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Abstract

Motivation: Studying the interaction or co-expression of the proteins or markers in the tumor

microenvironment (TME) of cancer subjects can be crucial in the assessment of risks, such as death or

recurrence. In the conventional approach, the cells need to be declared positive or negative for a marker

based on its intensity. For multiple markers, manual thresholds are required for each marker, which can

become cumbersome. The performance of the subsequent analysis relies heavily on this step and thus

suffers from subjectivity and lacks robustness.

Results: We present a new method where different marker intensities are viewed as dependent random

variables, and the mutual information (MI) between them is considered to be a metric of co-expression.

Estimation of the joint density, as required in the traditional form of MI, becomes increasingly challenging

as the number of markers increases. We consider an alternative formulation of MI which is conceptually

similar but has an efficient estimation technique for which we develop a new generalization. With the

proposed method, we analyzed a lung cancer dataset finding the co-expression of the markers, HLA-DR

and CK to be associated with survival. We also analyzed a triple negative breast cancer dataset finding

the co-expression of the immuno-regulatory proteins, PD1, PD-L1, Lag3 and IDO, to be associated with

disease recurrence. We demonstrated the robustness of our method through different simulation studies.

Availability: The associated R package can be found here, https://github.com/sealx017/MIAMI.

Contact: souvik.seal@cuanschutz.edu

Supplementary information: The Supplementary Material is attached.

1 Introduction

In recent years, multiplex tissue imaging (Bataille et al., 2006)

technologies like, imaging mass cytometry (IMC) (Ali et al., 2020),

multiplex immunohistochemistry (mIHC) (Tan et al., 2020) and

multiplexed ion beam imaging (MIBI) (Angelo et al., 2014) have

become increasingly popular for probing single-cell spatial biology. The

technologies help in understanding the biological mechanisms underlying

cellular and protein interactions in a wide array of scientific contexts. MIBI

(Ionpath Inc.) (Angelo et al., 2014) platform and the mIHC platforms

such as Vectra 3.0 (Akoya Biosciences) (Huang et al., 2013) and Vectra

Polaris (Akoya Biosciences) (Pollan et al., 2020) produce images of

similar structure. In particular, each image is two-dimensional, collected

at cell- and nucleus-level resolution and proteins in the sample have been

labeled with antibodies that attach to cell membranes. We will refer to

the antibodies as markers in the paper. Typically, mIHC images have 6-8

markers, whereas MIBI images can have 40 or more markers.

Many of the above markers are surface or phenotypic markers (Zola

et al., 2007; Shipkova and Wieland, 2012) which are primarily used

for cell type identification. Additionally, there are functional markers

(Ijsselsteijn et al., 2019) such as HLA-DR (Saraiva et al., 2018), PD1,

PD-L1 (Alsaab et al., 2017) and CD45RO (Lee et al., 2008) that dictate

or regulate important cell-functions. Both surface and functional markers

are quantified as continuous valued marker intensities. However, in the

traditional method, the interaction or co-expression effects of the markers

are studied by binarizing them. For every marker, a threshold is chosen

to indicate whether a cell (or, a pixel) in the tumor microenvironment

(TME) (Binnewies et al., 2018) is positive or negative for that marker.

If a cell is positive for two markers, it implies that the markers have co-

expressed or co-occurred in that cell. Next, for all the subjects considering

every unique pair of markers, the proportion of cells positive for both

the markers, the proportion of cells positive for only the first marker and

the proportion of cells positive for only the second marker are computed.

These proportions can then be used in hiearchical clustering (Murtagh

and Legendre, 2014) to group the subjects. It can then be tested if the

cluster labels correlate with clinical outcomes, such as disease recurrence

or time to death (Koguchi et al., 2015; Johnson et al., 2021; Jackson

et al., 2020). The step of binarizing the marker expression profiles can

be performed either using compatible commercially available software or
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manual assessment of the segmented images. For example, Johnson et al.

(2018) used AQUAnalysis® software (McCabe et al., 2005; Dolled-Filhart

et al., 2010) for binarizing the functional markers, PD1, PDL1, HLA-

DR and IDO, and discovered that their co-expression predicted improved

outcomes of anti-PD-1 therapies in metastatic melanoma. On the other

hand, Patwa et al. (2021) used their own clinical expertise and careful

evaluation of the segmented images to determine the binarizing thresholds

and discovered the interaction between the markers, PD-1, PD-L1, IDO,

and Lag3 to be associated with recurrence. It should be pointed out that

such expression-thresholding or binarization is also popular in cell-cell

communication or interaction analysis (Jin et al., 2021) in the context of

single-cell RNA sequencing (scRNA-seq) data. As an example, Armingol

et al. (2021) defined a pair of cells to be interacting if the expressions of

both ligand and receptor (Wong et al., 1997) in those cells exceed certain

chosen thresholds.

The manual threshold selection process for multiple markers can

be extremely challenging and is subjective. Alternatively, commercially

available softwares, such as AQUAnalysis® and inForm (Dolled-Filhart

et al., 2010; Kramer et al., 2018), can be used for automated threshold

selection in the context of a few particular data types. However, these

softwares generally follow a “black box approach" and can be difficult

to interpret. On top of these difficulties, many authors have criticized

binarizing continuous random variables in general due to the resulting

loss of power (Irwin and McClelland, 2003; Altman and Royston, 2006).

In this paper, we propose a threshold-free approach for studying marker

co-expression. We treat the marker intensities as continuous random

variables and use their marginal and joint probability density functions

(PDF’s) to construct a metric of co-expression based on mutual information

(MI) (Cover and Thomas, 2006). Unlike the correlation coefficient, MI

is capable of capturing non-linear patterns of dependence between the

markers and is easily extendable for more than two markers. However,

as the number of markers increases, computing the joint PDF becomes

increasingly challenging which makes the computation of MI infeasible

as well. Therefore, we use a slightly different formulation of MI known

as Euclidean quadratic mutual information (EQMI) (Principe et al., 2000)

which has a similar interpretation but can be computed more efficiently.

The computation algorithm is discussed in Principe (2010) with a simpler

assumption that we further generalize. The vector of estimated values of the

EQMI of all the subjects is tested for association with clinical outcomes.

With the proposed method, we analyzed an mIHC lung cancer dataset

(Seal et al., 2022) finding that a higher co-expression of the markers,

HLA-DR and CK was significantly associated with better five year overall

survival. We analyzed a MIBI triple-negative breast cancer (TNBC) dataset

(Keren et al., 2018) studying the co-expression of two sets of functional

markers, (a) HLA-DR, CD45RO, H3K27me3, H3K9ac and HLA-Class-1,

and (b) PD1, PD-L1, Lag3 and IDO, which are also known as immuno-

regulatory proteins (IRP’s). We found the co-expression of the IRP’s to be

significantly associated with recurrence. We demonstrated the robustness

of our method over the existing approaches through different simulation

studies.

2 Materials and Methods

Suppose there arepmarkers andN subjects with the j-th subject havingnj

cells. Let Xkij denote the expression of the k-th marker in the i-th cell of

j-th subject for k = 1, 2, . . . , p, i = 1, 2, . . . , nj , and j = 1, 2, . . . , N.

Note that we focus on cell-level data in this paper but the framework is

readily usable on pixel-level data as well. Let Y = (Y1, Y2, . . . , YN )T

denote a subject-level outcome vector andC be anN×S matrix of subject-

level covariates. Next, we discuss the existing and proposed methods and

a brief summary of both is provided in Figure 1.

2.1 Traditional thresholding-based approach to study

co-expression of the markers

For every marker k, we choose a cut-off tk to define cell i of subject

j as positive for that marker if Xkij > tk. The choice of tk can be

guided by prior biological insight or by careful inspection of the marker

intensity profile. For example, extreme quantiles like (e.g., the 90th or 95th

percentiles) can serve as viable thresholds, as we see in the simulations.

However, in most real datasets, it requires user-defined thresholds to

obtain an appropriate threshold that leads to meaningful and interpretable

conclusion. A cell can be positive for multiple markers. If a cell is positive

for a pair of markers, (kr, ks), it would imply that these markers have co-

expressed in that particular cell. For every subject, compute the proportion

of such double-positive cells, denoted by k+r k+s , the proportion of cells

positive for only the first marker, denoted by k+r k−s , and the proportion

of cells positive for only the second marker, denoted by k−r k+s , for

kr, ks ∈ {1, 2, . . . , p} and kr 6= ks. Next, the subjects are classified

into two or more groups based on their vectors of proportions using

hierarchical clustering. Note that if it is biologically relevant, instead

of a pairwise analysis, one can also study multiple markers jointly e.g.,

with four markers, one can count the cells which are either k+r k+s k+t k+u

or any of the possible (24−1) = 15 combinations and group the subjects

based on these proportions.

Suppose that the subjects are grouped into M clusters. Let Z =

(Z1, . . . , ZN )T be an N × M matrix of the cluster labels. Zj is a

vector corresponding to the subject j with Zjm = 1 if the j-th subject

belongs to group m and 0 otherwise. In most common practices, M = 2

is considered. When Y is a continuous outcome, a standard multiple linear

regression model with Z as a predictor can be written as

Y = Cβββ + Zγγγ + ε,

where βββ,γγγ are fixed effects and ε is an N × 1 error vector following

multivariate normal distribution (MVN) with mean 000 and identity

covariance matrix σ2
IN . The null hypothesis, H0 : γγγ = 000, can be tested

using the Wald test or likelihood ratio test (LRT) (Gourieroux et al., 1982).

Similarly, when Y is a categorical outcome, a logistic or multinomial

logistic regression model (Kwak and Clayton-Matthews, 2002) can be

considered.

Next, we consider the case of Y being a a right-censored failure time

outcome. Let the outcome of the j-th individual be Yj = min(Tj , Uj),

where Tj is the time to event and Uj is the censoring time. Let δj ≡

I(Tj ≤ Uj) be the corresponding censoring indicator. Assuming that

Tj and Uj are conditionally independent given the covariates for j =

1, 2, . . . , N , the hazard function for the Cox proportional hazards (PH)

model (Andersen and Gill, 1982) with fixed effects can be written as,

λj(t|Cj , Zj) = λ0(t) exp(C
T
j βββ + Zjγγγ), j = 1, 2, . . . , N (1)

where λj(t|Cj , Zj) is the hazard of the j-th subject at time t, given the

vector of covariatesCj and the cluster labelZj andλ0(t) is an unspecified

baseline hazard at time t. To test the null hypothesis: H0 : γγγ = 000, an LRT

(Therneau, 1997) can be considered.

2.2 Proposed Method: Mutual Information based analysis

of marker co-expression

2.2.1 Theory of Mutual Information

Mutual information (MI) is an information theoretic measure of

dependence between two or more random variables (r.v.’s). In contrast

to the linear correlation coefficient, it captures dependences which do not

manifest themselves in the covariance (Kraskov et al., 2004). For two

random variables, R1 and R2 with sample space D, marginal probability
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density functions (PDFs), f1, f2, and joint PDF f12, the MI is defined as

the following:

MI(R1, R2) =

∫ ∫

f12(r1, r2) log
f12(r1, r2)

f1(r1)f2(r2)
dr1dr2.

MI has been used as a tool for feature selection in many different contexts

(Yang and Moody, 1999; Liu et al., 2009; Hoque et al., 2014; Song et al.,

2021). The measure can be easily generalized for more than two random

variables. However, due to the curse of dimensionality (Langrené and

Warin, 2019), it becomes extremely difficult to estimate the joint PDF and

hence, the MI, as the number of random variables increases.

Xu (1998) and Principe et al. (2000) looked into alternative definitions

of MI that would remain conceptually similar but can be computed

efficiently. They discussed two measures, Euclidean quadratic mutual

information (EQMI) and Cauchy-Schwarz quadratic mutual information

(CSQMI), defined as below,

EQMI(R1, R2)

=

∫ ∫

f12(r1, r2)
2dr1dr2 − 2

∫ ∫

f12(r1, r2)f1(r1)f2(r2)dr1dr2

+

∫ ∫

f1(r1)
2f2(r2)

2dr1dr2,

CSQMI(R1, R2)

= log
(
∫ ∫

f12(r1, r2)2dr1dr2)(
∫ ∫

f1(r1)2f2(r2)2dr1dr2)

(
∫ ∫

f12(r1, r2)f1(r1)f2(r2)dr1dr2)
(2)

It is trivial to verify that EQMI(R1, R2) ≥ 0 with equality occurring

if and only if R1, R2 are independent i.e., f12(r1, r2) = f1(r1)f2(r2)

for any r1, r2 ∈ R. Using the Cauchy-Schwarz inequality, we have

CSQMI(R1, R2) ≥ 0 with equality happening if and only if R1, R2 are

independent. Xu (1998) argued that EQMI shares more properties, such

as convexity with respect to the PDF’s, of the traditional MI compared to

CSQMI and thus, is better suited as a dependence measure. It should also

be noticed that the form of EQMI is very similar to the distance covariance

measure proposed by Székely et al. (2007). There is one more generalized

measure of dependence, known as kernel canonical correlation analysis

(KCCA) (Huang et al., 2006), which does not share forumlaic similarity

with EQMI but can potentially serve as an alternative for detecting non-

linear dependence patterns. In this paper, we focus on EQMI and propose

its usage in the co-expression analysis of the markers in general multiplex

imaging datasets used in the study of spatial biology of TME.

2.2.2 Formulation of EQMI

For every subject j, we assume that the expression of marker k is a

continuous random variable, denoted by Xkj , with sample space D =

[0, 1]. Xkj is observed in nj cells as, Xk1j , Xk2j , . . . , Xknjj . Suppose

there are p = 2 markers and for every subject j, denote their joint

PDF as f12j(x1, x2) and their marginal PDFs as f1j(x1) and f2j(x2)

respectively. Following Equation (2), the EQMI between the markers 1

and 2 for subject j can be defined as,

EQMI(X1j , X2j) = VJ − 2VC + VM , (3)

where VJ =
∫ ∫

f12j(x1, x2)2dx1dx2,

VC =
∫ ∫

f12j(x1, x2)f1j(x1)f2j(x2)dx1dx2, and VM =
∫ ∫

f1j(x1)2f2j(x2)2dx1dx2. EQMI(X1j , X2j) can be interpreted

as a generalized measure of co-expression of the markers, capable of

capturing non-linear dependences. A large value of EQMI(X1j , X2j)

will imply that the markers 1, 2 have significantly co-expressed in the

TME of subject j. EQMI(X1j , X2j) is bounded below by 0 for every j but

there is no common upper bound for different j’s. Therefore, to compare

EQMI(X1j , X2j)’s across different subjects, we need to appropriately

standardize the values so that they lie in the same scale. We define a new

measure as, EQMI∗(X1j , X2j) = (VJ + VM )−1(VJ − 2VC + VM ).

We observe that EQMI∗(X1j , X2j) lies between [0, 1] because VC ≥ 0,

and has a similar interpretation as EQMI(X1j , X2j).

It is intuitive to generalize the measure for any p ≥ 2 markers.

For subject j, letting f12...pj(x1, x2, . . . , xp) to be the joint PDF and

f1j(xp), f2j(xp), . . . , fpj(xp) to be the marginal PDFs, EQMI∗ can be

defined as,

EQMI∗(X1j , X2j , . . . , Xpj) =
VJ − 2VC + VM

VJ + VM

VJ =

∫ ∫

. . .

∫

f12...pj(x1, x2, . . . , xp)
2dx1dx2 . . . dxp

VC =

∫ ∫

. . .

∫

f12...pj(x1, x2, . . . , xp)f1j(x1)f2j(x2)

. . . fpj(xp)dx1dx2 . . . dxp

VM =

∫ ∫

. . .

∫

f1j(x1)
2f2j(x2)

2 . . . fpj(xp)
2dx1dx2 . . . dxp.

Notice that to estimate EQMI∗(X1j , X2j , . . . , Xpj) when the true PDFs

are unknown, a naive approach would be to estimate the PDFs first by using

a kernel density estimation (KDE) approach (Silverman, 1981). Then,

we use the estimated PDFs to compute the terms VJ , VC and VM via

numerical integration (Davis and Rabinowitz, 2007). However, such an

approach would be computationally infeasible for a large p and will defeat

the purpose of considering EQMI instead of the standard form of MI.

EQMI∗(X1j , X2j , . . . , Xpj) can be estimated efficiently as,

ÊQMI
∗
(X1j , X2j , . . . , Xpj) = (V̂J + V̂M )−1(V̂J − 2V̂C + V̂M ),

where

V̂J =
1

n2
j

nj
∑

i=1

nj
∑

s=1

p
∏

k=1

V̂k(i, s)

V̂C =
1

nj

nj
∑

i=1

p
∏

k=1

V̂k(i); V̂k(i) =
1

nj

nj
∑

s=1

V̂k(i, s),

V̂M =

p
∏

k=1

V̂k; V̂k =
1

n2
j

nj
∑

i=1

nj
∑

s=1

V̂k(i, s),

(4)

and V̂k(i, s) = G√
2hk

(Xkij −Xksj). Gh stands for a Gaussian kernel

with bandwidth parameter h. This clever way of estimating the terms, V̂J ,

V̂C and V̂M is described in Principe (2010) with a simpler assumption

that hk’s are equal for all k i.e., hk = h for k = 1, 2, . . . , p. We

provide the general derivation (i.e., hk 6= hk′ , for k 6= k′) and other

associated details in the Supplemetary material. For choosing the optimal

values of hk’s, we generally consider the diagonal multivariate plug-in

bandwidth selection procedure (Wand et al., 1994; Chacón and Duong,

2010). However, when p is large (p > 6), to avoid computational deadlock

we suggest using Silverman’s rule of thumb (Silverman, 1981) for choosing

hk’s individually.

2.2.3 Using Mutual Information in association analysis

Denote the vector of estimated values of EQMI∗ asE ≡ (E1, . . . , EN )T ,

where Ej = ÊQMI
∗
(X1j , X2j , . . . , Xpj). Our goal is to test if E is

associated with the clinical outcome Y . When Y is a continuous outcome,

a standard multiple linear regression model with E as a predictor can be

written as,

Y = Cβββ +Eγ + ε,

where βββ, γ are fixed effects and ε is an N × 1 error vector following

multivariate normal distribution (MVN) with mean 000 and identity

covariance matrix σ2
IN . After estimating the parameters, the null

hypothesis, H0 : γ = 0, can be tested using the Wald test. Note that
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Fig. 1. Comparison of the workflow of the proposed method with the traditional method. We used segmented cell-level data in this paper but the method is applicable on a pixel-level data

as well.

we can also add higher order terms of Ej , such as E2
j , E

3
j , . . . as in

a polynomial regression model (Ostertagová, 2012) to account for non-

linear relationship between Y and Ej . Similarly, when Y is a categorical

outcome, a logistic or multinomial logistic regression model (Kwak and

Clayton-Matthews, 2002) can be considered.

Next, we consider the case ofY being a survival or recurrence outcome.

Using the same definitions and conditional independence assumptions of

Tj , Uj and covariates as in Section 2.1, the hazard function for the Cox

proportional hazards (PH) model can be written as,

λj(t|Cj , Ej) = λ0(t) exp(C
T
j β + Ejγ), j = 1, 2, . . . , N (5)

where λj(t|Cj , Ej) is the hazard of the j-th subject at time t, given the

vector of covariates Cj and the predictor Ej and λ0(t) is an unspecified

baseline hazard at time t. To test the null hypothesis: H0 : γ = 0, a

likelihood ratio test (LRT) can be considered.

In a two-marker scenario (i.e., p = 2), one can also treat the absolute

value of the Pearson correlation as a measure of marker co-expression

and use it as Ej in the earlier equations for testing association with the

outcome. However, as we later demonstrate, using correlation instead of

EQMI can be sub-optimal in many cases. It is also difficult to generalize

to more than two markers.

3 Real Data Analysis

We applied our method on two real datasets, an mIHC lung cancer dataset

(Seal et al., 2021) from Vectra 3.0 platform and a MIBI triple-negative

breast cancer dataset (Keren et al., 2018). We also applied the traditional

thresholding-based method on both the datasets. Since it was hard to decide

the optimal thresholds for binarizing the markers, we ran the method

for varying values of the thresholds. For every marker, concatenating

the intensity data of all the subjects, we computed the median, 95%

and 99% quantiles. Next, three different thresholding-based methods

using these quantiles were considered, respectively referred to as Median-

Thresholding, Threshold 1 and Threshold 2. Note that Threshold 1 and

2 both captured the difference in the tails of the distributions, whereas

Median-Thresholding captured the difference in the centers. For the first

dataset, we also performed the correlation-based association analysis,

referred to as Corr.

3.1 Application to mIHC Lung Cancer data

In the lung cancer dataset, there were 153 subjects each with 3-5 images

(in total, 761 images). Two subject-level covariates, age and sex were

available. For every subject, the images were non-overlapping and from

the same tumor microenvironment (TME) region. After segmenting the

images, the subjects had varying number of identified cells (from 3,755

to 16,949). We worked directly with the cell-level data as described next.

The cells come from two different tissue regions: tumor and stroma. They

were classified into either of the six different cell types: CD14+, CD19+,

CD4+, CD8+, CK+ and Other, based on the expression of the phenotypic

markers, CD19, CD3, CK, CD8 and CD14. These markers (and the cell-

types) usually have clinical meaning e.g, CK is a type of a tumor cell

marker and CD4 and CD8 are T-cell or cytotoxic T-cell markers. Apart

from these, a functional marker HLA-DR (also known as MHCII), was

measured in each of the cells. Johnson et al. (2021) classified the subjects

into two groups, (a) MHCII: High and (b) MHCII: Low based on the

proportion of CK+ tumor cells that are also positive for HLA-DR (i.e.,

CK+HLA-DR+ cells). They discovered that group (a) had significantly

higher five-year overall rate of survival (reported p-value of 0.046).

Note that having a large number of CK+HLADR+ tumor cells implies

that these two markers had co-expressed in a lot of the tumor cells. In light

of that, we studied if the degree of co-expression of these markers in the

tumor cells, as quantified by our method, was associated with the survival.

Considering the tumor cells of every subject j, we first estimated EQMI∗,

Ej = ÊQMI
∗
(X1j , X2j) between the two markers, HLA-DR and CK.

Next, we tested the association of Ej with five-year overall survival using

the Cox-PH model from Equation (5). The coefficient γ was -7.26 with the

p-value of the LRT being 0.0286. Thus, subjects with high co-expression

of the markers in the tumor cells were more likely to survive. The result

was thus consistent with Johnson et al. (2021)’s finding. The estimated

coefficient, hazard ratio (HR) and p-value of all the methods are listed

in Table 1 and further details such as confidence interval of the HR, are

provided in the Supplementary Material. The correlation-based analysis

(Corr) yielded a negative coefficient estimate but was not statistically

significant (at level 0.05). Out of the thresholding-based methods, only

Threshold 2 had a significant p-value. It demonstrated that the traditional

thresholding-based method could vary heavily based on the choice of the
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thresholds leading to utterly different conclusions. On the other hand,

inference using our method would be robust.

Table 1. Estimated coefficient, hazard ratio (HR) and

LRTp-value for testing association with five-year overall

survival using different methods in the mIHC lung cancer

dataset.

Method Coefficient (HR) LRT p-value

EQMI∗ -7.26 (0.0007) 0.0286

Corr -1.38 (0.2512) 0.1838

Median-Thresholding -0.48 (0.6189) 0.0495

Threshold 1 -0.58 (0.5585) 0.0575

Threshold 2 -1.03 (0.3555) 0.0098

We should point out that CK was a phenotypic marker, and studying

its co-expression with a functional marker HLA-DR might not have much

clinical relevance. However, the goal was to demonstrate that our method

obviates the need to binarize the continuous-valued marker expression

profiles and is potentially applicable even when one of the markers is a

phenotypic marker.

3.2 Application to TNBC MIBI data

The triple-negative breast cancer (TNBC) MIBI dataset (Keren et al., 2018)

had 38 subjects, each with one image. There were 201,656 cells in total

with each of the images having varying numbers of cells (between 1217

and 8212). There were 49 markers in total, the majority of which were

lineage or phenotypic markers, used primarily for cell-type identification.

We were interested in two sets of functional markers, (a) HLA-DR,

CD45RO, H3K27me3, H3K9ac and HLA-Class-1, and (b) PD1, PD-L1,

Lag3 and IDO, also known as immuno-regulatory proteins (IRP’s). The

reason for concentrating on these two sets of markers was the findings

of Patwa et al. (2021). Employing the thresholding-based method with

a set of very carefully chosen thresholds, they concluded that the pair-

wise co-expression of the functional markers from the sets (a) and (b)

were negatively associated with two clinical outcomes, namely disease

recurrence and time to death (survival). For set (a), they did not find any

statistical significance for either of the clinical outcomes (at level 0.05),

whereas, for set (b), they were able to find statistical significance in the

association test with recurrence (reported p-value of 0.0058).

For the co-expression analysis with the five markers from the set (a),

we looked into all possible (25 − 5 − 1 = 26) two-way and higher-

order combinations of the markers. There were four different types of

combination, namely pair (10), triplet (10), quadruplet (5) and quintuple

(1). We computed EQMI∗ for each combination of the markers and tested

for association with recurrence and survival. In Table 2, we list the results

for five marker combinations for which the lowest p-values were observed.

We noticed that at a level of 0.05, several marker-combinations were

found to be associated with recurrence. All the estimated coefficients were

negative, implying that higher co-expression of the markers decreased the

chance of disease recurrence. However, once we adjusted the p-values for

multiple testing correction using Bonferroni’s method (Bonferroni, 1936),

only the combinations “HLA-DR, CD45RO" and “HLA-DR, CD45RO,

H3K9ac" remained significant. Note that, we compared the p-values of

every type of combination separately, meaning that for marker pairs and

triplets, we compared the p-values at level 0.05/10 since the numbers

of pairs and triplets were both 10, and for quadruplets, at level 0.05/5

since the number of quadruplets was 5. The marker-combinations were not

independent and thus, a Bonferroni correction probably has been overly

conservative in this case. For the survival outcome, we did not detect any

statistical significance. But, the negative coefficient estimates hinted at a

possible association of better rate of survival with higher co-expression.

Table 2. Estimated coefficient and LRT p-value for testing association

with recurrence and survival for five combinations of the markers from

sets (a) and (b) with the lowest p-values, obtained by the proposed

method in the MIBI dataset.

Clinical Marker Coefficient LRT

Outcome Combination p-value

Recurrence

HLA-DR, CD45RO -32.97 0.0022

HLA-DR, CD45RO, H3K9ac -12.48 0.0051

HLA-DR, CD45RO, H3K27me3 -6.73 0.0245

CD45RO, H3K9ac -41.53 0.0329

HLA-DR, CD45RO, HLA-Class-1 -7.20 0.0421

Survival

HLA-Class-1, H3K27me3 -12.75 0.1010

HLA-DR, H3K9ac -8.27 0.1542

HLA-DR, CD45RO -8.35 0.1583

HLA-DR, HLA-Class-1 -29.69 0.1630

HLA-DR, CD45RO, H3K9ac -0.74 0.3158

Recurrence

PD1, PD-L1 -9.61e+03 0.0046

PD1, PD-L1, IDO -5.54e+02 0.0065

PD1, PD-L1, Lag3, IDO -4.37e+02 0.0069

PD-L1, Lag3, IDO -8.94e+02 0.0084

PD1, PD-L1, Lag3 -1.91e+02 0.0090

Survival

PD-L1, Lag3 -1.20e+02 0.0103

Lag3, IDO -1.14e+02 0.0302

PD-L1, Lag3, IDO -5.67e+02 0.0449

PD-L1, IDO -6.85e+02 0.0490

PD1, PD-L1, Lag3, IDO -2.15e+02 0.0586

For the co-expression analysis with the four IRP’s from the set (b),

we looked into all possible (24 − 4− 1 = 11) two-way and higher order

combinations. There were four different types of combination, namely pair

(6), triplet (4) and quadruplet (1). In Table 2, we list the results for five

marker combinations for which the lowest p-values were observed. At a

level of 0.05, many of the marker-combinations were found to be associated

with both recurrence and survival. Again, all the estimated coefficients

were negative, implying that higher co-expression of the markers decreased

the chance of disease recurrence. Upon correcting the p-values for multiple

testing using Bonferroni’s method, all of the marker combinations listed

in Table 2 remained significant for recurrence while for survival, none of

them remained significant. We compared the p-values of every type of

combination separately, meaning that for marker pairs we compared the

p-values at level 0.05/6 since the number of pairs was 6, for triplets we

compared the p-values at level 0.05/4 since the number of triplets was 4,

and for quadruplet, at level 0.05 since there was just a single quadruplet.

Thus, we also arrived at a similar conclusion as (Patwa et al., 2021) that

the inter-play or co-expression of the IRP’s were significantly associated

with recurrence and possibly also with survival. One added novelty of our

method was that one could easily pinpoint which of the combinations of

the IRP’s had the most impact.

It should be kept in mind that the sample-size for this dataset was quite

small with only 16 events for recurrence and 15 for survival. It might have

affected the overall inference which was based on asymptotic distributional

properties of the test statistics. For the same reason, we mainly focused

on the sign of the coefficent estimates but not their CI’s in this particular

case. We also applied the simple thresholding-based methods, Median-

Thresholding, Threshold 1 and Threshold 2 as described earlier using

both the sets of markers. We found only a single statistically significant

result which was for Median-Thresholding using set (b) in the association
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test with recurrence. Associated tables are provided in the Supplementary

Material.

4 Simulation

Next, we compared the performance of the EQMI∗-based association

analysis with the correlation-based association analysis and the

thresholding-based methods in different simulation setups. We assumed

that there were two groups of subjects, one with subjects having high

marker co-expression and the other with subjects having low or almost

zero marker co-expression. In Section 4.1, we considered two markers

sharing linear and non-linear patterns of co-expression relationship. In

Section 4.2, we considered three markers sharing varying degree of linear

co-expression relationship.

4.1 Simulation with two markers

4.1.1 Simulation using Gaussian copula

We replicated the characteristics of the lung cancer dataset in this

simulation. The mean marginal distribution of the markers HLA-DR

and CK across the subjects could be approximated by Beta distribution

respectively with parameters, (1.5, 170) and (1.6, 35) (refer to the

Supplementary Material). We used a Gaussian copula (Masarotto and

Varin, 2012) to simulate correlated intensity data for two markers which

had the above marginal Beta distributions. The simulation strategy was as

follows,

1. A random number Ij between 0 and 1 was chosen with probability

0.5 each, respectively standing for group (1), whose subjects had high

co-expression of the markers and group (2), whose subjects had mild

to none co-expression of the markers. It assigned j-th subject to either

of the two groups.

2. The intensity vector of two markers, (X1ij , X2ij)
T for every

individual j was simulated as follows,

a. If Ij = 0, simulate a correlation parameter ρj from

Unif(0.75, 0.9), or else simulate ρj from Unif(0, 0.15).

b. Consider a correlation matrix, Rj =

[

1 ρj

ρj 1

]

and simulate

(u1ij , u2ij)
T ∼ N2(0, Rj) for i = 1, . . . , nj .

c. Compute (v1ij , v2ij)
T = (Φ(u1ij),Φ(u2ij))

T , where Φ()

denotes the cumulative distribution function (CDF) of the standard

normal distribution.

d. Perform inverse transformation as,

(X1ij , X2ij)
T = (F−1

1
(v1ij), F

−1

2
(v2ij))

T , where F1 and F2

are Beta distributions with parameters (1.5, 170) and (1.6, 35).

Refer to the Supplementary Material for plots of the true joint

densities of the markers for two groups of subjects.

3. The clinical outcome of j-th subject is simulated as, Yj = Ijβ+ εj ,

where εj ∼ N(0, σ2). This step is repeated 100 times to generate

100 different datasets having differentY vectors but the same intensity

vectors, X1 andX2. All the methods are applied on these 100 datasets

and empirical power is computed.

Steps 1 − 3 were repeated 20 times and the mean empirical power of

different methods were displayed for varying values of the number of

cells (ncells) and the number of individuals (N ) in Figure 1. The EQMI∗-

based association analysis (EQMI) and the correlation-based association

analysis (Corr) achieved comparable performance in all the cases. This

particular simulation strategy inherently assumed that the dependence

between the markers was linear. Thus, the estimated values of the EQMI∗

and the correlation shared an almost one-to-one relationship making the

association analysis using either of them equivalent. Median-Tresholding

and Threshold 1 showed similar performance, whereas Threshold 2 had

consistently lower power. It showed the importance of choosing a proper

threshold in the traditional thresholding-based method for achieving a

reasonable performance. All the methods expectedly had the least power

when N was the smallest, whereas the value of ncells did not have any

major impact. It implied if the co-expression pattern was well captured

even through a smaller number of cells, most of the methods would perform

well.

4.1.2 Simulation with squared marker co-expression relationship

The last simulation strategy essentially assumed a linear pattern of co-

expression between the markers. Next, we simulated a non-linear pattern of

co-expression between the markers where we would expect the correlation-

based association analysis (Corr) to perform worse since it could only

capture a linear dependence pattern. Steps 1 and 3 of the last simulation

strategy were kept the same here and the marker-intensity simulation step

i.e., step 2 was changed as follows,

2a. If Ij = 0, simulate X1ij from Unif(0, 0.1), and eij from

Unif(0, 0.0005). Construct X2ij as,

X2ij = (X1ij − 0.05)2 + eij .

2b. If Ij = 1, independently simulate x1ij , x2ij both from Unif(0, 0.1).

From Figure 1, we noticed that the EQMI∗-based association analysis

performed the best in all the cases. Threshold 1 and 2 achieved comparable

performance for large value of ncells, whereas Median-Thresholding

mostly yielded poor performance. Note that for both the groups of subjects,

the correlation between the markers were close to zero as the dependence

pattern was non-linear, squared to be specific. Expectedly, the correlation-

based association analysis (Corr) had almost no power in every case.

The simulation strategy demonstrated why using a generalized measure

of co-expression such as EQMI∗ would be more optimal in many cases.

4.1.3 Simulation with circular marker co-expression relationship

In the last simulation setup, the thresholding-based methods performed

well despite the marker co-expression pattern being non-linear. Next, we

looked into a slightly more complicated co-expression relationship for

which the thresholding-based approach would suffer. Steps 1 and 3 of the

last two simulation strategies were kept the same here and the step 2 was

changed as follows,

2a. If Ij = 0, simulate X1ij from Unif(0, 0.1), eij from

Unif(0, 0.0005) and a random number sij between -1 and 1.

Construct X2ij as,

X2ij = 0.05 + sij

√

0.052 − (X1ij − 0.05)2 + eij .

2b. If Ij = 1, independently simulate X1ij , X2ij both from

Unif(0, 0.1).

From Figure 1, we noticed that the EQMI∗-based association analysis

performed the best in all the cases. The correlation-based association

analysis (Corr) expectedly performed the worst. Threshold 1, unlike the

last simulation, performed significantly worse. In this simulation setup, the

subjects of one group had a circular pattern of marker co-expression and the

others had almost zero co-expression. Recall that in a two-marker scenario,

the thresholding-based methods depended on computing the proportions

of the cells positive for both the markers and of the cells positive for only

one of the markers (Section 2.1). The difference between these proportions
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Fig. 2. The figure displays the power of different methods under different simulation scenarios from Section 4.1 with two markers for varying numbers of subjects (N) and cells (ncells).

On the x-axis, the fixed effect size β was varied from low to high.

across the two groups of subjects became negligible under this setup which

made it difficult distinguishing between them. This explained the overall

poor performance of all the thresholding-based methods.

4.2 Simulation with three markers

Next, we considered three markers and simulated varied degree of linear

dependence between them using Gaussian copula. We only performed the

EQMI∗-based association analysis and the thresholding-based methods in

this case. There were again two groups of subjects respectively with high

and low co-expression. The simulation strategy was as follows,

1. A random number Ij between 0 and 1 was chosen with probability

0.5 each, respectively standing for groups (1) and (2).

2. The intensity vector of three markers, (X1ij , X2ij , X3ij)
T for every

individual j was simulated as follows,

(i) Consider a correlation matrix, Rj =







1 ρ12j ρ13j

ρ12j 1 ρ23j

ρ13j ρ23j 1






. For the

subjects in group (1), the off-diagonal elements of the correlation

matrix would have high values, whereas they would have low values

for the subjects in group (2). We considered three different cases

with varying differences between the correlation matrices of the

two groups.

Case (a) : If Ij = 0, the correlation parameters ρ12j , ρ23j and ρ13j

were independently simulated from Unif(0.4, 0.6). Otherwise,

they were independently simulated from Unif(0.2, 0.4).

Case (b) : Regardless of the value of Ij , ρ13j was kept to be 0.

If Ij = 0, ρ12j and ρ23j were independently simulated

from Unif(0.4, 0.6). Otherwise, these two were independently

simulated from Unif(0.2, 0.4).

Case (c) : Regardless of the value of Ij , ρ13j and ρ23j were kept to be 0.

If Ij = 0, ρ12j was simulated from Unif(0.4, 0.6). Otherwise,

it was simulated from Unif(0.2, 0.4).

(ii) Simulate (u1ij , u2ij , u3ij)
T ∼ N3(0, Rj) and compute

(v1ij , v2ij , v3ij)
T = (Φ(u1ij),Φ(u2ij),Φ(u3ij))

T .

(iv) Perform inverse transformation as,

(X1ij , X2ij , X3ij)
T = (F−1

1
(v1ij), F

−1

2
(v2ij), F

−1

3
(v3ij))

T ,

where F1, F2 and F3 are the Beta distributions respectively with

parameters (1.5, 170), (1.6, 35) and (1.6, 35).

3. The clinical outcome of j-th subject was simulated as, Yj = Ijβ+εj ,

where εj ∼ N(0, σ2). This step was repeated 100 times to generate

100 different datasets having differentY vectors but the same intensity

data, X1, X2 and X3. All the methods were applied on these 100

datasets and empirical power was computed.

Steps 1−3 were repeated 20 times and in Figure 2 the mean empirical

power of the methods were displayed. The power of the methods were

quite low when N was small. The EQMI∗-based method outperformed

both the thresholding-based methods, Threshold 1 and 2 in every case.

Threshold 2 had little to no power in most of the cases. Note that, the

cases (a), (b), and (c) differed in how different the marker co-expression

pattern of the two groups were. The difference between the marker co-

expression pattern of the two groups was the largest in case (a) since all

the three correlation parameters, ρ12j , ρ23j andρ13j were different across

the groups. The difference was the smallest in case (c) as two of the three

correlation parameters, ρ23j and ρ13j were kept to be 0 in both the groups.

Quite expectedly, the power of the methods decreased going from case (a)

to case (c), as the difference between the groups of subjects reduced. The

decrease was more prominent with Threshold 1 suggesting the method’s

lack of robustness.
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5 Discussion

In multiplex imaging data, studying the interaction or co-expression of

multiple functional markers in the cells of the tumor microenvironment

(TME) can be crucial for subject-specific assessment of risks. The

traditional approach requires a complex step of binarizing the continuous

valued marker expression profiles which is prone to subjectivity and can

be sub-optimal in many scenarios. The complexity gets exacerbated as

the number of markers increases. In this paper, we propose a method

for studying co-expression or co-expression of multiple markers based

on the theory of mutual information (MI). We treat the subject-specific

intensity or expression of every marker as a continuous random variable.

We determine how much the markers have co-expressed in the TME of a

particular subject by computing a measure known as Euclidean quadratic

mutual information (EQMI), comparing the estimated marginal and joint

probability density functions (PDFs) of the markers. The formula of EQMI

has a similar interpretation as the standard formula of MI but allows a

more efficient computation. We adopt and generalize an existing algorithm

for computing EQMI that does not require explicitly estimating the joint

PDF of the markers, a step which becomes increasingly intractable as the

number of markers increases. Next, the subject-level EQMI values are

tested for association with the clinical outcomes. The proposed method is

free from the subjectivity bias of the traditional thresholding-based method

and is readily applicable with any number of markers.

Fig. 3. The figure displays the power of different methods under different cases from

Section 4.2 with three markers for varying numbers of subjects (N) and cells (ncells). On

the x-axis, the fixed effect size β was varied from low to high.

We applied the proposed method to two real datasets, one mIHC lung

cancer dataset and one MIBI triple negative breast cancer dataset. In the

former, we found high co-expression of the markers, HLA-DR and CK to

be associated with the five-year overall survival of the subjects. In the latter,

we found high co-expression of the immuno-regulatory proteins, PD1,

PD-L1, IDO and Lag3 (IRP’s) to be associated with disease recurrence.

We evaluated the performance of our method through several simulation

scenarios with two and three markers. In the scenarios with two markers,

we showed that all the methods perform well and close to each other if

the pattern of dependence (co-expression) between the markers is linear.

However, with a more complex non-linear dependence pattern, only the

proposed method could achieve respectable power. In the scenarios with

three markers, we found that the proposed method performed consistently

better than the thresholding-based method and showed superior robustness.

As we have shown in the simulation studies, EQMI can capture both

linear and non-linear patterns of co-expression between the markers very

well. However, the measure is not well suited for capturing the differences

between the patterns. For example, it may happen that one subject has

a linear pattern of co-expression, whereas some other subject has a non-

linear pattern. The EQMI for both the subjects can be very similar, making

it hard to distinguish between them. As a part of our future direction, we

would like to improve the method by detecting and incorporating the type

of the co-expression pattern. With more than two markers, we studied

the co-expression patterns of all possible combinations of the markers and

declared significance based on p-values corrected by Bonferroni’s method.

However, in future, we would like to explore the causal direction between

the markers which can then be used to determine a smaller and optimal set

of markers and would obviate the need of exploring all possible marker-

combinations. In this paper, we have not used any information on the

spatial locations of the TME cells. As a future direction, we would like to

study the MI between the spatial information and the marker expression

profiles with a goal to detect spatially variable markers and their spatial

patterns.

Our method is available as an R package named MIAMI at this link,

https://github.com/sealx017/MIAMI. The package is readily applicable to

any multiplex imaging dataset which has cell-level intensity data on two or

more markers. In future, we would like to further augment the package’s

capability by incorporating a pixel-level analysis as well.
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