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Abstract

Human cognition and behaviors depend upon the brain’s functional connectomes, which vary
remarkably across individuals. However, whether and how the functional connectome individual
variability architecture is structurally constrained remains largely unknown. Using tractography- and
morphometry-based network models, we observed the spatial convergence of structural and
functional connectome individual variability, with higher variability in heteromodal association
regions and lower variability in primary regions. We demonstrated that functional variability is
significantly predicted by aunifying structural variability pattern and that this prediction follows a
primary-to-heteromodal hierarchical axis, with higher accuracy in primary regions and lower
accuracy in heteromodal regions. We further decomposed group-level connectome variability
patterns into individual unique contributions and uncovered the structural-functional correspondence
that is associated with individual cognitive traits. These results advance our understanding of the
structural basis of individual functional variability and suggest the importance of integrating
multimodal connectome signatures for individual differences in cognition and behaviors.
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1. Introduction

Each individual thinks or behaves differently from other individuals. A growing number of studies
have suggested that the brain’s functional connectomes (FCs) and structural connectomes (SCs) act
as biological substrates underlying these individual differences in cognition and behaviors (Bullmore
and Sporns, 2009; Liao et al., 2017; Park and Friston, 2013). Several prior studies have documented
that the intrinsic FC profiles of the human brain during resting conditions vary across individuals,
with higher variability primarily in heteromodal association regions and lower variability in primary
sensorimotor and visual regions (Mueller et al., 2013; Gao et al., 2014; Xu et a., 2018; Stoecklein et
al., 2019). Such an FC variability pattern is significantly correlated with focal cortical folding
variation (Mueller et a., 2013; Mansour et a., 2021) and evolutionary cortical expansion (Mueller et
al., 2013; Stoecklein et al., 2019) and predicts individual differencesin cognitive domains (Mueller
eta., 2013; Liao et a., 2017). In the present study, we investigated whether and how interindividual
FC variability is anatomically shaped by the SC variability of the human brain.

There are currently two principal methods available for mapping the SCs of the human brain: white
matter tractography-based methods using diffusion weighted imaging and gray matter
morphometry-based methods using structural imaging. Specifically, tractography-based connectomes
can be reconstructed by inferring axonal tracts among brain regions using deterministic or
probabilistic tractography approaches (Gong et al., 2009; Hagmann et a., 2008; Zhang et al., 2022),
while morphometry-based connectomes can be obtained by examining the statistical similarity of
morphometric measures among regions (He et al., 2007; Tijms et al., 2012; Kong et al., 2015).
Notably, the morphometry-based connectomes do not directly measure physical pathways between
regions but provide complementary information for the measurement of axonal projections (Gong et
a., 2012; Evans, 2013; Seidlitz et a., 2018). Although there are mounting reports showing SC-FC
coupling across brain regions or subjects (Honey et al., 2009; Baum et al., 2019; Wang et a., 2015b;
Misic et ., 2016; Zimmerman et al., 2018), whether and how interindividual FC variability patterns
are structurally constrained is understudied. To date, only three studies have examined the
relationship between interindividual FC and SC variability patterns. Of them, two studies reported
nonsignificant spatial correlations between FC variability and tractography-based SC variability
(Chamberland et al., 2017; Karahan et al., 2021), which could be attributable to arelatively small
sample size (n = 9 (Chamberland et al., 2017) and n = 29 (Karahan et al., 2021)) and confounds of
intraindividual variation (Karahan et a., 2021). A very recent study reported a significant correlation
between interindividual variability patterns of FC and tractography-based SC (Mansour et al., 2021).
However, there are several important issues that have not been addressed. First, these previous
studies used only a single SC feature in which network edges represent the existence of direct white
matter connections, ignoring the contribution of network communications (such as path length
(Achard et a., 2006) and communicability (Crofts and Higham, 2009) and morphometry-based SCs,
which are important anatomical scaffoldings for shaping the brain’s functional activities (Goni et al.,
2014; Avena-Koenigsberger et al., 2017; Alexander-Bloch et a., 2013; Geng et al., 2017). Second,
these prior studies focus mainly on the relationship between whole-brain SC and FC variahility,
ignoring the spatial heterogeneity of brain regions. Third, considering that there are structural and
functional variabilities in brain networks even within an individual, thus the estimation and control
of intrasubject variability are important to accurately depict the relationship between SC and FC
variability at both group and individual levels. Thus, the correspondence between interindividual FC

3


https://doi.org/10.1101/2022.02.16.480803
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.16.480803; this version posted May 29, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and SC variahility has been difficult to establish to date.

To fill these gaps, we conducted a comprehensive integrative analysis of multimodal connectome
featuresto unravel the relation between functional and structural variability in the human brain using
repeated-measures functional, structural, and diffusion imaging data from the Human Connectome
Project (HCP) (Van Essen et al., 2013). Specifically, we first calculated the canonical interindividual
FC variability in the whole brain and then quantified multifaceted interindividual SC variability
patterns that captured three communication models of tractography-based connectomes and five
morphometric measures of morphometry-based connectomes. Next, we used both linear and
nonlinear computational analyses to test the hypothesis that individual FC variability is structurally
constrained by unifying SC signatures across the whole brain and across different systems. Finaly,
we decomposed the group-level FC and SC variability patternsinto individual unique contributions
and then explored the alignment of structural-functional unigueness and its relevance to individual
cognitive and behavioral traits.

2. Materials and M ethods
2.1. Participants and Data Acquisition

Participants. We used two publicly available multimodal magnetic resonance imaging (MRI)
datasets from the Human Connectome Project (HCP) (Van Essen et al., 2013). For detailed subject
inclusion/exclusion criteria, please refer to (Van Essen et al., 2013). The HCP S1200 dataset
included 1012 healthy young-adult subjects (ages 22-37, 543 females) with complete minimal
preprocessed imaging data for all modalities. The HCP Test-Retest (TRT) dataset included 42
subjects (ages 22-35, 30 females) who underwent two separate scans with an interval ranging from
0.5 to 11 months. The HCP TRT dataset was used as the discovery dataset. The HCP S1200 dataset
was used as the validation dataset. Written informed consent was obtained from all subjects, and the
scanning protocol was approved by the Institutional Review Board of Washington University in St.
Louis, MO, USA (IRB #20120436).

Data Acquisition. All MRI data were acquired on acustomized 3 T 32-channel Siemens Skyra
scanner at Washington University. All imagesin the HCP S1200 dataset and HCP TRT dataset
shared the same scanning parameters. Resting-state functional MRI (rs-fMRI) images were obtained
by multiband gradient-echo-planar imaging acquisitions with two rs-fMRI runs (the phase encoding
direction corresponded to left-to-right and right-to-left, respectively). The sequence parameters for
each run were the same as follows: repetition time (TR) = 720 ms, echo time (TE) = 33.1 ms, flip
angle = 52°, bandwidth = 2290 Hz/pixel, field of view = 208 x 180 mm?, matrix = 104 x 90; 72
slices, voxel size= 2 x 2 x 2 mm?®, multiband factor = 8, and 1200 volumes. The high spatial
resolution diffusion-weighted imaging (DWI) data (1.25 mm isotropic, 18 b0 acquisitions, 270
diffusion-encoding directions with three shells of b=1000, 2000, and 3000 smm?, 90 directions for
each shell, 2 x 2 x 2 mm isotropic voxels, TR = 5520 ms, TE = 9.58 ms) were acquired by using a
Stejskal-Tanner diffusion-encoding scheme. T1-weighted (T1w) images were acquired using a
3D-magnetization-prepared rapid acquisition with gradient echo (MPRAGE) sequence (0.7 mm
isotropic voxels, matrix = 320 x 320; TR = 2400 ms, TE = 2.14 ms, 256 dlices, flip angle = 8°).

T2-weighted (T2w) images were acquired using a 3D T2-sampling perfection with


https://doi.org/10.1101/2022.02.16.480803
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.16.480803; this version posted May 29, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

application-optimized contrasts by using flip angle evolution (SPACE) sequence with identical
geometry (TR = 3200 ms, TE = 565 ms).

2.2. Data Preprocessing

2.2.1. Functional data

All functional imaging data were preprocessed by the HCP minimal preprocessing pipeline (Glasser
et a., 2013), including gradient distortion correction, motion correction, echo-planar imaging
distortion correction, registration to the Montreal Neurological Institute (MNI) space, and intensity
normalization. Then, the volume time series were mapped to the standard CIFT| grayordinates space,
downsampled to 32k_fs LR mesh, and slightly smoothed using a2 mm full-width half-maximum
(FWHM) kernel on the surface. As apart of the preprocessing pipeline, ICA-FIX denoising was used
to remove nonneural spatiotemporal noise and head motion. To further reduce the effects of nuisance
covariates, we regressed out the white matter, cerebrospinal fluid, global signals, and the 12 head
motion parameters and performed temporal bandpass filtering (0.01-0.1 Hz) using SPM 12
(https://lwww.fil .ion.ucl.ac.uk/spm/) and GRETNA (Wang et al., 2015a).

2.2.2. Diffusion data

All diffusion imaging data were preprocessed with the HCP diffusion preprocessing pipeline,
including mean b0 image normalization, echo planar imaging (EPI) distortion correction,
eddy-current distortion correction, head motion correction, gradient nonlinearity correction, linear
registration to native structural space using a 6 degrees of freedom (DOF) boundary-based
registration, and data masking with the final brain mask to reduce the file size (Glasser et al., 2013).

2.2.3. Morphological data

All Tlw and T2w MRI scans went through the HCP structural preprocessing pipeline (Glasser et dl.,
2013). We obtained the individual cortical thickness, cortical curvature, sulcal depth, surface area,
and intracortical myelination after bias correction in the standard surface (32k_fs LR space) from
the publicly available dataset. Intracortical myelination is characterized by the ratio of the T1w value
to the T2w value (Glasser and Van Essen, 2011).

2.3. Network Reconstruction

2.3.1. Functional connectome (FC)

A surface-based multimodal brain atlas (HCP-MMPL1.0) was used to parcellate the cerebral cortex
into 180 regions of interest (ROIs) per hemisphere (Glasser et a., 2016). For each run, wefirst
obtained the mean time series of vertices in each brain node and calculated Pearson’s correlation
coefficient of the time series between any pair of nodes to construct the FC. Then, we performed
Fisher’ s r-to-z transformation to normalize the correlation coefficient of the individual FCs.

2.3.2. Tractogr aphy-based structural connectome (SC)

We transformed the surface-based parcel labels into each individua’ s native volume space by using
HCP Workbench's command label-to-volume-mapping. These atlas labels at volume space were
further dilated by 2.5 mm to enter the gray matter-white matter boundary. Together, 360 dilated
regions represented the nodes of SCs.
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The edges of the direct white matter SCs were defined using probabilistic tractography. Briefly, the
preprocessed b0 data and crossing fiber modeled diffusion data (called BedpostX data) were
obtained from the HCP database. Each defined brain node was selected as a seed region, and
probabilistic tractography was performed by sampling 5000 streamline fibers for each voxel within
each seed region. The connectivity probability from the source region to the target region was
defined by the number of streamlines passing through the target region divided by the total number
of streamlines sampled from the source region. One challenge of probabilistic tractography is that the
number of streamlines drops with distance from the seed mask, which may underestimate
long-distance connections in the whole-brain network. Thus, we performed the distance correction
using the --pd flag in fsl ProbtrackX tools. As aresult, the connectivity weight is the expected length
of the pathways times the streamlines number (Behrens et al., 2007; Cui et a., 2013). The
tractography procedure was repeated for all pairs of brain regions to obtain a whole-brain weighted
connectivity matrix. After performing the symmetrization operation, the tractography-based direct
SC was generated for each individual. The above procedures were implemented with the FSL
(Jenkinson et al., 2012) and the PANDA Toolkit (Cui et al., 2013).

The tractography-based direct SC represents the direct communication between brain regions, while
convergent evidence has emphasized that signal propagation among brain regions may also occur
along one or more indirect pathways (Crofts and Higham, 2009; Goni et al., 2014; Suéarez et al., 2020;
Vazquez-Rodriguez et al., 2019). To characterize interindividual structural variability from the
perspective of different regional communication models, we derived another two weighted
connectomes that characterized two types of multipath communication mechanisms. As two
extremes of the polysynaptic communication models among brain regions, path length (PL)
characterizes the routing protocols of information propagation, and communicability (CO) reflects
the diffusion processes of information propagation.

Path length. The cost of a connection in the weighted SC network was first calculated by inverting
the edge weight, i.e. Cost;; = 1/A;;, where A;; istheweight of the edge between node i and j. The

path length is defined as the minimum cost of the contiguous edges between two nodes.

Communicability. Communicability is defined as the weighted sum of all walks between two nodes
(Crofts and Higham, 2009; Estrada and Hatano, 2008). For a binary network A, communicability
CO;; isdefined as

COU =

2;‘5’:114")
= (%)
( ), f

where (4%); ; represents the number of walks within k steps that start a node i and finish at nodej.

Note that the walks of step k are normalized by a penalty factor 1/(k!) to ensure that the shorter the
walk is, the greater the contribution. For a weighted network A, the communicability C;; isdefined
as

CO;; = (exp (D™Y2ADY%));

where D is adiagona degree matrix formed by D = diag(d;), and d; is the generalized degree of
nodei formed by di := Y¥_, a;,. Path-length-based SC and communicability-based SC were
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implemented using the GRETNA toolbox (Wang et al., 2015b) and netneurotools
(https://netneurotool s.readthedocs.io), respectively.

2.3.3. Morphometry-based SC

We use acommon framework (Kong et a., 2015; Li et a., 2021b; Tijms et a., 2012) to map
individual morphometry-based SCs based on the interregional similarity of morphological features.
Considering that the distribution of morphological features of brain regions is discrete, we choose
the earth mover's distance, which is a statistical measurement of the difference between two discrete
probability distributions (Elizaveta Levina, 2001). Specificaly, for each morphological feature,
including cortical thickness, cortical curvature, sulcal depth, surface area, and intracortical
myelination, we calculated the earth mover's distance between the feature distributions of any pair of
regions and then obtained a dissimilarity matrix. We normalized each dissimilarity matrix to the
range [0,1] and quantified the interregional similarity as 1-distance. Finally, we obtained five
morphological-based SCs for each individual, with large values in those SCsindicating high
morphological closeness.

2.4. Estimating I nterindividual Variability Patterns at the Group Level

Following the method proposed by Mueller and colleagues (Mueller et al., 2013), we calculated the
adjusted interindividual variability in brain connectomes. Taking the FC as an example, the raw
interindividual FC variability of a given brain region i was defined as follows:

Var;(t) =1 — E[corr(Fi(sp, t), Fi(sq, t))]

where p,q = 1,2..N (p # q); Nisthe number of subjectsin the dataset; s, and s, indicate the
subject; and t indicates the separated session. F; (sp, t) is the functional connectivity profile of region

i of subject s, in session t. Similarly, when calculating the individual SC variability, F; isthe
structural connectivity profile between region i and all other brain regions.

For each subject, the intraindividual variance in region i was estimated using repeat-scan data from
all sessions/runs,

IntraVar;(s) = 1 — E[corr(F;(s, ty,), Fi (s, t,))]

where m,n = 1,...T; T isthetotal number of sessions/runs. Then, by averaging the intraindividual
variance of N individuals, we obtained the intraindividual variability of region i that can characterize
the entire dataset,

IntraVar; = E[IntraVar;(s)]

To estimate the adjusted interindividual variability, we regressed out the intraindividual variability
map from the raw interindividual variability map using a general linear model and then averaged the
interindividual variability map across sessions/runs.

2.5. Principal Component Analysis

Considering distinct structural patterns provided by tractography-based SCs and morphometry-based
SCs, wefirst generated alinear multivariate representation of the structural variability by performing
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aprincipal component analysis (PCA) of the interindividual variability maps of al eight structural
features. Specifically, the SC variability maps of all features were first z-transformed and combined
into aregion x feature matrix X. Then, PCA was applied to X, yielding principal axes and the
coefficients of linear combinations via the el genvalue decomposition of the covariance matrix. The
principal components were defined as the coordinate representations of features on the corresponding
principal axes. The first principal component of SC variability captured the largest proportion of total
variances. We calculated the ratio of the squared factor score (Abdi and Williams, 2010) of each
feature by the eigenvalue associated with the principal component to characterize its contribution to
the principal component.

2.6. Predicting I nterindividual FC Variability Using a Multivariate Prediction M odel

We employed a support vector regression (SVR) modé (fitrsvm functionin MATLAB) with a‘rbf’
nonlinear kernel to examine the ability of SC variability to predict FC variability. Specifically, the
FC variability map for the whole brain was represented as a vector (N gions x 1). All eight SC
variability maps were chosen as input features (Nyegions X Mmetrics )- Wefirst linearly scaled all
featuresto the range of O-1. Then, the prediction model was trained and evaluated using the
leave-one-out cross-validation (LOOCV) strategy. The variability map of each region across the
whole cortex was designated as the testing sample, while the variability maps of the remaining
regions were defined as the training samples. After LOOCV, Pearson’s correlation coefficient
between the predicted FC variability and the observed FC variability across all regions was
calculated as the prediction accuracy. The same predictive framework was aso performed for
regions within each hierarchical system separately.

2.7. Direct SC-FC Coupling

Inspired by Bertha and colleagues (Vazquez-Rodriguez et al., 2019), we performed amultiple
regression linear model to fit the FC profile in each region using SC profile predictors of all
structural metrics in the same region. The regional SC-FC coupling was quantified by the fitted
adjusted R?, which represents the degree of correspondence of structural and functional connectivity
profiles. For each FC and SC metric, a group-level network was first estimated as the averaged
connectivity matrix across individuals and sessions. Then, the estimated FC profile of node i was
represented as

FCi = bO + bISCi + bZPLi + bgCOi + b4CTi + bslMi + b6SDi + b7CCi + bSSAi

where the independent variables SC;, PL;, and CO; are the tractography-based structural
connectivity between node i and all other nodes, and CT;, IM;,SD;, CC;,and SA; arethe
morphometry-based structural connectivity between nodei and al other nodes. Such a multilinear
regression framework to characterize SC-FC correspondence has been widely reported (Betzel et al.,
2019; Goni et a., 2014; Vazquez-Rodriguez et al., 2019).

2.8. Mediation Analysis

To investigate whether the effect of SC variability on FC variability was mediated by the regional
distribution of SC-FC coupling, a bootstrapped mediation analysis was employed using the
MATLAB package Mediation Tool Box (https://github.com/canlabb/MediationToolbox). We first
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normalized the independent (X, principal SC variability), dependent (Y, functional variability), and
mediating (M, SC-FC coupling) variables. Then, we examined the total effect of principal SC
variability on FC variability (path c), the relationship between SC-FC coupling and principal SC
variability (path a), the relationship between FC variability and SC-FC coupling (path b), and the
direct effect of principal SC variability on FC variability controlling for the mediator (i.e., SC-FC
coupling) (path c"). The significance of the mediation/indirect effect (ab) of principal SC variability
on FC variability through the mediator was tested using a bootstrapping analysis (resampled 10,000
times). For the SV R model-based result, we repeated the mediation analysis using predicted FC
variability instead of principal SC variability.

2.9. Spatial Permutation Testing (Spin Test)

To further test whether spatial distributions of FC and SC variahilities follow ahierarchical manner
from primary to heteromodal organization, we used a spherical projection null framework to estimate
whether these variabilities are determined by the hierarchical classes or derived by spatial
autocorrelation (Alexander-Bloch et a., 2018; Liu et al., 2020). Specifically, we first stratified all
360 cortical regions into four cortical functional hierarchies (Liu et al., 2020) so that each vertex in
the cortical surface had a hierarchy type assignment. Mean variability values were then calculated
within each hierarchical class. Under the premise of preserving spatial autocorrelation, the class
labels were randomly rotated in the spherical space of the cortical surface, and the mean variability
values were recomputed. After 10,000 permutations, the class-specific mean variability values were
expressed as z scores relative to this null model. A positive z score indicated greater variability than
expected by chance, and anegative z score indicated smaller variability than expected by chance.
The p value of each class was defined as the proportion by the mean variability valuesin the null
model that exceeded the true mean variability value. We also used this spin test to assess the
significance of the alignment between two brain spatial patterns at both group and individual levels,
including the correspondence between observed FC and SC variability pattern, the observed FC and
predicted FC variability pattern, and the predicted FC and SC variability pattern.

2.10. Estimating I ndividual Uniqueness at the Subject L evel

2.10.1. Individual deviation quantification for each subject

For a given subject s, we estimated the deviation of individual connectivity profiles from the
population-level connectivity profiles for each FC and SC by decomposing the definition of
individual variability at the group level (Mueller et al., 2013). Specifically, we first computed the
raw interindividual deviation of brain region i by estimating the dissimilarity of the connectivity
profile of subject s with the profile of al other subjects as follows in the equation below. This
measurement gives an overall description of the degree of uniqueness between the connectivity
profile of the current node and that of other nodes.

Var(t) = 1 — E[corr(F,(s,t), Fi(s,, t))]

whereq = 1,2,...,N ; Nisthe number of subjects in the dataset; sy indicates the subject; and t

indicates the session. F; (sq, t) isthe connectivity profile of region i of subject s, in session t. After
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calculating the raw interindividual deviation of each region, we obtained an interindividual deviation
map for each subject. Second, we calculated the intraindividual variance map IntraVar(s) for
subject s. Finally, we regressed out the intraindividual variance from the raw interindividual

deviation map to estimate the real individual deviation map of subject s. This subject-specific
connectivity deviation could act as an indicator to characterize individual brain uniqueness. Together,
we obtained the individual uniqueness of one FC and eight SCsin each session/run for this given
subject.

For each subject, the individual-level correspondence between SC uniqueness and FC uniqueness
was estimated following the same analysis procedure as previously described at the group level.

2.10.2. Within-subject reiability of individual unigueness

To investigate whether individual FC and SC uniqueness were stable within subjects across repeated
sessions and variable between subjects, we performed the following reliability analysis and
individual identification analysis.

Reliability analysis. For a given subject, we evaluated the within-subject similarity by calculating
Pearson's correlation coefficient of individual uniqueness in two sessions (S1 to S2). Next, we
quantified the between-subject similarity by averaging the Pearson's correlation of the uniqueness
pattern between this given subject in S1 (S2) and all other subjectsin S2 (S1). All subjects then had
within- and between-subject similarity metrics. Theindividual uniquenessis considered to be
reproducible if the within-subject similarity is significantly larger than the between-subject similarity.
We performed a nonparametric permutation test to explore whether the reproducibility of individual
uniqueness was significantly larger than random levels. Briefly, the subjects were randomly
permutated, and the difference between within- and between-subject similarity was recomputed. This
permutated procedure was repeated 10,000 times, yielding a null distribution. The p value was
defined as the proportion of permutations with a difference value that exceeded the value in the
observed data.

Individual identification analysis. We implemented the individual identification procedure as
described by Finn and colleagues (Finn et al., 2015). Briefly, for al individual deviation mapsin
both sessions (S1 and S2), if the deviation maps from two repeated sessions of a given individual
showed the highest similarity among any other two pairs, the identification was correct. The success
ratio was calculated as the fraction of individuals who were identified correctly. The individual
identification analysis was performed in two directions, one from S1 to S2 and the other from S2 to
S1. Finally, we averaged the success ratio across these two directions.

2.11. Relevance for Cognition and Behavioral Performance

2.11.1. Cognitive and behavioral measurements

We obtained the independent behavioral phenotypes in the HCP S1200 dataset provided by Tian and
colleagues (Tian et a., 2020). In brief, 109 raw behavioral and cognitive measurements in the HCP
dataset were selected for each subject, involving aertness, cognition, emotion, motor, personality,
sensory, psychiatric and life function, substance use, and in-scanner task (emotion task, gambling
task, language task, relational task, social task, and work memory task). Subjects missing one or
more measurements were excluded from the analysis (final sample size n = 958). Applying a
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data-driven independent component decomposition pipeline, the 109 behavioral and cognitive
measures were parsed into five independent summarizing dimensions, including cognition, illicit
substance use, tobacco use, personality and emotional traits, and mental health (detailed in Tian et al.,
2020). These five summarizing measurements were used in the following brain-behavior analysis.

2.11.2. Partial least-squares (PL S) analysis

We then performed a partial least-squares correlation analysis with the myPL S toolbox
(https://github.com/danizoeller/myPLS) to evaluate the implications of the structural-functional
uniqueness correspondence in individual cognitive and behavioral performance. As adata-driven
multivariate statistical technique, PLSC analysis was widely used to delineate the brain-behavior
association by performing singular value decomposition (SVD) to obtain the orthogonal latent
components (LCs) (Krishnan et al., 2011). LCs are the optimal linear combinations of the original
variables from two matrices that maximize their covariance. Specifically, for brain domains, we
considered the structural-functional uniqueness alignments at both the whole-brain and system levels.
For behavioral domains, we used the five behavioral measurements mentioned above. We regressed
out age and sex from brain measurements and behavioral measurements. Then, after z-scoring brain

data X (subjects x brain measures) and behavioral data Y (subjects x behavioral measures) across

all subjects, we computed the brain-behavior covariance matrix R,
R=YT xX
followed by performing SVD on R,
R=Ux SxV"

where U and V are the singular vectors, which could be called brain and behavioral weights, and Sis
adiagonal matrix containing the singular values. Therefore, each LC includes adistinct brain weight
and adistinct behaviora weight. By linearly mapping the original brain and behavioral
measurements of each subject onto their respective weights, the subject-specific brain and behavioral
composite scores were estimated. To determine the significance level of each LC, we conducted a
permutation test as follows. By performing 10,000 permutations to the brain measurements
(randomly reordering the subjects) and leaving behavioral measurements unchanged, we calculated
10,000 null brain-behavior covariance matrices and obtained a sampling distribution of the singular
values under the null hypothesis. The statistical significance of each LC was computed by comparing
the singular value of the observed LC with its null distribution. For LC interpretation, we obtained
the brain (behavioral) loadings by calculating Pearson’s correlation coefficients between the original
brain (behavioral) measurements and brain (behavioral) composite scores. A large positive (or
negative) loading for a given brain (behavioral) measurement indicates greater importance of this
brain (behavioral) measurement for the LC. Using bootstrap resampling (1000 iterations), we
computed 95% confidence intervals for the brain loadings and behavioral loadings.

3. Results
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3.1. FC and SC Individual Variability Patterns Represent Cortical Hierarchical Organization

We leveraged multimodal functional, structural, and diffusion imaging data from 42 subjects with
repeated scans in the HCP Test-Retest (TRT) dataset (Van Essen et al., 2013). For each individual,
we reconstructed the FCs and eight types SCs of the brain (Fig 1A). For FC and each type of SC, we
calculated intra- and inter-individual variability patterns according to a classic approach proposed by
Mueller and colleagues (Mueller et al., 2013) (Fig 1B).

For intraindividual variability, we observed that the spatial patterns were nonuniformly distributed
throughout the cortical mantle, in which both FC and SC variability values were prominent primarily
in the medial temporal lobe and insular cortex (Fig 2A). However, we observed significant
differencesin theintraindividual variability values among these connectomes (one-way repeated
analysis of variance (ANOVA), F = 2916.6, p < 0.0001): the highest variability valuesin FC,
followed by morphometry-based SC, and the lowest variability values in tractography-based SC
(post hoc pairwise comparisons analysis, all p < 0.0001, Bonferroni-corrected).

For interindividual variability, FC variability values (Fig 2B, first column) were higher in the lateral
prefrontal cortex and temporal-parietal junction and lower in sensorimotor and visual regions, which
isin line with previous studies (Mueller et al., 2013; Gao et al., 2014; Xu et a., 2018; Stoecklein et
al., 2019). Interindividual SC variability patterns were generally similar to those in FC variability
patterns, but there were some feature-specific distributions in several regions, such as the precuneus
cortex, lateral prefrontal cortex, and temporal-parietal junction cortex (Fig 2B, second to last
column). Hierarchical clustering analysis divided these SC variabilities into three clusters (Fig 2C),
representing distinct structural signatures in tractography- and morphometry-based (cortical
folding-based and cortical architecture-based, separately) connectomes. To further test whether
spatial distributions of FC and SC variabilities follow a hierarchical manner from primary to
heteromodal organization, we first classified al 360 brain nodesinto four cortical hierarchies
(Mesulam, 1998; Liu et al., 2020) (Fig 2D) and calculated the mean interindividual variability within
each class. Then, we used a spherical projection null test by permuting class positions 10,000 times
to estimate whether these variabilities were determined by the hierarchical classes or derived by
gpatial autocorrelation (Alexander-Bloch et al., 2018; Liu et al., 2020). We found that the
heteromodal class displayed significantly greater mean variability than expected by chance (p sin <
0.0001 for FC; p sin < 0.01 for al SCs; Fig 2E). In contrast, the primary class (p sin < 0.05 for FC; p
sin < 0.05 for al tractography-based SCs) and paralimbic class (p sin < 0.05 for FC; p gin < 0.001 for
all morphometry-based SCs) displayed significantly lower variability than null models.

3.2. The Structural Constraints of the Hierarchical Organization of Functional Variability

Next, we sought to determine the relationship between individual FC and SC variability patterns
using both linear and nonlinear approaches.

First, considering the distinct structural patterns provided by tractography- and morphometry-based
connectomes, we generated a linear representation of the structural variability by applying a principal
component analysisto the interindividual SC variability maps that included all eight SC
characteristics. The first principal component explained 54.9% of the variance in total variabilities
across brain nodes (Fig 3A, left), with contributions from tractography-based SC variability, cortical
folding-based SC variability, and cortical architecture-based SC variability in adescending order
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(Fig 3A, left inset). Similar to single-feature findings, the first principal component of structural
variations was significantly higher in heteromodal and unimodal areas and lower in primary and
paralimbic areas than expected by chance (all p sin < 0.05, Fig 3A, right). Next, we calculated the
spatial correlation between functional variability and principal structural variability at both the
whole-brain and system levels. We found a significant spatial correlation across whole-brain nodes
(adjusted r = 0.43, p in < 0.0001, Fig 3B, |eft). At the system level, the spatial correlations were
greatest in primary regions (adjusted r = 0.71, p in< 0.001) and smallest in heteromodal regions
(adjusted r = 0.30, p sin < 0.05) (Fig 3B, right).

Second, to further test whether the FC variability architecture can be predicted from unifying SC
variability patterns, we performed a multivariate nonlinear-kernel-based prediction analysis using a
supervised support vector regression (SVR) model. This model took eight SC variability maps as
input and was trained and estimated in aleave-one-out strategy. We found that FC variability (Fig
3C) could be significantly predicted across whole-brain nodes (adjusted r = 0.48, p sin < 0.0001, Fig
3D, left). At the system level, we found that the predictive power of SC variability for FC variability
decreased aong the hierarchy axis (adjusted r = 0.76, p 4in < 0.0001 in the primary cortex; adjusted r
= 0.40, p 4in< 0.001 in the unimodal cortex; adjusted r = 0.44, p in< 0.01 in the paralimbic cortex;
adjusted r = 0.35, p gin< 0.001 in the heteromodal cortex, Fig 3D, right). Taken together, these
findings indicate that interindividual FC variability was structurally constrained by SC variability in
a primary-to-heteromodal hierarchical order.

3.3. Structure-Function Coupling M ediates the Relationship between Individual Structural and
Functional Variability

The connection patterns of brain FCs are formed by interactions of neuronal elements via complex
structural pathways (Wang et al., 2015b). Direct SC-FC coupling istreated as a basic index for the
intensity of structural constraints on brain function and has been considered to reflect common
cortical hierarchical organization (Suarez et al., 2020). Let us assume that for each individual, if the
SC profiles of brain nodes were exactly coupled with their FC profiles (with Pearson’s coefficient =
1), the topography of individual FC and SC variability patterns would be the same. Thus, it is
reasonable to hypothesi ze that this SC-FC coupling may underlie the alignment between
interindividual SC and FC variability. To test this hypothesis, we first computed the direct SC-FC
coupling for each given node using amultilinear regression approach (Vazquez-Rodriguez et al.,
2019). Consistent with previous findings (Baum et al., 2019; Vazquez-Rodriguez et al., 2019,
Zamani Esfahlani et a., 2022), we found that the sensorimotor and occipita cortices exhibited
relatively high SC-FC coupling, while the lateral parietal, frontoparietal and temporal cortices
exhibited relatively low SC-FC coupling (Fig 4A). Using a bootstrapped mediation analysis, we
found that the spatial pattern of direct SC-FC coupling partially mediated the relationship between
principal structural variability and functional variability (indirect effect ab: = 0.05, p < 0.01, 95%
confidence interval = [0.02, 0.09], bootstrapped n = 10000; Fig 4B). The spatial pattern of direct
SC-FC coupling was significantly negatively associated with both functional variability and principal
structural variability (path a: f = -0.16, p = 0.002; path b: p =-0.32, p < 0.001), indicating that brain
nodes with stronger SC-FC coupling correspond to those with weaker interindividual variability.
Consistent results were also found when using the predicted functional variability map driven by
SVR analysisinstead of the principal structural variability map (Fig 4C). These results suggest that
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the constraint of interindividual structural variability on functional variability was mediated by direct
SC-FC coupling.

3.4. The Robust Correspondence between | ndividual Functional and Structural Uniqueness

The group-level FC or SC variability pattern captures the total variance within a particular
population, while it is unable to represent the unique contributions of each individual. To
characterize the individualized source of group-level variability, we decomposed the overall
interindividual FC or SC variability map into individual uniqueness patterns. Briefly, the individual
uniqueness delineates the personal deviation of individual connectivity profiles from the populational
connectivity profiles while controlling for intraindividual variance (detailed in Materials and
Methods). Smilar to the group-level analysis, for each individual, we performed principal
component analysis on all structural uniqueness patterns to represent the individual principal
structural uniqueness map. The intraindividual spatial similarity of either functional unique maps or
principal structural unique maps (functional uniqueness: r, mean + standard deviation (std) = 0.80
0.09; principal structural uniqueness:. r, mean + std = 0.91 + 0.02) were significantly higher (ps <
0.0001) than interindividual spatial similarity from either session (functional uniqueness: r, mean +
std = 0.52 + 0.05; principal structural uniqueness: r, mean + std = 0.67 + 0.02) (Fig 5A, 5B).
Consistent results at the system level are shown in Fig S2. Anindividual identification analysis
further revealed that the success rates of functional uniqueness and principal structural uniqueness
were 91.7% and 100%, respectively. In addition, to be expected, the interindividual standard
deviation for both functiona and structural uniqueness was smallest in the primary sensorimotor and
visual regions and largest in the heteromodal cortex (Fig 5C). These results indicated that the
individual uniqueness maps of the brain could act as potential signatures to describe the intersubject
connectome diversity.

We next focused on the spatial relationships between the functional and structural uniqueness maps
using correlational analysis and predictive models as previously described. We found that the spatial
correlations between functional uniqueness and principal structural uniqueness across the whole

brain were moderate (r < [0.09, 0.36], mean r = 0.20; Fig 5D, left) but significant for most subjects

(p sin < 0.05 for 39 of 42 subjects, other 3 subjects were marginally significant (p sin € [0.05,0.09])).

The significant correlation of an example subject was shown in ascatter plot (Fig 5D middle). At the
system level, the spatial correlations were largest in the primary cortex, followed by the heteromodal,
unimodal cortices and paralimbic cortex (Fig 5D, right). These spatial relationships were also
confirmed by the nonlinear SVR model (Fig 5E). Together, these results show that the
structure-function correspondence of individual uniqueness was robust across subjects.

3.5. The Structure-Function Correspondence of Brain Unigqueness Reflects I ndividual
Cognitive and Behavioral Traits

Studies have shown that the extent of direct SC-FC coupling at the individual level is associated with
cognitive performance, such as cognitive flexibility (Medagliaet al., 2018) and executive function
(Baum et a., 2019). The alignment between SC and FC uniqueness reflects the degree of the
individual-specific constraint rule out of group constraints and could also support individual
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cognitive traits. To address this issue, we performed a partial least-square (PLS) analysis to evaluate
the latent relationship between the structural-functional alignments of brain connectome uniqueness
and general behavioral traits across individuals. For brain measurements, we considered the
structural-functional linear correspondences at both the whole-brain and system levels. For
behavioral domains, we used individual behavioral measurements in five independent dimensions
derived from 109 behaviora items in the HCP S1200 dataset (Tian et al., 2020). After performing
PLS analysis, we decomposed the brain-behavior associations into driving latent components (LCs),
which are the optimal linear combinations of original brain or behavioral measurements. We found
that the first LC (LC1, accounting for 62.6% of the covariance) significantly survived after
permutation tests (p = 0.004), with asignificant association (r = 0.11, p < 0.01) between brain and
behavioral composite scores (Fig 6A). We further obtained the brain and behavioral loadings of this
component by calculating Pearson’s correlations between the original measurements and their
composite scores. A large absolute loading value indicates great importance. We found significant
positive brain loadings in structural-functional alignments, with the greatest loading value at the
whole-brain level and ascending loading values from unimodal to heteromodal systems (Fig 6B).
The behaviora significant loadings included tobacco use, the personality-emotion score, and the
mental health score (Fig 6C). We observed consistent results using the nonlinear SVR model (Fig
S3). These results suggest that the hierarchical correspondence between functional and structural
uniqueness, especially in the heteromodal cortex, reflects the individual traits in human general
behaviors.

3.6. Sensitivity and Replication Analyses

To estimate the effect of the sample size (Button et al., 2013; Dubois and Adolphs, 2016) of the HCP
TRT dataset, which contains only 42 subjects, we validated all analyses using a large-sample dataset
of HCP S1200 release (1012 subjects). Because this dataset contains repeat-scan fMRI data but no
repeat-scan diffusion or structural imaging data, we calculated the individua structural variability
without accounting for intrasubject variability. This approach was acceptable since we found that the
principal structural variability with removing intrasubject variability was highly similar to that
without removing intrasubject variability (r = 0.94, p sin < 0.0001, Fig $4) using the HCP TRT
dataset. However, the correlation value between functional variability with the removal of
intrasubject variability and that without the removal of intrasubject variability was only 0.41 (p sin <
0.001, Fig $4), indicating the importance of excluding intrasubject variations when estimating
intersubject FC variability. Over the large sample, we observed highly consistent results for the
hierarchical relationships between brain structural and functional variability, the mediation effect of
direct structure-function coupling, and the significant correspondence at the single-subject level (Figs
S5-S8).

Next, we estimated the reliability of our results by considering several confounding factors. First, the
number of nodes in the Glasser360 atlas assigned to each of the four hierarchical systemsis not equal
(range: 32-144). To verify that the differential correspondence of variability maps between
hierarchical systems is not influenced by the node number, we randomly selected brain regions of a
fixed number of 30 in all systems 1000 times and recomputed the correlation coefficient based on
these subsets of nodes (Fig S9). Second, to reduce the partition effect, we consistently validated the
results in another well-known cortical system—the seven cytoarchitectonic classes described by Von
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Economo and Koskinas (Von Economo and Koskinas, 1925) (Fig S10). Third, to rule out the
possibility that the spatial variability maps are caused by the lower fidelity of cross-subject alignment,
we assessed the relationship between the spatial variability patterns and the surface deformation map
that occurred in cross-subject registration. We found that the subject-averaged surface deformation
map was not associated with functional variability (r = -0.04, p gin > 0.05) but significantly
associated with principal structural variability (r = -0.18, p gin < 0.05). After regressing out the
cross-subject registration deformation map, the functional variability pattern and principal structural
variability pattern were still significantly correlated (r = 0.43, p < 0.0001; Fig S11). Fourth, a recent
study excluded one of all twinsin HCP dataset while estimating a brain-behavior association
(Zekelman et al., 2022). To exclude the influence of the related subjects, we excluded 17 subjects
(one of the twins) from the TRT dataset and found that the individual variability pattern of both FC
and SC were almost unchanged (r > 0.97 for all variability patterns). Meanwhile, we observed highly
consistent results for the correspondence between structural and functional variability at the
whole-brain level and system level (Fig S12).

Although several processing steps are used to remove the motion effect in the current work
(including ICA-FIX denoising, motion parameter regression, and motion scrubbing), it’s still
valuable to estimate the influence of subjects with high-level motion. To this end, we excluded
subjects with high-level head motion for either fMRI or dMRI images in both HCP TRT dataset and
S1200 dataset and further validated all main results. Specifically, the head motion indexes (i.e. mean
and mean absolute deviation of the frame-to-frame displacements) of each subject during the fMRI
and DWI scanning sessions were estimated (by using Movement_RelativeRM S.txt from minimal
fMRI preprocessing pipeline and using eddy_unwarped_images. eddy _movement_rms from minimal
dMRI preprocessing pipeline). After that, we excluded subjects with one or more indexes greater
than 1.5 times the inter-quartile range of the corresponding index distribution (Zamani Esfahlani et
al., 2022). Under this criterion, five subjects were excluded for the HCP TRT dataset, while 95
subjects were excluded for the HCP S1200 dataset. Validation analysis was carried out by using the
remaining 37 subjects (TRT dataset) and 917 subjects (S1200 dataset). Of note, the individual
variability patterns of both FC and SC were almost unchanged before and after excluding subjects
with high-level head movements (r > 0.98 for al variability patterns). The correspondence between
SC and FC variahbility at the whole-brain level and system level and the brain-behavior multivariate
association were highly repeatable as well (Figs S13 and S14).

4, Discussion

In this study, we demonstrate for the first time that FC individual variability is largely constrained by
unifying SC variability and that this constraint follows a hierarchical pattern with stronger coupling
in the primary cortex and weaker coupling in the heteromodal cortex. By decomposing group-level
brain variability patterns into individual unigueness maps, we also demonstrate individual-level
structural-functional uniqueness correspondences that act as indicators to capture individua
cognitive traits. These results markedly advance our understanding of the structural underpinnings
behind individual variability in both FC and cognitive performance.

The SCs and FCs of the human brain are inherently correlated. Despite extensive research on SC-FC
coupling (Suérez et a., 2020), whether interindividual FC variability is anatomically constrained by
SC variability is still an open question. We emphasize that the characterization of this relationship
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depends on several key factors. First, arelatively large sample size with repeated structural and
functional brain scans is needed. Previously, Camberland et al. (Chamberland et al., 2017) and
Karahan et a. (Karahan et a., 2021) both reported no significant correlation between SC and FC
variability at aglobal level, which could be attributable to the small sample sizes of their studies
(Chamberland et al., 2017; Karahan et a., 2021) or the confounds of intrasubject variations (Karahan
et a., 2021). In this study, we found that the correlation between FC variability maps before and
after regressing intraindividual variance was only 0.41 (0.94 for principal SC variability),
highlighting the necessity of removing intraindividual FC variance when studying the relationship
between FC and SC variability. Second, the unifying contribution from multimodal connectome
signatures, including tractography- and morphometry-based networks as well as communication
models, should be taken into account. Although Karahan et a. reported a significant spatial
correlation (p = 0.32) between FC variability and tractography-based SC variability (Mansour et al.,
2021), this study ignored the contribution of communication models and morphometry-based SC: the
former provides important anatomical scaffolding for interregional communication through multistep
signal propagation (Avena-Koenigsberger et al., 2017; Crofts and Higham, 2009) and manifests as
strong interregional FC (Goni et al., 2014; Suérez et a., 2020), and the latter is sensitive for
capturing axo-synaptic projections within the same cytoarchitectonic class, which is not
characterized by diffusion MRI (Goulas et al., 2017; Seidlitz et a., 2018) and partly recapitul ates
interregional FC (Alexander-Bloch et al., 2013; Geng et al., 2017). It is widely recognized that
multifaceted but integrated approaches provide complementary advantages and perspectives to
explore human brain organization (Paquola et a., 2020; Van Essen et al., 2019). Using
repeated-measurement, multimodal connectome features in a large sample from the HCP database, in
the present study, we highlight the constraints of integrated SC variabilities on FC variability.
Notably, these results are only based on correlation or prediction analyses, which could not exclude
potential confounders such as parcellation. Future investigations employing neurodynamic models
(Demirtas et al., 2019) might be helpful to reveal underlying determinants.

It is worth noting that the present study exhibited a hierarchical correspondence between SC and FC
variability at both the group and individual levels. These findings agree with mounting evidence that
the primary-to-heteromodal hierarchy has been emphasized as a unifying principle for brain
structural-functional organization (Huntenburg et al., 2018), including intracortical myelination
(Huntenburg et a., 2017), cortical laminar interareal projections (Paguolaet al., 2019) and SC-FC
couplings (Zamani Esfahlani et al., 2022). The hierarchical correspondence between SC and FC
variability might have several originations. First, from an evolutionary view, to adopt rich
environmental conditions, the heteromodal cortex is untethered from canonical sensory-motor
activity cascades during cortical expansion to form varied and complex wiring organizations
(Buckner and Krienen, 2013), such asinherently spatially distributed communities (Margulieset al.,
2016) and long-range rich-club edges (Griffa and van den Heuvel, 2018; van den Heuvel and Sporns,
2011). Smulation and neuroi maging studies demonstrated that these wiring characteristics facilitate
the high complexity of functional dynamics (Senden et a., 2014; Zamora-Lopez et al., 2016), which
may result in inconsistencies in the alignment between SC and FC variability. Second, the
heteromodal cortex processes mixed and diverse signals from multiple sources
(Avena-Koenigsberger et al., 2017; Betzel et al., 2018), which vary greatly across individuals (Betzel
et a., 2018). These signals may form discrepant FC profiles across individuals under similar
structural organizations. Third, accumulating evidence has shown that the regional heterogeneity of
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individual variability is largely determined by both i) genetic factors, including heritability
(Anderson et a., 2021; Valk et al., 2022) and gene expression (Li et al., 2021a), and ii)
environmental factors, such as socioeconomic status (Leonard et al., 2019) and chronic stress (Sheth
et a., 2017) during development (Foulkes and Blakemore, 2018; Tooley et a., 2021). Heteromodal
regions undergo prolonged maturation compared with primary regions (Cao et al., 2017; Gilmore et
al., 2018; Zhao et a., 2019), which could provide a high freedom of plasticity for functional and
structural refinements during the postnatal environment and form varying FC-SC alignments across
individuals. Previous works have demonstrated the heterogeneous age-related changes in regional
SC-FC coupling (Baum et al., 2019; Zamani Esfahlani et al., 2022). Further exploration on whether
and how SC-FC variability correspondence changes during neurodevelopment and aging is critical to
understand the origination of hierarchical correspondence between brain SC and FC variability.

We observed a robust mediation effect of SC-FC coupling on the SC-FC variability correspondence,
which indicated that the alignment of SC and FC variability may be intrinsically affected by the
direct structure-function relationship. This finding agrees with previous evidence on the origin of
brain variability. A simulation study on the SC-FC relationship has shown that the spatial
distribution of FC variability could be derived by the heterogeneous oscillations of neurons through
interregional SC pathways (Demirtas et al., 2019). Other studies have demonstrated that the flexible
dependence of underlying SCs enables FCs to reconfigure flexibly, which provides key information
for individual identification (Griffaet al., 2022) and resultsin interindividua cognitive switching
variability (Medagliaet a., 2018). Other biological sources may also underlay the correspondence of
SC and FC variability. For instance, we also observed a significant medication effect of regional
cerebral blood flow (Fig S15), which has been demonstrated to be highly coupled with regional
metabolism during brain development (Raichle and Mintun, 2006) and to affect the
structural-functional relationship (Chen et a., 2021). How the SC-FC variability correspondence
originates still requires further detailed investigation. Crucially, identifying genetic, environmental or
biological influences between FC and SC variability will be important for neuroscientific studies of
individualized clinical applications.

Theindividual brain connectome can be regarded as a common backbone with unique personal
refinements (Gratton et al., 2018; Wang et a., 2021; Zimmerman et al., 2018). By decomposing the
group-level variability patternsinto individual deviation maps, we delineated the SC and FC
variability at the individual level. These maps show high session-to-session stability and high
identification accuracy of individuals, reflecting the individual uniqueness of the brain. Other efforts
have also been made to extract the individua refinements by comparing individual deviations to
group-level normative distributions during disorder (Liu et al., 2021; Marquand et al., 2016) and
development (Nadig et al., 2021). These unique measurements show crucial significancein brain
fingerprinting (Seitzman et al., 2019) and individual cognitive and behavioral predictions (Nadig et
al., 2021; Saggar et al., 2015). Notably, the correspondence of individual SC and FC uniqueness also
followed a hierarchical axis and showed a significant association with general behavioral and
cognitive performance, with most contributing features deriving from the association cortex. This
finding isin line with previous studies showing that the association cortex acts as the most
informative predictor of individual fluid intelligence (Finn et al., 2015) and other cognitive and
behavioral domains (Mueller et al., 2013). Recent studies have pointed out that study on
brain-behavior associations requires large cohorts containing thousands of samples to obtain
reproducible results (Marek et a., 2022). Although our findings are based on cohorts of near one
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thousand (958 subjects) and remain significant after removing subjects with high-level head motion
(870 subjects), future validations on larger-sample and multi-site datasets (such as UK Biobank) are
till desirable. Meanwhile, we adopted a doubly multivariate PLS analysis, in which brain systems
are jointly mapped into several generd behavioral traits. This approach enables the representation of
interindividual variability in brain and behavior and improves reproducibility (Marek et a., 2022;
Genon et al.,2022). Additionally, the hierarchical contributions of brain systems for the behavioral
associations, that is the highest in heteromodal system, emphasized the need to include
regional-specific effects in brain-wide association studies (Gratton et al., 2022). For detailed
behavioral measurements, we found that the tobacco use shows highest loadings than other
behavioral scores after PLS analysis. Prior studies also found that tobacco use is relatively highly
correlated with brain measurements than mental health and illicit substance use dimensions
(Mansour et al., 2021; Wang et a., 2021; Seguin et a., 2021). In addition, Illicit drugs use and
cognition showed no significant brain association. Illicit drugs useis highly related to the
corticostriatal functional circuits (Ersche et al., 2020). The lack of subcortical connectionsin the
current FC-SC unigqueness evaluation may hinder the seeking for regional connectivity support of it.
Total cognition score has been shown to be mostly related to the regional SC-FC coupling of only 4
focal brain regions (located in bilateral middle cingulate cortex and supplementary motor area) (Gu
et a., 2021). Future estimations with fine-grained regional parcellation and nodal level indicators are
needed to capture its reliable regional association. Our measurements of the correspondence between
SC and FC uniqueness reflect the pure individual constraints between SC and FC that rule out group
factors, which could offer insights into reflecting the true interindividual diversity of human
behaviors and cognitions and highlight the potential for progress in individualized clinical
therapeutics and interventions.

Several issues need to be considered. First, although the HCP TRT dataset contains data from only
42 subjects, it isthe largest public young-adult database with high-quality and full repeat-scan
multimodal images, which provides an irreplaceable opportunity to explore the constraints of
structural variations on FC variability. In the future, we hope to replicate our findingsin a
larger-sample dataset. Second, it isintriguing to explore the potential genic origins of the spatial
correspondence between structural and functional variability. However, this exploration would
depend on the availability of an individual-specific gene expression dataset with data from a large
number of donors. Third, arecent study emphasized aregional "model preference” for SC-FC
relationship (Zamani Esfahlani et a., 2022). Diversified SC communication models can be adopted
for different brain regions in future studies on the SC-FC relationship of individual variability.
Fourth, there are inherent limitations to reconstruct accurate anatomical projections from
dMRI-based tractography (Maier-Hein et al., 2017; Reveley et a., 2015; Thomas et al., 2014), such
as the underestimation of long-distance white matter fiber bundles (Reveley et al., 2015) and the
missing of tiny fiber tracts (Maier-Hein et a., 2017). These could bring biases to the observed
SC-FC relationships of individual variability. How to reduce tractography biases in the estimation of
the true regional structure-function correspondence, especialy in terms of individual variability,
needs further research. Finally, a recent study delineated that FC variability changes diversely in
neuropsychiatric disorders (Sun et al., 2020), and future studies should focus on exploring whether
the SC-FC correspondence of individual variability transforms in brain disorders, especially for
individualized diagnosis and treatment evaluation.
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Figure 1. Study overview. (A) Functional connectome (FC) and structural connectome (SC)
reconstruction. FCs were obtained by computing Pearson’s correlation coefficients among the time
series of al pairs of nodes. Tractography-based SCs and morphometry-based SCs were obtained by
computing internode probabilistic white matter fiber streamlines and internode gray matter
morphometric similarity, respectively. (B) Following the approach proposed by Mueller and
colleagues (Muéller et a., 2013), we calculated the adjusted interindividual FC and SC variability
and decomposed the group-level variability pattern into individual unique contributions. (C) Both
linear and nonlinear computational analyses were used to test the hypothesis that FC variability is
structurally constrained across the whole brain and each hierarchical system. We hypothesize that
direct SC-FC coupling may underlie the alignment between SC and FC variability. pri, primary
cortex; uni, unimodal cortex; heter, heteromodal cortex; para, paralimbic cortex. (D) Partial
least-squares (PLS) analysis was used to explore the multivariate correlations between FC-SC
variability correspondence at the individual level and multiple cognitive and behavioral traits.
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Figure 2. The heterogeneous spatial distribution of FC variability and SC variability. (A)
Intraindividual FC variability and SC variability of all anatomical features. The results showed here
are for the left hemisphere, and the relatively symmetrical whole-brain patterns are displayed in Fig
SI1A. (B) Interindividual FC and SC variability after accounting for intraindividual variability. The
raw variability values were scaled using a rank-based inverse Gaussian transformation (Van der
Waerden, 1952) for visualization. Negative scores represent raw values below the average. The
interindividual FC and SC variability pattern without regressing intraindividual variance is shownin
Fig S1B. (C) Results of hierarchical clustering analysis and the feature-feature correlational matrix.
(D) The cortical hierarchy assignments for each region in Glasser’s 360-atlas (primary, green;
unimodal, yellow; heteromodal, purple; paralimbic, red) (Liu et al., 2020; Mesulam, 1998). (E)
Interindividual variability across four hierarchical systems. Nodewise variability values are averaged
according to their hierarchical classes. To determine these variabilities were not driven by spatial
autocorrelation, we performed a spatial permutation test by spinning class positions 10,000 times as a
null model. The class-specific mean variability values were expressed as z scores relative to this null
model. A positive z score indicated greater variability value than expected by chance. Classes with
significant z scores are shown in color, and those with nonsignificant z scores are shown in gray. FC,
functional connectome; dSC, direct structural connectome; PL, path length-based SC; CO,
communicability-based SC; SD, sulcd depth-based SC; CC, cortical curvature-based SC; SA,
surface area-based SC; CT, cortical thickness-based SC; IM, intracortical myelination-based SC. * p
< 0.05; ** p<0.01; *** p<0.001. Values of abrain map were visualized on the inflated cortical
32K surface (Glasser et al., 2016) using BrainNet Viewer (Xiaet a., 2013).
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Figure 3. The relationship between interindividual FC and SC variability at the population level. (A)
Principal component analysis (PCA) estimated linear combinations of SC variability patterns with
maximum variance across the cortical mantle. The first component accounted for 54.9% of the total
variance, with the largest weight contribution of tractography-based SC variability, followed by
cortical folding-based SC variability and cortical architecture-based SC variability (Inset Figure) (left
panel). The dashed line on the inset figure indicates the expected average contribution (1/number
(features) = 12.5%). A feature with a contribution percent larger than this cutoff could be considered
important in contributing to the principal component. The principal SC variability varied across
cortical regions, exhibiting significantly higher values in heteromodal and unimodal areas but
significantly lower valuesin primary and paralimbic areas (p sin < 0.05) (right panel). (B) The
correlational relationships between principle SC variability and FC variability were significant in the
whole brain (left panel) and each hierarchical system (right panel) with highest values in the primary
system and lowest valuesin the hetermodal system. (C) The observed FC variability map and the
predicted FC variability map that was obtained by a nonlinear SVR model. (D) The predicted FC
variability was also significantly associated with the observed FC variability in the whole brain (left
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panel) and each hierarchical system (right panel) with highest values in the primary system and
lowest valuesin the hetermodal system. * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 4. The SC-FC coupling pattern mediates the relationship between SC and FC variability. (A)
Nodal differencesin SC-FC coupling. For each node, the coupling of structural and functional
connectivity profiles was estimated by a multilinear regression framework (Vazquez-Rodriguez et al.,
2019). (B) SC-FC coupling partialy mediated the correspondence between principal SC variability
and observed FC variability. Path a: g = -0.16, **, Cl: [-0.26, -0.06]; path b: g =-0.32, ***, Cl:
[-0.38, -0.24]; path c': g = 0.38, ***, Cl: [0.29, 0.49]; path a*b: g = 0.05, **, CI: [0.02, 0.09]. (C)
SC-FC coupling partially mediated the correspondence between predicted FC variability and
observed FC variability. Path a: g =-0.30, ***, CI: [-0.41, -0.20]; path b: g =-0.25, ***, Cl: [-0.32,
-0.17]; path ¢’: g = 0.41, ***, Cl: [0.32, 0.52]; path a*b: g = 0.08, ***, Cl: [0.05, 0.11]. The
significance of the mediation effect was identified using 95% bootstrapped confidence intervals
(bootstrapped n = 10,000). ** p < 0.01; *** p < 0.001.
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Figure 5. Within-individual FC and principal SC uniqueness patterns and hierarchical
correspondence between individual FC unigqueness and SC uniqueness. (A) The FC uniqueness (top
panel) and principal SC uniqueness pattern (bottom panel) of two example subjects (#1 and #2)
showed high reliability across sessions. (B) The whole brain spatial similarity within the same
subject (intrasub) of either FC uniqueness maps (top panel) or principal SC uniqueness maps (bottom
panel) was significantly higher than those between different subjects (intersub, Session 1 to Session
2 and Session 2 to Session 1 were shown separately). The spatial similarity between two uniqueness
maps was estimated using Pearson's correlation coefficient. The significances of differences between
categories were tested using a nonparametric permutation test. (C) The standard deviation (std) of FC
and principal SC uniqueness map across 42 subjects were shown in left. Hetermodal system showed
significant higher std than expected by chance (right). (D) The spatial similarities between FC
uniqueness and principal SC uniqueness at whole-brain (left panel, distribution of 42 subjects,
middle panel, an example of subject #1) and system level (right panel). The spatial similarities were
higher in the primary system than the hetermodal system: one-way repeated analysis of variance
(ANOVA), F=190.88, p < 0.0001, post hoc pairwise comparisons analysis, al ps < 0.001. (E) The
consistent results estimated by the nonlinear SVR model. *, p < 0.05; #**, p < 0.001; #***, p <
0.0001.
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Figure 6. Partial least-square analysis revealed a multivariate association between the
structural-functional alignment of individual uniqueness and individual behavioral traits. (A)
Correlation between brain and behavioral composite scores of 954 subjects. Theinset figure shows
the null distribution of singular values estimated by the permutation test (n=10,000). The dashed red
line represents the actual singular value estimated for the first latent component. (B) The brain
loadings that were calculated by the correlations between subjects’ brain measurements and their
brain composite scores. (C) The behavioral loadings that were calculated by the correlations between
subjects’ behavioral measurements and their behavioral composite scores. Error bars indicate
bootstrapping fifth to 95th percentiles, and robust results are indicated by a star symbol. The
consistent results based on the nonlinear SYR model are shown in Fig S3.
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