

1 Structures of the Type IX Secretion/gliding

2 motility motor from across the phylum

3 *Bacteroidetes*

4 Running Title: Structures of GldLM homologues

5

6 Authors: Rory Hennell James^{1,2,5}, Justin C. Deme^{1,3,4}, Alicia Hunter¹, Ben C. Berks^{2,6}, Susan
7 M. Lea^{1,3,4,6}

- 8 1. Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- 9 2. Department of Biochemistry, University of Oxford, Oxford, UK
- 10 3. The Central Oxford Structural Molecular Imaging Centre (COSMIC), University of
11 Oxford, Oxford, UK
- 12 4. Center for Structural Biology, Center for Cancer Research, National Cancer
13 Institute, Frederick MD, USA
- 14 5. Present address: Institute of Structural and Systems Biology, University Medical
15 Centre Hamburg-Eppendorf, Hamburg, Germany
- 16 6. To whom correspondence should be addressed: Ben Berks
17 (ben.berks@bioch.ox.ac.uk), Susan Lea (susan.lea@nih.gov)

18

19 [Abstract](#)

20 Gliding motility using cell surface adhesins and export of proteins by the Type IX Secretion
21 System (T9SS) are two phylum-specific features of the *Bacteroidetes*. Both of these processes are
22 energized by the GldLM motor complex which transduces the protonmotive force at the inner
23 membrane into mechanical work at the outer membrane. We previously used cryo-electron
24 microscopy to solve the structure of the GldLM motor core from *Flavobacterium johnsoniae* at
25 3.9 Å resolution (*Nat Microbiol* (2021) **6**: 221-233). Here we present structures of homologous
26 complexes from a range of pathogenic and environmental *Bacteroidetes* species at up to 3.0 Å
27 resolution. These structures show that the architecture of the GldLM motor core is conserved
28 across the *Bacteroidetes* phylum although there are species-specific differences at the N-
29 terminus of GldL. The resolution improvements reveal a cage-like structure that ties together the
30 membrane-proximal cytoplasmic region of GldL and influences gliding function. These findings
31 add detail to our structural understanding of bacterial ion-driven motors that drive the T9SS and
32 gliding motility.

33 [Importance](#)

34 Many bacteria in the *Bacteroidetes* phylum use the Type IX Secretion System to secrete
35 proteins across their outer membrane. Most of these bacteria can also glide across surfaces using
36 adhesin proteins that are propelled across the cell surface. Both secretion and gliding motility are
37 driven by the GldLM protein complex which forms a nanoscale electrochemical motor. We used
38 cryo-electron microscopy to study the structure of the GldLM protein complex from different
39 species including the human pathogens *Porphyromonas gingivalis* and *Capnocytophaga*
40 *canimorsus*. The organisation of the motor is conserved across species, but we find species-

41 specific structural differences and resolve motor features at higher resolution. This work
42 improves our understanding of the Type IX Secretion System, which is a virulence determinant in
43 human and animal diseases.

44

45 Introduction

46 The Type IX Secretion System (T9SS) is a protein export system found exclusively in the
47 *Bacteroidetes* phylum of Gram-negative bacteria (1, 2). Substrates of the T9SS are transported to
48 the periplasm by the Sec system following which a conserved C-terminal domain (CTD) directs
49 export through an outer membrane T9SS translocon (Figure 1a) (2, 3). In most cases the CTD is
50 then removed and the substrate protein is either released into the environment or anchored to
51 the outer membrane as a lipoprotein (4). The human oral pathogen *Porphyromonas gingivalis*
52 uses the T9SS to secrete gingipain proteases and other virulence factors to evade the host
53 immune system (5). The T9SS has also been identified as essential to the virulence of several
54 economically-relevant fish and poultry pathogens (6–8). In commensal and environmental
55 *Bacteroidetes* the T9SS is characteristically used to secrete enzymes that enable the organisms
56 to utilise complex polysaccharides as a food source (1, 9, 10). Many *Bacteroidetes* with a T9SS also
57 exhibit gliding motility in which cells travel rapidly across surfaces (2). This motility depends on
58 the movement of cell surface adhesin molecules which are secreted to the cell surface by the
59 T9SS (Figure 1a).

60 The T9SS and the gliding motility apparatus share a motor complex that uses the proton-
61 motive force (PMF) across the inner membrane to drive both protein transport and gliding
62 adhesin movement at the outer membrane (11–13). The motor complex is formed from the
63 integral inner membrane proteins GldL and GldM (11, 14). GldL has two transmembrane helices
64 (TMHs) and a cytoplasmic domain. GldM has one TMH and a large periplasmic region which
65 crystal structures have shown forms an extended dimer of four domains D1-D4 (11, 15, 16). The

66 periplasmic region of GldM is long enough to span the periplasm to contact the outer membrane
67 components of the T9SS and gliding motility apparatus.

68 We previously solved the structure of the core of the GldLM motor complex from the
69 gliding bacterium *Flavobacterium johnsoniae* (11). This structure contains the full transmembrane
70 region of the motor complex but the cytoplasmic domain of GldL was not visible and the
71 periplasmic region of GldM had been genetically truncated after the first (D1) domain, forming a
72 construct termed *FjoGldLM'* (11). The structure reveals that the T9SS/gliding motor is a
73 GldL₅GldM₂ heteroheptamer in which the 10 GldL TMHs surround the two GldM TMHs (Figure
74 1b). The symmetry mismatch between the total number of GldL and GldM TMHs results in an
75 inherently asymmetric relationship between the two types of subunit around the GldL ring.
76 Amino acid substitutions showed that several conserved protonatable residues in the
77 transmembrane helices of GldL and GldM are important for T9SS and gliding motility function.
78 These residues are likely to be involved in coupling proton flow across the inner membrane to
79 mechanical motions in the motor. Based on the organisation of the GldLM transmembrane
80 helices, and the structural homology of the transmembrane part of GldLM to the ion-driven
81 motor complexes that drive bacterial flagella (17, 18), we proposed that GldLM forms a rotary
82 motor in which the GldM subunits rotate within the ring of GldL helices (11, 17). The periplasmic
83 domain of GldM is then envisaged to transmit this rotary motion across the periplasm to the
84 outer membrane components of the T9SS and gliding motility systems.

85 The structure of the *FjoGldLM'* complex was determined to a resolution (3.9 Å) at which
86 only limited information can be inferred about the position of mechanistically important amino
87 acid side chains. In addition, the protein was captured in a single conformational state providing

88 only one snapshot of the catalytic mechanism of the enzyme. In this work we have sought to
89 overcome these limitations in the structural characterization of the GldLM motor by determining
90 structures of the motor complexes from a phylogenetically diverse range of organisms. We
91 anticipated that some of these complexes would allow structure determination at improved
92 resolution and in alternative conformational states. Here we present structures of the
93 T9SS/gliding motor core from the human pathogens *P. gingivalis* and *Capnocytophaga*
94 *canimorsus*, and the environmental bacteria *Schleiferia thermophila* and *Sphingobacterium*
95 *wenxiniae*.

96

97 Results and discussion

98 The architecture of GldLM' complexes is conserved across the *Bacteroidetes*

99 To structurally survey the diversity of gliding motility/T9SS motor complexes we selected

100 proteins from a range of *Bacteroidetes* bacteria for recombinant expression in *Escherichia coli*.

101 These proteins were chosen to maximise phylogenetic spread, to include proteins from

102 organisms growing at a range of temperatures (psychrophiles to thermophiles) and from

103 different environments (marine, fresh water, terrestrial, and commensals/pathogens), and to

104 include examples both from gliding bacteria and from non-gliding bacteria with a T9SS. All

105 constructs included the full length GldL homologue. For the GldM homologue we trialled

106 constructs including different numbers of periplasmic domains. However, as with the earlier *F.*

107 *johnsoniae* GldLM' structure, we were only able to obtain structures by cryo-EM from complexes

108 in which GldM was truncated after the first periplasmic D1 domain (GldM'), with the exception

109 of one construct in which GldM was truncated after the D2 domain (GldM''). However, even in

110 the latter case this effectively produced a GldLM' structure as the D2 domain was not resolved,

111 as discussed below.

112 Following screening for expression, purification, and cryo-freezing we were able to

113 determine structures for the T9SS/gliding motor complexes of *P. gingivalis* (PgiPorLM'),

114 *Capnocytophaga canimorsus* (CcaGldLM''_{peri} and CcaGldLM''_{TMH}), *Schleiferia thermophila*

115 (SthGldLM'), and *Sphingobacterium wenxiniae* (SweGldLM') (Figure 1, Table 1 and Figures S2-S7).

116 *P. gingivalis* is a non-gliding oral pathogen, *C. canimorsus* is a dog commensal and opportunistic

117 human pathogen, *S. thermophila* is a thermophile isolated from a hot spring (optimum growth

118 temperature 50 °C), and *S. wenxiniae* was isolated from a waste water treatment plant. Note that
119 in *P. gingivalis* the motor proteins are termed PorLM rather than GldLM. Figure 1c and Figure S1
120 show the phylogenetic positions of these motor proteins within the diversity of GldL and GldM
121 proteins. The resolutions of the new structures ranged from 3.0 to 3.9 Å, with the higher-
122 resolution structures allowing for more confident positioning of side chains than our previous 3.9
123 Å resolution *FjoGldLM'* structure (Figure 1d).

124 The overall architecture of the *FjoGldLM'* complex is conserved in the four new motor
125 complex structures, with five copies of GldL surrounding two copies of GldM (Figure 2a-c). As in
126 the *FjoGldLM'* structure, only the trans-membrane helices and periplasmic loop of GldL were fully
127 resolved, with almost all of the C-terminal cytoplasmic domain not seen in the structures (11).
128 The periplasmic D1 domains of the GldM dimer were visible in all structures. The precise angles
129 between the two copies of the D1 domain varied from 30° to 45° between structures. However,
130 in all cases the D1 pairs adopted the splayed arrangement seen in the previous *FjoGldLM'*
131 structure. This splayed arrangement contrasts with the closed arrangement of the D1 pair seen
132 in crystal structures of the isolated periplasmic domain of GldM/PorM (15, 16), but is consistent
133 with the low resolution cryo-EM structure of full length *PgiPorLM* (11).

134 Structural data were obtained from a *C. canimorsus* construct (*CcaGldLM''*) which includes
135 both the D1 and D2 periplasmic domains of GldM. During 3D classification classes could be
136 identified where either the D2 domain was well-resolved, or where the transmembrane portion
137 of the complex was well-resolved (corresponding to the GldLM' complex structures determined
138 from other organisms), but never both (Figures S3, S4 & S8a-b). This suggests that the *CcaGldLM''*
139 complex is not able to adopt a conformation in which both the transmembrane helices and D2

140 domains are simultaneously ordered. In the *CcaGldLM*” structure with the ordered
141 transmembrane helices (*CcaGldLM*”_{TMH}), the D1 domains are splayed as in the other
142 *GldLM’/PorLM’* structures and in the low resolution structure of the complete *PorLM* complex
143 (Figure S8 a,d). By contrast, in the *CcaGldLM*” structure where the transmembrane domain is
144 unresolved (*CcaGldLM*”_{peri}), the D1 domains adopt a parallel orientation (Figure S8 b,c,e) similar
145 to the isolated *FjoGldM* periplasmic domain crystal structure (15) even though no crystal contacts
146 are present. These observations suggest that splaying of the D1 domains is the most stable
147 arrangement of the D1 domains in the intact motor complex, but leaves open the possibility that
148 a parallel arrangement of the D1 domains might occur transiently during operation of the motor.

149 Mutagenesis has previously been used to identify residues within the transmembrane
150 domain of the *F. johnsoniae* *GldLM* motor that are important for function (11). These residues
151 are well-conserved in the new motor structures, with the exception that *FjoGldL* Tyr13 is replaced
152 by isoleucine in *S. wenziniae* *GldLM*. The side chain positions of these residues can be assigned
153 with more confidence due to the improved resolution of the *CcaGldLM*”_{TMH}, *SthGldLM’*, and
154 *SweGldLM’* structures. Notably the orientation of these side chains is similar between the
155 different motor structures where the resolution of the structures allows this judgement (Figure
156 2e). The side chain position is least well defined for the *FjoGldL* Glu49 equivalent, which we
157 previously proposed forms a salt bridge between one copy of *GldL* and Arg9 in one of the two
158 *FjoGldM* molecules (11). The poor definition of this residue is not surprising as glutamate
159 sidechains are susceptible to damage by the electron beam during cryo-EM experiments,
160 meaning that they are often not visible in EM density maps and cannot be accurately modelled
161 (19). Nevertheless, in all the motor protein structures the side chain of the *FjoGldM* Arg9

162 equivalent is oriented towards the *FjoGldL* Glu49 equivalent suggesting that a salt bridge
163 interaction between these residues is a conserved feature of the GldLM/PorLM complex.

164 The membrane-proximal region of GldL forms a cage-like structure

165 The majority of the cytoplasmic region of GldL was not visible in any of our structures.
166 However, the part that is immediately adjacent to the inner face of the cytoplasmic membrane
167 was much better resolved in the *PgiPorLM'*, *SthGldLM'*, and *SweGldLM'* structures than in the
168 previously determined *FjoGldLM'* structure. It can now be seen that extended coils from the C-
169 terminal end of TMH2 form a cage-like structure below the detergent micelle (Figure 3a). In
170 *SweGldLM'* the coil was only fully resolved for chain GldL_C, which is involved in the putative salt
171 bridge with chain GldM_B. This coil is braced by the N-terminus of the adjacent chain GldL_D, an
172 interaction not seen in the other structures. The cage structure is best-resolved in the *SthGldLM'*
173 complex, revealing that the constituent coils are held together by a network of hydrogen bonds
174 and hydrophobic packing interactions between aspartate, tryptophan and tyrosine residues
175 (Figure 3d). The cage structure exhibits high sequence conservation suggesting that it is of
176 structural and/or functional importance (Figure 3d and Figure S9a). The cytoplasmic interactions
177 between the GldL chains in the cage structure could help coordinate movements between
178 subunits that do not contact each other in the TMH bundle. The surface of the cage is acidic
179 (Figure S9b) creating a region of negative charge that may assist in the release of protons flowing
180 through the transmembrane part of the motor complex. Alternatively, it may help maintain
181 separation between the cytoplasmic domain of GldL and the negatively-charged phospholipid
182 head groups of the cytoplasmic membrane.

183 We investigated the importance of the cage structure to motor function through
184 mutagenesis of the chromosomal *gldL* gene in the genetically tractable organism *F. johnsoniae*.
185 Mutant cells in which the cage was completely deleted (removal of residues 64-74, *gldL*_{Δcage}) had
186 a small but reproducible gliding defect as measured by colony spreading on agar plates, whilst
187 cells in which the cage sequence was replaced by a GSS repeat linker of the same length
188 (*gldL*_{CageToGSS}) showed no gliding defect (Figure 3e). The fact that changing the cage sequence to
189 a GSS repeat had no effect on motility on agar indicates that the length of this cage region, rather
190 than its precise sequence or structure, is most important to motor function.

191 *P. gingivalis* PorL has a N-terminal helix that is absent in other structurally characterized
192 *GldL*/PorL proteins

193 The *P. gingivalis* PorL protein has a N-terminal extension relative to the other motor
194 proteins that we have structurally characterized (Figure 4a). This extension forms a helix that is
195 not present in the other structures (Figure 4b). The helix points away from the trans-membrane
196 *GldL* helix bundle at an angle of approximately 100° from TMH1 (Figure 4c,d) and approximately
197 tangential to the circumference of the bundle (Figure 4b). The helix lies against the curved surface
198 of the detergent micelle (Figure 4e) suggesting that *in vivo* it is likely to lie along the membrane
199 surface with the positively charged N-terminus (Figure 4b,c) interacting with the negatively-
200 charged phospholipid head groups. This helix may, therefore, play a role in stabilising the position
201 of the PorLM complex in the cytoplasmic membrane. The presence of this N-terminal helix in
202 *PgiPorLM'* and the bracing interaction seen between the N-terminus of *GldL_D* and the cytoplasmic
203 region of *GldL_C* in the *SweGldLM'* structure noted in the last section suggests a role for the N-
204 terminus of *GldL* in species-specific functional tuning of the motor complex.

205 Conclusion

206 This work, together with our previous study (11), provides the structures of the
207 transmembrane cores of five T9SS/gliding motor complexes from species across three orders of
208 the *Bacteroidetes*. These structures show that the architecture of the GldLM motor complex is
209 well-conserved and imply that the mechanism by which the motor converts proton flow to
210 mechanical movement is the same across the *Bacteroidetes*. The yield of the recombinant *S.*
211 *wenxiniae* GldLM' complex is much higher than that of the previously purified *FjoGldLM*' protein
212 (Figure S2 and (11)) which should expedite future *in vitro* mechanistic studies of the T9SS/gliding
213 motor. Future work should also explore how GldL and GldM interact with other components of
214 the T9SS and gliding motility machinery to convert motor motions into the useful work of protein
215 translocation and adhesin propulsion.

216

217 **Methods**

218 **Bioinformatics analysis**

219 A phylogenetic tree of GldL sequences was generated as follows. GldL sequences were
220 obtained by BLAST searches against the UniRef90 database using the *F. johnsoniae* GldL, *P.*
221 *gingivalis* PorL and *S. wexiniae* GldL sequences as queries (20, 21). Each sequence in the
222 UniRef90 database represents a cluster of sequences with more than 90% identity to the
223 representative sequence. Searching against the UniRef90 database reduces the number of highly
224 similar sequences in the results compared to searching against an unfiltered database. Sequences
225 duplicated between the three BLAST searches, sequences representing clusters where the lowest
226 common taxon was higher than order (and thus likely incorrectly phylogenetically assigned), and
227 sequences from organisms outside the *Bacteroidetes* phylum were removed. The sequences
228 were then aligned using Clustal Omega (22). A phylogenetic tree was inferred using the Maximum
229 Likelihood function of program MEGA X with a JTT matrix-based model with default settings (23,
230 24). A phylogenetic tree of GldM sequences was generated using the same approach.

231 **Bacterial strains and growth conditions**

232 Strains and plasmids used in this study are listed in Tables S1 & S2. For cloning procedures,
233 *E. coli* cells were routinely grown in Luria Bertani medium (LB; (25)) at 37 °C with shaking. *F.*
234 *johnsoniae* cells were routinely grown in casitone yeast extract (CYE) (26) medium at 30 °C with
235 shaking. PY2 medium (27) was used to assess motility on agar plates. When required, kanamycin
236 was added to LB medium at 30 µg ml⁻¹ or to TB medium at 50 µg ml⁻¹. When required,
237 erythromycin was added at 100 µg ml⁻¹.

238 **Genetic constructs**

239 Primers used in this work are described in Table S3. All plasmid constructs were verified
240 by sequencing.

241 GldL and C-terminally truncated and Twin-Strep-tagged GldM proteins (GldM'-TS/GldM''-
242 TS) were expressed from vectors derived from the plasmid pT12 (28) under the control of
243 rhamnose-inducible promoters.

244 Suicide vectors to genetically modify *F. johnsoniae* were produced using the vectors
245 pRHJ012 (11) and pYT354 (29), then introduced into the *F. johnsoniae* *ΔgldL* strain FI_082
246 (11) using *E. coli* strain S17-1 (30) as previously described (11).

247 Full details of all genetic constructs are given in the Supplemental Methods.

248 **Purification of protein complexes**

249 Briefly, protein complexes were overexpressed in BL21(DE3) cells and then extracted
250 from cell membranes using lauryl maltose neopentyl glycol (LMNG; Anatrace). Protein complexes
251 were then affinity-purified using StrepTactin XT resin (IBA) and then further purified using size-
252 exclusion chromatography. Full details of the purification scheme are given in the Supplemental
253 Methods.

254 Typical yields per litre of cell culture were as follows: *CcaGldLM''* 20 µg, *PgiPorLM'* 50 µg,
255 *SthGldLM'* 6 µg, *SweGldLM'* 350 µg.

256 Cryo-EM sample preparation and imaging

257 4 μ l aliquots of purified samples at $A_{280} = 1$ were applied onto glow-discharged holey
258 carbon-coated grids (Quantifoil 300 mesh, Au R1.2/1.3), then adsorbed for 10 s, blotted for 2 s
259 at 100% humidity at 4 °C and plunge-frozen in liquid ethane using a Vitrobot Mark IV (FEI). To
260 prepare samples with fluorinated octyl maltoside (fOM; Anatrace), proteins were concentrated
261 to $A_{280} = 3$ and 13.5 μ l was mixed with 1.5 μ l of 7 mM fOM in Buffer W + 0.01% LMNG. All samples
262 were centrifuged at 18,400g for 10 min at 4 °C immediately before grid preparation.

263 Data were collected using a Titan Krios G3 (FEI) operated at 300 kV fitted with either a GIF
264 energy filter (Gatan) and a K2 Summit detector (Gatan) or a BioQuantum imaging filter (Gatan)
265 and a K3 direct detection camera (Gatan). Full details of the data collection strategy are given in
266 the Supplemental Methods.

267 Cryo-EM data processing

268 Motion correction, dose weighting, contrast transfer function determination, particle
269 picking, and initial particle extraction were performed using SIMPLE 3.0 (31). Gold-standard
270 Fourier shell correlations (FSC) using the 0.143 criterion and local resolution estimations were
271 calculated within RELION 3.1 (32).

272 In general, extracted particles were subjected to reference-free 2d classification in
273 SIMPLE, followed by 3d classification in Relion using either the previously-solved *FjogldLM'* map
274 (11) or another map produced in this study as a reference. Classes with clear secondary structure
275 detail were selected and used for 3d autorefinement. Successive rounds of Bayesian particle
276 polishing, 3d classification and 3d autorefinement in Relion were used to generate the final maps

277 for each dataset. A full description of the data processing strategy for each dataset is given in the
278 Supplemental Methods.

279 [Model building and refinement](#)

280 The Phyre² server was used to generate homology models for each new sequence from
281 the structure of *FjoGldLM'* (PDB: 6SY8) using one-to-one threading (33). These models were rigid
282 body fit into the cryo-EM volume using Coot and residues were built *de novo* or removed as
283 necessary in Coot (34). Rebuilding in globally-sharpened and local-resolution filtered maps was
284 combined with real-space refinement in Phenix using secondary structure, rotamer and
285 Ramachandran restraints to give the final models described in Table 1 (35, 36). Validation was
286 done in Molprobity (37). Structures were analysed using ChimeraX (38), Pymol 2.3.3 (Schrodinger)
287 and the Consurf server (39, 40).

288 [Measurement of gliding motility on agar](#)

289 Strains were grown overnight in PY2 medium, washed once in PY2 medium, then resuspended
290 in PY2 medium to an OD₆₀₀ = 0.1. A 2-μl sample was then spotted onto PY2 agar plates. Plates were
291 incubated at 25 °C for 48 h before imaging with a Zeiss AXIO Zoom MRM CCD camera and Zeiss
292 software (ZenPro 2012, v.1.1.1.0).

293

294 [Acknowledgements](#)

295 We thank K. Foster for providing additional imaging facilities and E. Furlong for preparing
296 some cryo-EM grids

297 This work was supported by Wellcome Trust studentship 102164/Z/13/Z, Wellcome Trust
298 Investigator Awards 107929/Z/15/Z and 219477/Z/19/Z, and ERC Advanced Award 833713. This
299 research was supported in part by the Intramural Research Program of the NIH. We acknowledge
300 the use of the Central Oxford Structural Microscopy and Imaging Centre (COSMIC). COSMIC was
301 supported by a Wellcome Trust Collaborative Award 201536/Z/16/Z, the Wolfson Foundation, a
302 Royal Society Wolfson Refurbishment Grant, the John Fell Fund, and the EPA and Cephalosporin
303 Trusts.

304 [Author contributions](#)

305 RHJ performed genetic and biochemical work. AH optimised protein purification with RHJ.
306 JCD prepared cryo-EM grids and collected cryo-EM data. RHJ solved cryoEM structures and built
307 models with advice from JCD. RHJ, JCD and SML analysed structures. RHJ, SML and BCB wrote the
308 of the manuscript. All authors commented on the manuscript and approved the final version.

309 [Data availability](#)

310 The cryo-EM volumes and atomic coordinates presented in this paper have been
311 deposited in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB),
312 respectively, with the following accession codes: *CcaGldLM*^{TMH} - PDB 7SAZ and EMD-24959,

313 *CcaGldLM*"_{peri} - PDB 7SB2 and EMD-24961, *PgiPorLM*' - PDB 7SAT and EMD-24956, *SthGldLM*' -
314 PDB 7SAU and EMD-24957, and *SweGldLM*' - PDB 7SAX and EMD-24958.

315 References

316 1. Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M, McBride MJ, Rhodes RG, Nakayama K. 2010. A
317 protein secretion system linked to Bacteroidete gliding motility and pathogenesis. *Proc Natl Acad
318 Sci* 107:276–81.

319 2. McBride MJ. 2019. *Bacteroidetes* Gliding Motility and the Type IX Secretion System. *Microbiol Spectr*
320 7:PSIB-0002-2018.

321 3. Lauber F, Deme JC, Lea SM, Berks BC. 2018. Type 9 secretion system structures reveal a new protein
322 transport mechanism. *Nature* 564:77–82.

323 4. Lasica AM, Goulas T, Mizgalska D, Zhou X, De Diego I, Ksiazek M, Madej M, Guo Y, Guevara T, Nowak
324 M, Potempa B, Goel A, Sztukowska M, Prabhakar AT, Bzowska M, Widziolek M, Thøgersen IB, Enghild
325 JJ, Simonian M, Kulczyk AW, Nguyen KA, Potempa J, Gomis-Rüth FX. 2016. Structural and functional
326 probing of PorZ, an essential bacterial surface component of the type-IX secretion system of human
327 oral-microbiomic *Porphyromonas gingivalis*. *Sci Rep* 6:37708.

328 5. Nakayama K. 2015. *Porphyromonas gingivalis* and related bacteria: from colonial pigmentation to
329 the type IX secretion system and gliding motility. *J Periodontal Res* 50:1–8.

330 6. Guo Y, Hu D, Guo J, Wang T, Xiao Y, Wang X, Li S, Liu M, Li Z, Bi D, Zhou Z. 2017. *Riemerella
331 anatipestifer* Type IX secretion system is required for virulence and gelatinase secretion. *Front
332 Microbiol* 8:2553.

333 7. Yuan H, Huang L, Wang M, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y,
334 You Y, Chen X, Zhu D, Cheng A. 2019. Role of the *gldK* gene in the virulence of *Riemerella*
335 *anatipestifer*. Poult Sci <https://doi.org/10.3382/ps/pez028>.

336 8. Li N, Zhu Y, LaFrentz BR, Evenhuis JP, Hunnicutt DW, Conrad RA, Barbier P, Gullstrand CW, Roets JE,
337 Powers JL, Kulkarni SS, Erbes DH, García JC, Nie P, McBride MJ. 2017. The Type IX Secretion System
338 Is Required for Virulence of the Fish Pathogen *Flavobacterium columnare*. Appl Environ Microbiol
339 83:e01769-17.

340 9. Cabral L, Persinoti GF, Paixao DAA, Martins MP, Chinaglia M, Morais MAB, Pirolla RAS, Generoso
341 WC, Maciel LF, Lombard V, Henrissat B, Murakami MT. 2021. Gut microbiome of capybara, the
342 Amazon master of the grasses, harbors unprecedented enzymatic strategies for plant glycans
343 breakdown. Prepr Version 1 Available Res Sq <https://doi.org/10.21203/rs.3.rs-456076/v1>.

344 10. Naas AE, Soden LM, Norbeck AD, Brewer H, Hagen LH, Heggenes IM, McHardy AC, Mackie RI, Paša-
345 Tolić L, Arntzen MØ, Eijsink VGH, Koropatkin NM, Hess M, Wrighton KC, Pope PB. 2018. “*Candidatus*
346 *Paraporphryomonas polyenzymogenes*” encodes multi-modular cellulases linked to the type IX
347 secretion system. Microbiome 6:44.

348 11. Hennell James R, Deme JC, Kjær A, Alcock F, Silale A, Lauber F, Johnson S, Berks BC, Lea SM. 2021.
349 Structure and mechanism of the proton-driven motor that powers type 9 secretion and gliding
350 motility. Nat Microbiol 6:221–223.

351 12. Dzink-Fox JAL, Leadbetter ER, Godchaux W. 1997. Acetate acts as a protonophore and differentially
352 affects bead movement and cell migration of the gliding bacterium *Cytophaga johnsonae*
353 (*Flavobacterium johnsoniae*). Microbiology 143:3693–3701.

354 13. Nakane D, Sato K, Wada H, McBride MJ, Nakayama K. 2013. Helical flow of surface protein required
355 for bacterial gliding motility. *Proc Natl Acad Sci* 110:11145–50.

356 14. Vincent MS, Canestrari MJ, Leone P, Stathopoulos J, Ize B, Zoued A, Cambillau C, Kellenberger C,
357 Roussel A, Cascales E. 2017. Characterization of the *Porphyromonas gingivalis* Type IX Secretion
358 Trans-envelope PorKLMNP Core Complex. *J Biol Chem* 292:3252–3261.

359 15. Leone P, Roche J, Vincent MS, Tran QH, Desmyter A, Cascales E, Kellenberger C, Cambillau C, Roussel
360 A. 2018. Type IX secretion system PorM and gliding machinery GldM form arches spanning the
361 periplasmic space. *Nat Commun* 9:429.

362 16. Sato K, Okada K, Nakayama K, Imada K. 2020. PorM, a core component of bacterial type IX secretion
363 system, forms a dimer with a unique kinked-rod shape. *Biochem Biophys Res Commun* 532:114–
364 119.

365 17. Deme JC, Johnson S, Vickery O, Aron A, Monkhouse H, Griffiths T, James RH, Berks BC, Coulton JW,
366 Stansfeld PJ, Lea SM. 2020. Structures of the stator complex that drives rotation of the bacterial
367 flagellum. *Nat Microbiol* 5:1553–1564.

368 18. Santiveri M, Roa-Eguiara A, Kühne C, Wadhwa N, Hu H, Berg HC, Erhardt M, Taylor NMI. 2020.
369 Structure and Function of Stator Units of the Bacterial Flagellar Motor. *Cell* 183:244–257.

370 19. Hattne J, Shi D, Glynn C, Zee C-T, Gallagher-Jones M, Martynowycz MW, Rodriguez JA, Gonen T.
371 2018. Analysis of Global and Site-Specific Radiation Damage in Cryo-EM. *Structure* 26:759–766.

372 20. Altschul SF, Miller W, Gish W, Myers EW, Lipman DJ. 1990. Basic Local Alignment Search Tool. *J Mol
373 Biol* 215:403–410.

374 21. Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH. 2015. UniRef clusters: A comprehensive and
375 scalable alternative for improving sequence similarity searches. *Bioinformatics* 31:926–932.

376 22. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn
377 RD, Lopez R. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids Res*
378 47:W636–W641.

379 23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics
380 analysis across computing platforms. *Mol Biol Evol* 35:1547–1549.

381 24. Jones DT, Taylor WR, Thornton JM. 1992. The rapid generation of mutation data matrices from
382 protein sequences. *Bioinformatics* 8:275–282.

383 25. Miller JH. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring
384 Harbor, New York.

385 26. McBride MJ, Kempf MJ. 1996. Development of techniques for the genetic manipulation of the gliding
386 bacterium *Cytophaga johnsonae*. *J Bacteriol* 178:583–590.

387 27. Agarwal S, Hunnicutt DW, McBride MJ. 1997. Cloning and characterization of the *Flavobacterium*
388 *johnsoniae* (*Cytophaga johnsonae*) gliding motility gene, *gldA*. *Proc Natl Acad Sci* 94:12139–12144.

389 28. Dietsche T, Tesfazgi Mebrhatu M, Brunner MJ, Abrusci P, Yan J, Franz-Wachtel M, Schärfe C, Zilkenat
390 S, Grin I, Galán JE, Kohlbacher O, Lea S, Macek B, Marlovits TC, Robinson CV, Wagner S. 2016.
391 Structural and Functional Characterization of the Bacterial Type III Secretion Export Apparatus. *PLOS*
392 *Pathog* 12:e1006071.

393 29. Zhu Y, Thomas F, Larocque R, Li N, Duffieux D, Cladière L, Souchaud F, Michel G, McBride MJ. 2017.
394 Genetic analyses unravel the crucial role of a horizontally acquired alginic lyase for brown algal
395 biomass degradation by *Zobellia galactanivorans*. *Environ Microbiol* 19:2164–2181.

396 30. Simon R, Priefer U, Pühler A. 1983. A broad host range mobilization system for in vivo genetic
397 engineering: Transposon mutagenesis in Gram-negative bacteria. *Bio/Technology* 1:784–791.

398 31. Caesar J, Reboul CF, Machello C, Kiesewetter S, Tang ML, Deme JC, Johnson S, Elmlund D, Lea SM,
399 Elmlund H. 2020. SIMPLE 3.0. Stream single-particle cryo-EM analysis in real time. *J Struct Biol* X
400 4:100040.

401 32. Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJH, Lindahl E, Scheres SHW. 2018. New tools
402 for automated high-resolution cryo-EM structure determination in RELION-3. *eLife* 7:e42166.

403 33. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein
404 modeling, prediction and analysis. *Nat Protoc* 10:845–858.

405 34. Emsley P, Lohkamp B, Scott WG, Cowtan KD. 2010. Features and development of *Coot*. *Acta
406 Crystallogr D* 66:486–501.

407 35. Afonine PV, Poon BK, Read RJ, Sobolev OV, Terwilliger TC, Urzhumtsev A, Adams PD. 2018. Real-
408 space refinement in *PHENIX* for cryo-EM and crystallography. *Acta Crystallogr D* 74:531–544.

409 36. Liebschner D, Afonine PV, Baker ML, Bunkoczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy
410 AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ, Richardson JS, Richardson DC, Sammito
411 MD, Sobolev OV, Stockwell DH, Terwilliger TC, Urzhumtsev AG, Videau LL, Williams CJ, Adams PD.
412 2019. Macromolecular structure determination using X-rays, neutrons and electrons: Recent
413 developments in *Phenix*. *Acta Crystallogr D* 75:861–877.

414 37. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ,
415 Chen VB, Jain S, Lewis SM, Arendall WB, Snoeyink J, Adams PD, Lovell SC, Richardson JS, Richardson
416 DC. 2018. MolProbity: More and better reference data for improved all-atom structure validation.
417 Protein Sci 27:293–315.

418 38. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. 2021. UCSF
419 ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 30:70–82.

420 39. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N. 2016. ConSurf 2016: an
421 improved methodology to estimate and visualize evolutionary conservation in macromolecules.
422 Nucleic Acids Res 44:W344–W350.

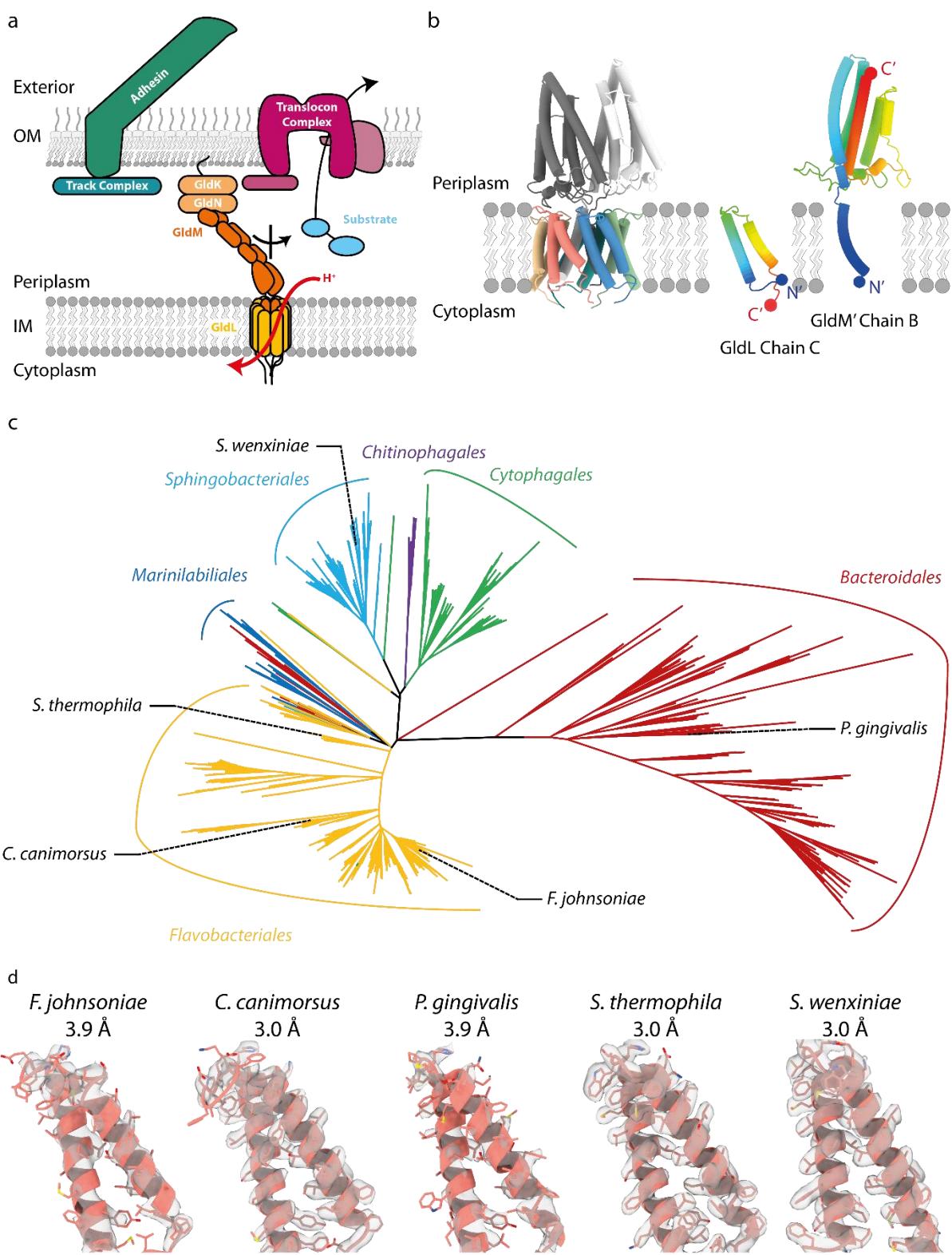
423 40. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N. 2005. ConSurf 2005: The
424 projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res
425 33:W299–W302.

426

427

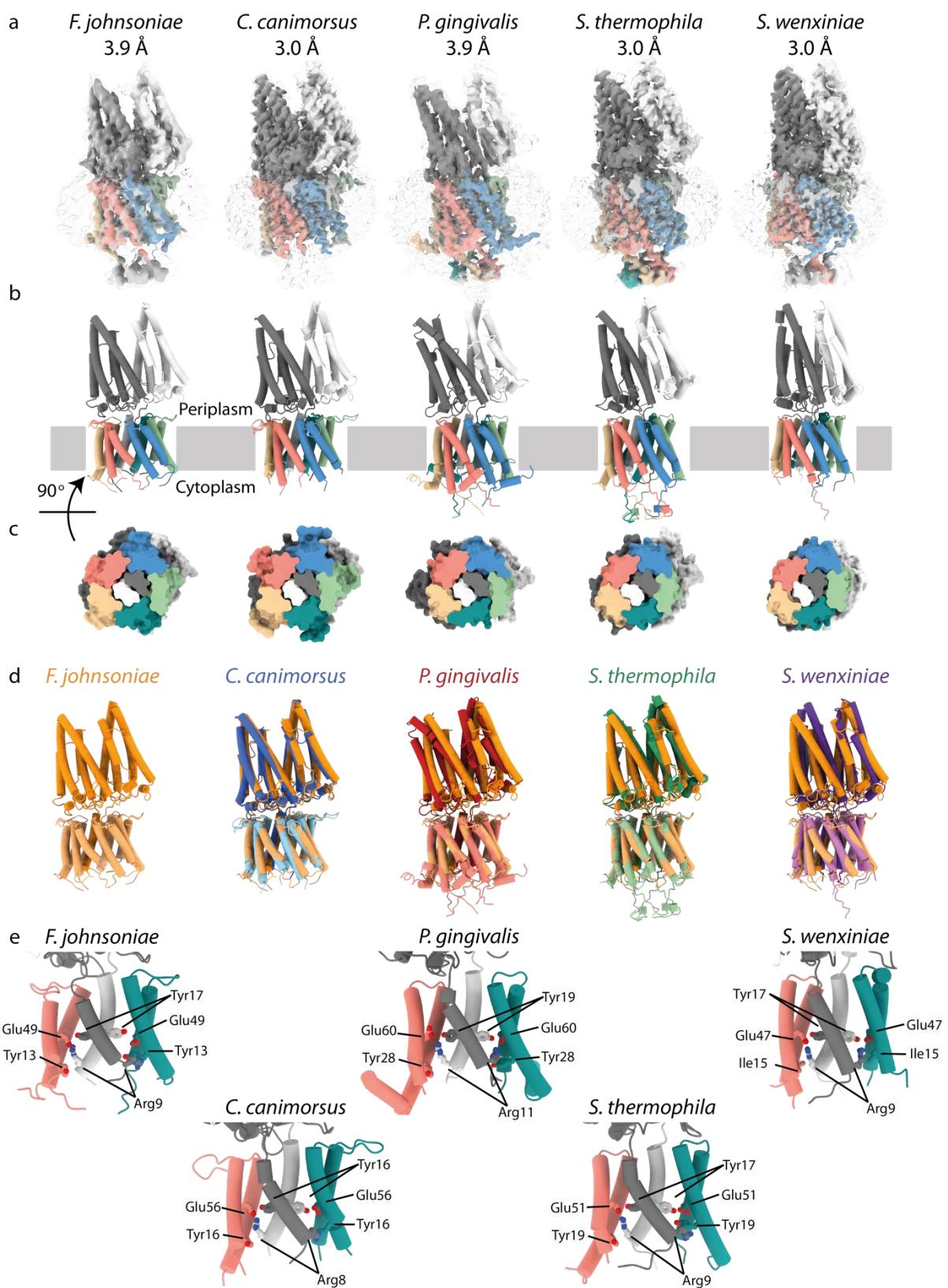
428 Tables

429 **Table 1 Cryo-EM data collection, refinement, and validation statistics for the**

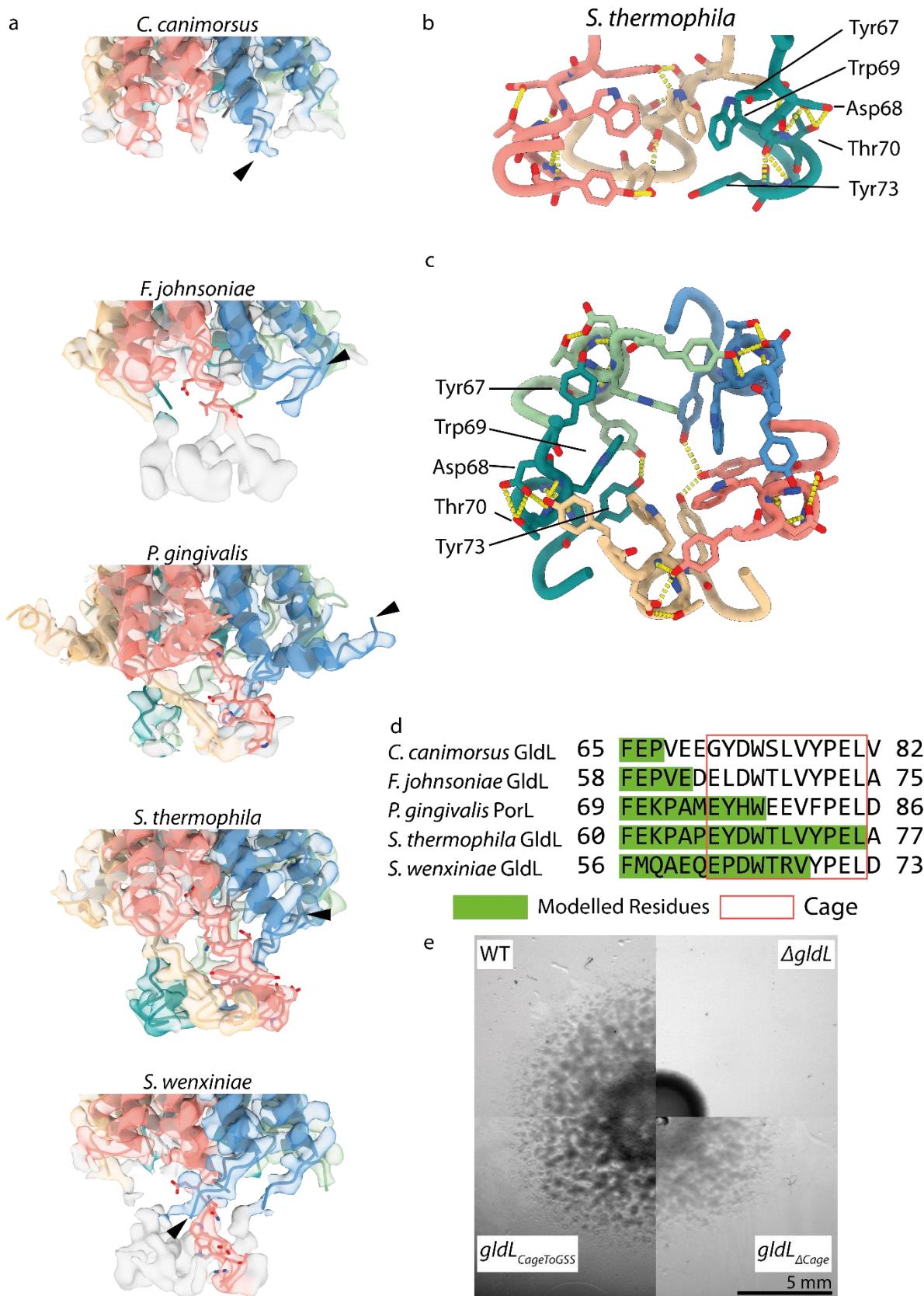

430 ***PgiPorLM'c*, *SthGldLM'*, *CcaGldLM''_{peri}*, *GldLM''_{TMH}*, and *SweGldLM'* structures.**

	<i>P.</i> <i>gingivalis</i> PorLM' (PDB 7SAT and EMD- 24956)	<i>S.</i> <i>thermophila</i> GldLM' (PDB 7SAU and EMD- 24957)	<i>C.</i> <i>canimorsus</i> GldLM'' _{peri} (PDB 7SB2 and EMD- 24961)	<i>C.</i> <i>canimorsus</i> GldLM'' _{TMH} (PDB 7SAZ and EMD- 24959)	<i>S.</i> <i>wenxiniae</i> GldLM' (PDB 7SAX and EMD- 24958)
Data collection and processing					
Magnification	81,000	105,000	105,000	105,000	105,000
Voltage (kV)	300	300	300	300	300
Electron exposure (e ⁻ Å ⁻²)	55.6	62.4 (without fOM) 61.2 (with fOM)	59.1	59.1	56.9
Defocus range (μm)	1.0-3.0	1.0-3.0	1.0-3.0	1.0-3.0	1.0-3.0
Pixel size (Å)	0.832	0.832	0.832	0.832	0.832
Symmetry imposed	C1	C1	C1	C1	C1
Initial particle images (no.)	8,205,503	13,743,455	9,197,926	9,197,926	7,167,266
Final particle images (no.)	649,359	394,678	595,559	77,223	111,727
Map resolution (Å)	3.9	3.0	3.4	3.0	3.0
FSC threshold	0.143	0.143	0.143	0.143	0.143
Map resolution range (Å)	3.7-4.9	2.8-3.7	3.3-6.0	2.8-4.3	3.0-4.3
Refinement					
Initial model used (PDB code)	None	None	None	None	None
Model resolution (Å)	3.9	3.0	3.4	3.0	3.0
FSC threshold	0.143	0.143	0.143	0.143	0.143
Model resolution range (Å)	3.7-4.9	2.8-3.7	3.3-6.0	2.8-4.3	3.0-4.3
Map sharpening B factor (Å ²)	-200	-93	-122	-58	-83

Model composition	6581	6317	4728	5708	5301
Non-hydrogen atoms	822	791	600	722	689
Protein residues	0	0	0	0	0
Ligands					
B factors (Å ²)					
Protein	72.16	51.61	93.02	55.39	63.20
Ligand	NA	-	-	-	-
R.m.s. deviations					
Bond lengths (Å)	0.004	0.005	0.005	0.005	0.009
Bond angles (°)	0.747	0.600	0.781	0.675	0.700
Validation					
MolProbity score	2.16	1.68	2.39	1.82	1.50
Clashscore	15.42	5.98	22.84	9.65	5.09
Poor rotamers (%)	0.28	0.15	0.00	0.00	0.00
Ramachandran plot					
Favoured (%)	92.57	94.85	90.34	95.48	96.44
Allowed (%)	7.43	5.15	9.66	4.38	3.56
Disallowed (%)	0.00	0.00	0.00	0.14	0.00

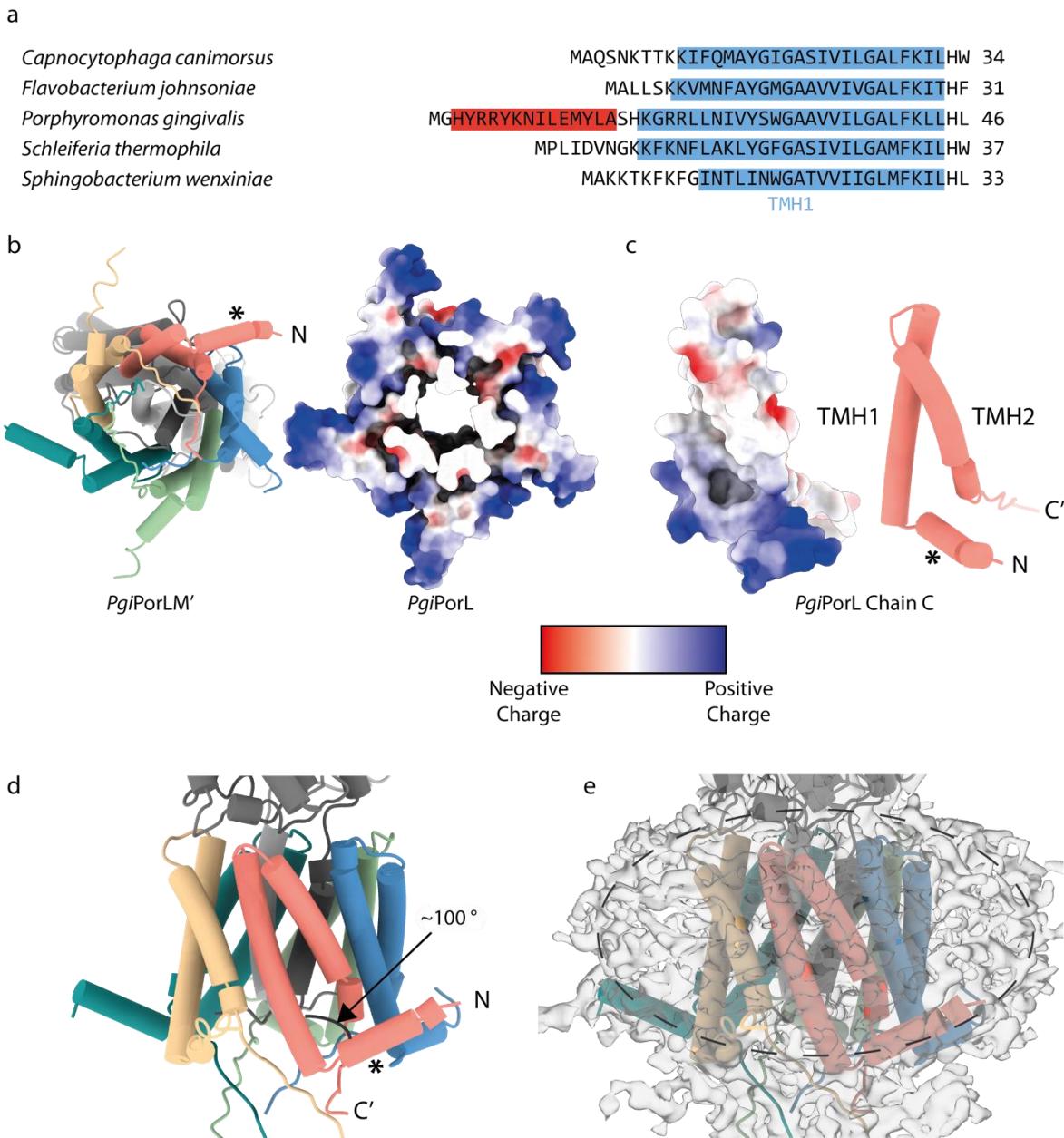

431

432 Figures



434 **Figure 1 Role and phylogenetic diversity of the GldLM motor complex. a** Cartoon illustrating the
435 involvement of the GldLM motor complex in the T9SS and gliding motility. The GldLM motor
436 converts electrochemical potential energy from the proton-motive force across the inner
437 membrane (IM) into mechanical work which the periplasmic portion of GldM transfers across the
438 periplasm to the outer membrane (OM). This mechanical energy is used to drive gliding adhesin
439 movement (left) and protein transport through the T9SS (right). Coupling between these
440 processes and GldM is thought to be mediated by a GldKN lipoprotein complex. **b** Cartoon
441 representation of the structure of the *F. johnsoniae* GldLM' complex solved previously ((11); PDB
442 6SY8, EMD-10893). (*Left*) Whole structure. The five GldL chains are colored salmon, blue, green,
443 teal, and salmon and the two GldM chains are colored dark gray and white. (*Right*) Individual
444 GldL and GldM chains are shown and rainbow colored from the N-terminus (blue) to the C-
445 terminus (red). The most N-terminal (N') and C-terminal (C') modelled residues of each chain are
446 marked with a sphere. **c** Maximum likelihood phylogenetic tree of GldL sequences in the
447 *Bacteroidetes* phylum. Branches are colored by taxonomic order and the positions of proteins for
448 which structures were determined are indicated. Note that the GldL sequence similarity matches
449 the bacterial phylogenetic tree in most cases indicating that GldL has been predominantly
450 vertically rather than horizontally transmitted. A phylogenetic tree for GldM is shown in Figure
451 S1. **d** Increased resolution of the new T9SS/gliding motor complex structures shows improved
452 side chain density. Chain GldL_c is shown for each species with EM density displayed at the same
453 contour level.

454



456 **Figure 2 GldLM' has conserved architecture across the *Bacteroidetes* phylum. a** EM density
457 maps for GldLM"_{TMH}/GldLM'/PorLM' complexes from the indicated species at high (colored by
458 protein chain) and low (transparent) contour. The structure of *F. johnsoniae* GldLM' was solved
459 previously (11). The resolution of the structures is indicated above the panels. **b** Cartoon
460 representations of the structures with chains colored as in **a**. **c** Slab through the protein density
461 from **a** viewed from the cytoplasm and sliced approximately half-way through the membrane
462 region. **d** The new GldLM"_{TMH}/GldLM'/PorLM' complex structures (colored as indicated) overlaid
463 on *F. johnsoniae* GldLM' (orange). GldM"_{TMH}/GldM'/PorM' subunits are shown in a darker shade
464 than the GldL/PorL subunits. **e** Conservation of residues that are functionally important in *F.*
465 *johnsoniae* GldLM (11) (top left hand panel) in other GldLM"_{TMH}/GldLM/PorLM complexes. The
466 proposed inter-subunit salt bridge is between the labelled Glu residue in the salmon GldL chain
467 and the labelled Arg residue in the white GldM chain. For clarity chains GldL_D, GldL_E and GldL_G are
468 hidden for each structure.

470 **Figure 3 The membrane-proximal part of the GldL cytoplasmic domain forms a cage. a** Overlay
471 of EM density and the built model for the cytoplasmic region of each GldL structure. EM density
472 is shown at the same contour level for all species. Side chains are shown for Chain C in the cage
473 region. The most N-terminal residue modelled for Chain D is indicated with an arrowhead to
474 highlight the bracing interaction between Chains C and D of *SweGldLM'*. **b,c** Interaction network
475 at the base of the cage-like structure in *SthGldLM'*. The view direction is parallel to the membrane
476 (**b**) or from within the TMH bundle (**c**). For clarity chains D and F are hidden in **b**. Hydrogen bonds
477 are shown as yellow dashes. Selected side chains are displayed for the same residues in each
478 chain and are labelled on Chain F (teal). For other residues, backbone atoms are shown if they
479 form hydrogen bonds. **d** Sequence alignment of the cage region for the five GldL/PorL sequences.
480 Residues which could be modelled for each structure are highlighted in green. Residues
481 constituting the cage region are boxed in red. **e** Effects of modifications in the GldL cytoplasmic
482 cage on *F. johnsoniae* gliding motility (spreading) on plates. The region of the *F. johnsoniae*
483 sequence enclosed by the red box in **d** (residues E64-L74) was either substituted with
484 GSSGSSGSSGS (*gldL_{Cage}toGSS*) or deleted (*gldL_{ΔCage}*). The results are representative of three
485 independent experiments.

486

488 **Figure 4** *P. gingivalis* PorL has a N-terminal membrane surface-associated helix. **a** Sequence
489 alignment of the N-terminal regions of the structurally characterised GldL homologues. The first
490 transmembrane helix of each sequence is highlighted in blue. The additional N-terminal helix of
491 *PgiPorL* is highlighted in red. **b** View from the cytoplasm of *P. gingivalis* PorLM' in cartoon (left)
492 and coulombic surface (right) representation. For clarity PorM' is hidden in the coulombic view.

493 **c** Coulombic surface (left) and cartoon (right) representations of *P. gingivalis* PorL Chain C viewed
494 from within the membrane. **d** Side view of *PgiPorLM'* in cartoon representation. **e** Side view of
495 the *PgiPorLM'* complex model overlaid with the EM density map displayed at low contour level.
496 The approximate boundary of the detergent micelle is marked with a dashed line. In panels **b-d**
497 * indicates the N-terminal helix and C' indicates the most C-terminal modelled residue.

498

499 **Supplemental Material Legends**

500 **Table S1. Bacterial strains used in this study.**

501 **Table S2. Plasmids used in this study**

502 **Table S3. Oligonucleotides used in this study.**

503 **Figure S1 Maximum likelihood phylogenetic tree of GldM sequences in the**

504 **Bacteroidetes phylum.** Branches are colored by taxonomic order and the positions of proteins

505 for which structures were determined are indicated.

506 **Figure S2 Purification of GldM'', PorLM', and GldM' complexes. a** Size exclusion-

507 chromatography traces for the indicated protein complexes. Proteins were analysed using a

508 Superose 6 10/300 Increase column (Cytiva). The peaks used to prepare cryo-EM grids are

509 indicated with arrowheads. **b-e** SDS-PAGE gels for the fractions used to make cryo-EM grids for

510 the indicated protein complexes.

511 **Figure S3 Data processing workflow for CcaGldM''_{peri} map. a** Example micrograph for

512 the CcaGldM'' sample collected at approximately 2.6 μ m defocus. Scale bar 500 \AA . **b**

513 Representative 2D class averages used to produce the initial model. Scale bar 100 \AA . **c**

514 Representative 2D class averages used to produce the CcaGldM''_{peri} map. Scale bar 100 \AA . **d** Data

515 processing workflow for the CcaGldM''_{peri} map. The handedness of the maps was flipped

516 between the left and right columns once helices were visible. **e** Local resolution estimates (in \AA)

517 for the sharpened CcaGldM''_{peri} map. **f** Fourier Shell Correlation (FSC) plot for the CcaGldM''_{peri}

518 map. The resolution at the gold-standard cut-off (FSC = 0.143) is indicated by the dashed line.

519 Curves: Red, phase-randomised; Green, unmasked; Blue, masked; black, MTF-corrected.

520 **Figure S4 Data processing workflow for *CcaGldLM*”_{TMH} map. a** Representative 2D class
521 averages used to produce the *CcaGldLM*”_{TMH} map. Scale bar 100 Å. **b** Data processing workflow
522 for the *CcaGldLM*”_{TMH} map. **c** Local resolution estimates (in Å) for the sharpened *CcaGldLM*”_{TMH}
523 map. **d** FSC plot for the *CcaGldLM*”_{TMH} map. The resolution at the gold-standard cut-off (FSC =
524 0.143) is indicated by the dashed line. Curves: Red, phase-randomised; Green, unmasked; Blue,
525 masked; black, MTF-corrected.

526 **Figure S5 Data processing workflow for *PgiPorLM*’ map. a** Example micrograph for the
527 initial *PgiPorLM*’ dataset collected with a K2 detector at approximately 1.8 µm defocus. Scale bar
528 500 Å. **b** Representative 2D class averages from the K2 dataset used for initial processing. Scale
529 bar 100 Å. **c** Example micrograph from the second *PgiPorLM*’ dataset collected with a K3 detector
530 at approximately 1.8 µm defocus. Scale bar 500 Å. **d** Representative 2D class averages from the
531 K3 dataset used for final processing. Scale bar 100 Å. **e** Data processing workflow for the
532 *PgiPorLM*’ map. Scale bar on 2D class averages 100 Å. **f** Local resolution estimates (in Å) for the
533 sharpened *PgiPorLM*’ map. **g** Fourier Shell Correlation (FSC) plot for the *PgiPorLM*’ map. The
534 resolution at the gold-standard cut-off (FSC = 0.143) is indicated by the dashed line. Curves: Red,
535 phase-randomised; Green, unmasked; Blue, masked; black, MTF-corrected.

536 **Figure S6 Data processing workflow for *SthGldLM*’ map. a** Example micrograph for the
537 initial *SthGldLM*’ dataset collected with a K2 detector at a defocus of approximately 2.7 µm. **b**
538 Example micrograph for the *SthGldLM*’ + fOM dataset collected with a K3 detector at a defocus
539 of approximately 1.7 µm. **c** Example micrograph for the *SthGldLM*’ dataset collected with a K3
540 detector at defocus of approximately 1.7 µm. **d** Representative 2D class averages for the K2
541 dataset used in initial processing. **e** Data processing workflow for the initial dataset collected with

542 a K2 detector. **f** Representative 2D class averages for the *SthGldLM'* + fOM (left) and *SthGldLM'*
543 only (right) K3 datasets. **g** Data processing workflow for the combined datasets collected with a
544 K3 detector. In the bottom-left panel each cylinder represents a view orientation, and the height
545 of the cylinder corresponds to the number of views of that orientation. **h** Local resolution
546 estimates (in Å) for the sharpened *SthGldLM'* map. **i** FSC plot for the *SthGldLM'* map. The
547 resolution at the gold-standard cut-off (FSC = 0.143) is indicated by the dashed line. Curves: Red,
548 phase-randomised; Green, unmasked; Blue, masked; black, MTF-corrected. Scale bars for
549 micrographs 500 Å. Scale bars for 2D class averages 100 Å.

550 **Figure S7 Data processing workflow for *SweGldLM'* map.** **a** Example micrograph for
551 *SweGldLM'* dataset collected with K3 detector at defocus of approximately 1.5 µm. Scale bar 500
552 Å. **b** Representative 2D class averages for initial particle selection. Scale bar 100 Å. **c** Data
553 processing workflow for initial particle selection. **d** Representative 2D class averages for second,
554 side-view focused particle selection. Scale bar 100 Å. **e** Data processing workflow for second
555 particle selection. **f** Local resolution estimates (in Å) for the sharpened *SweGldLM'* map. **g** Fourier
556 Shell Correlation (FSC) plot for the *SweGldLM'* map. The resolution at the gold-standard cut-off
557 (FSC = 0.143) is indicated by the dashed line. Curves: Red, phase-randomised; Green, unmasked;
558 Blue, masked; black, MTF-corrected.

559 **Figure S8 Comparison of *CcaGldLM''_{TMH}* and *CcaGldLM''_{peri}* structures.** **a** *CcaGldLM''_{TMH}*
560 EM density map. GldL is colored light blue and GldM''_{TMH} is colored dark blue. **b** *CcaGldLM''_{peri}*
561 EM density map. **c** Protein model of *CcaGldLM''_{peri}*. It was not possible to build protein into the
562 transmembrane density. **d** Overlay of the *CcaGldLM''_{TMH}* and *CcaGldLM''_{peri}* structures showing
563 the different relative orientations of the GldM D1 domains. Proteins are colored as in (a) and (c).

564 **e** Overlay of *CcaGldLM*^{”peri} (yellow) and *FjoGldM*_{peri} (PDB 6ey4)(orange) structures, showing the
565 similarity in GldM D1 domain orientations. All maps and models in this figure were aligned to the
566 second helix of *CcaGldLM*^{”peri} Chain A, indicated with a dashed line in (c).

567 **Figure S9 Conservation and charge analysis for the cage region of *SthGldLM*.** **a** Sequence
568 conservation analysis of the cage region of *S. thermophila* GldL using the program Consurf (10,
569 11). **b,c** Coulombic potential representation for the cage region of *S. thermophila* GldL. The view
570 direction is parallel to the membrane (**b**) or from within the TMH bundle (**c**). For clarity, the first
571 TMH and N-terminal residues are hidden.