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Abstract 

Human cognition and behaviors depend upon the brain’s functional connectomes, which vary 
remarkably across individuals. However, whether and how the functional connectome individual 
variability architecture is structurally constrained remains largely unknown. Using tractography- and 
morphometry-based network models, we observed the spatial convergence of structural and 
functional connectome individual variability, with higher variability in heteromodal association 
regions and lower variability in primary regions. We demonstrated that functional variability is 
significantly predicted by a unifying structural variability pattern and that this prediction follows a 
primary-to-heteromodal hierarchical axis, with higher accuracy in primary regions and lower 
accuracy in heteromodal regions. We further decomposed group-level connectome variability 
patterns into individual unique contributions and uncovered the structural-functional correspondence 
that is associated with individual cognitive traits. These results advance our understanding of the 
structural basis of individual functional variability and suggest the importance of integrating 
multimodal connectome signatures for individual differences in cognition and behaviors. 

Keywords: individual variability, connectomics, structure-function relationship 
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1. Introduction 

Each individual thinks or behaves differently from other individuals. A growing number of studies 
have suggested that the brain’s functional connectomes (FCs) and structural connectomes (SCs) act 
as biological substrates underlying these individual differences in cognition and behaviors (Bullmore 
and Sporns, 2009; Liao et al., 2017; Park and Friston, 2013). Several prior studies have documented 
that the intrinsic FC profiles of the human brain during resting conditions vary across individuals, 
with higher variability primarily in heteromodal association regions and lower variability in primary 
sensorimotor and visual regions (Mueller et al., 2013; Gao et al., 2014; Xu et al., 2018; Stoecklein et 
al., 2019). Such an FC variability pattern is significantly correlated with focal cortical folding 
variation (Mueller et al., 2013; Mansour et al., 2021) and evolutionary cortical expansion (Mueller et 
al., 2013; Stoecklein et al., 2019) and predicts individual differences in cognitive domains (Mueller 
et al., 2013; Liao et al., 2017). In the present study, we investigated whether and how interindividual 
FC variability is anatomically shaped by the SC variability of the human brain. 

There are currently two principal methods available for mapping the SCs of the human brain: white 
matter tractography-based methods using diffusion weighted imaging and gray matter 
morphometry-based methods using structural imaging. Specifically, tractography-based connectomes 
can be reconstructed by inferring axonal tracts among brain regions using deterministic or 
probabilistic tractography approaches (Gong et al., 2009; Hagmann et al., 2008; Zhang et al., 2022), 
while morphometry-based connectomes can be obtained by examining the statistical similarity of 
morphometric measures among regions (He et al., 2007; Tijms et al., 2012; Kong et al., 2015). 
Notably, the morphometry-based connectomes do not directly measure physical pathways between 
regions but provide complementary information for the measurement of axonal projections (Gong et 
al., 2012; Evans, 2013; Seidlitz et al., 2018). Although there are mounting reports showing SC-FC 
coupling across brain regions or subjects (Honey et al., 2009; Baum et al., 2019; Wang et al., 2015b; 
Misic et al., 2016; Zimmerman et al., 2018), whether and how interindividual FC variability patterns 
are structurally constrained is understudied. To date, only three studies have examined the 
relationship between interindividual FC and SC variability patterns. Of them, two studies reported 
nonsignificant spatial correlations between FC variability and tractography-based SC variability 
(Chamberland et al., 2017; Karahan et al., 2021), which could be attributable to a relatively small 
sample size (n = 9 (Chamberland et al., 2017) and n = 29 (Karahan et al., 2021)) and confounds of 
intraindividual variation (Karahan et al., 2021). A very recent study reported a significant correlation 
between interindividual variability patterns of FC and tractography-based SC (Mansour et al., 2021). 
However, there are several important issues that have not been addressed. First, these previous 
studies used only a single SC feature in which network edges represent the existence of direct white 
matter connections, ignoring the contribution of network communications (such as path length 
(Achard et al., 2006) and communicability (Crofts and Higham, 2009) and morphometry-based SCs, 
which are important anatomical scaffoldings for shaping the brain’s functional activities (Goni et al., 
2014; Avena-Koenigsberger et al., 2017; Alexander-Bloch et al., 2013; Geng et al., 2017). Second, 
these prior studies focus mainly on the relationship between whole-brain SC and FC variability, 
ignoring the spatial heterogeneity of brain regions. Third, considering that there are structural and 
functional variabilities in brain networks even within an individual, thus the estimation and control 
of intrasubject variability are important to accurately depict the relationship between SC and FC 
variability at both group and individual levels. Thus, the correspondence between interindividual FC 
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and SC variability has been difficult to establish to date. 

To fill these gaps, we conducted a comprehensive integrative analysis of multimodal connectome 
features to unravel the relation between functional and structural variability in the human brain using 
repeated-measures functional, structural, and diffusion imaging data from the Human Connectome 
Project (HCP) (Van Essen et al., 2013). Specifically, we first calculated the canonical interindividual 
FC variability in the whole brain and then quantified multifaceted interindividual SC variability 
patterns that captured three communication models of tractography-based connectomes and five 
morphometric measures of morphometry-based connectomes. Next, we used both linear and 
nonlinear computational analyses to test the hypothesis that individual FC variability is structurally 
constrained by unifying SC signatures across the whole brain and across different systems. Finally, 
we decomposed the group-level FC and SC variability patterns into individual unique contributions 
and then explored the alignment of structural-functional uniqueness and its relevance to individual 
cognitive and behavioral traits. 

2. Materials and Methods 

2.1. Participants and Data Acquisition 

Participants. We used two publicly available multimodal magnetic resonance imaging (MRI) 
datasets from the Human Connectome Project (HCP) (Van Essen et al., 2013). For detailed subject 
inclusion/exclusion criteria, please refer to (Van Essen et al., 2013). The HCP S1200 dataset 
included 1012 healthy young-adult subjects (ages 22-37, 543 females) with complete minimal 
preprocessed imaging data for all modalities. The HCP Test-Retest (TRT) dataset included 42 
subjects (ages 22-35, 30 females) who underwent two separate scans with an interval ranging from 
0.5 to 11 months. The HCP TRT dataset was used as the discovery dataset. The HCP S1200 dataset 
was used as the validation dataset. Written informed consent was obtained from all subjects, and the 
scanning protocol was approved by the Institutional Review Board of Washington University in St. 
Louis, MO, USA (IRB #20120436). 

Data Acquisition. All MRI data were acquired on a customized 3 T 32-channel Siemens Skyra 
scanner at Washington University. All images in the HCP S1200 dataset and HCP TRT dataset 
shared the same scanning parameters. Resting-state functional MRI (rs-fMRI) images were obtained 
by multiband gradient-echo-planar imaging acquisitions with two rs-fMRI runs (the phase encoding 
direction corresponded to left-to-right and right-to-left, respectively). The sequence parameters for 
each run were the same as follows: repetition time (TR) = 720 ms, echo time (TE) = 33.1 ms, flip 
angle = 52°, bandwidth = 2290 Hz/pixel, field of view = 208 × 180 mm2, matrix = 104 × 90; 72 
slices, voxel size = 2 × 2 × 2 mm3, multiband factor = 8, and 1200 volumes. The high spatial 
resolution diffusion-weighted imaging (DWI) data (1.25 mm isotropic, 18 b0 acquisitions, 270 
diffusion-encoding directions with three shells of b=1000, 2000, and 3000 s/mm2, 90 directions for 
each shell, 2 × 2 × 2 mm isotropic voxels, TR = 5520 ms, TE = 9.58 ms) were acquired by using a 
Stejskal-Tanner diffusion-encoding scheme. T1-weighted (T1w) images were acquired using a 
3D-magnetization-prepared rapid acquisition with gradient echo (MPRAGE) sequence (0.7 mm 
isotropic voxels, matrix = 320 × 320; TR = 2400 ms, TE = 2.14 ms, 256 slices, flip angle = 8°). 

T2-weighted (T2w) images were acquired using a 3D T2-sampling perfection with 
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application-optimized contrasts by using flip angle evolution (SPACE) sequence with identical 
geometry (TR = 3200 ms, TE = 565 ms). 

2.2. Data Preprocessing 

2.2.1. Functional data 

All functional imaging data were preprocessed by the HCP minimal preprocessing pipeline (Glasser 
et al., 2013), including gradient distortion correction, motion correction, echo-planar imaging 
distortion correction, registration to the Montreal Neurological Institute (MNI) space, and intensity 
normalization. Then, the volume time series were mapped to the standard CIFTI grayordinates space, 
downsampled to 32k_fs_LR mesh, and slightly smoothed using a 2 mm full-width half-maximum 
(FWHM) kernel on the surface. As a part of the preprocessing pipeline, ICA-FIX denoising was used 
to remove nonneural spatiotemporal noise and head motion. To further reduce the effects of nuisance 
covariates, we regressed out the white matter, cerebrospinal fluid, global signals, and the 12 head 
motion parameters and performed temporal bandpass filtering (0.01-0.1 Hz) using SPM12 
(https://www.fil.ion.ucl.ac.uk/spm/) and GRETNA (Wang et al., 2015a). 

2.2.2. Diffusion data 

All diffusion imaging data were preprocessed with the HCP diffusion preprocessing pipeline, 
including mean b0 image normalization, echo planar imaging (EPI) distortion correction, 
eddy-current distortion correction, head motion correction, gradient nonlinearity correction, linear 
registration to native structural space using a 6 degrees of freedom (DOF) boundary-based 
registration, and data masking with the final brain mask to reduce the file size (Glasser et al., 2013). 

2.2.3. Morphological data 

All T1w and T2w MRI scans went through the HCP structural preprocessing pipeline (Glasser et al., 
2013). We obtained the individual cortical thickness, cortical curvature, sulcal depth, surface area, 
and intracortical myelination after bias correction in the standard surface (32k_fs_LR space) from 
the publicly available dataset. Intracortical myelination is characterized by the ratio of the T1w value 
to the T2w value (Glasser and Van Essen, 2011).  

2.3. Network Reconstruction 

2.3.1. Functional connectome (FC) 

A surface-based multimodal brain atlas (HCP-MMP1.0) was used to parcellate the cerebral cortex 
into 180 regions of interest (ROIs) per hemisphere (Glasser et al., 2016). For each run, we first 
obtained the mean time series of vertices in each brain node and calculated Pearson’s correlation 
coefficient of the time series between any pair of nodes to construct the FC. Then, we performed 
Fisher’s r-to-z transformation to normalize the correlation coefficient of the individual FCs. 

2.3.2. Tractography-based structural connectome (SC) 

We transformed the surface-based parcel labels into each individual’s native volume space by using 
HCP Workbench's command label-to-volume-mapping. These atlas labels at volume space were 
further dilated by 2.5 mm to enter the gray matter-white matter boundary. Together, 360 dilated 
regions represented the nodes of SCs. 
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The edges of the direct white matter SCs were defined using probabilistic tractography. Briefly, the 
preprocessed b0 data and crossing fiber modeled diffusion data (called BedpostX data) were 
obtained from the HCP database. Each defined brain node was selected as a seed region, and 
probabilistic tractography was performed by sampling 5000 streamline fibers for each voxel within 
each seed region. The connectivity probability from the source region to the target region was 
defined by the number of streamlines passing through the target region divided by the total number 
of streamlines sampled from the source region. One challenge of probabilistic tractography is that the 
number of streamlines drops with distance from the seed mask, which may underestimate 
long-distance connections in the whole-brain network. Thus, we performed the distance correction 
using the --pd flag in fsl ProbtrackX tools. As a result, the connectivity weight is the expected length 
of the pathways times the streamlines number (Behrens et al., 2007; Cui et al., 2013). The 
tractography procedure was repeated for all pairs of brain regions to obtain a whole-brain weighted 
connectivity matrix. After performing the symmetrization operation, the tractography-based direct 
SC was generated for each individual. The above procedures were implemented with the FSL 
(Jenkinson et al., 2012) and the PANDA Toolkit (Cui et al., 2013). 

The tractography-based direct SC represents the direct communication between brain regions, while 
convergent evidence has emphasized that signal propagation among brain regions may also occur 
along one or more indirect pathways (Crofts and Higham, 2009; Goni et al., 2014; Suárez et al., 2020; 
Vazquez-Rodriguez et al., 2019). To characterize interindividual structural variability from the 
perspective of different regional communication models, we derived another two weighted 
connectomes that characterized two types of multipath communication mechanisms. As two 
extremes of the polysynaptic communication models among brain regions, path length (PL) 
characterizes the routing protocols of information propagation, and communicability (CO) reflects 
the diffusion processes of information propagation.  

Path length. The cost of a connection in the weighted SC network was first calculated by inverting 
the edge weight, i.e. ������ � 1/���, where ��� is the weight of the edge between node i and j. The 
path length is defined as the minimum cost of the contiguous edges between two nodes. 

Communicability. Communicability is defined as the weighted sum of all walks between two nodes 
(Crofts and Higham, 2009; Estrada and Hatano, 2008). For a binary network A, communicability �	�� is defined as 

�	�� � 
∑ ���
����
!� �

��

�  ������ 

where ������ represents the number of walks within k steps that start at node i and finish at node j. 

Note that the walks of step k are normalized by a penalty factor 1/�
!� to ensure that the shorter the 
walk is, the greater the contribution. For a weighted network A, the communicability ��� is defined 
as 

�	�� � ���� ����/
����/
���� 

where D is a diagonal degree matrix formed by � � ��������, and di is the generalized degree of 
node i formed by �� �� ∑ ���

�
��� . Path-length-based SC and communicability-based SC were 
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implemented using the GRETNA toolbox (Wang et al., 2015b) and netneurotools 
(https://netneurotools.readthedocs.io), respectively. 

2.3.3. Morphometry-based SC 

We use a common framework (Kong et al., 2015; Li et al., 2021b; Tijms et al., 2012) to map 
individual morphometry-based SCs based on the interregional similarity of morphological features. 
Considering that the distribution of morphological features of brain regions is discrete, we choose 
the earth mover's distance, which is a statistical measurement of the difference between two discrete 
probability distributions (Elizaveta Levina, 2001). Specifically, for each morphological feature, 
including cortical thickness, cortical curvature, sulcal depth, surface area, and intracortical 
myelination, we calculated the earth mover's distance between the feature distributions of any pair of 
regions and then obtained a dissimilarity matrix. We normalized each dissimilarity matrix to the 
range [0,1] and quantified the interregional similarity as 1-distance. Finally, we obtained five 
morphological-based SCs for each individual, with large values in those SCs indicating high 
morphological closeness. 

2.4. Estimating Interindividual Variability Patterns at the Group Level 

Following the method proposed by Mueller and colleagues (Mueller et al., 2013), we calculated the 
adjusted interindividual variability in brain connectomes. Taking the FC as an example, the raw 
interindividual FC variability of a given brain region i was defined as follows: 

������� � 1 � � !����"�#�� , �%, "�#�
 , �%�& 
where �, ' �  1,2 … * �� +  '�; N is the number of subjects in the dataset; �� and �
 indicate the 

subject; and t indicates the separated session. "�#�� , �% is the functional connectivity profile of region 

i of subject sp in session t. Similarly, when calculating the individual SC variability, "�  is the 
structural connectivity profile between region i and all other brain regions. 

For each subject, the intraindividual variance in region i was estimated using repeat-scan data from 
all sessions/runs, 

,-���������� � 1 � � !����"���, ���, "���, ����& 
where ., - �  1, … /; T is the total number of sessions/runs. Then, by averaging the intraindividual 
variance of N individuals, we obtained the intraindividual variability of region i that can characterize 
the entire dataset, 

,-������� � � ,-����������& 
To estimate the adjusted interindividual variability, we regressed out the intraindividual variability 
map from the raw interindividual variability map using a general linear model and then averaged the 
interindividual variability map across sessions/runs. 

2.5. Principal Component Analysis 

Considering distinct structural patterns provided by tractography-based SCs and morphometry-based 
SCs, we first generated a linear multivariate representation of the structural variability by performing 
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a principal component analysis (PCA) of the interindividual variability maps of all eight structural 
features. Specifically, the SC variability maps of all features were first z-transformed and combined 
into a region × feature matrix X. Then, PCA was applied to X, yielding principal axes and the 
coefficients of linear combinations via the eigenvalue decomposition of the covariance matrix. The 
principal components were defined as the coordinate representations of features on the corresponding 
principal axes. The first principal component of SC variability captured the largest proportion of total 
variances. We calculated the ratio of the squared factor score (Abdi and Williams, 2010) of each 
feature by the eigenvalue associated with the principal component to characterize its contribution to 
the principal component. 

2.6. Predicting Interindividual FC Variability Using a Multivariate Prediction Model 

We employed a support vector regression (SVR) model (fitrsvm function in MATLAB) with a ‘rbf’ 
nonlinear kernel to examine the ability of SC variability to predict FC variability. Specifically, the 
FC variability map for the whole brain was represented as a vector (*������� �  1). All eight SC 
variability maps were chosen as input features (*������� �  0������� ). We first linearly scaled all 
features to the range of 0-1. Then, the prediction model was trained and evaluated using the 
leave-one-out cross-validation (LOOCV) strategy. The variability map of each region across the 
whole cortex was designated as the testing sample, while the variability maps of the remaining 
regions were defined as the training samples. After LOOCV, Pearson’s correlation coefficient 
between the predicted FC variability and the observed FC variability across all regions was 
calculated as the prediction accuracy. The same predictive framework was also performed for 
regions within each hierarchical system separately. 

2.7. Direct SC-FC Coupling 

Inspired by Bertha and colleagues (Vazquez-Rodriguez et al., 2019), we performed a multiple 
regression linear model to fit the FC profile in each region using SC profile predictors of all 
structural metrics in the same region. The regional SC-FC coupling was quantified by the fitted 
adjusted R2, which represents the degree of correspondence of structural and functional connectivity 
profiles. For each FC and SC metric, a group-level network was first estimated as the averaged 
connectivity matrix across individuals and sessions. Then, the estimated FC profile of node i was 
represented as 

"�� � 1� 2 1�3�� 2 1
45� 2 1��	� 2 1��/� 2 1�,0� 2 1�3�� 2 1���� 2 1�3��  

where the independent variables 3�� , 45� , and �	� are the tractography-based structural 
connectivity between node i and all other nodes, and �/� , ,0� , 3�� , ��� , and 3�� are the 
morphometry-based structural connectivity between node i and all other nodes. Such a multilinear 
regression framework to characterize SC-FC correspondence has been widely reported (Betzel et al., 
2019; Goni et al., 2014; Vazquez-Rodriguez et al., 2019). 

2.8. Mediation Analysis 

To investigate whether the effect of SC variability on FC variability was mediated by the regional 
distribution of SC-FC coupling, a bootstrapped mediation analysis was employed using the 
MATLAB package Mediation ToolBox (https://github.com/canlab/MediationToolbox). We first 
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normalized the independent (X, principal SC variability), dependent (Y, functional variability), and 
mediating (M, SC-FC coupling) variables. Then, we examined the total effect of principal SC 
variability on FC variability (path c), the relationship between SC-FC coupling and principal SC 
variability (path a), the relationship between FC variability and SC-FC coupling (path b), and the 
direct effect of principal SC variability on FC variability controlling for the mediator (i.e., SC-FC 
coupling) (path c'). The significance of the mediation/indirect effect (ab) of principal SC variability 
on FC variability through the mediator was tested using a bootstrapping analysis (resampled 10,000 
times). For the SVR model-based result, we repeated the mediation analysis using predicted FC 
variability instead of principal SC variability. 

2.9. Spatial Permutation Testing (Spin Test) 

To further test whether spatial distributions of FC and SC variabilities follow a hierarchical manner 
from primary to heteromodal organization, we used a spherical projection null framework to estimate 
whether these variabilities are determined by the hierarchical classes or derived by spatial 
autocorrelation (Alexander-Bloch et al., 2018; Liu et al., 2020). Specifically, we first stratified all 
360 cortical regions into four cortical functional hierarchies (Liu et al., 2020) so that each vertex in 
the cortical surface had a hierarchy type assignment. Mean variability values were then calculated 
within each hierarchical class. Under the premise of preserving spatial autocorrelation, the class 
labels were randomly rotated in the spherical space of the cortical surface, and the mean variability 
values were recomputed. After 10,000 permutations, the class-specific mean variability values were 
expressed as z scores relative to this null model. A positive z score indicated greater variability than 
expected by chance, and a negative z score indicated smaller variability than expected by chance. 
The p value of each class was defined as the proportion by the mean variability values in the null 
model that exceeded the true mean variability value. We also used this spin test to assess the 
significance of the alignment between two brain spatial patterns at both group and individual levels, 
including the correspondence between observed FC and SC variability pattern, the observed FC and 
predicted FC variability pattern, and the predicted FC and SC variability pattern. 

2.10. Estimating Individual Uniqueness at the Subject Level 

2.10.1. Individual deviation quantification for each subject 

For a given subject s, we estimated the deviation of individual connectivity profiles from the 
population-level connectivity profiles for each FC and SC by decomposing the definition of 
individual variability at the group level (Mueller et al., 2013). Specifically, we first computed the 
raw interindividual deviation of brain region i by estimating the dissimilarity of the connectivity 
profile of subject s with the profile of all other subjects as follows in the equation below. This 
measurement gives an overall description of the degree of uniqueness between the connectivity 
profile of the current node and that of other nodes. 

������� � 1 � � !����"���, ��, "�#�
 , �%�& 
where ' �  1,2, . . . , * ; N is the number of subjects in the dataset; sq indicates the subject; and t 

indicates the session. "�#�
 , �% is the connectivity profile of region i of subject sq in session t. After 
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calculating the raw interindividual deviation of each region, we obtained an interindividual deviation 
map for each subject. Second, we calculated the intraindividual variance map ,-��������� for 
subject s. Finally, we regressed out the intraindividual variance from the raw interindividual 
deviation map to estimate the real individual deviation map of subject s. This subject-specific 
connectivity deviation could act as an indicator to characterize individual brain uniqueness. Together, 
we obtained the individual uniqueness of one FC and eight SCs in each session/run for this given 
subject. 

For each subject, the individual-level correspondence between SC uniqueness and FC uniqueness 
was estimated following the same analysis procedure as previously described at the group level. 

2.10.2. Within-subject reliability of individual uniqueness 

To investigate whether individual FC and SC uniqueness were stable within subjects across repeated 
sessions and variable between subjects, we performed the following reliability analysis and 
individual identification analysis. 

Reliability analysis. For a given subject, we evaluated the within-subject similarity by calculating 
Pearson's correlation coefficient of individual uniqueness in two sessions (S1 to S2). Next, we 
quantified the between-subject similarity by averaging the Pearson's correlation of the uniqueness 
pattern between this given subject in S1 (S2) and all other subjects in S2 (S1). All subjects then had 
within- and between-subject similarity metrics. The individual uniqueness is considered to be 
reproducible if the within-subject similarity is significantly larger than the between-subject similarity. 
We performed a nonparametric permutation test to explore whether the reproducibility of individual 
uniqueness was significantly larger than random levels. Briefly, the subjects were randomly 
permutated, and the difference between within- and between-subject similarity was recomputed. This 
permutated procedure was repeated 10,000 times, yielding a null distribution. The p value was 
defined as the proportion of permutations with a difference value that exceeded the value in the 
observed data. 

Individual identification analysis. We implemented the individual identification procedure as 
described by Finn and colleagues (Finn et al., 2015). Briefly, for all individual deviation maps in 
both sessions (S1 and S2), if the deviation maps from two repeated sessions of a given individual 
showed the highest similarity among any other two pairs, the identification was correct. The success 
ratio was calculated as the fraction of individuals who were identified correctly. The individual 
identification analysis was performed in two directions, one from S1 to S2 and the other from S2 to 
S1. Finally, we averaged the success ratio across these two directions. 

2.11. Relevance for Cognition and Behavioral Performance 

2.11.1. Cognitive and behavioral measurements 

We obtained the independent behavioral phenotypes in the HCP S1200 dataset provided by Tian and 
colleagues (Tian et al., 2020). In brief, 109 raw behavioral and cognitive measurements in the HCP 
dataset were selected for each subject, involving alertness, cognition, emotion, motor, personality, 
sensory, psychiatric and life function, substance use, and in-scanner task (emotion task, gambling 
task, language task, relational task, social task, and work memory task). Subjects missing one or 
more measurements were excluded from the analysis (final sample size n = 958). Applying a 
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data-driven independent component decomposition pipeline, the 109 behavioral and cognitive 
measures were parsed into five independent summarizing dimensions, including cognition, illicit 
substance use, tobacco use, personality and emotional traits, and mental health (detailed in Tian et al., 
2020). These five summarizing measurements were used in the following brain-behavior analysis. 

2.11.2. Partial least-squares (PLS) analysis 

We then performed a partial least-squares correlation analysis with the myPLS toolbox 
(https://github.com/danizoeller/myPLS) to evaluate the implications of the structural-functional 
uniqueness correspondence in individual cognitive and behavioral performance. As a data-driven 
multivariate statistical technique, PLSC analysis was widely used to delineate the brain-behavior 
association by performing singular value decomposition (SVD) to obtain the orthogonal latent 
components (LCs) (Krishnan et al., 2011). LCs are the optimal linear combinations of the original 
variables from two matrices that maximize their covariance. Specifically, for brain domains, we 
considered the structural-functional uniqueness alignments at both the whole-brain and system levels. 
For behavioral domains, we used the five behavioral measurements mentioned above. We regressed 
out age and sex from brain measurements and behavioral measurements. Then, after z-scoring brain 

data : (subjects × brain measures) and behavioral data ; (subjects × behavioral measures) across 

all subjects, we computed the brain-behavior covariance matrix <, 

R �  ;�  >  : 

followed by performing SVD on <, 

R �  U  >  3 > ��   
where @ and � are the singular vectors, which could be called brain and behavioral weights, and S is 
a diagonal matrix containing the singular values. Therefore, each LC includes a distinct brain weight 
and a distinct behavioral weight. By linearly mapping the original brain and behavioral 
measurements of each subject onto their respective weights, the subject-specific brain and behavioral 
composite scores were estimated. To determine the significance level of each LC, we conducted a 
permutation test as follows. By performing 10,000 permutations to the brain measurements 
(randomly reordering the subjects) and leaving behavioral measurements unchanged, we calculated 
10,000 null brain-behavior covariance matrices and obtained a sampling distribution of the singular 
values under the null hypothesis. The statistical significance of each LC was computed by comparing 
the singular value of the observed LC with its null distribution. For LC interpretation, we obtained 
the brain (behavioral) loadings by calculating Pearson’s correlation coefficients between the original 
brain (behavioral) measurements and brain (behavioral) composite scores. A large positive (or 
negative) loading for a given brain (behavioral) measurement indicates greater importance of this 
brain (behavioral) measurement for the LC. Using bootstrap resampling (1000 iterations), we 
computed 95% confidence intervals for the brain loadings and behavioral loadings. 

3. Results 
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3.1. FC and SC Individual Variability Patterns Represent Cortical Hierarchical Organization 

We leveraged multimodal functional, structural, and diffusion imaging data from 42 subjects with 
repeated scans in the HCP Test-Retest (TRT) dataset (Van Essen et al., 2013). For each individual, 
we reconstructed the FCs and eight types SCs of the brain (Fig 1A). For FC and each type of SC, we 
calculated intra- and inter-individual variability patterns according to a classic approach proposed by 
Mueller and colleagues (Mueller et al., 2013) (Fig 1B). 

For intraindividual variability, we observed that the spatial patterns were nonuniformly distributed 
throughout the cortical mantle, in which both FC and SC variability values were prominent primarily 
in the medial temporal lobe and insular cortex (Fig 2A). However, we observed significant 
differences in the intraindividual variability values among these connectomes (one-way repeated 
analysis of variance (ANOVA), F = 2916.6, p < 0.0001): the highest variability values in FC, 
followed by morphometry-based SC, and the lowest variability values in tractography-based SC 
(post hoc pairwise comparisons analysis, all p < 0.0001, Bonferroni-corrected). 

For interindividual variability, FC variability values (Fig 2B, first column) were higher in the lateral 
prefrontal cortex and temporal-parietal junction and lower in sensorimotor and visual regions, which 
is in line with previous studies (Mueller et al., 2013; Gao et al., 2014; Xu et al., 2018; Stoecklein et 
al., 2019). Interindividual SC variability patterns were generally similar to those in FC variability 
patterns, but there were some feature-specific distributions in several regions, such as the precuneus 
cortex, lateral prefrontal cortex, and temporal-parietal junction cortex (Fig 2B, second to last 
column). Hierarchical clustering analysis divided these SC variabilities into three clusters (Fig 2C), 
representing distinct structural signatures in tractography- and morphometry-based (cortical 
folding-based and cortical architecture-based, separately) connectomes. To further test whether 
spatial distributions of FC and SC variabilities follow a hierarchical manner from primary to 
heteromodal organization, we first classified all 360 brain nodes into four cortical hierarchies 
(Mesulam, 1998; Liu et al., 2020) (Fig 2D) and calculated the mean interindividual variability within 
each class. Then, we used a spherical projection null test by permuting class positions 10,000 times 
to estimate whether these variabilities were determined by the hierarchical classes or derived by 
spatial autocorrelation (Alexander-Bloch et al., 2018; Liu et al., 2020). We found that the 
heteromodal class displayed significantly greater mean variability than expected by chance (p spin < 
0.0001 for FC; p spin < 0.01 for all SCs; Fig 2E). In contrast, the primary class (p spin < 0.05 for FC; p 

spin < 0.05 for all tractography-based SCs) and paralimbic class (p spin < 0.05 for FC; p spin < 0.001 for 
all morphometry-based SCs) displayed significantly lower variability than null models. 

3.2. The Structural Constraints of the Hierarchical Organization of Functional Variability 

Next, we sought to determine the relationship between individual FC and SC variability patterns 
using both linear and nonlinear approaches. 

First, considering the distinct structural patterns provided by tractography- and morphometry-based 
connectomes, we generated a linear representation of the structural variability by applying a principal 
component analysis to the interindividual SC variability maps that included all eight SC 
characteristics. The first principal component explained 54.9% of the variance in total variabilities 
across brain nodes (Fig 3A, left), with contributions from tractography-based SC variability, cortical 
folding-based SC variability, and cortical architecture-based SC variability in a descending order 
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(Fig 3A, left inset). Similar to single-feature findings, the first principal component of structural 
variations was significantly higher in heteromodal and unimodal areas and lower in primary and 
paralimbic areas than expected by chance (all p spin < 0.05, Fig 3A, right). Next, we calculated the 
spatial correlation between functional variability and principal structural variability at both the 
whole-brain and system levels. We found a significant spatial correlation across whole-brain nodes 
(adjusted r = 0.43, p spin < 0.0001, Fig 3B, left). At the system level, the spatial correlations were 
greatest in primary regions (adjusted r = 0.71, p spin < 0.001) and smallest in heteromodal regions 
(adjusted r = 0.30, p spin < 0.05) (Fig 3B, right). 

Second, to further test whether the FC variability architecture can be predicted from unifying SC 
variability patterns, we performed a multivariate nonlinear-kernel-based prediction analysis using a 
supervised support vector regression (SVR) model. This model took eight SC variability maps as 
input and was trained and estimated in a leave-one-out strategy. We found that FC variability (Fig 
3C) could be significantly predicted across whole-brain nodes (adjusted r = 0.48, p spin < 0.0001, Fig 
3D, left). At the system level, we found that the predictive power of SC variability for FC variability 
decreased along the hierarchy axis (adjusted r = 0.76, p spin < 0.0001 in the primary cortex; adjusted r 
= 0.40, p spin < 0.001 in the unimodal cortex; adjusted r = 0.44, p spin < 0.01 in the paralimbic cortex; 
adjusted r = 0.35, p spin < 0.001 in the heteromodal cortex, Fig 3D, right). Taken together, these 
findings indicate that interindividual FC variability was structurally constrained by SC variability in 
a primary-to-heteromodal hierarchical order. 

3.3. Structure-Function Coupling Mediates the Relationship between Individual Structural and 
Functional Variability 

The connection patterns of brain FCs are formed by interactions of neuronal elements via complex 
structural pathways (Wang et al., 2015b). Direct SC-FC coupling is treated as a basic index for the 
intensity of structural constraints on brain function and has been considered to reflect common 
cortical hierarchical organization (Suárez et al., 2020). Let us assume that for each individual, if the 
SC profiles of brain nodes were exactly coupled with their FC profiles (with Pearson’s coefficient = 
1), the topography of individual FC and SC variability patterns would be the same. Thus, it is 
reasonable to hypothesize that this SC-FC coupling may underlie the alignment between 
interindividual SC and FC variability. To test this hypothesis, we first computed the direct SC-FC 
coupling for each given node using a multilinear regression approach (Vazquez-Rodriguez et al., 
2019). Consistent with previous findings (Baum et al., 2019; Vazquez-Rodriguez et al., 2019, 
Zamani Esfahlani et al., 2022), we found that the sensorimotor and occipital cortices exhibited 
relatively high SC-FC coupling, while the lateral parietal, frontoparietal and temporal cortices 
exhibited relatively low SC-FC coupling (Fig 4A). Using a bootstrapped mediation analysis, we 
found that the spatial pattern of direct SC-FC coupling partially mediated the relationship between 
principal structural variability and functional variability (indirect effect ab: β = 0.05, p < 0.01, 95% 
confidence interval = [0.02, 0.09], bootstrapped n = 10000; Fig 4B). The spatial pattern of direct 
SC-FC coupling was significantly negatively associated with both functional variability and principal 
structural variability (path a: β = -0.16, p = 0.002; path b: β = -0.32, p < 0.001), indicating that brain 
nodes with stronger SC-FC coupling correspond to those with weaker interindividual variability. 
Consistent results were also found when using the predicted functional variability map driven by 
SVR analysis instead of the principal structural variability map (Fig 4C). These results suggest that 
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the constraint of interindividual structural variability on functional variability was mediated by direct 
SC-FC coupling. 

3.4. The Robust Correspondence between Individual Functional and Structural Uniqueness 

The group-level FC or SC variability pattern captures the total variance within a particular 
population, while it is unable to represent the unique contributions of each individual. To 
characterize the individualized source of group-level variability, we decomposed the overall 
interindividual FC or SC variability map into individual uniqueness patterns. Briefly, the individual 
uniqueness delineates the personal deviation of individual connectivity profiles from the populational 
connectivity profiles while controlling for intraindividual variance (detailed in Materials and 
Methods). Similar to the group-level analysis, for each individual, we performed principal 
component analysis on all structural uniqueness patterns to represent the individual principal 
structural uniqueness map. The intraindividual spatial similarity of either functional unique maps or 
principal structural unique maps (functional uniqueness: r, mean ± standard deviation (std) = 0.80 ± 
0.09; principal structural uniqueness: r, mean ± std = 0.91 ± 0.02) were significantly higher (ps < 
0.0001) than interindividual spatial similarity from either session (functional uniqueness: r, mean ± 
std = 0.52 ± 0.05; principal structural uniqueness: r, mean ± std = 0.67 ± 0.02) (Fig 5A, 5B). 
Consistent results at the system level are shown in Fig S2. An individual identification analysis 
further revealed that the success rates of functional uniqueness and principal structural uniqueness 
were 91.7% and 100%, respectively. In addition, to be expected, the interindividual standard 
deviation for both functional and structural uniqueness was smallest in the primary sensorimotor and 
visual regions and largest in the heteromodal cortex (Fig 5C). These results indicated that the 
individual uniqueness maps of the brain could act as potential signatures to describe the intersubject 
connectome diversity. 

We next focused on the spatial relationships between the functional and structural uniqueness maps 
using correlational analysis and predictive models as previously described. We found that the spatial 
correlations between functional uniqueness and principal structural uniqueness across the whole 

brain were moderate (r ∈ [0.09, 0.36], mean r = 0.20; Fig 5D, left) but significant for most subjects 

(p spin < 0.05 for 39 of 42 subjects, other 3 subjects were marginally significant (p spin ∈ [0.05,0.09])). 

The significant correlation of an example subject was shown in a scatter plot (Fig 5D middle). At the 
system level, the spatial correlations were largest in the primary cortex, followed by the heteromodal, 
unimodal cortices and paralimbic cortex (Fig 5D, right). These spatial relationships were also 
confirmed by the nonlinear SVR model (Fig 5E). Together, these results show that the 
structure-function correspondence of individual uniqueness was robust across subjects. 

3.5. The Structure-Function Correspondence of Brain Uniqueness Reflects Individual 
Cognitive and Behavioral Traits 

Studies have shown that the extent of direct SC-FC coupling at the individual level is associated with 
cognitive performance, such as cognitive flexibility (Medaglia et al., 2018) and executive function 
(Baum et al., 2019). The alignment between SC and FC uniqueness reflects the degree of the 
individual-specific constraint rule out of group constraints and could also support individual 
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cognitive traits. To address this issue, we performed a partial least-square (PLS) analysis to evaluate 
the latent relationship between the structural-functional alignments of brain connectome uniqueness 
and general behavioral traits across individuals. For brain measurements, we considered the 
structural-functional linear correspondences at both the whole-brain and system levels. For 
behavioral domains, we used individual behavioral measurements in five independent dimensions 
derived from 109 behavioral items in the HCP S1200 dataset (Tian et al., 2020). After performing 
PLS analysis, we decomposed the brain-behavior associations into driving latent components (LCs), 
which are the optimal linear combinations of original brain or behavioral measurements. We found 
that the first LC (LC1, accounting for 62.6% of the covariance) significantly survived after 
permutation tests (p = 0.004), with a significant association (r = 0.11, p < 0.01) between brain and 
behavioral composite scores (Fig 6A). We further obtained the brain and behavioral loadings of this 
component by calculating Pearson’s correlations between the original measurements and their 
composite scores. A large absolute loading value indicates great importance. We found significant 
positive brain loadings in structural-functional alignments, with the greatest loading value at the 
whole-brain level and ascending loading values from unimodal to heteromodal systems (Fig 6B). 
The behavioral significant loadings included tobacco use, the personality-emotion score, and the 
mental health score (Fig 6C). We observed consistent results using the nonlinear SVR model (Fig 
S3). These results suggest that the hierarchical correspondence between functional and structural 
uniqueness, especially in the heteromodal cortex, reflects the individual traits in human general 
behaviors. 

3.6. Sensitivity and Replication Analyses 

To estimate the effect of the sample size (Button et al., 2013; Dubois and Adolphs, 2016) of the HCP 
TRT dataset, which contains only 42 subjects, we validated all analyses using a large-sample dataset 
of HCP S1200 release (1012 subjects). Because this dataset contains repeat-scan fMRI data but no 
repeat-scan diffusion or structural imaging data, we calculated the individual structural variability 
without accounting for intrasubject variability. This approach was acceptable since we found that the 
principal structural variability with removing intrasubject variability was highly similar to that 
without removing intrasubject variability (r = 0.94, p spin < 0.0001, Fig S4) using the HCP TRT 
dataset. However, the correlation value between functional variability with the removal of 
intrasubject variability and that without the removal of intrasubject variability was only 0.41 (p spin < 
0.001, Fig S4), indicating the importance of excluding intrasubject variations when estimating 
intersubject FC variability. Over the large sample, we observed highly consistent results for the 
hierarchical relationships between brain structural and functional variability, the mediation effect of 
direct structure-function coupling, and the significant correspondence at the single-subject level (Figs 
S5-S8). 

Next, we estimated the reliability of our results by considering several confounding factors. First, the 
number of nodes in the Glasser360 atlas assigned to each of the four hierarchical systems is not equal 
(range: 32-144). To verify that the differential correspondence of variability maps between 
hierarchical systems is not influenced by the node number, we randomly selected brain regions of a 
fixed number of 30 in all systems 1000 times and recomputed the correlation coefficient based on 
these subsets of nodes (Fig S9). Second, to reduce the partition effect, we consistently validated the 
results in another well-known cortical system—the seven cytoarchitectonic classes described by Von 
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Economo and Koskinas (Von Economo and Koskinas, 1925) (Fig S10). Third, to rule out the 
possibility that the spatial variability maps are caused by the lower fidelity of cross-subject alignment, 
we assessed the relationship between the spatial variability patterns and the surface deformation map 
that occurred in cross-subject registration. We found that the subject-averaged surface deformation 
map was not associated with functional variability (r = -0.04, p spin > 0.05) but significantly 
associated with principal structural variability (r = -0.18, p spin < 0.05). After regressing out the 
cross-subject registration deformation map, the functional variability pattern and principal structural 
variability pattern were still significantly correlated (r = 0.43, p < 0.0001; Fig S11). Fourth, a recent 
study excluded one of all twins in HCP dataset while estimating a brain-behavior association 
(Zekelman et al., 2022). To exclude the influence of the related subjects, we excluded 17 subjects 
(one of the twins) from the TRT dataset and found that the individual variability pattern of both FC 
and SC were almost unchanged (r > 0.97 for all variability patterns). Meanwhile, we observed highly 
consistent results for the correspondence between structural and functional variability at the 
whole-brain level and system level (Fig S12). 

Although several processing steps are used to remove the motion effect in the current work 
(including ICA-FIX denoising, motion parameter regression, and motion scrubbing), it’s still 
valuable to estimate the influence of subjects with high-level motion. To this end, we excluded 
subjects with high-level head motion for either fMRI or dMRI images in both HCP TRT dataset and 
S1200 dataset and further validated all main results. Specifically, the head motion indexes (i.e. mean 
and mean absolute deviation of the frame-to-frame displacements) of each subject during the fMRI 
and DWI scanning sessions were estimated (by using Movement_RelativeRMS.txt from minimal 
fMRI preprocessing pipeline and using eddy_unwarped_images. eddy_movement_rms from minimal 
dMRI preprocessing pipeline). After that, we excluded subjects with one or more indexes greater 
than 1.5 times the inter-quartile range of the corresponding index distribution (Zamani Esfahlani et 
al., 2022). Under this criterion, five subjects were excluded for the HCP TRT dataset, while 95 
subjects were excluded for the HCP S1200 dataset. Validation analysis was carried out by using the 
remaining 37 subjects (TRT dataset) and 917 subjects (S1200 dataset). Of note, the individual 
variability patterns of both FC and SC were almost unchanged before and after excluding subjects 
with high-level head movements (r > 0.98 for all variability patterns). The correspondence between 
SC and FC variability at the whole-brain level and system level and the brain-behavior multivariate 
association were highly repeatable as well (Figs S13 and S14). 

4. Discussion 

In this study, we demonstrate for the first time that FC individual variability is largely constrained by 
unifying SC variability and that this constraint follows a hierarchical pattern with stronger coupling 
in the primary cortex and weaker coupling in the heteromodal cortex. By decomposing group-level 
brain variability patterns into individual uniqueness maps, we also demonstrate individual-level 
structural-functional uniqueness correspondences that act as indicators to capture individual 
cognitive traits. These results markedly advance our understanding of the structural underpinnings 
behind individual variability in both FC and cognitive performance. 

The SCs and FCs of the human brain are inherently correlated. Despite extensive research on SC-FC 
coupling (Suárez et al., 2020), whether interindividual FC variability is anatomically constrained by 
SC variability is still an open question. We emphasize that the characterization of this relationship 
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depends on several key factors. First, a relatively large sample size with repeated structural and 
functional brain scans is needed. Previously, Camberland et al. (Chamberland et al., 2017) and 
Karahan et al. (Karahan et al., 2021) both reported no significant correlation between SC and FC 
variability at a global level, which could be attributable to the small sample sizes of their studies 
(Chamberland et al., 2017; Karahan et al., 2021) or the confounds of intrasubject variations (Karahan 
et al., 2021). In this study, we found that the correlation between FC variability maps before and 
after regressing intraindividual variance was only 0.41 (0.94 for principal SC variability), 
highlighting the necessity of removing intraindividual FC variance when studying the relationship 
between FC and SC variability. Second, the unifying contribution from multimodal connectome 
signatures, including tractography- and morphometry-based networks as well as communication 
models, should be taken into account. Although Karahan et al. reported a significant spatial 
correlation (ρ = 0.32) between FC variability and tractography-based SC variability (Mansour et al., 
2021), this study ignored the contribution of communication models and morphometry-based SC: the 
former provides important anatomical scaffolding for interregional communication through multistep 
signal propagation (Avena-Koenigsberger et al., 2017; Crofts and Higham, 2009) and manifests as 
strong interregional FC (Goni et al., 2014; Suárez et al., 2020), and the latter is sensitive for 
capturing axo-synaptic projections within the same cytoarchitectonic class, which is not 
characterized by diffusion MRI (Goulas et al., 2017; Seidlitz et al., 2018) and partly recapitulates 
interregional FC (Alexander-Bloch et al., 2013; Geng et al., 2017). It is widely recognized that 
multifaceted but integrated approaches provide complementary advantages and perspectives to 
explore human brain organization (Paquola et al., 2020; Van Essen et al., 2019). Using 
repeated-measurement, multimodal connectome features in a large sample from the HCP database, in 
the present study, we highlight the constraints of integrated SC variabilities on FC variability. 
Notably, these results are only based on correlation or prediction analyses, which could not exclude 
potential confounders such as parcellation. Future investigations employing neurodynamic models 
(Demirtas et al., 2019) might be helpful to reveal underlying determinants. 

It is worth noting that the present study exhibited a hierarchical correspondence between SC and FC 
variability at both the group and individual levels. These findings agree with mounting evidence that 
the primary-to-heteromodal hierarchy has been emphasized as a unifying principle for brain 
structural-functional organization (Huntenburg et al., 2018), including intracortical myelination 
(Huntenburg et al., 2017), cortical laminar interareal projections (Paquola et al., 2019) and SC-FC 
couplings (Zamani Esfahlani et al., 2022). The hierarchical correspondence between SC and FC 
variability might have several originations. First, from an evolutionary view, to adopt rich 
environmental conditions, the heteromodal cortex is untethered from canonical sensory-motor 
activity cascades during cortical expansion to form varied and complex wiring organizations 
(Buckner and Krienen, 2013), such as inherently spatially distributed communities (Margulies et al., 
2016) and long-range rich-club edges (Griffa and van den Heuvel, 2018; van den Heuvel and Sporns, 
2011). Simulation and neuroimaging studies demonstrated that these wiring characteristics facilitate 
the high complexity of functional dynamics (Senden et al., 2014; Zamora-Lopez et al., 2016), which 
may result in inconsistencies in the alignment between SC and FC variability. Second, the 
heteromodal cortex processes mixed and diverse signals from multiple sources 
(Avena-Koenigsberger et al., 2017; Betzel et al., 2018), which vary greatly across individuals (Betzel 
et al., 2018). These signals may form discrepant FC profiles across individuals under similar 
structural organizations. Third, accumulating evidence has shown that the regional heterogeneity of 
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individual variability is largely determined by both i) genetic factors, including heritability 
(Anderson et al., 2021; Valk et al., 2022) and gene expression (Li et al., 2021a), and ii) 
environmental factors, such as socioeconomic status (Leonard et al., 2019) and chronic stress (Sheth 
et al., 2017) during development (Foulkes and Blakemore, 2018; Tooley et al., 2021). Heteromodal 
regions undergo prolonged maturation compared with primary regions (Cao et al., 2017; Gilmore et 
al., 2018; Zhao et al., 2019), which could provide a high freedom of plasticity for functional and 
structural refinements during the postnatal environment and form varying FC-SC alignments across 
individuals. Previous works have demonstrated the heterogeneous age-related changes in regional 
SC-FC coupling (Baum et al., 2019; Zamani Esfahlani et al., 2022). Further exploration on whether 
and how SC-FC variability correspondence changes during neurodevelopment and aging is critical to 
understand the origination of hierarchical correspondence between brain SC and FC variability. 

We observed a robust mediation effect of SC-FC coupling on the SC-FC variability correspondence, 
which indicated that the alignment of SC and FC variability may be intrinsically affected by the 
direct structure-function relationship. This finding agrees with previous evidence on the origin of 
brain variability. A simulation study on the SC-FC relationship has shown that the spatial 
distribution of FC variability could be derived by the heterogeneous oscillations of neurons through 
interregional SC pathways (Demirtas et al., 2019). Other studies have demonstrated that the flexible 
dependence of underlying SCs enables FCs to reconfigure flexibly, which provides key information 
for individual identification (Griffa et al., 2022) and results in interindividual cognitive switching 
variability (Medaglia et al., 2018). Other biological sources may also underlay the correspondence of 
SC and FC variability. For instance, we also observed a significant medication effect of regional 
cerebral blood flow (Fig S15), which has been demonstrated to be highly coupled with regional 
metabolism during brain development (Raichle and Mintun, 2006) and to affect the 
structural-functional relationship (Chen et al., 2021). How the SC-FC variability correspondence 
originates still requires further detailed investigation. Crucially, identifying genetic, environmental or 
biological influences between FC and SC variability will be important for neuroscientific studies of 
individualized clinical applications. 

The individual brain connectome can be regarded as a common backbone with unique personal 
refinements (Gratton et al., 2018; Wang et al., 2021; Zimmerman et al., 2018). By decomposing the 
group-level variability patterns into individual deviation maps, we delineated the SC and FC 
variability at the individual level. These maps show high session-to-session stability and high 
identification accuracy of individuals, reflecting the individual uniqueness of the brain. Other efforts 
have also been made to extract the individual refinements by comparing individual deviations to 
group-level normative distributions during disorder (Liu et al., 2021; Marquand et al., 2016) and 
development (Nadig et al., 2021). These unique measurements show crucial significance in brain 
fingerprinting (Seitzman et al., 2019) and individual cognitive and behavioral predictions (Nadig et 
al., 2021; Saggar et al., 2015). Notably, the correspondence of individual SC and FC uniqueness also 
followed a hierarchical axis and showed a significant association with general behavioral and 
cognitive performance, with most contributing features deriving from the association cortex. This 
finding is in line with previous studies showing that the association cortex acts as the most 
informative predictor of individual fluid intelligence (Finn et al., 2015) and other cognitive and 
behavioral domains (Mueller et al., 2013). Recent studies have pointed out that study on 
brain-behavior associations requires large cohorts containing thousands of samples to obtain 
reproducible results (Marek et al., 2022). Although our findings are based on cohorts of near one 
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thousand (958 subjects) and remain significant after removing subjects with high-level head motion 
(870 subjects), future validations on larger-sample and multi-site datasets (such as UK Biobank) are 
still desirable. Meanwhile, we adopted a doubly multivariate PLS analysis, in which brain systems 
are jointly mapped into several general behavioral traits. This approach enables the representation of 
interindividual variability in brain and behavior and improves reproducibility (Marek et al., 2022; 
Genon et al.,2022). Additionally, the hierarchical contributions of brain systems for the behavioral 
associations, that is the highest in heteromodal system, emphasized the need to include 
regional-specific effects in brain-wide association studies (Gratton et al., 2022). For detailed 
behavioral measurements, we found that the tobacco use shows highest loadings than other 
behavioral scores after PLS analysis. Prior studies also found that tobacco use is relatively highly 
correlated with brain measurements than mental health and illicit substance use dimensions 
(Mansour et al., 2021; Wang et al., 2021; Seguin et al., 2021). In addition, Illicit drugs use and 
cognition showed no significant brain association. Illicit drugs use is highly related to the 
corticostriatal functional circuits (Ersche et al., 2020). The lack of subcortical connections in the 
current FC-SC uniqueness evaluation may hinder the seeking for regional connectivity support of it. 
Total cognition score has been shown to be mostly related to the regional SC-FC coupling of only 4 
focal brain regions (located in bilateral middle cingulate cortex and supplementary motor area) (Gu 
et al., 2021). Future estimations with fine-grained regional parcellation and nodal level indicators are 
needed to capture its reliable regional association. Our measurements of the correspondence between 
SC and FC uniqueness reflect the pure individual constraints between SC and FC that rule out group 
factors, which could offer insights into reflecting the true interindividual diversity of human 
behaviors and cognitions and highlight the potential for progress in individualized clinical 
therapeutics and interventions.  

Several issues need to be considered. First, although the HCP TRT dataset contains data from only 
42 subjects, it is the largest public young-adult database with high-quality and full repeat-scan 
multimodal images, which provides an irreplaceable opportunity to explore the constraints of 
structural variations on FC variability. In the future, we hope to replicate our findings in a 
larger-sample dataset. Second, it is intriguing to explore the potential genic origins of the spatial 
correspondence between structural and functional variability. However, this exploration would 
depend on the availability of an individual-specific gene expression dataset with data from a large 
number of donors. Third, a recent study emphasized a regional "model preference" for SC-FC 
relationship (Zamani Esfahlani et al., 2022). Diversified SC communication models can be adopted 
for different brain regions in future studies on the SC-FC relationship of individual variability. 
Fourth, there are inherent limitations to reconstruct accurate anatomical projections from 
dMRI-based tractography (Maier-Hein et al., 2017; Reveley et al., 2015; Thomas et al., 2014), such 
as the underestimation of long-distance white matter fiber bundles (Reveley et al., 2015) and the 
missing of tiny fiber tracts (Maier-Hein et al., 2017). These could bring biases to the observed 
SC-FC relationships of individual variability. How to reduce tractography biases in the estimation of 
the true regional structure-function correspondence, especially in terms of individual variability, 
needs further research. Finally, a recent study delineated that FC variability changes diversely in 
neuropsychiatric disorders (Sun et al., 2020), and future studies should focus on exploring whether 
the SC-FC correspondence of individual variability transforms in brain disorders, especially for 
individualized diagnosis and treatment evaluation. 
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Figures 

 

Figure 1. Study overview. (A) Functional connectome (FC) and structural connectome (SC) 
reconstruction. FCs were obtained by computing Pearson’s correlation coefficients among the time 
series of all pairs of nodes. Tractography-based SCs and morphometry-based SCs were obtained by 
computing internode probabilistic white matter fiber streamlines and internode gray matter 
morphometric similarity, respectively. (B) Following the approach proposed by Mueller and 
colleagues (Mueller et al., 2013), we calculated the adjusted interindividual FC and SC variability 
and decomposed the group-level variability pattern into individual unique contributions. (C) Both 
linear and nonlinear computational analyses were used to test the hypothesis that FC variability is 
structurally constrained across the whole brain and each hierarchical system. We hypothesize that 
direct SC-FC coupling may underlie the alignment between SC and FC variability. pri, primary 
cortex; uni, unimodal cortex; heter, heteromodal cortex; para, paralimbic cortex. (D) Partial 
least-squares (PLS) analysis was used to explore the multivariate correlations between FC-SC 
variability correspondence at the individual level and multiple cognitive and behavioral traits. 
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Figure 2. The heterogeneous spatial distribution of FC variability and SC variability. (A) 
Intraindividual FC variability and SC variability of all anatomical features. The results showed here 
are for the left hemisphere, and the relatively symmetrical whole-brain patterns are displayed in Fig 
S1A. (B) Interindividual FC and SC variability after accounting for intraindividual variability. The 
raw variability values were scaled using a rank-based inverse Gaussian transformation (Van der 
Waerden, 1952) for visualization. Negative scores represent raw values below the average. The 
interindividual FC and SC variability pattern without regressing intraindividual variance is shown in 
Fig S1B. (C) Results of hierarchical clustering analysis and the feature-feature correlational matrix. 
(D) The cortical hierarchy assignments for each region in Glasser’s 360-atlas (primary, green; 
unimodal, yellow; heteromodal, purple; paralimbic, red) (Liu et al., 2020; Mesulam, 1998). (E) 
Interindividual variability across four hierarchical systems. Nodewise variability values are averaged 
according to their hierarchical classes. To determine these variabilities were not driven by spatial 
autocorrelation, we performed a spatial permutation test by spinning class positions 10,000 times as a 
null model. The class-specific mean variability values were expressed as z scores relative to this null 
model. A positive z score indicated greater variability value than expected by chance. Classes with 
significant z scores are shown in color, and those with nonsignificant z scores are shown in gray. FC, 
functional connectome; dSC, direct structural connectome; PL, path length-based SC; CO, 
communicability-based SC; SD, sulcal depth-based SC; CC, cortical curvature-based SC; SA, 
surface area-based SC; CT, cortical thickness-based SC; IM, intracortical myelination-based SC. ∗ p 
< 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001. Values of a brain map were visualized on the inflated cortical 
32K surface (Glasser et al., 2016) using BrainNet Viewer (Xia et al., 2013). 
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Figure 3. The relationship between interindividual FC and SC variability at the population level. (A) 
Principal component analysis (PCA) estimated linear combinations of SC variability patterns with 
maximum variance across the cortical mantle. The first component accounted for 54.9% of the total 
variance, with the largest weight contribution of tractography-based SC variability, followed by 
cortical folding-based SC variability and cortical architecture-based SC variability (Inset Figure) (left 
panel). The dashed line on the inset figure indicates the expected average contribution (1/number 
(features) = 12.5%). A feature with a contribution percent larger than this cutoff could be considered 
important in contributing to the principal component. The principal SC variability varied across 
cortical regions, exhibiting significantly higher values in heteromodal and unimodal areas but 
significantly lower values in primary and paralimbic areas (p spin < 0.05) (right panel). (B) The 
correlational relationships between principle SC variability and FC variability were significant in the 
whole brain (left panel) and each hierarchical system (right panel) with highest values in the primary 
system and lowest values in the hetermodal system. (C) The observed FC variability map and the 
predicted FC variability map that was obtained by a nonlinear SVR model. (D) The predicted FC 
variability was also significantly associated with the observed FC variability in the whole brain (left 
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panel) and each hierarchical system (right panel) with highest values in the primary system and 
lowest values in the hetermodal system. ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001. 
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Figure 4. The SC-FC coupling pattern mediates the relationship between SC and FC variability. (A) 
Nodal differences in SC-FC coupling. For each node, the coupling of structural and functional 
connectivity profiles was estimated by a multilinear regression framework (Vazquez-Rodriguez et al., 
2019). (B) SC-FC coupling partially mediated the correspondence between principal SC variability 
and observed FC variability. Path a: β = -0.16, **, CI: [-0.26, -0.06]; path b: β = -0.32, ***, CI: 
[-0.38, -0.24]; path c’: β = 0.38, ***, CI: [0.29, 0.49]; path a*b: β = 0.05, **, CI: [0.02, 0.09]. (C) 
SC-FC coupling partially mediated the correspondence between predicted FC variability and 
observed FC variability. Path a: β = -0.30, ***, CI: [-0.41, -0.20]; path b: β = -0.25, ***, CI: [-0.32, 
-0.17]; path c’: β = 0.41, ***, CI: [0.32, 0.52]; path a*b: β = 0.08, ***, CI: [0.05, 0.11]. The 
significance of the mediation effect was identified using 95% bootstrapped confidence intervals 
(bootstrapped n = 10,000). ** p < 0.01; *** p < 0.001. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.02.16.480803doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.16.480803
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33

 
Figure 5. Within-individual FC and principal SC uniqueness patterns and hierarchical 
correspondence between individual FC uniqueness and SC uniqueness. (A) The FC uniqueness (top 
panel) and principal SC uniqueness pattern (bottom panel) of two example subjects (#1 and #2) 
showed high reliability across sessions. (B) The whole brain spatial similarity within the same 
subject (intrasub) of either FC uniqueness maps (top panel) or principal SC uniqueness maps (bottom 
panel) was significantly higher than those between different subjects (intersub, Session 1 to Session 
2 and Session 2 to Session 1 were shown separately). The spatial similarity between two uniqueness 
maps was estimated using Pearson's correlation coefficient. The significances of differences between 
categories were tested using a nonparametric permutation test. (C) The standard deviation (std) of FC 
and principal SC uniqueness map across 42 subjects were shown in left. Hetermodal system showed 
significant higher std than expected by chance (right). (D) The spatial similarities between FC 
uniqueness and principal SC uniqueness at whole-brain (left panel, distribution of 42 subjects; 
middle panel, an example of subject #1) and system level (right panel). The spatial similarities were 
higher in the primary system than the hetermodal system: one-way repeated analysis of variance 
(ANOVA), F = 190.88, p < 0.0001, post hoc pairwise comparisons analysis, all ps < 0.001. (E) The 
consistent results estimated by the nonlinear SVR model. ∗, p < 0.05; ∗∗∗, p < 0.001; ∗∗∗∗, p < 
0.0001. 
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Figure 6. Partial least-square analysis revealed a multivariate association between the 
structural-functional alignment of individual uniqueness and individual behavioral traits. (A) 
Correlation between brain and behavioral composite scores of 954 subjects. The inset figure shows 
the null distribution of singular values estimated by the permutation test (n=10,000). The dashed red 
line represents the actual singular value estimated for the first latent component. (B) The brain 
loadings that were calculated by the correlations between subjects’ brain measurements and their 
brain composite scores. (C) The behavioral loadings that were calculated by the correlations between 
subjects’ behavioral measurements and their behavioral composite scores. Error bars indicate 
bootstrapping fifth to 95th percentiles, and robust results are indicated by a star symbol. The 
consistent results based on the nonlinear SVR model are shown in Fig S3. 
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