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Abstract

Transformers are a type of neural network archi-
tecture that has been successfully used to achieve
state-of-the-art performance in numerous natu-
ral language processing tasks. However, what
about DNA, the language life written in the four-
letter alphabet? In this paper, we review the cur-
rent state of Transformers usage in genomics and
molecular biology in general, introduce a collec-
tion of benchmark datasets for the classification
of genomic sequences, and compare the perfor-
mance of several model architectures on those
benchmarks, including a BERT-like model for
DNA sequences DNABERT as implemented in
HuggingFace (armheb/DNA _bert_6 model). In
particular, we explore the effect of pre-training
on a large DNA corpus vs training from scratch
(with randomized weights). The results presented
here can be used for identification of functional
elements in human and other genomes.

1. Introduction

In the past five years, Deep Learning methods for Natural
Language Processing (NLP) came through a revolution that
has been possible thanks to two key novel innovations: lan-
guage models and transfer learning. With this approach,
the model is first trained in an unsupervised fashion with
unlabelled data and then fine-tuned to a specific downstream
task with labelled data. (Howard & Ruder, 2018) trained
the ULMFit model to predict the following word in English
Wikipedia corpus and then fine-tuned it to six text classi-
fication tasks (outperforming the state-of-the-art methods
at a time). While ULMFit architecture was still based on
Long Short Term Memory networks (LSTMs), the novel
model architecture based on Encoder / Decoder structure
and self-attention was introduced at around the same time —
Transformers (Vaswani et al., 2017) — and have dominated
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the NLP field since then. It was shown that some neurons
and attention heads have a direct connection to text features
like sentiment (Radford et al., 2017) or direct objects of
verbs (Clark et al., 2019). While the original transformer
models like BERT (Devlin et al., 2018) have just lower hun-
dred millions of parameter, much larger language models
have been recently introduced like GPT-3 with 175B param-
eters (Brown et al., 2020), Gopher with 280B parameters
(Rae et al., 2021) and GLaM with more than 1.2T param-
eters (Du et al., 2021). Other recent changes include the
unification of different tasks (Raffel et al., 2019) expansion
of transformer architecture beyond traditional sequential
models, e.g. Vision transformers (Dosovitskiy et al., 2020),
(Dai et al., 2021) and/or 3D Point Cloud transformers (Zhao
et al., 2020).

But what about DNA, the language life written in the four-
letter alphabet? For the simplicity reasons, we restrict our-
selves to the human genome in this paper. It consists of
more than 3 billion base pairs organized into 22 paired
chromosomes (autosomes) and the 23rd pair of sex chro-
mosomes (XX for females, XY for males). The known suc-
cessful deep learning applications for convolutional neural
networks (CNNSs) and recurrent LSTMs include identifica-
tion/classification of genes from their sequence (Georgakilas
et al., 2019) and identification of functional elements reg-
ulating gene expression, namely gene promoters (Umarov
& Solovyev, 2017), enhancers (Liu et al., 2016), enhancer-
promoter interactions (Zeng et al., 2018) and transcription
factor binding sites (Shen et al., 2018).

Unfortunately, unlike in NLP, there are no widely recog-
nized DNA benchmarks. To overcome this problem, we
have started to work on a collection of genomic datasets and
propose the first five of them in the Method section. The
second issue is more serious, DNA is written rather in sev-
eral languages than one original language. The ~ 20, 000
protein coding gene sequences represent ~ 1% of the hu-
man genome. Approximately 50% of the human genome
is made up of repetitive sequences, mostly transposons, but
also microsatellites and minisatellites and even duplications
of large segments (Haubold & Wiehe, 2006).

There are also not so many language models trained for
DNA. (Hoarfrost et al., 2020) trained ULMFit-like model
LookingGlass on microbial genomes. Karl Heyer published
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his experiments as GitHub repo GenomicULMFit (https:
//github.com/kheyer/Genomic-ULMFiT). Re-
garding transformer architecture, to the best of our knowl-
edge, the only known language model is DNABert (Ji et al.,
2020) trained on the human genome that we will utilise
for our purposes. While it is not explicitly mentioned
inDNABert paper, the model can be found in HuggingFace
model repository (armheb/DNA _bert_6 model).

2. Methods
2.1. Datasets

Due to the lack of established genomic benchmarks, we
have started to put together our own. The collection
is based on a combination of existing datasets obtained
from published papers and novel datasets constructed
from public databases. The data are distributed as a
Python package available at https://github.com/
ML-Bioinfo-CEITEC/genomic_benchmarks, the
minimalist version (compressed list of genomic coordinates)
is stored on GitHub itself and full datasets (full DNA se-
quences) are cached on Google Drive.

For this paper, we have used the five datasets that have
already been curated and will be part of the benchmark in
the future. For testing we use ~ 30% of data points. All five
datasets contains exactly two classes and are either balanced
or (in case of human promoters) close to it. The summary
table with number of sequences and their lengths are in
Table 1.

2.1.1. HUMAN NON-TATA PROMOTERS

A promoter is a sequence of DNA that binds a protein ini-
tiating the gene transcription. Effectively, it turns gene ex-
pression on and off. It is usually located close (from -200 to
50bp) to the transcription splice site (TSS). This dataset has
been adapted from the paper (Umarov & Solovyev, 2017).

2.1.2. HUMAN ENHANCERS COHN

An enhancer is a sequence of DNA that can bound specific
proteins and therefore increase a change of transcription
of a particular gene. Unlike promoters, enhancers do not
need to be in a close proximity to TSS (might be several
Mb away). This dataset has been adapted from (Cohn et al.,
2018) paper.

2.1.3. HUMAN ENHANCERS ENSEMBL

For this dataset of human enhancers, we have queried En-
sembl database (Howe et al., 2021), release 100. The
data are originally coming from VISTA Enhancer Browser
project, (Visel et al., 2007). The Unlike the other datasets,
this one has variable length of the sequences.

2.1.4. CODING VS INTERGENOMIC REGIONS

This dataset has been originally used for teaching purposes
at ECCB2020 workshop. It consists of randomly generated
50,000 sequences (200bp long) from intergenomic regions
and randomly generated 50,000 sequences from human tran-
scripts.

2.1.5. HUMAN OR WORM?

Randomly chosen DNA sequences (200bp long) either from
the human genome or from the genome of C. elegans
(worm).

2.2. Models & Training

We have trained and evaluated three models for each dataset:
First, we fine-tuned DNABert model pre-trained on hu-
man DNA (Ji et al., 2020). Second, to assess the effect
of pre-training, we trained the model initialized with ran-
dom weights (no pre-training). Lastly, as a baseline we have
then used CNN architecture previously successfully used to
similar problems (Klimentova et al., 2020).

We have repeated each training five time to evaluate the
variability of the results. As a loss function, we have used
binary cross entropy. We have used early stopping and
fallback to the model that achieved the lowest loss on the
validation set.

The BERT models were trained with batch size of 48 and
weight decay of 0.1. The learning rate was linearly increased
to 0.0002 during the warmup period. AdamW was used as
an optimizer. The CNN models were trained with the Adam
optimizer, using learning rate of 0.001, no weight decay,
and batch size of 32.

CODE REPOSITORY

All code to derive results in this paper is available in a
GitHub repository:

https://github.com/ML-Bioinfo-CEITEC/
genomic_benchmarks

3. Results

To evaluate the performance of the model on a testing set,
we will use the FI metric:

precision recall TP

! precision + recall TP—l—%(FP—i—FN)7

where TP is a number of true positives, FP a number of true
positives and TN is a number of false negatives.

The running time has been 5-30 minutes for one run of
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Table 1. Number of sequences and sequence length per dataset.

NAME # OF SEQUENCES  MEDIAN LENGTH  STD. OF LENGTH
HUMAN_NONTATA_PROMOTERS 36131 251 0.0
HUMAN_OR_WORM 100000 200 0.0
HUMAN_ENHANCERS_ENSEMBL 154842 269 122.6
CODING_VS_INTERGENOMIC_SEQS 100000 200 0.0
HUMAN_ENHANCERS_COHN 27791 500 0.0

CNN model and 2-6 hours for transformer models (Google References

Clound Platform, n1-highmem-8 virtual machine, NVIDIA
Tesla T4 GPU).

The performance of the models summarized in F1 metric
on a testing set is reported in the Table 2. As you can see
DNABert is superior in all five our benchmark datasets and
the fine-tuned DNABert outperformed the model with the
randomized weights in four out of five cases.

4. Discussion

In this paper, we have experimented with transformers ap-
plied to classification of DNA sequences. We have shown
that the model pre-trained on human genome achieves better
accuracy than the same model with randomized weights
and a convolutional neural network model. While ML re-
searchers in the genomic field currently uses rather simple
architectures like LSTMs and CNNs, the HuggingFace im-
plementation of DNABert should encourage wider adoption
of transformers.

DNA sequences present a unique challenge for machine
learning because of their length and complexity. Transform-
ers provide a more effective way to model these sequences
than traditional neural networks. However, with only one
transformer model trained over DNA available, many ques-
tions remain open for further investigation. Would the bigger
models achieve better performance as for natural language
and also for protein sequences (Rives et al., 2021), (Elnag-
gar et al., 2020), (Xiao et al., 2021)? If one universal DNA
language model sufficient or would it be better to train a
separate language model for each model organism (human,
mouse, zebrafish, ...).

And finally, taking into account the heterogeneous nature
of human genome, would it be better to train on corpus that
would not be the whole genome but rather a handcrafted
specific subsample, e.g. for promoters taking only segments
close to transcription splice site? This should be investigated
in future work.
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