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Abstract

Motivation: Studying the interaction or co-expression of the proteins or markers in the tumor
microenvironment (TME) of cancer subjects can be crucial in the assessment of risks, such as death or
recurrence. In the conventional approach, the cells need to be declared positive or negative for a marker
based on its intensity. For multiple markers, manual thresholds are required for each marker, which can
become cumbersome. The performance of the subsequent analysis relies heavily on this step and thus
suffers from subjectivity and lacks robustness.

Results: We present a new method where different marker intensities are viewed as dependent random
variables, and the mutual information (MI) between them is considered to be a metric of co-expression.
Estimation of the joint density, as required in the traditional form of MI, becomes increasingly challenging
as the number of markers increases. We consider an alternative formulation of MI which is conceptually
similar but has an efficient estimation technique for which we develop a new generalization. With the
proposed method, we analyzed a lung cancer dataset finding the co-expression of the markers, HLA-DR
and CK to be associated with survival. We also analyzed a triple negative breast cancer dataset finding
the co-expression of the immuno-regulatory proteins, PD1, PD-L1, Lag3 and IDO, to be associated with
disease recurrence. We demonstrated the robustness of our method through different simulation studies.
Availability: The associated R package can be found here, https://github.com/sealx017/MIAMI.
Contact: souvik.seal@cuanschutz.edu

Supplementary information: The Supplementary Material is attached.

1 Introduction for cell type identification. Additionally, there are functional markers
(Ijsselsteijn et al., 2019) such as HLA-DR (Saraiva et al., 2018), PDI,
PD-L1 (Alsaab et al., 2017) and CD45RO (Lee et al., 2008) that dictate
or regulate important cell-functions. Both surface and functional markers
are quantified as continuous valued marker intensities. However, in the
traditional method, the interaction or co-expression effects of the markers

In recent years, multiplex tissue imaging (Bataille et al., 2006)
technologies like, imaging mass cytometry (IMC) (Ali et al., 2020),
multiplex immunohistochemistry (mIHC) (Tan er al., 2020) and
multiplexed ion beam imaging (MIBI) (Angelo et al., 2014) have

become increasingly popular for probing single-cell spatial biology. The
are studied by binarizing them. For every marker, a threshold is chosen

to indicate whether a cell (or, a pixel) in the tumor microenvironment
(TME) (Binnewies et al., 2018) is positive or negative for that marker.

technologies help in understanding the biological mechanisms underlying
cellular and protein interactions in a wide array of scientific contexts. MIBI
(Ionpath Inc.) (Angelo et al., 2014) platform and the mIHC platforms
such as Vectra 3.0 (Akoya Biosciences) (Huang et al., 2013) and Vectra
Polaris (Akoya Biosciences) (Pollan et al., 2020) produce images of

If a cell is positive for two markers, it implies that the markers have co-
expressed or co-occurred in that cell. Next, for all the subjects considering
similar structure. In particular, each image is two-dimensional, collected every unique pair of m:ilrkers, the prol?(?rtlon of cells p(?smve for both
the markers, the proportion of cells positive for only the first marker and
the proportion of cells positive for only the second marker are computed.

These proportions can then be used in hiearchical clustering (Murtagh

at cell- and nucleus-level resolution and proteins in the sample have been
labeled with antibodies that attach to cell membranes. We will refer to

the antibodies as markers in the paper. Typically, mIHC images have 6-8
and Legendre, 2014) to group the subjects. It can then be tested if the

cluster labels correlate with clinical outcomes, such as disease recurrence
or time to death (Koguchi et al., 2015; Johnson et al., 2021; Jackson
et al., 2020). The step of binarizing the marker expression profiles can
be performed either using compatible commercially available software or

markers, whereas MIBI images can have 40 or more markers.
Many of the above markers are surface or phenotypic markers (Zola
et al., 2007; Shipkova and Wieland, 2012) which are primarily used
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manual assessment of the segmented images. For example, Johnson et al.
(2018) used AQUAnalysis® software (McCabe et al., 2005; Dolled-Filhart
et al., 2010) for binarizing the functional markers, PD1, PDL1, HLA-
DR and IDO, and discovered that their co-expression predicted improved
outcomes of anti-PD-1 therapies in metastatic melanoma. On the other
hand, Patwa et al. (2021) used their own clinical expertise and careful
evaluation of the segmented images to determine the binarizing thresholds
and discovered the interaction between the markers, PD-1, PD-L1, IDO,
and Lag3 to be associated with recurrence. It should be pointed out that
such expression-thresholding or binarization is also popular in cell-cell
communication or interaction analysis (Jin et al., 2021) in the context of
single-cell RNA sequencing (scRNA-seq) data. As an example, Armingol
et al. (2021) defined a pair of cells to be interacting if the expressions of
both ligand and receptor (Wong et al., 1997) in those cells exceed certain
chosen thresholds.

The manual threshold selection process for multiple markers can
be extremely challenging and is subjective. Alternatively, commercially
available softwares, such as AQUAnalysis® and inForm (Dolled-Filhart
et al., 2010; Kramer et al., 2018), can be used for automated threshold
selection in the context of a few particular data types. However, these
softwares generally follow a “black box approach” and can be difficult
to interpret. On top of these difficulties, many authors have criticized
binarizing continuous random variables in general due to the resulting
loss of power (Irwin and McClelland, 2003; Altman and Royston, 2006).

In this paper, we propose a threshold-free approach for studying marker
co-expression. We treat the marker intensities as continuous random
variables and use their marginal and joint probability density functions
(PDF’s) to construct a metric of co-expression based on mutual information
(MI) (Cover and Thomas, 2006). Unlike the correlation coefficient, MI
is capable of capturing non-linear patterns of dependence between the
markers and is easily extendable for more than two markers. However,
as the number of markers increases, computing the joint PDF becomes
increasingly challenging which makes the computation of MI infeasible
as well. Therefore, we use a slightly different formulation of MI known
as Euclidean quadratic mutual information (EQMI) (Principe et al., 2000)
which has a similar interpretation but can be computed more efficiently.
The computation algorithm is discussed in Principe (2010) with a simpler
assumption that we further generalize. The vector of estimated values of the
EQMI of all the subjects is tested for association with clinical outcomes.
With the proposed method, we analyzed an mIHC lung cancer dataset
(Seal et al., 2022) finding that a higher co-expression of the markers,
HLA-DR and CK was significantly associated with better five year overall
survival. We analyzed a MIBI triple-negative breast cancer (TNBC) dataset
(Keren et al., 2018) studying the co-expression of two sets of functional
markers, (a) HLA-DR, CD45RO, H3K27me3, H3K9ac and HLA-Class-1,
and (b) PDI1, PD-L1, Lag3 and IDO, which are also known as immuno-
regulatory proteins (IRP’s). We found the co-expression of the IRP’s to be
significantly associated with recurrence. We demonstrated the robustness
of our method over the existing approaches through different simulation
studies.

2 Materials and Methods

Suppose there are p markers and /N subjects with the j-th subject having n;
cells. Let X;; denote the expression of the k-th marker in the i-th cell of
j-thsubjectfork =1,2,...,p,i=1,2,...,nj,andj =1,2,..., N.
Note that we focus on cell-level data in this paper but the framework is
readily usable on pixel-level data as well. Let Y = (Y1,Ya,...,Yn)T
denote a subject-level outcome vector and C be an IV X S matrix of subject-
level covariates. Next, we discuss the existing and proposed methods and
a brief summary of both is provided in Figure 1.
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2.1 Traditional thresholding-based approach to study
co-expression of the markers

For every marker k, we choose a cut-off ¢5 to define cell 7 of subject
J as positive for that marker if Xy;; > t5. The choice of #; can be
guided by prior biological insight or by careful inspection of the marker
intensity profile. For example, extreme quantiles like (e.g., the 90th or 95th
percentiles) can serve as viable thresholds, as we see in the simulations.
However, in most real datasets, it requires user-defined thresholds to
obtain an appropriate threshold that leads to meaningful and interpretable
conclusion. A cell can be positive for multiple markers. If a cell is positive
for a pair of markers, (kr, ks ), it would imply that these markers have co-
expressed in that particular cell. For every subject, compute the proportion
of such double-positive cells, denoted by kF kT, the proportion of cells
positive for only the first marker, denoted by kT k7, and the proportion
of cells positive for only the second marker, denoted by k, k3, for
kr,ks € {1,2,...,p} and k, # ks. Next, the subjects are classified
into two or more groups based on their vectors of proportions using
hierarchical clustering. Note that if it is biologically relevant, instead
of a pairwise analysis, one can also study multiple markers jointly e.g.,
with four markers, one can count the cells which are either kﬁ kj k;L kf{
or any of the possible (24 — 1) = 15 combinations and group the subjects
based on these proportions.

Suppose that the subjects are grouped into M clusters. Let Z =
(Z1,...,2ZN)T be an N x M matrix of the cluster labels. Z; is a
vector corresponding to the subject j with Z;,, = 1 if the j-th subject
belongs to group m and 0 otherwise. In most common practices, M = 2
is considered. When Y is a continuous outcome, a standard multiple linear
regression model with Z as a predictor can be written as

Y =CB+Zy+e,

where B, are fixed effects and € is an N x 1 error vector following
multivariate normal distribution (MVN) with mean O and identity
covariance matrix 021 7. The null hypothesis, H : v = 0, can be tested
using the Wald test or likelihood ratio test (LRT) (Gourieroux et al., 1982).
Similarly, when Y is a categorical outcome, a logistic or multinomial
logistic regression model (Kwak and Clayton-Matthews, 2002) can be
considered.

Next, we consider the case of Y being a a right-censored failure time
outcome. Let the outcome of the j-th individual be Y; = min (T}, U;),
where T7 is the time to event and Uj is the censoring time. Let §; =
I(T; < Uj) be the corresponding censoring indicator. Assuming that
T} and U; are conditionally independent given the covariates for j =
1,2,..., N, the hazard function for the Cox proportional hazards (PH)
model (Andersen and Gill, 1982) with fixed effects can be written as,

X (tCj, Z5) = Mo(t) exp(CT B+ Zjv), §=1,2,...,N (D)

where \; (¢t|C}, Z;) is the hazard of the j-th subject at time ¢, given the
vector of covariates C; and the cluster label Z; and Ao () is an unspecified
baseline hazard at time ¢. To test the null hypothesis: Hg : v = 0, an LRT
(Therneau, 1997) can be considered.

2.2 Proposed Method: Mutual Information based analysis
of marker co-expression

2.2.1 Theory of Mutual Information

Mutual information (MI) is an information theoretic measure of
dependence between two or more random variables (r.v.’s). In contrast
to the linear correlation coefficient, it captures dependences which do not
manifest themselves in the covariance (Kraskov ef al., 2004). For two
random variables, R1 and R2 with sample space D, marginal probability
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density functions (PDFs), f1, f2, and joint PDF fi2, the Ml is defined as
the following:

fi2(r1,72)
MI(R1, Re) = //f12(7”177"2 log f1(r1)fz(r2)d ridra.

MI has been used as a tool for feature selection in many different contexts
(Yang and Moody, 1999; Liu et al., 2009; Hoque et al., 2014; Song et al.,
2021). The measure can be easily generalized for more than two random
variables. However, due to the curse of dimensionality (Langrené and
Warin, 2019), it becomes extremely difficult to estimate the joint PDF and
hence, the MI, as the number of random variables increases.

Xu (1998) and Principe et al. (2000) looked into alternative definitions
of MI that would remain conceptually similar but can be computed
efficiently. They discussed two measures, Euclidean quadratic mutual
information (EQMI) and Cauchy-Schwarz quadratic mutual information
(CSQMI), defined as below,

EQMI(Ry, R2)
://f12(7“177“2)2d7“1d7’2 —2//f12(7“177“2)f1(7"1)f2(7’2)d?"1d7“2
+ [ [ 1602 fara)aradra,

CSQMI(Ry, R2)

log (f [ friz(ri,r2)2dridr2) (f [ f1(r1)? f2(r2)?dridrs)
(f [ fr2(r1,72) f1(r1) f2(r2)dridrs)

@)
It is trivial to verify that EQMI(R1, R2) > 0 with equality occurring
if and only if Ry, Ro are independent i.e., fi2(r1,72) = f1(r1)fa(r2)

for any 71,72 € R. Using the Cauchy-Schwarz inequality, we have
CSQMI(R1, R2) > 0 with equality happening if and only if R, R2 are
independent. Xu (1998) argued that EQMI shares more properties, such
as convexity with respect to the PDF’s, of the traditional MI compared to
CSQMI and thus, is better suited as a dependence measure. It should also
be noticed that the form of EQMI is very similar to the distance covariance
measure proposed by Székely et al. (2007). There is one more generalized
measure of dependence, known as kernel canonical correlation analysis
(KCCA) (Huang et al., 2006), which does not share forumlaic similarity
with EQMI but can potentially serve as an alternative for detecting non-
linear dependence patterns. In this paper, we focus on EQMI and propose
its usage in the co-expression analysis of the markers in general multiplex
imaging datasets used in the study of spatial biology of TME.

2.2.2 Formulation of EQMI
For every subject j, we assume that the expression of marker k is a
continuous random variable, denoted by X ;, with sample space D =
[0,1]. X}, is observed in n; cells as, X1, Xk2;, - - - s Xkn, - Suppose
there are p = 2 markers and for every subject j, denote their joint
PDF as f12;(x1,x2) and their marginal PDFs as f1; (1) and f2;(x2)
respectively. Following Equation (2), the EQMI between the markers 1
and 2 for subject j can be defined as,
EQMI(X1;, X25) =V — 2V + Var, 3)
where V; = [ [ fi2;(z1, 22)?dz1dz2,
Ve = [ [ fiz2i(@1,@2)f1(z1)f25(z2)dwidz2, and Vi =
J [ f1(z1)% f2j(z2)?dz1dz2. EQMI(X1;, X2;) can be interpreted
as a generalized measure of co-expression of the markers, capable of
capturing non-linear dependences. A large value of EQMI(X1;, X2;)
will imply that the markers 1,2 have significantly co-expressed in the
TME of subject j. EQMI(X1;, X2;) is bounded below by O for every j but
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there is no common upper bound for different j’s. Therefore, to compare
EQMI(X1, X2;)’s across different subjects, we need to appropriately
standardize the values so that they lie in the same scale. We define a new
measure as, EQMI* (X1, X2;) = (Vs 4+ Var) "1 (Vs — 2V + V).
We observe that EQMI* (X1, X ) lies between [0, 1] because Vo > 0,
and has a similar interpretation as EQMI(X71;, X2 ).

It is intuitive to generalize the measure for any p > 2 markers.
For subject j, letting fi2.. pj(z1,22,...,2p) to be the joint PDF and
f1j(xp), f2;(xp), .., fpj(xp) to be the marginal PDFs, EQMI* can be
defined as,

X,;) = Vy—=2Ve+ Vi
o Vi+Vu

VJ://A../fnmpj(a:l,zz,...,wp)2dw1dmz...dzp

Ve ://~<-/f12“.pj(ﬂc17$27~-~,$p)f1j(wl)f2](702)

BQMI* (X1, Xaj, - ..

. fpj(@p)derdes . .. dxy

Vi =//m/flj(rl)zfzj(rz)Q--~

Notice that to estimate EQMI* (X1, X525, ..., X};) when the true PDFs
are unknown, a naive approach would be to estimate the PDFs first by using

fpj(zp)zdrldxz .dxp.

a kernel density estimation (KDE) approach (Silverman, 1981). Then,
we use the estimated PDFs to compute the terms Vy, Vo and Vi via
numerical integration (Davis and Rabinowitz, 2007). However, such an
approach would be computationally infeasible for a large p and will defeat
the purpose of considering EQMI instead of the standard form of MI.
EQMI* (X1, X2j,...,Xp;) can be estimated efficiently as,
lm*(le, D.CY I ij) = (VJ + VM)_l(VJ — 2‘70 + VM),

where R
Vi=—> > [IW%Gs
Mj i=1s=1k=1
R 1 nj P R R
Vo =—> TI Ve@);Va(s) = ka(z s), @
"j =1 k=1 L e
~ 'ILJ TL]
Vi = Hvk,vk == ZZVk(Z s)
] 1=1s=1
and Vj, (i,8) = G\/ﬁhk (Xkij — Xksj)- Gp, stands for a Gaussian kernel

with bandwidth parameter k. This clever way of estimating the terms, V7,
VC and VM is described in Principe (2010) with a simpler assumption
that hy’s are equal for all k ie., hy = hfor k = 1,2,...,p. We
provide the general derivation (i.e., hy # hys, for k # k’) and other
associated details in the Supplemetary material. For choosing the optimal
values of hy’s, we generally consider the diagonal multivariate plug-in
bandwidth selection procedure (Wand et al., 1994; Chacén and Duong,
2010). However, when pis large (p > 6), to avoid computational deadlock
we suggest using Silverman’s rule of thumb (Silverman, 1981) for choosing
hy’s individually.

2.2.3 Using Mutual Information in association analysis
Denote the vector of estimated values of EQMI* as E = (Eq, ..., E N)T
where E; = Im*(le,ng, ..., Xpj). Our goal is to test if E is
associated with the clinical outcome Y. When Y is a continuous outcome,
a standard multiple linear regression model with E as a predictor can be
written as,

Y =CB+Ev+e,

where B, are fixed effects and € is an N x 1 error vector following
multivariate normal distribution (MVN) with mean O and identity
covariance matrix o2l. After estimating the parameters, the null

hypothesis, Hg : v = 0, can be tested using the Wald test. Note that
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Test EQMI for association
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MIAMI
Workflow

Key-points:

1. Does not require binarizing expression profiles
2. Captures non-linear co-expression patterns

3. Generalizes easily for more than two markers

Fig. 1. Comparison of the workflow of the proposed method with the traditional method. We used segmented cell-level data in this paper but the method is applicable on a pixel-level data

as well.

we can also add higher order terms of E;, such as E]z, Ejs, ...asin
a polynomial regression model (Ostertagovd, 2012) to account for non-
linear relationship between Y and E);. Similarly, when Y is a categorical
outcome, a logistic or multinomial logistic regression model (Kwak and
Clayton-Matthews, 2002) can be considered.

Next, we consider the case of Y being a survival or recurrence outcome.
Using the same definitions and conditional independence assumptions of
T}, U; and covariates as in Section 2.1, the hazard function for the Cox
proportional hazards (PH) model can be written as,

Ai(tCy, By) = Xo(t) exp(CT B+ Ejy), §=1,2,...,N (5)

where A\ (¢|C}, E;) is the hazard of the j-th subject at time ¢, given the
vector of covariates C; and the predictor E; and Ag(t) is an unspecified
baseline hazard at time ¢. To test the null hypothesis: Ho : v = 0, a
likelihood ratio test (LRT) can be considered.

In a two-marker scenario (i.e., p = 2), one can also treat the absolute
value of the Pearson correlation as a measure of marker co-expression
and use it as £; in the earlier equations for testing association with the
outcome. However, as we later demonstrate, using correlation instead of
EQMI can be sub-optimal in many cases. It is also difficult to generalize
to more than two markers.

3 Real Data Analysis

We applied our method on two real datasets, an mIHC lung cancer dataset
(Seal et al., 2021) from Vectra 3.0 platform and a MIBI triple-negative
breast cancer dataset (Keren et al., 2018). We also applied the traditional
thresholding-based method on both the datasets. Since it was hard to decide
the optimal thresholds for binarizing the markers, we ran the method
for varying values of the thresholds. For every marker, concatenating
the intensity data of all the subjects, we computed the median, 95%
and 99% quantiles. Next, three different thresholding-based methods
using these quantiles were considered, respectively referred to as Median-
Thresholding, Threshold 1 and Threshold 2. Note that Threshold 1 and
2 both captured the difference in the tails of the distributions, whereas
Median-Thresholding captured the difference in the centers. For the first
dataset, we also performed the correlation-based association analysis,
referred to as Corr.

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture

“output” — 2022/6/4 — page 4 — #4

3.1 Application to mIHC Lung Cancer data

In the lung cancer dataset, there were 153 subjects each with 3-5 images
(in total, 761 images). Two subject-level covariates, age and sex were
available. For every subject, the images were non-overlapping and from
the same tumor microenvironment (TME) region. After segmenting the
images, the subjects had varying number of identified cells (from 3,755
to 16,949). We worked directly with the cell-level data as described next.
The cells come from two different tissue regions: tumor and stroma. They
were classified into either of the six different cell types: CD14+, CD19+,
CD4+, CD8+, CK+ and Other, based on the expression of the phenotypic
markers, CD19, CD3, CK, CD8 and CD14. These markers (and the cell-
types) usually have clinical meaning e.g, CK is a type of a tumor cell
marker and CD4 and CDS are T-cell or cytotoxic T-cell markers. Apart
from these, a functional marker HLA-DR (also known as MHCII), was
measured in each of the cells. Johnson ef al. (2021) classified the subjects
into two groups, (a) MHCII: High and (b) MHCII: Low based on the
proportion of CK™ tumor cells that are also positive for HLA-DR (i.e.,
CK+tHLA-DRT cells). They discovered that group (a) had significantly
higher five-year overall rate of survival (reported p-value of 0.046).

Note that having a large number of CK+HLADR+ tumor cells implies
that these two markers had co-expressed in a lot of the tumor cells. In light
of that, we studied if the degree of co-expression of these markers in the
tumor cells, as quantified by our method, was associated with the survival.
Considering the tumor cells of every subject j, we first estimated EQMI*,
E; = lm* (X154, X2;) between the two markers, HLA-DR and CK.
Next, we tested the association of E; with five-year overall survival using
the Cox-PH model from Equation (5). The coefficient v was -7.26 with the
p-value of the LRT being 0.0286. Thus, subjects with high co-expression
of the markers in the tumor cells were more likely to survive. The result
was thus consistent with Johnson er al. (2021)’s finding. The estimated
coefficient, hazard ratio (HR) and p-value of all the methods are listed
in Table 1 and further details such as confidence interval of the HR, are
provided in the Supplementary Material. The correlation-based analysis
(Corr) yielded a negative coefficient estimate but was not statistically
significant (at level 0.05). Out of the thresholding-based methods, only
Threshold 2 had a significant p-value. It demonstrated that the traditional
thresholding-based method could vary heavily based on the choice of the

picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture


https://doi.org/10.1101/2022.02.10.479967
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.10.479967; this version posted June 4, 2022. The copyright holder for this preprint (which was not certified by peer
review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

MIAMI

thresholds leading to utterly different conclusions. On the other hand,
inference using our method would be robust.

Table 1. Estimated coefficient, hazard ratio (HR) and
LRT p-value for testing association with five-year overall
survival using different methods in the mIHC lung cancer

dataset.

Method Coefficient (HR) LRT p-value
EQMI* -7.26 (0.0007) 0.0286
Corr -1.38 (0.2512) 0.1838
Median-Thresholding  -0.48 (0.6189) 0.0495
Threshold 1 -0.58 (0.5585) 0.0575
Threshold 2 -1.03 (0.3555) 0.0098

‘We should point out that CK was a phenotypic marker, and studying
its co-expression with a functional marker HLA-DR might not have much
clinical relevance. However, the goal was to demonstrate that our method
obviates the need to binarize the continuous-valued marker expression
profiles and is potentially applicable even when one of the markers is a
phenotypic marker.

3.2 Application to TNBC MIBI data

The triple-negative breast cancer (TNBC) MIBI dataset (Keren et al.,2018)
had 38 subjects, each with one image. There were 201,656 cells in total
with each of the images having varying numbers of cells (between 1217
and 8212). There were 49 markers in total, the majority of which were
lineage or phenotypic markers, used primarily for cell-type identification.
We were interested in two sets of functional markers, (a) HLA-DR,
CD45R0, H3K27me3, H3K9ac and HLA-Class-1, and (b) PD1, PD-L1,
Lag3 and IDO, also known as immuno-regulatory proteins (IRP’s). The
reason for concentrating on these two sets of markers was the findings
of Patwa et al. (2021). Employing the thresholding-based method with
a set of very carefully chosen thresholds, they concluded that the pair-
wise co-expression of the functional markers from the sets (a) and (b)
were negatively associated with two clinical outcomes, namely disease
recurrence and time to death (survival). For set (a), they did not find any
statistical significance for either of the clinical outcomes (at level 0.05),
whereas, for set (b), they were able to find statistical significance in the
association test with recurrence (reported p-value of 0.0058).

For the co-expression analysis with the five markers from the set (a),
we looked into all possible (2> — 5 — 1 = 26) two-way and higher-
order combinations of the markers. There were four different types of
combination, namely pair (10), triplet (10), quadruplet (5) and quintuple
(1). We computed EQMI™* for each combination of the markers and tested
for association with recurrence and survival. In Table 2, we list the results
for five marker combinations for which the lowest p-values were observed.
We noticed that at a level of 0.05, several marker-combinations were
found to be associated with recurrence. All the estimated coefficients were
negative, implying that higher co-expression of the markers decreased the
chance of disease recurrence. However, once we adjusted the p-values for
multiple testing correction using Bonferroni’s method (Bonferroni, 1936),
only the combinations “HLA-DR, CD45RO" and “HLA-DR, CD45RO,
H3K9ac" remained significant. Note that, we compared the p-values of
every type of combination separately, meaning that for marker pairs and
triplets, we compared the p-values at level 0.05/10 since the numbers
of pairs and triplets were both 10, and for quadruplets, at level 0.05/5
since the number of quadruplets was 5. The marker-combinations were not
independent and thus, a Bonferroni correction probably has been overly
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conservative in this case. For the survival outcome, we did not detect any
statistical significance. But, the negative coefficient estimates hinted at a
possible association of better rate of survival with higher co-expression.

Table 2. Estimated coefficient and LRT p-value for testing association
with recurrence and survival for five combinations of the markers from
sets (a) and (b) with the lowest p-values, obtained by the proposed
method in the MIBI dataset.

Clinical Marker Coefficient LRT
Outcome  Combination p-value
HLA-DR, CD45RO -32.97 0.0022
HLA-DR, CD45RO, H3K9ac -12.48 0.0051
Recurrence  HLA-DR, CD45RO, H3K27me3 -6.73 0.0245
CD45RO, H3K9%ac -41.53 0.0329
HLA-DR, CD45RO, HLA-Class-1 -7.20 0.0421
HLA-Class-1, H3K27me3 -12.75 0.1010
HLA-DR, H3K9ac -8.27 0.1542
Survival HLA-DR, CD45RO -8.35 0.1583
HLA-DR, HLA-Class-1 -29.69 0.1630
HLA-DR, CD45RO, H3K9ac -0.74 0.3158
PDI1, PD-LI -9.61e+03  0.0046
PDI1, PD-L1, IDO -5.54e+02  0.0065
Recurrence PDI1, PD-L1, Lag3, IDO -4.37e+02  0.0069
PD-L1, Lag3, IDO -8.94e+02  0.0084
PDI1, PD-L1, Lag3 -1.91e+02  0.0090
PD-L1, Lag3 -1.20e+02  0.0103
Lag3, IDO -1.14e+02  0.0302
Survival PD-L1, Lag3, IDO -5.67e+02  0.0449
PD-L1, IDO -6.85e+02  0.0490
PDI1, PD-L1, Lag3, IDO -2.15e+02  0.0586

For the co-expression analysis with the four IRP’s from the set (b),
we looked into all possible (24 — 4 — 1 = 11) two-way and higher order
combinations. There were four different types of combination, namely pair
(6), triplet (4) and quadruplet (1). In Table 2, we list the results for five
marker combinations for which the lowest p-values were observed. At a
level of 0.05, many of the marker-combinations were found to be associated
with both recurrence and survival. Again, all the estimated coefficients
were negative, implying that higher co-expression of the markers decreased
the chance of disease recurrence. Upon correcting the p-values for multiple
testing using Bonferroni’s method, all of the marker combinations listed
in Table 2 remained significant for recurrence while for survival, none of
them remained significant. We compared the p-values of every type of
combination separately, meaning that for marker pairs we compared the
p-values at level 0.05/6 since the number of pairs was 6, for triplets we
compared the p-values at level 0.05/4 since the number of triplets was 4,
and for quadruplet, at level 0.05 since there was just a single quadruplet.
Thus, we also arrived at a similar conclusion as (Patwa et al., 2021) that
the inter-play or co-expression of the IRP’s were significantly associated
with recurrence and possibly also with survival. One added novelty of our
method was that one could easily pinpoint which of the combinations of
the IRP’s had the most impact.

It should be kept in mind that the sample-size for this dataset was quite
small with only 16 events for recurrence and 15 for survival. It might have
affected the overall inference which was based on asymptotic distributional
properties of the test statistics. For the same reason, we mainly focused
on the sign of the coefficent estimates but not their CI’s in this particular
case. We also applied the simple thresholding-based methods, Median-
Thresholding, Threshold 1 and Threshold 2 as described earlier using
both the sets of markers. We found only a single statistically significant
result which was for Median-Thresholding using set (b) in the association
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test with recurrence. Associated tables are provided in the Supplementary
Material.

4 Simulation

Next, we compared the performance of the EQMI*-based association
analysis with the correlation-based association analysis and the
thresholding-based methods in different simulation setups. We assumed
that there were two groups of subjects, one with subjects having high
marker co-expression and the other with subjects having low or almost
zero marker co-expression. In Section 4.1, we considered two markers
sharing linear and non-linear patterns of co-expression relationship. In
Section 4.2, we considered three markers sharing varying degree of linear
co-expression relationship.

4.1 Simulation with two markers

4.1.1 Simulation using Gaussian copula

We replicated the characteristics of the lung cancer dataset in this
simulation. The mean marginal distribution of the markers HLA-DR
and CK across the subjects could be approximated by Beta distribution
respectively with parameters, (1.5,170) and (1.6,35) (refer to the
Supplementary Material). We used a Gaussian copula (Masarotto and
Varin, 2012) to simulate correlated intensity data for two markers which
had the above marginal Beta distributions. The simulation strategy was as
follows,

1. A random number I; between 0 and 1 was chosen with probability
0.5 each, respectively standing for group (1), whose subjects had high
co-expression of the markers and group (2), whose subjects had mild
to none co-expression of the markers. It assigned j-th subject to either
of the two groups.

2. The intensity vector of two markers, (X1;;, X2;;)T for every
individual j was simulated as follows,

a. If I; = 0, simulate a correlation parameter p; from
Unif(0.75,0.9), or else simulate p; from Unif(0, 0.15).

. . . 1 i .
b. Consider a correlation matrix, R; = plj:| and simulate
Pj

(u1ij, u2i5)T ~ N2 (0, Rj) fori =1,...,n;.
(@(u145), ®(u245))T, where &()
denotes the cumulative distribution function (CDF) of the standard

T _
c. Compute (Ulij7'U2ij) =

normal distribution.

d. Perform inverse transformation as,
(Xlij7 XQZ']')T = (Fl_l (Ulij)7 F2_1 (”UQZ'J'))T, where F1 and F2
are Beta distributions with parameters (1.5,170) and (1.6, 35).
Refer to the Supplementary Material for plots of the true joint
densities of the markers for two groups of subjects.

3. The clinical outcome of j-th subject is simulated as, Y; = jﬁ + €5,
where €; ~ N(0,02). This step is repeated 100 times to generate
100 different datasets having different Y vectors but the same intensity
vectors, X1 and Xo. All the methods are applied on these 100 datasets
and empirical power is computed.

Steps 1 — 3 were repeated 20 times and the mean empirical power of
different methods were displayed for varying values of the number of
cells (ncens) and the number of individuals (V) in Figure 1. The EQMI*-
based association analysis (EQMI) and the correlation-based association
analysis (Corr) achieved comparable performance in all the cases. This
particular simulation strategy inherently assumed that the dependence
between the markers was linear. Thus, the estimated values of the EQMI*
and the correlation shared an almost one-to-one relationship making the
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association analysis using either of them equivalent. Median-Tresholding
and Threshold 1 showed similar performance, whereas Threshold 2 had
consistently lower power. It showed the importance of choosing a proper
threshold in the traditional thresholding-based method for achieving a
reasonable performance. All the methods expectedly had the least power
when N was the smallest, whereas the value of ngs did not have any
major impact. It implied if the co-expression pattern was well captured
even through a smaller number of cells, most of the methods would perform
well.

4.1.2 Simulation with squared marker co-expression relationship
The last simulation strategy essentially assumed a linear pattern of co-
expression between the markers. Next, we simulated a non-linear pattern of
co-expression between the markers where we would expect the correlation-
based association analysis (Corr) to perform worse since it could only
capture a linear dependence pattern. Steps 1 and 3 of the last simulation
strategy were kept the same here and the marker-intensity simulation step
i.e., step 2 was changed as follows,

2a. If I; = O, simulate X7;; from Unif(0,0.1), and e;; from
Unif(0, 0.0005). Construct Xo;; as,

XQZ']' = (Xlij - 005)2 + €ij-

2b. If I; = 1, independently simulate x1;;, £2;; both from Unif(0,0.1).

From Figure 1, we noticed that the EQMI*-based association analysis
performed the best in all the cases. Threshold 1 and 2 achieved comparable
performance for large value of nces, whereas Median-Thresholding
mostly yielded poor performance. Note that for both the groups of subjects,
the correlation between the markers were close to zero as the dependence
pattern was non-linear, squared to be specific. Expectedly, the correlation-
based association analysis (Corr) had almost no power in every case.
The simulation strategy demonstrated why using a generalized measure
of co-expression such as EQMI* would be more optimal in many cases.

4.1.3 Simulation with circular marker co-expression relationship

In the last simulation setup, the thresholding-based methods performed
well despite the marker co-expression pattern being non-linear. Next, we
looked into a slightly more complicated co-expression relationship for
which the thresholding-based approach would suffer. Steps 1 and 3 of the
last two simulation strategies were kept the same here and the step 2 was
changed as follows,

2a. If I; = 0, simulate X1;; from Unif(0,0.1), e;; from
Unif(0,0.0005) and a random number s;; between -1 and 1.
Construct Xo;; as,

Xaij = 0.05 + 5i;1/0.052 — (X145 — 0.05)2 + ey

%. If I; =
Unif(0, 0.1).

1, independently simulate X1;;, X2;; both from

From Figure 1, we noticed that the EQMI*-based association analysis
performed the best in all the cases. The correlation-based association
analysis (Corr) expectedly performed the worst. Threshold 1, unlike the
last simulation, performed significantly worse. In this simulation setup, the
subjects of one group had a circular pattern of marker co-expression and the
others had almost zero co-expression. Recall that in a two-marker scenario,
the thresholding-based methods depended on computing the proportions
of the cells positive for both the markers and of the cells positive for only
one of the markers (Section 2.1). The difference between these proportions
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Fig. 2. The figure displays the power of different methods under different simulation scenarios from Section 4.1 with two markers for varying numbers of subjects (IN) and cells (nceps)-
On the z-axis, the fixed effect size 3 was varied from low to high.

across the two groups of subjects became negligible under this setup which Case (c) :Regardless of the value of I, p13; and p23; were kept to be 0.
If I; = 0, p12; was simulated from Unif(0.4, 0.6). Otherwise,

it was simulated from Unif(0.2, 0.4).

made it difficult distinguishing between them. This explained the overall
poor performance of all the thresholding-based methods.

(i) Simulate (w14, uzij,ugij)T ~ N3(0,R;) and compute
(viigs v2i5,v3i5)" = (®(uriz), ®(u2ij), P(usif))”

(iv) Perform inverse transformation as,
(X145, Xoij, X3i5)T = (Ffl(vlij),F{l(U%j)aFa‘_l(USij))T’
where F, F> and F3 are the Beta distributions respectively with
parameters (1.5,170), (1.6, 35) and (1.6, 35).

4.2 Simulation with three markers

Next, we considered three markers and simulated varied degree of linear
dependence between them using Gaussian copula. We only performed the
EQMI*-based association analysis and the thresholding-based methods in
this case. There were again two groups of subjects respectively with high

and low co-expression. The simulation strategy was as follows,
3. Theclinical outcome of j-th subject was simulated as, Y; = I 8+¢€;,

1. A random number I; between 0 and 1 was chosen with probability where €; ~ N (0, o2). This step was repeated 100 times to generate

0.5 each, respectively standing for groups (1) and (2).
2. The intensity vector of three markers, (X1, X2i5, X345 )T forevery
individual j was simulated as follows,

1 pi2; pi3j
(i) Consideracorrelationmatrix, R; = |p12; 1  p23; | .Forthe
p135 p23; 1

subjects in group (1), the off-diagonal elements of the correlation
matrix would have high values, whereas they would have low values
for the subjects in group (2). We considered three different cases
with varying differences between the correlation matrices of the
two groups.

Case (a) : If I; = 0, the correlation parameters p12;, p23; and p13;
were independently simulated from Unif(0.4, 0.6). Otherwise,
they were independently simulated from Unif(0.2, 0.4).

Case (b) : Regardless of the value of I;, pi13; was kept to be 0.

If I; = 0, p12; and p23; were independently simulated

from Unif(0.4, 0.6). Otherwise, these two were independently

simulated from Unif(0.2, 0.4).
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100 different datasets having different Y vectors but the same intensity
data, X1, X2 and X3. All the methods were applied on these 100
datasets and empirical power was computed.

Steps 1 — 3 were repeated 20 times and in Figure 2 the mean empirical
power of the methods were displayed. The power of the methods were
quite low when N was small. The EQMI*-based method outperformed
both the thresholding-based methods, Threshold 1 and 2 in every case.
Threshold 2 had little to no power in most of the cases. Note that, the
cases (a), (b), and (c) differed in how different the marker co-expression
pattern of the two groups were. The difference between the marker co-
expression pattern of the two groups was the largest in case (a) since all
the three correlation parameters, p12;, p23; and p13; were different across
the groups. The difference was the smallest in case (c) as two of the three
correlation parameters, p23; and p13; were kept to be 0 in both the groups.
Quite expectedly, the power of the methods decreased going from case (a)
to case (c), as the difference between the groups of subjects reduced. The
decrease was more prominent with Threshold 1 suggesting the method’s
lack of robustness.
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5 Discussion

In multiplex imaging data, studying the interaction or co-expression of
multiple functional markers in the cells of the tumor microenvironment
(TME) can be crucial for subject-specific assessment of risks. The
traditional approach requires a complex step of binarizing the continuous
valued marker expression profiles which is prone to subjectivity and can
be sub-optimal in many scenarios. The complexity gets exacerbated as
the number of markers increases. In this paper, we propose a method
for studying co-expression or co-expression of multiple markers based
on the theory of mutual information (MI). We treat the subject-specific
intensity or expression of every marker as a continuous random variable.
We determine how much the markers have co-expressed in the TME of a
particular subject by computing a measure known as Euclidean quadratic
mutual information (EQMI), comparing the estimated marginal and joint
probability density functions (PDFs) of the markers. The formula of EQMI
has a similar interpretation as the standard formula of MI but allows a
more efficient computation. We adopt and generalize an existing algorithm
for computing EQMI that does not require explicitly estimating the joint
PDF of the markers, a step which becomes increasingly intractable as the
number of markers increases. Next, the subject-level EQMI values are
tested for association with the clinical outcomes. The proposed method is
free from the subjectivity bias of the traditional thresholding-based method
and is readily applicable with any number of markers.

Power comparison
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Fig. 3. The figure displays the power of different methods under different cases from
Section 4.2 with three markers for varying numbers of subjects (V) and cells (ncens). On

the z-axis, the fixed effect size 3 was varied from low to high.

We applied the proposed method to two real datasets, one mIHC lung
cancer dataset and one MIBI triple negative breast cancer dataset. In the
former, we found high co-expression of the markers, HLA-DR and CK to
be associated with the five-year overall survival of the subjects. In the latter,
we found high co-expression of the immuno-regulatory proteins, PDI,
PD-L1, IDO and Lag3 (IRP’s) to be associated with disease recurrence.
We evaluated the performance of our method through several simulation
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scenarios with two and three markers. In the scenarios with two markers,
we showed that all the methods perform well and close to each other if
the pattern of dependence (co-expression) between the markers is linear.
However, with a more complex non-linear dependence pattern, only the
proposed method could achieve respectable power. In the scenarios with
three markers, we found that the proposed method performed consistently
better than the thresholding-based method and showed superior robustness.

As we have shown in the simulation studies, EQMI can capture both
linear and non-linear patterns of co-expression between the markers very
well. However, the measure is not well suited for capturing the differences
between the patterns. For example, it may happen that one subject has
a linear pattern of co-expression, whereas some other subject has a non-
linear pattern. The EQMI for both the subjects can be very similar, making
it hard to distinguish between them. As a part of our future direction, we
would like to improve the method by detecting and incorporating the type
of the co-expression pattern. With more than two markers, we studied
the co-expression patterns of all possible combinations of the markers and
declared significance based on p-values corrected by Bonferroni’s method.
However, in future, we would like to explore the causal direction between
the markers which can then be used to determine a smaller and optimal set
of markers and would obviate the need of exploring all possible marker-
combinations. In this paper, we have not used any information on the
spatial locations of the TME cells. As a future direction, we would like to
study the MI between the spatial information and the marker expression
profiles with a goal to detect spatially variable markers and their spatial
patterns.

Our method is available as an R package named MIAMI at this link,
https://github.com/sealx017/MIAMI. The package is readily applicable to
any multiplex imaging dataset which has cell-level intensity data on two or
more markers. In future, we would like to further augment the package’s
capability by incorporating a pixel-level analysis as well.
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