
Fine-Tuning Transformers For Genomic Tasks

Vlastimil Martinek * 1 David Cechak * 1 Katarina Gresova 1 Panagiotis Alexiou 1 Petr Simecek 1

Abstract

Transformers are a type of neural network archi-

tecture that has been successfully used to achieve

state-of-the-art performance in numerous natu-

ral language processing tasks. However, what

about DNA, the language life written in the four-

letter alphabet? In this paper, we review the cur-

rent state of Transformers usage in genomics and

molecular biology in general, introduce a collec-

tion of benchmark datasets for the classification

of genomic sequences, and compare the perfor-

mance of several model architectures on those

benchmarks, including a BERT-like model for

DNA sequences DNABERT as implemented in

HuggingFace (armheb/DNA bert 6 model). In

particular, we explore the effect of pre-training

on a large DNA corpus vs training from scratch

(with randomized weights). The results presented

here can be used for identification of functional

elements in human and other genomes.

1. Introduction

In the past five years, Deep Learning methods for Natural

Language Processing (NLP) came through a revolution that

has been possible thanks to two key novel innovations: lan-

guage models and transfer learning. With this approach,

the model is first trained in an unsupervised fashion with

unlabelled data and then fine-tuned to a specific downstream

task with labelled data. (Howard & Ruder, 2018) trained

the ULMFit model to predict the following word in English

Wikipedia corpus and then fine-tuned it to six text classi-

fication tasks (outperforming the state-of-the-art methods

at a time). While ULMFit architecture was still based on

Long Short Term Memory networks (LSTMs), the novel

model architecture based on Encoder / Decoder structure

and self-attention was introduced at around the same time –

Transformers (Vaswani et al., 2017) – and have dominated
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the NLP field since then. It was shown that some neurons

and attention heads have a direct connection to text features

like sentiment (Radford et al., 2017) or direct objects of

verbs (Clark et al., 2019). While the original transformer

models like BERT (Devlin et al., 2018) have just lower hun-

dred millions of parameter, much larger language models

have been recently introduced like GPT-3 with 175B param-

eters (Brown et al., 2020), Gopher with 280B parameters

(Rae et al., 2021) and GLaM with more than 1.2T param-

eters (Du et al., 2021). Other recent changes include the

unification of different tasks (Raffel et al., 2019) expansion

of transformer architecture beyond traditional sequential

models, e.g. Vision transformers (Dosovitskiy et al., 2020),

(Dai et al., 2021) and/or 3D Point Cloud transformers (Zhao

et al., 2020).

But what about DNA, the language life written in the four-

letter alphabet? For the simplicity reasons, we restrict our-

selves to the human genome in this paper. It consists of

more than 3 billion base pairs organized into 22 paired

chromosomes (autosomes) and the 23rd pair of sex chro-

mosomes (XX for females, XY for males). The known suc-

cessful deep learning applications for convolutional neural

networks (CNNs) and recurrent LSTMs include identifica-

tion/classification of genes from their sequence (Georgakilas

et al., 2019) and identification of functional elements reg-

ulating gene expression, namely gene promoters (Umarov

& Solovyev, 2017), enhancers (Liu et al., 2016), enhancer-

promoter interactions (Zeng et al., 2018) and transcription

factor binding sites (Shen et al., 2018).

Unfortunately, unlike in NLP, there are no widely recog-

nized DNA benchmarks. To overcome this problem, we

have started to work on a collection of genomic datasets and

propose the first five of them in the Method section. The

second issue is more serious, DNA is written rather in sev-

eral languages than one original language. The ∼ 20, 000
protein coding gene sequences represent ∼ 1% of the hu-

man genome. Approximately 50% of the human genome

is made up of repetitive sequences, mostly transposons, but

also microsatellites and minisatellites and even duplications

of large segments (Haubold & Wiehe, 2006).

There are also not so many language models trained for

DNA. (Hoarfrost et al., 2020) trained ULMFit-like model

LookingGlass on microbial genomes. Karl Heyer published
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his experiments as GitHub repo GenomicULMFit (https:

//github.com/kheyer/Genomic-ULMFiT). Re-

garding transformer architecture, to the best of our knowl-

edge, the only known language model is DNABert (Ji et al.,

2020) trained on the human genome that we will utilise

for our purposes. While it is not explicitly mentioned

inDNABert paper, the model can be found in HuggingFace

model repository (armheb/DNA bert 6 model).

2. Methods

2.1. Datasets

Due to the lack of established genomic benchmarks, we

have started to put together our own. The collection

is based on a combination of existing datasets obtained

from published papers and novel datasets constructed

from public databases. The data are distributed as a

Python package available at https://github.com/

ML-Bioinfo-CEITEC/genomic_benchmarks, the

minimalist version (compressed list of genomic coordinates)

is stored on GitHub itself and full datasets (full DNA se-

quences) are cached on Google Drive.

For this paper, we have used the five datasets that have

already been curated and will be part of the benchmark in

the future. For testing we use ∼ 30% of data points. All five

datasets contains exactly two classes and are either balanced

or (in case of human promoters) close to it. The summary

table with number of sequences and their lengths are in

Table 1.

2.1.1. HUMAN NON-TATA PROMOTERS

A promoter is a sequence of DNA that binds a protein ini-

tiating the gene transcription. Effectively, it turns gene ex-

pression on and off. It is usually located close (from -200 to

50bp) to the transcription splice site (TSS). This dataset has

been adapted from the paper (Umarov & Solovyev, 2017).

2.1.2. HUMAN ENHANCERS COHN

An enhancer is a sequence of DNA that can bound specific

proteins and therefore increase a change of transcription

of a particular gene. Unlike promoters, enhancers do not

need to be in a close proximity to TSS (might be several

Mb away). This dataset has been adapted from (Cohn et al.,

2018) paper.

2.1.3. HUMAN ENHANCERS ENSEMBL

For this dataset of human enhancers, we have queried En-

sembl database (Howe et al., 2021), release 100. The

data are originally coming from VISTA Enhancer Browser

project, (Visel et al., 2007). The Unlike the other datasets,

this one has variable length of the sequences.

2.1.4. CODING VS INTERGENOMIC REGIONS

This dataset has been originally used for teaching purposes

at ECCB2020 workshop. It consists of randomly generated

50,000 sequences (200bp long) from intergenomic regions

and randomly generated 50,000 sequences from human tran-

scripts.

2.1.5. HUMAN OR WORM?

Randomly chosen DNA sequences (200bp long) either from

the human genome or from the genome of C. elegans

(worm).

2.2. Models & Training

We have trained and evaluated three models for each dataset:

First, we fine-tuned DNABert model pre-trained on hu-

man DNA (Ji et al., 2020). Second, to assess the effect

of pre-training, we trained the model initialized with ran-

dom weights (no pre-training). Lastly, as a baseline we have

then used CNN architecture previously successfully used to

similar problems (Klimentova et al., 2020).

We have repeated each training five time to evaluate the

variability of the results. As a loss function, we have used

binary cross entropy. We have used early stopping and

fallback to the model that achieved the lowest loss on the

validation set.

The BERT models were trained with batch size of 48 and

weight decay of 0.1. The learning rate was linearly increased

to 0.0002 during the warmup period. AdamW was used as

an optimizer. The CNN models were trained with the Adam

optimizer, using learning rate of 0.001, no weight decay,

and batch size of 32.

CODE REPOSITORY

All code to derive results in this paper is available in a

GitHub repository:

https://github.com/ML-Bioinfo-CEITEC/

genomic_benchmarks

3. Results

To evaluate the performance of the model on a testing set,

we will use the F1 metric:

F1 = 2·
precision recall

precision + recall
=

TP

TP + 1

2
(FP + FN)

,

where TP is a number of true positives, FP a number of true

positives and TN is a number of false negatives.

The running time has been 5-30 minutes for one run of
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Table 1. Number of sequences and sequence length per dataset.

NAME # OF SEQUENCES MEDIAN LENGTH STD. OF LENGTH

HUMAN NONTATA PROMOTERS 36131 251 0.0
HUMAN OR WORM 100000 200 0.0
HUMAN ENHANCERS ENSEMBL 154842 269 122.6
CODING VS INTERGENOMIC SEQS 100000 200 0.0
HUMAN ENHANCERS COHN 27791 500 0.0

CNN model and 2-6 hours for transformer models (Google

Clound Platform, n1-highmem-8 virtual machine, NVIDIA

Tesla T4 GPU).

The performance of the models summarized in F1 metric

on a testing set is reported in the Table 2. As you can see

DNABert is superior in all five our benchmark datasets and

the fine-tuned DNABert outperformed the model with the

randomized weights in four out of five cases.

4. Discussion

In this paper, we have experimented with transformers ap-

plied to classification of DNA sequences. We have shown

that the model pre-trained on human genome achieves better

accuracy than the same model with randomized weights

and a convolutional neural network model. While ML re-

searchers in the genomic field currently uses rather simple

architectures like LSTMs and CNNs, the HuggingFace im-

plementation of DNABert should encourage wider adoption

of transformers.

DNA sequences present a unique challenge for machine

learning because of their length and complexity. Transform-

ers provide a more effective way to model these sequences

than traditional neural networks. However, with only one

transformer model trained over DNA available, many ques-

tions remain open for further investigation. Would the bigger

models achieve better performance as for natural language

and also for protein sequences (Rives et al., 2021), (Elnag-

gar et al., 2020), (Xiao et al., 2021)? If one universal DNA

language model sufficient or would it be better to train a

separate language model for each model organism (human,

mouse, zebrafish, . . . ).

And finally, taking into account the heterogeneous nature

of human genome, would it be better to train on corpus that

would not be the whole genome but rather a handcrafted

specific subsample, e.g. for promoters taking only segments

close to transcription splice site? This should be investigated

in future work.
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