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Sort-seq assays are a staple of the biological engineering
toolkit, allowing researchers to profile many groups of
cells based on any characteristic that can be tied to fluo-
rescence. However, current approaches, which segregate
cells into bins deterministically based on their measured
fluorescence, introduce systematic bias. We describe a
surprising result: one can obtain unbiased estimates by
incorporating randomness into sorting. We validate this
approach in simulation and experimentally, and describe
extensions for both estimating group level variances and
for using multi-bin sorters.

Quantitative, multiplexed assays relying on fluorescence activated
cell sorting (FACS) followed by high-throughput sequencing are
critical to modern biology and molecular engineering because they
enable construction of large scale datasets connecting sequence to
function. For example, these “sort-seq” assays are widely used to
profile the strength of protein-protein binding interactions via yeast
display4;5;11;17. In particular one (i) synthesizes a library of 104 to
105 DNA sequences encoding proteins that may bind to a target
of interest; (ii) transforms the library into yeast such that each
putative binder is expressed on the surface of a population of cells;
(iii) incubates cells with fluorescently labeled target protein; (iv)
physically separates 106 to 108 cells based on binding affinity by
FACS; and finally, (v) quantifies the prevalence, and thereby binding
affinity, of each library member by high throughput sequencing.
Due to biological and technical variability, there is a distribution
over (log) fluorescence for each library sequence, and the challenge is
to estimate the means of each of these distributions (Figure 1A-B).
For example, for binding interactions, this mean fluorescence relates
directly to biophysical quantities of interest including dissociation
constants and binding energies1;14;17.

In previous work, cells are deterministically segregated into one
or more collection tubes (referred to as “bins”) based on their mea-
sured fluorescences, and the mean fluorescence of each population
is estimated from the histogram of observed sequence counts in
each bin (Figure 1C). Peterman and Levine 13 compare the error
associated with different strategies for collecting and analyzing
such data, and they show that average squared error is the sum of
contributions from bias and variance (e.g., Hastie et al. 10, Chapter
7.3). The variance arises from experimental noise and variability
across cells, and it can be reduced by increasing the number of
cells screened. The bias arises from the discretization of the space
of log fluorescence into bins (Figure 1B-C); for example, narrow
distributions can be sorted all into the same bin but have means
as different as the bin width. Because even the most sophisticated
FACS machines can sort cells into at most six bins, resolution is
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limited. This low resolution limits the value of sort-seq data in quan-
titative analyses, for instance, by prohibiting computation of precise
binding energies. This challenge has spurred much work on how to
effectively reduce histogram bias1;8;13;14. One common approach
seeks to overcome the resolution limits of histograms by assuming
fluorescence is log-normally distributed for each population and
using maximum likelihood estimation to estimate moments5;8;9;15.
However, on real data, this assumption is violated and the resulting
estimates can have greater bias than the naive approach (Figure S1).

In this work, we show that the bias generated using histograms
can be eliminated altogether by incorporating randomness into
FACS collection strategies with as few as two bins (Figure 1D),
thereby obtaining arbitrarily accurate estimates with many cells
(Figure 1E). To do this, we take a statistical approach. We consider
a population of cells that pass through a 2-bin sorter, each with log
fluorescence F independently and identically distributed according
to a density function pF . Our target of interest is the mean log
fluorescence, µF =

s
fpF (f) df. Let B denote the bin (either 1 or

2) into which a cell is collected, and let Y1 and Y2 be the counts
of cells in bins 1 and 2 after sorting, respectively. In multiplexed
sort-seq assays, we obtain Y1 and Y2 for thousands of populations,
and our goal is to accurately estimate the mean of each population
simultaneously.

For standard binning, a gate is chosen for each bin that defines
the range of values F for which cells are collected into that bin; so,
the bin B is deterministic once F is measured (e.g., as in Figure 1C).
We instead consider randomized gates which define for each bin the
probability of collecting a cell at each fluorescence (as in Figure 1D)
and rely on pseudo-random numbers to determine the bin. For
estimating population means, when the fluorescence measurements
fall between lower and upper bounds L and U, one first sorts using
randomized gates such that for any f on the interval [L, U ],

P(B=1 | F =f)=1 − f − L

U − L
and P(B=2 | F =f)=

f − L

U − L
. (1)

The counts are then combined into an empirical estimate of µF as
:µ = (U − L) · Y2/(Y1 + Y2) + L.

While one might expect introducing randomness to decrease
precision by introducing additional noise, :µ is directly informative
to the mean fluorescence. In particular, :µ is an unbiased estimate
of the true population mean in the sense that the average value we
would expect for :µ if we repeated the sort-seq experiment many
times is equal to µF (see Theorem 1 in Methods).

This unbiasedness theorem guarantees that, in contrast to the
histogram approach, we can get arbitrarily accurate estimates by
screening a larger numbers of cells (Figure 1E and Figure S2).
More precisely, recalling that the mean squared error (MSE) is the
sum of the bias squared and the variance10, unbiasedness implies
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Figure 1. Schematic overview of randomized gates. (A) distributions of log fluorescence for different cell populations and (B)
their hypothetical true and estimated means. (C) An example of histogram approach with deterministic collection into four bins and
(D) an example of randomized collection approach with two bins. (E) Estimated means of the randomized gating scheme are more
accurate than the histogram approach as the number of collected cells increases.

that the error of :µ is dictated solely by its variance. Moreover, :µ
allows a transparent trade-off between the number of cells sorted
per population and the precision of the estimates; notably, with
as few as 400 cells, a 95% confidence interval for µF will cover at
most 10% of the range from L to U (Methods).

We used a simulation study to explore the implications of unbi-
asedness on estimation accuracy with the randomized gate approach
relative to the standard histogram approach. In this study, we
simulated fluorescence of 250 cells from log-normal distributions
with different means and variances (Figure 2A). We then simu-
lated sorting these cells based on their fluorescence either with
four deterministic gates of equal width or with two randomized
gates as dictated by Equation (1). For the deterministic gates, we
constructed histograms and computed estimates of the mean fluo-
rescence as the average of the bin centers weighted by the fraction
of cells they contained; and for the randomized gates, we estimated
the mean as :µ. Figure 2B and C report the performance of these
estimates in terms of MSE, along with their bias and variance

components. As expected, the randomized gates approach has neg-
ligible bias except for broad distributions violating the conditions
of our theorem (Methods).

With even as few as 250 cells per population, the MSE of the
histogram approach is dominated by bias. Accordingly, the unbiased
randomized approach typically provides more accurate estimates.
Notably, 250 cells is fewer than is the typical in sort-seq assays;
with larger samples, more pronounced improvements are obtained
(Figure S2). Because the histogram estimates are systematically
biased toward bin centers, they can however be more accurate for
narrow distributions with means near bin centers (Figure 2B).

We next tested our approach experimentally. Current FACS
software does not support randomized gate programming, so we de-
vised an experimental approximation in which we manually changed
the gating threshold 20 times during sorting at regular intervals
(Methods). We tested this procedure in the context of a binding
assay using yeast display3. We synthesized DNA encoding four
mini-protein binders to the SARS-COV-2 receptor binding domain
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Figure 2. Simulation study reveals improved estimation properties obtained with randomized gates as compared to
histograms. (A) Fluorescence values of cells are drawn independently from log-normal distributions with different scales. (B) The
relative performances of estimates from histograms and randomized gates across a range of mean log fluorescences in terms of mean
squared error (ratios greater than 1 reflect lower error with randomized gates and ratios below 1 reflect lower error with histograms).
(C) The mean squared error (left) decomposed into bias (center) and variance (right) for both estimates. All points are the average
across 200 replicates, each with N = 250 cells.

(RBD) with a range of binding affinities4. While the value of this
approach is greatest for highly multiplexed assays with many thou-
sands of sequences, we chose this small number so that we could
also test each binder easily in serial. We separately transformed and
expressed each design in yeast and then incubated the populations
with RBD. Both the target and binders were fluorescently labeled,
and we considered the log ratio of target to binder fluorescence as an
expression normalized proxy for binder strength14. We measured
each sample on a Sony SH800 cell sorter separately, recording the
binding signal for each binder (Figure 3A). We then pooled the
samples together and sorted 1,000,000 cells, collecting 50,000 cells
at each of the 20 thresholds (Methods).

The multiplexed measurements largely recapitulate the ground-
truth clonal measurements (Figure 3B), with the exception of design
candidate 2018, for which the multiplexed estimate is below the
clonal one. We suspect this is due to dissociation of some of the
target protein in the time between the clonal and multiplexed
measurements; kinetics experiments suggest dissociation occurs
rapidly for this design4.

In the supplementary note, we additionally describe two exten-
sions of this idea. First, because the differences in the variability of
fluorescence across each population is often of interest (in addition
to mean fluorescence), we show how to extend the approach to
estimate the variance for each population. Second, we describe how
to effectively take advantage of sorters that sort into more than
two bins simultaneously to obtain more accurate estimates. We
view these contributions as a starting point for future work of using
randomness to obtain precise, multiplexed estimates.

We have shown how to obtain precise, multiplexed estimates
in sort-seq experiments with a simple strategy that incorporates
randomness. This mathematical technique allows better data to be
collected using the same or less sophisticated hardware. While we
have emphasized studies of binding affinity, we believe our strategy
is applicable to a wider range of applications of sort-seq assays
including studying transcriptional regulation9;16 and protein sta-

bility15, and building datasets for protein design2. Widespread
implementation of randomized gates in FACS and community adop-
tion of this strategy, will greatly simplify and improve sort-seq
assays by eliminating a common bias in this ubiquitous assay. We
believe this will allow FACS to play a more central role in screening
settings, for construction of reliable datasets for machine learning
models in bio-design applications, and for building datasets for
quantitative models in biology more generally.
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Methods

Unbiasedness of estimates from randomized gates. The
advantage of the randomized gates presented in Equation (1) is
that the resulting counts in each bin (Y1 and Y2) may be combined
as :µ = (U − L) · Y2/(Y1 + Y2) + L to estimate µF without bias. We
make this statement precise and present a theorem that guarantees
when this is the case.

For an estimator :θ of a fixed estimand θ, the estimator’s bias

is the expected value of its error E[:θ − θ | θ] conditioned on that
particular value of θ. An estimator is called unbiased if, regardless
of the value of the estimand, the bias is equal to zero—that is, if
E[θ̂ | θ] = θ for every θ. Theorem 1 states that this property holds
for :µ.

Theorem 1 (Unbiasedness with randomized gates). If the support

of pF is bounded between L and U, then :µ is an unbiased estimator

of mean fluorescence. That is, E[:µ] = µF .

Proof. We begin by rewriting the probability that a cell is collected
into bin 2 to expose the connection between this quantity and µF :

P (B = 2) =

d U

L

pF (f)P
!
B = 2 | F = f

"
df

// via law of total probability & support assumption

=

d U

L

pF (f)(f − L)/(U − L)df

// by Equation (1)

= (µF − L)/(U − L),

If N = Y1 +Y2 total cells are collected, then the count in the second
bin is distributed as Y2 | N ∼ Binomial

!
(µF − L)/(U − L), N

"
and

has mean E[Y2] = N · (µF − L)/(U − L). Accordingly, for any N
total number of cells, E

#
:µ | Y1 + Y2 = N

$
= N ·(µF −L)/(Y1+Y2)+

L = µF . When N is random as well, then by the law of iterated
expectation, E

#
:µ

$
= E

#
E[:µ | Y1 + Y2 = N ]

$
= µF as desired.

Notably, this theorem holds for any distribution pF satisfying the
support condition and does not require any parametric assumptions
such as log-normality.

Trade-off between number of cells sorted and precision of
estimates. The relative simplicity of the estimate :µ leads to a
transparent trade-off between the precision and scale of the exper-
iment. Recalling that Y2 | N ∼ Binomial

!
(µF − L)/(U − L), N

"
,

the variance of :µ is

Var[:µ | N ] =
(U − L)2

N2
Var[Y2] =

(U − L)2

N
P(B = 1)P(B = 2).

To construct a confidence interval for µF , we can therefore first

approximate the standard error of :µ by UbLÔ
N

√
Y1Y2

N
, and appeal to

approximate normality of the Binomial distribution for moderate

to large N to report µF = :µ ± 2 UbLÔ
N

√
Y1Y2

N
with 95% confidence.

Because
√

Y1Y2/N can be at most 1/2 (if Y1 = Y2), the size of this
interval is at most 2(U − L)/

√
N. Therefore, to estimate µF to

within one tenth of the range with high confidence, at most N = 400
cells are needed, since in this case 2(U − L)/

√
N = (U − L)/10.

For scale, commercial machines sort on the order of ten thousand
cells per second, and typical assays sort tens of millions of cells

divided amongst many populations. Thus, a library of one hundred
thousand populations could be screened to high precision with on
the order of 1 hour of sorting time.

Simulation details. In the simulations depicted in Figure 2, we
compare against the standard approach of using a histogram to
estimate µF . Consider a K bin histogram. For each bin k, if the
range of fluorescences collected is from lower bound lk to upper
bound uk, then P(B = k | F = f) = 1[lk ≤ f < uk]. The histogram
estimate then corresponds to combining the resulting counts as

:µHist =

Kÿ

k=1

Yk

N

3
uk + lk

2

4
.

In order to use the unbiased estimator, both in simulation and
in practice, we must slightly extend the randomized gate definition
proposed in Equation (1). In particular, Theorem 1 assumes that
the support of the fluorescence density pF is bounded between L
and U (i.e., that for F ∼ pF , P [L ≤ F ≤ U ] = 1). In practice,
this may not be the case. But, as previously stated, Equation (1)
returns negative “probabilities” outside of this range. Therefore,
we propose to “clip” the collection probabilities at the boundaries,
and instead define

P(B = 1 | F =f)=

3
1 − f − L

U − L

4

†

and

P(B=2 | F =f)=

3
f − L

U − L

4

†

where † denotes clipping between zero and one such that, for a
scalar x, (x)† = max(min(x, 1), 0). This ensures that :µ is well-
defined, but gives up unbiasedness in situations where the support
assumption of Theorem 1 is violated. This bias is apparent, for
example, at the right and left sides of the left panel of Figure 2C.

Experimental approximation of randomized gates with
shifting thresholds. Because current FACS software does not
support randomized gate programming, we devised an experimental
approximation in which we manually changed the gating threshold
20 times during sorting at regular intervals. Specifically, we use
a gate that collects all cells with fluorescence above a threshold
into bin 2 and those below the threshold into bin 1, and we shift
that threshold over the course of the collection from the lower
limit L to the upper limit U. In theory, this approach exactly
recovers Equation (1) in the limit that the threshold is shifted
continuously from L to U at a constant rate. This is because for a
cell with fluorescence f between L and U, the probability that it is
collected into bin 2 is the fraction of the experimental time during
which the threshold is below f, which is (f − L)/(U − L). This
approximation does not, however, account for possible changes in
the distribution, pF over time. Such changes occur in binding assays,
for example, when nontrivial labeled target protein dissociates over
time. This challenge is a disadvantage of the approximation relative
to randomized gates that could in theory be implemented into
sorters.

Yeast display and deep sequencing. EBY100 yeast cells ex-
pressing each of the four mini-protein binders were grown in C-Trp-
Ura media. Binder protein expression was induced by replacing
the growing buffer with SGCAA and incubating at 30¶ C for
24h7. The induced cells were labelled with 250 nM biotinylated
receptor binding domain target protein, washed twice with PBSF
(PBS+1% BSA), then labelled again with anti-c-Myc fluorescein
isothiocyanate (FITC) and streptavidin-phycoerythrin (SAPE).
The experiments were performed on a Sony SH800 cell sorter.
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60,000 cells were recorded for each binder to reflect the individual
distribution of baseline PE signal intensity. In the shifting gate
experiment, a square area (AreaTotal) with side length (L) was
pre-determined at the SH800 collection panel. The area was divided
into 2 separate collection gates, Gate1 and Gate2 (corresponding
to bin 1 and bin 2 in Equation (1)). Gate2 was in an isosceles right
triangle and started with a small area in the right-bottom corner of
AreaTotal and Gate1 took up the remaining. The yeast cells were
run through the SH800 and each cell went into either the Gate2 or
Gate1 collection tube if its log PE/FITC signal was in the range of
AreaTotal. All other cells were discarded. After collecting 50,000
cells, the cell flow was paused, Gate2 was shifted both leftwards and
upwards for L/10 and cell flow continued. Because the proprietary
software for operating the sorter allowed setting gate positions only
through a point and click graphical user interface (rather than
numerically), we measured out gate increments by pixel distance
on the display using a ruler. The above shifting process repeated
19 times for a total of 20 collections. The cells collected in Gate1

and Gate2 were then grown, and 1 × 107 cells from each gate were
barcoded and the sequences for each cell were determined by Illu-
mina next-generation sequencing15. The number of cells collected
by each gate for each population was estimated from the proportion
of sequencing reads attributed to each population and the number
of cells collected into the gates.

Because the number of cells collected by each gate was not made
directly available through the proprietary software, we estimated
this from the raw exported data. In particular, we imported the
data using the FlowCal python package6 and computationally im-
plemented the gates and filters (including for forward and backward
scatter).

Sensitivity of maximum likelihood inference to non-
normality of real data. Likelihood-based inference is a common
strategy used with the intent to circumvent the resolution limi-
tation of the histogram approach5;8;9;15. However, this approach
can fail on real data. In particular, existing likelihood methods
rely on the assumption that for each of the cell populations the
fluorescence values are log normal distributed, log F ∼ N (µ, σ

2)
where the mean log fluorescence µ = µF is the target of inference
and σ

2 is the typically unknown variance of the population.

We evaluate performance of maximum likelihood inference in
this situation with simulations using data sub-sampled from a
flow cytometry dataset of binding signal of a computationally
designed mini-protein binder to ActRII. Data were collected using
yeast display as previously described except with the addition
of a supplemental binding protein, protein A, the binding signal
log(FITC/PE) was recorded for approximately one million cells.
The distribution of this signal is highly non-Gaussian (Figure S1A).

We first compared the performance of the maximum likelihood
approach (described in greater detail below) to the randomized
approach on downsampled datasets with N = 250 cells with the
same set-up described in Figure 2. As in the earlier simulations,
the randomized approach provides improved MSE across most
simulation conditions (Figure S1B). This improvement is again
explained by estimation bias, which is mitigated by the randomized
approach (Figure S1C). Though one might expect the benefit of
maximum likelihood would appear for larger sample sizes (e.g., due
to the asymptotic efficiency of maximum likelihood estimation in
theory), this is not the case. In fact, due to the bias of maximum
likelihood, the relative improvement of the randomized approach
is larger at N = 1000 cells (Figure S1D). Moreover, Figure S1E
demonstrates that the maximum likelihood approach does not
empirically provide more accurate estimates even under correct
specification (with fluorescences sampled as in Figure 2A).

Maximum likelihood estimation. To estimate µF , likelihood-
based approaches consider the counts in each of K bins
(Y1, Y2, . . . , YK), since the measured fluorescence values cannot be
disambiguated when multiple populations are sorted in multiplex.
These counts follow a multinomial distribution as

Y1, Y2, . . . , YK ∼ Mult
!
π(µ, σ

2), N
"

,

where N =
qK

k=1
Yk is the total number of cells sorted into any bin

and π(µ, σ
2) = (π1, π2, . . . , πK) are the normalized bin probabilities.

In particular, if for each bin k the range of fluorescences collected
is from lower bound lk to upper bound uk, then

πk =
Φ( ukbµ

σ
) − Φ( lkbµ

σ
)

qK

kÕ=1
Φ(

u
kÕ bµ

σ
) − Φ(

l
kÕ bµ

σ
)
,

where Φ(·) is the cumulative density function of the standard normal.
The log likelihood function is then

log p(Y1, . . . , YK ; µ, σ
2) = log N ! −

Kÿ

k=1

log Yk! +

Kÿ

k=1

Yk log πk,

where the dependence of each πk on µ and σ
2 is left implicit. The

maximum likelihood approach is to return µ that maximizes this
expression,

:µMLE = arg max
µ

5
max
σ

2>0
log p(Y1, . . . , YK ; µ, σ

2)

6
.

This optimization problem is not analytically tractable, and its con-
straints and non-convexity pose challenges for local, gradient-based
optimizers. So we instead solve the optimization approximately
with a grid search.

6
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