, Mohan PS, Cataldo AM, Nixon RA. Post-Golgi carriers,
794 not lysosomes, confer lysosomal properties to pre-degradative organelles in normal and dystrophic axons.
795 *Cell reports*. 2021; 35(4):109034.

796 **Ma X**, Godar RJ, Liu H, Diwan A. Enhancing lysosome biogenesis attenuates BNIP3-induced cardiomyocyte
797 death. *Autophagy*. 2012; 8(3):297–309.

798 **Maday S**, Holzbaur EL. Autophagosome biogenesis in primary neurons follows an ordered and spatially regu-
799 lated pathway. *Developmental cell*. 2014; 30(1):71–85.

800 **Maday S**, Wallace KE, Holzbaur EL. Autophagosomes initiate distally and mature during transport toward the
801 cell soma in primary neurons. *Journal of Cell Biology*. 2012; 196(4):407–417.

802 **Maehr R**, Hang HC, Mintern JD, Kim YM, Cuvillier A, Nishimura M, Yamada K, Shirahama-Noda K, Hara-
803 Nishimura I, Ploegh HL. Asparagine endopeptidase is not essential for class II MHC antigen presentation
804 but is required for processing of cathepsin L in mice. *The Journal of Immunology*. 2005; 174(11):7066–7074.

805 **Martens S**, Fracchiolla D. Activation and targeting of ATG8 protein lipidation. *Cell discovery*. 2020; 6(1):1–11.

806 **MATLAB**. version 9.10.0 (R2021a). Natick, Massachusetts: The MathWorks Inc.; 2021.

807 **Maxson ME**, Abbas YM, Wu JZ, Plumb JD, Grinstein S, Rubinstein JL. Detection and quantification of the vacuolar
808 H⁺ ATPase using the *Legionella* effector protein SidK. *Journal of Cell Biology*. 2022; 221(3):e202107174.

809 **Misgeld T**, Schwarz TL. Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture.
810 *Neuron*. 2017; 96(3):651–666.

811 **Mogre SS**, Christensen JR, Niman CS, Reck-Peterson SL, Koslover EF. Hitching a ride: mechanics of transport
812 initiation through linker-mediated hitchhiking. *Biophysical journal*. 2020; 118(6):1357–1369.

813 **Mogre SS**, Christensen JR, Reck-Peterson SL, Koslover EF. Optimizing microtubule arrangements for rapid cargo
814 capture. *Biophysical Journal*. 2021; 120(22):4918–4931.

815 **Pankiv S**, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T. p62/SQSTM1
816 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. *Journal
817 of biological chemistry*. 2007; 282(33):24131–24145.

818 **Pantazis CB**, Yang A, Lara E, McDonough JA, Blauwendraat C, Peng L, Oguro H, Zou J, Sebesta D, Pratt G, et al.
819 A reference induced pluripotent stem cell line for large-scale collaborative studies. *bioRxiv*. 2021; .

820 **Roney JC**, Li S, Farfel-Becker T, Huang N, Sun T, Xie Y, Cheng XT, Lin MY, Platt FM, Sheng ZH. Lipid-mediated
821 motor-adaptor sequestration impairs axonal lysosome delivery leading to autophagic stress and dystrophy
822 in Niemann-Pick type C. *Developmental Cell*. 2021; 56(10):1452–1468.

823 **Saleeb RS**, Kavanagh DM, Dun AR, Dalgarno PA, Duncan RR. A VPS33A-binding motif on syntaxin 17 controls
824 autophagy completion in mammalian cells. *Journal of Biological Chemistry*. 2019; 294(11):4188–4201.

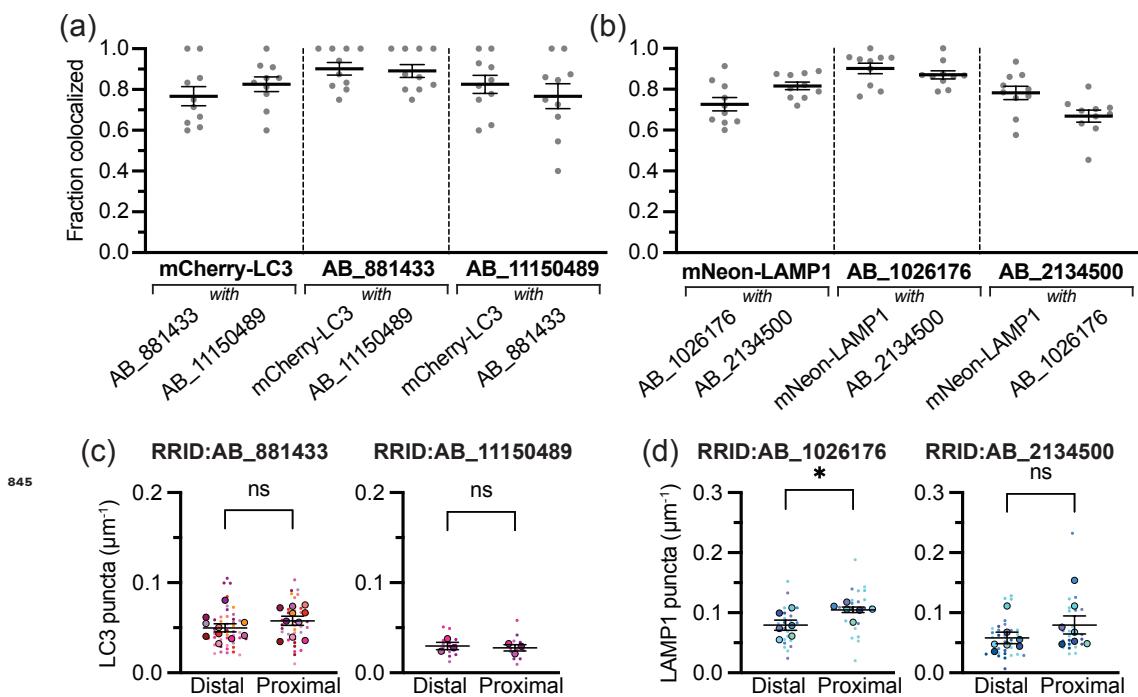
825 **Shen Q**, Shi Y, Liu J, Su H, Huang J, Zhang Y, Peng C, Zhou T, Sun Q, Wan W, et al. Acetylation of STX17 (syntaxin
826 17) controls autophagosome maturation. *Autophagy*. 2021; 17(5):1157–1169.

827 **Shibutani ST**, Yoshimori T. A current perspective of autophagosome biogenesis. *Cell research*. 2014; 24(1):58–
828 68.

829 **Stavoe AK**, Gopal PP, Gubas A, Tooze SA, Holzbaur EL. Expression of WIPI2B counteracts age-related decline
830 in autophagosome biogenesis in neurons. *Elife*. 2019; 8:e44219.

831 **Stavoe AK**, Hill SE, Hall DH, Colón-Ramos DA. KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment
832 and autophagy at synapses. *Developmental cell*. 2016; 38(2):171–185.

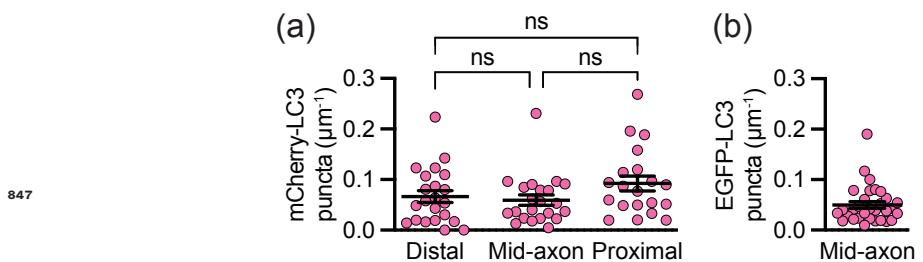
833 **Stavoe AK**, Holzbaur EL. Autophagy in neurons. *Annual review of cell and developmental biology*. 2019; 35:477–
834 500.

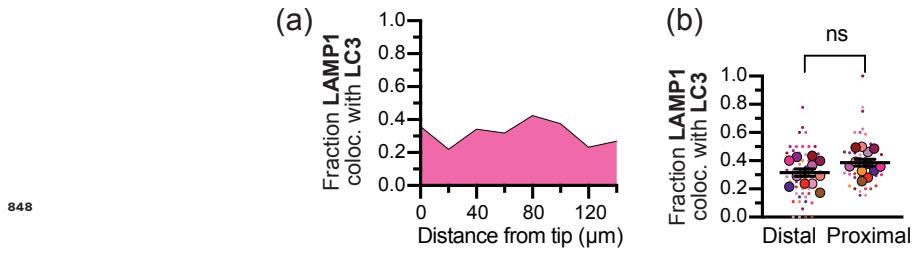

835 **Tsuboyama K**, Koyama-Honda I, Sakamaki Y, Koike M, Morishita H, Mizushima N. The ATG conjugation systems
836 are important for degradation of the inner autophagosomal membrane. *Science*. 2016; 354(6315):1036–
837 1041.

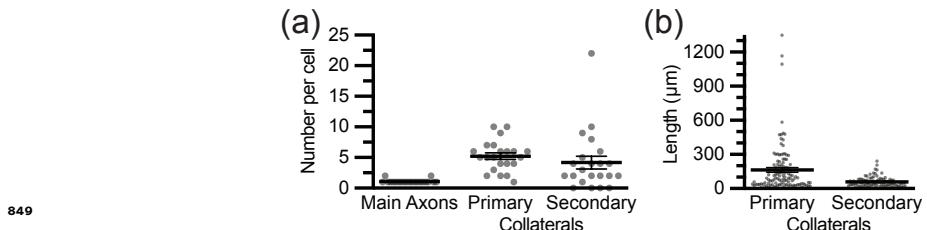
838 **Williams AH**, O'donnell C, Sejnowski TJ, O'leary T. Dendritic trafficking faces physiologically critical speed-
839 precision tradeoffs. *elife*. 2016; 5:e20556.

840 Wong YC, Holzbaur EL. Autophagosome dynamics in neurodegeneration at a glance. *Journal of cell science*.
841 2015; 128(7):1259–1267.

842 Yin Z, Pascual C, Klionsky DJ. Autophagy: machinery and regulation. *Microbial cell*. 2016; 3(12):588.


843 Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F, et al. Termination of
844 autophagy and reformation of lysosomes regulated by mTOR. *Nature*. 2010; 465(7300):942–946.


Figure 1-Figure supplement 1. Antibody validation. **(a)** Colocalization between overexpressed mCherry-LC3 and both LC3 antibodies. $n = 10$ axons. **(b)** Colocalization between overexpressed mNeon-LAMP1 and both LAMP1 antibodies. $n = 10$ axons. **c** Linear density of LC3 puncta, probed with ab48394 (RRID:AB_881433; left; $n = 38 - 43$ axons; unpaired t test, $p = 0.1199$) or sc-376404 (RRID:AB_11150489; right; $n = 12 - 14$ axons; unpaired t test, $p = 0.5997$). **d** Linear density of LAMP1 puncta, probed with AF4800 (RRID:AB_1026176; left; $n = 24$ axons each; unpaired t test, $p = 0.0174$) or 1D4B (RRID:AB_2134500; right; $n = 26 - 34$ axons each; unpaired t test, $p = 0.0497$).


Figure 1-Figure supplement 2. Axon length *in vitro*. Length of main axon ($n = 23$) as measured for primary hippocampal neurons at 7-10 days *in vitro*.

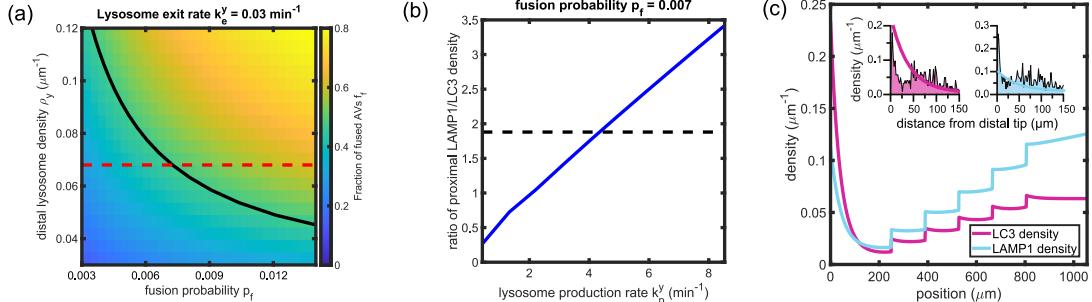

Figure 1-Figure supplement 3. Linear LC3 density in live neuronal axons. **(a)** Linear density of overexpressed mCherry-LC3 in primary hippocampal neurons. $n = 20-22$ axons; one-way ANOVA, $p = 0.1551$. **(b)** Linear density of overexpressed EGFP-LC3 in iPSC-derived neurons. $n = 31$ axons.

Figure 3-Figure supplement 1. LAMP1 puncta colocalized with LC3. **(a)** Histogram showing the spatial distribution of LAMP1 puncta colocalized with LC3 in the distal axon. $n = 773$ puncta; 20 μm bins. **(b)** Comparison of the fraction LAMP1 puncta colocalized with LC3 in the distal and proximal axon. $n = 12$ trials; unpaired t test ($p = 0.8411$). Dashed line represents axon. ns, $p > 0.05$.

Figure 7-Figure supplement 1. Number and length of axon collaterals. Primary collaterals are defined as branches off the main axon, while secondary collaterals are branches off the primary collaterals. Bifurcated main axons (whereby a cell may have 2+ axons) are distinguishable from primary collaterals based on branch angle (Gallo, 2011). **(a)** Number of axons or collaterals per cell. $n = 22$ cells. **(b)** Length of primary ($n = 116$) or secondary collaterals ($n = 83$).

Figure 7-Figure supplement 2. Modified model with unrestricted fusion predicts small number of fusion events per AV. **(a)** Fraction of AVs fused within the distal axon f_f , plotted against the fusion probability p_f , and the lysosome density in the distal region. The tip-exit rate for lysosomes k_e^y is set to 0.03 per minute. The solid black line denotes the measured value of f_f based on LC3+ puncta colocalized with LAMP1+ puncta in the distal axon. The dashed red line denotes the density of LAMP1+ puncta observed in the distal axon. **(b)** The ratio of the lysosome density to AV density in the proximal axon, plotted against the lysosome production rate. Dashed black line denotes the measured value determined by enumerating LAMP1+ and LC3+ puncta in the proximal axon. **(c)** The linear density of LC3+ puncta (magenta) and LAMP1+ puncta (cyan) along the axon. Insets show comparison to experimental data in the distal region, from Figure 1(d,f). **(d)** Spatial variation in the fraction of AVs fused at different positions along the axon (blue), and the average number of fusions per AV (red). The inset zooms into the distal region, overlaid with the observed distribution obtained by enumerating LC3+ puncta colocalized with LAMP1. All calculations were performed on the branched axon geometry shown in Figure 7a.