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Highlights 

- Different MRI cortical markers aim to represent myelin and microstructure 

- These markers show high spatial overlap, but mostly divergent age trajectories 

- It is unlikely that myelin changes are the source of the age effect for all markers 

- Trend of MRI signal being related to cell density in more superficial cortical layers  
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Abstract 

Cortical thickness (CT), gray-white matter contrast (GWC), boundary sharpness 

coefficient (BSC), and T1-weighted/T2-weighted ratio (T1w/T2w) are cortical metrics derived 

from standard T1- and T2-weighted magnetic resonance imaging (MRI) images that are 

often interpreted as representing or being influenced by intracortical myelin content. 

However, there is little empirical evidence to justify these interpretations nor have the 

homologies or differences between these measures been examined. We examined 

differences and similarities in group mean and age-related trends with the underlying 

hypothesis that different measures sensitive to similar changes in underlying myelo- and 

microstructural processes should be highly related. We further probe their sensitivity to 

cellular organization using the BigBrain, a high-resolution digitized volume stemming from a 

whole human brain histologically stained for cell bodies with the Merker stain. 

The measures were generated on both the MRI-derived images of 127 healthy 

subjects, aged 18 to 81, and on the BigBrain volume using cortical surfaces that were 

generated with the CIVET 2.1.0 pipeline. Comparing MRI markers between themselves, our 

results revealed generally high overlap in spatial distribution (i.e., group mean), but mostly 

divergent age trajectories in the shape, direction, and spatial distribution of the linear age 

effect. Significant spatial relationships were found between the BSC and GWC and their 

BigBrain equivalent, as well as a correlation approaching significance between the BigBrain 

intensities and the T1w/T2w ratio in gray matter (GM) both sampled at half cortical depth. 

We conclude that the microstructural properties at the source of spatial distributions 

of MRI cortical markers (e.g. GM myelin) can be different from microstructural changes that 

affect these markers in aging. While our findings highlight a discrepancy in the interpretation 

of the biological underpinnings of the cortical markers, they also highlight their potential 

complementarity, as they are largely independent in aging. Our BigBrain results indicate a 
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general trend of GM T1w signal and myelin being spatially related to the density of cells, 

which is possibly more pronounced in superficial cortical layers. 

Keywords. T1-weighted/T2-weighted ratio; Gray-white matter contrast; Boundary sharpness 

coefficient; Cortical thickness; Aging; Cortical Myelin  
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1. Introduction 

The microstructural organization of the human brain is defined by numerous 

anatomical organizations that include the cytoarchitecture (neuronal cell bodies), 

myeloarchitecture (organization of myelin sheaths), iron distribution, neuronal processes, 

vasculature, and glial cells (Bock et al., 2009; Eickhoff et al., 2005; Fukunaga et al., 2010; 

Tardif et al., 2016). T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging 

(MRI) contrasts represent a complex combination of these microstructural properties that is 

not yet completely understood (Tardif et al., 2016). The neurobiological specificity 

attributable to different intensities in T1w and T2w images is further confounded by 

experimental design choices such as MRI hardware and sequence acquisition parameters. 

Histological studies have demonstrated that cortical T1w signal is influenced by both 

myelo- and cyto-architectural properties, although myelin was shown to be the main contributor 

to the contrast (Bock et al., 2009; Eickhoff et al., 2005). Other studies claimed that myelin was 

the largest contributor to quantitative T1 contrast, while iron was the largest contributor to 

quantitative T2* contrast (Stüber et al., 2014). However, iron and myelin largely colocalize in 

the cortex (Fukunaga et al., 2010), thus relating MRI signal mainly to myelo-architecture in 

both contrasts in the healthy cortex. In spite of these biophysical contrast mechanisms, 

several studies use metrics derived from the signal intensity as a representation of cortical 

<microstructure=, a non-specific term that does not have an agreed-upon biologically 

meaningful definition. Furthermore, metrics derived from T1w and T2w images are often 

interpreted as being influenced by myeloarchitecture, and more specifically the density or 

concentration of gray-matter (GM) myelin (Glasser & Van Essen, 2011; Olafson et al., 2021; 

Salat et al., 2009). In this manuscript, we seek to characterize the similarities and differences 

in three measures that are often used to describe cortical myelin and microstructure. These 

include: 1) The ratio of gray-to-white matter T1w signal intensities (gray-white matter ratio 
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[GWC]; as originally proposed in Salat and colleagues (2009)), which is often used as a 

putative marker for myelination of deeper cortical layers (Chwa et al., 2020; Drakulich et al., 

2021; Jørgensen et al., 2016; Vidal-Piñeiro et al., 2016); 2) The ratio of T1w to T2w signal 

(T1w/T2w ratio) has been proposed to be more sensitive to myelin than either contrast alone 

(Glasser & Van Essen, 2011; Grydeland et al., 2013, 2019), due to the generally inverse 

dependence of T1w and T2w signals on myelin; and 3) The boundary sharpness coefficient 

(BSC), recently proposed by our group, which examines the sharpness of the change in T1w 

signal intensity from superficial white matter (SWM) to gray matter (Olafson et al., 2021). 

The BSC was inspired by methods used in cytoarchitectonic histological examinations in 

Avino & Hutsler (2010). 

As previously mentioned, other neuroanatomical properties such as cortical iron and 

cell density have been shown to affect MRI signal (Eickhoff et al., 2005; Fukunaga et al., 

2010), thus potentially also impacting the cortical measures previously mentioned. 

Furthermore, SWM myelin could also have an impact, especially for the BSC and GWC 

markers, which sample intensities partly in the SWM. These other potential microstructural 

sources are rarely mentioned. 

This myelin-specific dependency extends beyond cortical markers that directly 

measure the T1w signal. Morphological analyses relying on cortical thickness (CT) 

measures have also been shown to correlate with intracortical myelin (Natu et al., 2019; 

Patel et al., 2020; Shafee et al., 2015). Indeed, while CT was developed to assess cortical 

gray matter, it relies on the placement of the gray-white matter boundary on T1w images, 

which is typically established by algorithms as the location where the greatest change in 

contrast occurs (Salat et al., 2009), thus potentially depending on intracortical myelin 

density. Natu and colleagues (2019) found that CT reductions in the visual cortex observed 

during development were driven by myelination of deep cortical layers. Furthermore, studies 

reported a generally inverted correlation of CT and GM myelin across some areas of the 
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cortex, particularly using <virtual histology= techniques relating cell-specific gene expression 

to MRI contrast (Patel et al., 2020; Shafee et al., 2015). 

These cortical measures have also been reported as being sensitive to maturation 

and aging (Drakulich et al., 2021; Fjell et al., 2009; Grydeland et al., 2019; Olafson et al., 

2021; Salat et al., 2009, 2011; Vidal-Piñeiro et al., 2016), suggesting that they are sensitive 

to normative age-related variations. However, for these measures to be meaningful in 

understanding neurobiology, and if they are indeed sensitive to the same myeloarchitectonic 

properties, their age-related trajectories should be similar. The most specific 

characterizations of intracortical myelin age trajectories have been done with quantitative R1 

maps, an MRI contrast less biased by experimental choices and more specific to biophysical 

properties of the tissue (Marques et al., 2010; Tardif et al., 2016), and have found inverted 

U-shaped age trajectories across the cortex with earlier peaks in posterior regions 

(Erramuzpe et al., 2021). Therefore, we hypothesize that cortical markers representing 

intracortical myelin should follow similar age trajectories. Further, the influence of 

cytoarchitecture on these markers is not well characterized, even if cytoarchitecture is known 

to influence, to some degree, T1w signal (Eickhoff et al., 2005). 

Thus, the overarching goal of this manuscript is to assess the similarities and 

differences characterized by these MRI-based cortical markers of morphology, 

microstructure, and myelin (i.e. CT, GWC, BSC, and T1w/T2w ratio). We first quantitatively 

compared the spatial distribution of these measures in a healthy population that spanned the 

adult lifespan. To assess if similar microstructural changes are at the source of age-related 

changes in all markers, we then compared their age-related trajectories between 

themselves. Additionally, we compare the spatial distribution of the markers with quantitative 

R1 maps. Next, using the BigBrain histological reconstruction (Amunts et al., 2013), we 

assessed whether these markers are also impacted by cyto-architectural organization by 

analyzing the homologies between cytoarchitectonic- and MRI-derived measures. 
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2. Methods 

2.1 Participants 

A total of 174 healthy individuals were recruited across two studies, the Alzheimer9s 

Disease Biomarkers (ADB) and Healthy Aging (HA) studies. Signed informed consent from 

all participants was obtained and the research protocol was approved by the Research 

Ethics Board of the Douglas Mental Health University Institute, Montreal, Canada. Exclusion 

criteria for both cohorts included history of neurological and psychiatric illness, physical 

injuries such as head trauma and concussion, alcohol/substance abuse or dependence, and 

current drug use. Data from these two cohorts were published in previous papers from our 

group (Bussy et al., 2020; Bussy et al., 2021; Tullo et al., 2019). The original data can be 

obtained through collaborative agreement and reasonable request but is not publicly 

available due to the lack of informed consent by these human participants. Complete 

demographic information of both samples is detailed in Table 1, and associated histograms 

for each variable are available in supplementary figure 1. 

Table 1. Subject demographics. Demographic information by dataset before 
quality control (QC), after QC, and in the R1 subsample (see section 2.2). HA = Healthy 
Aging cohort, ADB = Alzheimer9s Disease Biomarkers cohort (controls only) 

 Pre-QC Post-QC R1 subsample 

 Total ADB HA Total ADB HA Total ADB HA 

N 174 68 106 127 45 82 35 26 9 

Mean age 
(years +/- SD) 

55.3 
+/- 

17.59 

69.9 
+/- 

5.59 

45.8 
+/- 

16.12 

53.4 +/- 
17.97 

69.6 
+/- 

5.72 

44.5 +/- 
16.1 

62.7 +/- 
13.33 

70 +/- 
5.17 

41.8 +/- 
4.87 

Sex 
(female:male) 

95 : 79 41 : 27 54 : 52 76 : 51 29 : 
16 

47 : 35 21 : 14 16 : 
10 

5 : 4 
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WASI (+/- SD) 104.3 
+/- 

18.8 

- 104.3 
+/- 

18.8 

105.5 
+/- 18.8 

- 105.5 
+/- 18.8 

102.1 
+/- 21.1 

- 102.1 
+/- 21.1 

MMSE (+/- 
SD) 

28.6 
+/- 1.5 

28.3 
+/- 1.7 

28.8 
+/- 1.3 

28.7 +/- 
1.5 

28.2 
+/- 1.8 

29 +/- 
1.3 

28.5 +/- 
1.6 

28.3 
+/- 1.8 

29 +/- 
0.8 

MOCA (+/- 
SD) 

25.5 
+/- 2.7 

25.5 
+/- 2.7 

- 25.2 +/- 
2.8 

25.2 
+/- 2.8 

- 25.2 +/- 
3 

25.2 
+/- 3 

- 

RBANS (+/- 
SD) 

99.9 
+/- 

13.8 

97.1 
+/- 

12.9 

101.6 
+/- 14 

101.3 
+/- 13 

98.2 
+/- 

13.6 

102.9 
+/- 12.4 

98 +/- 
13 

94.5 
+/- 

12.8 

106.6 
+/- 9.1 

 

- Alzheimer’s Disease Biomarkers (ADB). In this cohort, subjects were recruited 

across the Alzheimer9s Disease spectrum, but only the healthy controls were 

included in this study (N = 68, 27 males and 41 females, mean age = 69.93 +/- 5.63, 

age range 56-81). The cognitive status of the participants was evaluated using two 

validated cognitive screening tests, namely the Mini-Mental State Exam (MMSE; 

Arevalo-Rodriguez et al., 2015) and Montreal Cognitive Assessment (MoCA; 

Nasreddine et al., 2005), and their cognition was further evaluated with the 

Repeatable Battery for the Assessment of Neuropsychological Status (RBANS; 

Randolph et al., 1998). Subjects with a MMSE ≥24/30 and a MoCA ≥26/30 were 

categorized in the control group.  

- Healthy Aging (HA). In this cohort, participants throughout the healthy adult lifespan 

were recruited (N = 106, 54 females and 52 males, mean age = 45.37 +/- 16.20, age 

range 18-80). The cognitive abilities of the subjects were also evaluated with the 

MMSE and RBANS, and their IQ was assessed with the Wechsler Abbreviated Scale 

of Intelligence (WASI; Wechsler, 2007). 

2.2 MRI acquisition 
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For all participants, T1w and T2w sequences were acquired at the Cerebral Imaging 

Center, associated with the Douglas Research Center in Montréal, Canada. Quantitative R1 

(the inverse of the raw T1 signal, i.e. 1/T1) maps were acquired using the magnetization-

prepared two rapid acquisition gradient echo (MP2RAGE) sequence on a subset of 

participants. All scans were conducted on the same Siemens Trio 3T MRI scanner using a 

32-channel head coil. 

- T1-weighted. For both cohorts, the T1w magnetization-prepared rapid acquisition 

gradient echo (MPRAGE) sequence was acquired using parameters established by 

the Alzheimer9s Disease Neuroimaging Initiative (Jack et al., 2008); repetition time 

[TR] = 2300 ms; echo time [TE] = 2.98 ms; inversion time [TI] = 900 ms; flip angle [α] 

= 9º; GRAPPA = 2; slice thickness = 1 mm for 1 mm isotropic voxels and a total scan 

time of 5:12. 

- T2-weighted. T2w images were acquired using a SPACE sequence with the 

following parameters (TR = 2500 ms; TE = 198 ms; FOV = 206 mm; slice thickness = 

0.64 mm for 0.64 mm isotropic voxel dimensions). The slice partial Fourier was set to 

6/8 for the T2w scan of the ADB cohort, as a means to shorten the scan time and 

reduce the likelihood of motion artifacts. While this technique slightly decreases the 

signal-to-noise ratio, the image contrast should not be affected (Feinberg et al., 

1986), and the two T2w sequences should be directly comparable. The total scan 

times for T2w images were 10:02 minutes for the Alzheimer9s Disease Biomarkers 

cohort and 13:16 minutes for the Healthy Aging cohort.  

- MP2RAGE. The MP2RAGE sequence (Marques et al., 2010) was acquired for a 

subset of the participants (N = 52) with the following parameters (TI1 = 700ms; TI2 = 

2000ms, TE = 2.01ms; TR = 5000ms; α1 = 4º; α1 = 5º; FOV = 256 x 240 mm2; slice 

thickness = 0.8mm for 0.8mm isotropic voxels and a total scan time of 10:42). 

2.3 Image processing 
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2.3.1 Motion quality control.  

Exclusions were made based on a rigorous motion quality control (QC) procedure 

that was performed on all raw scans, following guidelines established by our laboratory 

(https://github.com/CoBrALab/documentation/wiki/Motion-Quality-Control-Manual) (Bedford 

et al., 2019). More specifically, T1w, T2w, and MP2RAGE scans were rated on a 4-point 

scale based on visible artifacts that are attributed to motion, such as ringing and blurring of 

the images. A higher score was indicative of poorer scan quality. Images that were ascribed  

a score above 2 were excluded from analyses, which is considered a strict criterion and has 

shown to provide robust estimates after downstream image processing (Bedford et al., 

2019). As a result, 32 subjects that failed motion QC for either T1w or T2w images were 

excluded from the overall cohort, and 5 subjects that failed motion QC of the R1 maps were 

excluded from the R1 subsample. 

2.3.2 Preprocessing. 

T1w images were preprocessed using the minc-bpipe-library 

(https://github.com/CobraLab/minc-bpipe-library). The procedure consists of a N4 bias field 

correction (Tustison et al., 2010), cropping of the neck region, and brain extraction using the 

BEaST algorithm (Eskildsen et al., 2012). An example of the preprocessed T1w volume for 

one subject is available in supplementary figure 12. Since the processing of the T1w/T2w 

ratio requires native images (Glasser & Van Essen, 2011), no preprocessing steps were 

performed for the T2w images. 

2.3.3 Generation of cortical surfaces. 

From these outputs, brain volumes were transformed into standard MNI space 

using BestLinReg (Collins et al., 1994; Dadar et al., 2018), and the gray-white matter 

boundary and pial surfaces were generated with the CIVET 2.1.0 processing pipeline 

(https://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET-2-1-0-References) (Kim et al., 2005). 
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The preprocessed T1w volumes were used for the extraction of CT, GWC and BSC 

measures. 

2.3.4 Surface quality control. 

The accuracy of the white matter and gray matter segmentations, as reflected in the 

surfaces generated by CIVET 2.1.0, was examined. Surfaces were quality controlled with a 

standardized procedure described in (Bedford et al., 2019) and 

https://github.com/CoBrALab/documentation/wiki/CIVET-Quality-Control-Guidelines. Scans 

were scored on a three-point scale based on the number and significance of segmentation 

errors, where a higher score was indicative of fewer segmentation errors. Examples of the 

most prominent artifacts are under-estimation of white matter in sensorimotor areas, under-

segmentation of the temporal pole, and misclassification of ventricles as white or gray 

matter. Scans with a score below 1 were excluded from analyses (N=15). 

After rigorous quality control procedures for both the raw scans and the white and 

gray matter segmentations, a total of 127 participants (51 males and 76 females, mean age 

= 53.35 +/- 18.04, age range 18 to 81) were included in the main analyses. The R1 

subsample consisted of 35 participants (9 from the Healthy Aging cohort and 24 from the 

Alzheimer9s Disease Biomarkers cohort, 14 males and 21 females, mean age = 62.71 +/- 

13.52, age range 36 to 79). Other demographic variables are available in Table 1 and 

histograms are available in supplementary figure 1. 

2.4 Cortical marker generation. 

In order to extract the cortical markers, surfaces generated by CIVET were used. 

Figure 1 illustrates how each marker is calculated. All markers were surface smoothed with a 

20mm full-width half-maximum (FWHM) heat kernel and were projected onto a common 

cortical surface mesh (the ICBM 152 2009b sym model) to enable cross-subject 

comparisons. Additionally, main analyses are rerun on markers smoothed with a 5mm 
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FWHM heat kernel applied after regressing out curvature in order to assess if our results are 

robust to those parameter variations (see supplementary figures 8-11). 

 

Figure 1. Methods for generating markers. A. Cortical Thickness (CT) estimates 
were calculated as the Laplacian distance between the pial surface and the gray-
white matter boundary surface at each vertex on the T1-weighted volume in native 
space. B. Gray-white matter contrast (GWC) was calculated by dividing the intensity 
at 25% of CT translated into superficial white matter (SWM) by the intensity at 25% 
of CT into gray matter (GM) at each vertex on the T1-weighted volume in MNI 
space. C. The T1w/T2w ratio measures were generated by sampling the T1w/T2w 
volume in native space at various distances. GM T1w/T2w ratio was sampled at 
25% of CT. SWM T1w/T2w ratio was sampled at 25% of CT translated into SWM. 
Additionally, a second GM T1w/T2w ratio measure was sampled at 50% of CT in 
GM (referred to as GM T1w/T2w ratio at 50% of CT). D. The boundary sharpness 
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coefficient (BSC) was calculated by first sampling 10 T1-weighted intensities in MNI 
space around the gray-white matter boundary (between 50% of CT in GM and 25% 
of CT in SWM), then fitting a sigmoid curve to the resulting intensity profile at each 
vertex. The BSC represents the growth parameter of the sigmoid curve, with a 
higher BSC indicating a sharper gray-white matter transition and a lower BSC 
representing a more gradual transition. 

 

2.4.1. Mean curvature. 

Since cortical markers previously described have been shown to correlate with the 

curvature of the cortical surfaces (Olafson et al., 2021; Shafee et al., 2015), we acquired 

curvature estimates of the gray-white matter surface with the CIVET 2.1.0 pipeline in order to 

residualize the markers against mean curvature. This process is done after the smoothing 

procedure for analyses in the main text, and before the smoothing procedure in 

supplementary analyses (see supplementary figures 8-11). 

2.4.2 Cortical thickness. 

CT estimates were generated with the CIVET 2.1.0 processing pipeline. More 

specifically, CT was defined as the Laplace distance between the gray-white matter 

boundary surface and the pial surface at each vertex (Figure 1A). These surfaces were 

subsequently used for the processing of the other markers, by providing a base from which 

other surfaces were generated in order to sample the intensities at various fractions of CT. 

2.4.3 Gray-white matter contrast. 

GWC measures are calculated on the T1w volume linearly transformed in MNI 

space by dividing the white matter intensity sampled at a distance equivalent to 25% of the 

cortical thickness in the direction of white matter by the gray matter intensity sampled at 25% 

of the cortical thickness along the normal of the surface at each vertex (Figure 1B). The GM 

sampling distance was chosen because previous studies show higher rates of myelination 

changes in childhood at around ¼ of the cortical depth (Whitaker et al., 2016), potentially 
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indicating a higher sensitivity to aging, while the WM sampling distance was chosen in order 

to minimize partial volume effects. 

2.4.4 Boundary sharpness coefficient. 

The BSC is defined as the growth parameter of a sigmoid function fit to a depth 

profile of 10 intensity values along a path perpendicular to the gray-white matter boundary 

surface. It was developed to address certain limitations of the GWC, namely its reliance on 

the exact gray-white matter boundary placement that is sometimes unreliable and its 

widespread correlation with the curvature of the cortex (Olafson et al., 2021). Indeed, the 

BSC is theoretically less affected by the boundary placement as it quantifies the transition 

between gray and white matter continuously, and has been shown to correlate only in limited 

regions to cortical curvature (Olafson et al., 2021). 

The computation of the BSC is explained in detail in Olafson and colleagues (2021) 

but is briefly covered here (Figure 1D). First, gray matter surfaces linearly transformed in 

MNI space were generated at increasing percentile fractions of CT from the white matter 

surface towards the pial surface (0%, 6.25%, 12.5%, 18.75%, 25%, 50%). Second, white 

matter surfaces were generated at the same percentile fractions as the gray matter surfaces, 

but in the direction of the white matter. However, the 50% white matter surface was omitted, 

since some vertices were located in the gray matter (crossing over into the opposing gyral 

bank), particularly in thin gyral crowns. Third, the intensity of the T1w image linearly 

transformed in MNI space was sampled at each vertex of the gray and white matter 

surfaces. Fourth, a sigmoid curve was fitted to the 10 sampled intensities at each vertex 

using a non-linear least squares estimator. From those curves, the BSC, which is the growth 

parameter of the sigmoid function, was extracted at each vertex. Hence, high BSC values 

represent a sharper transition between gray and white matter, while low BSC values 

represent a more gradual transition. The values were then log-transformed in order to 
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ensure that the assumption of a normal distribution of the general linear model was 

respected. 

2.4.5 T1w/T2w ratio. 

The T1w/T2w method was developed by Glasser & Van Essen (2011) following the 

rationale that the T1w and T2w sequences are both sensitive to myelin, but in opposite 

directions (T1w signal being proportional to the quantity of myelin, while T2w signal being 

inversely proportional to the quantity of myelin). Hence, the ratio of those two images 

enhances the contrast-to-noise ratio of myelin (Glasser & Van Essen, 2011). Using this 

technique, the authors reported general agreement of myelin-based cortical parcellations 

between those identified in the T1w/T2w ratio images and previous histological findings 

(Glasser & Van Essen, 2011). However, while this technique has some histological support 

and reflects the quantity of myelin to some extent, it is more accurately a qualitative measure 

of myelin as the resulting signal is also influenced by molecule size, oligodendrocyte 

markers, mitochondria, and pH (Ritchie et al., 2018). 

To generate the T1w/T2w ratio measures, it was first necessary to upsample the 

T1w images to 0.64 mm isotropic voxel dimensions (i.e. the same resolution as the T2w 

images) using a windowed sinc interpolation, as in Tullo and colleagues (2019). Then, to 

enable voxel-by-voxel correspondence between the T1w and T2w images in native space, 

T2w images were rigidly registered to T1w images using BestLinReg (Collins et al., 1994; 

Dadar et al., 2018). The two volumes were then mathematically divided to obtain the 

T1w/T2w ratio images. An example of the resulting volume for one subject is available in 

supplementary figure 12. The CIVET surfaces of each subject generated on T1w images 

were registered and transformed to the subject-specific T1w/T2w ratio volume. 

Subsequently, the T1w/T2w ratio values were sampled at both 25% and 50% of CT in GM at 

each vertex (Figure 1C). This was in order to make sure that our results were not dependent 

on the specific cortical depth at which the T1w/T2w ratio was sampled. However, we chose 
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the T1w/T2w ratio at 25% of CT to be the primary GM T1w/T2w ratio analysis, as this 

sampling distance is the same as the GM sampling distance of the GWC, and given the 

higher concentration of myelin at more superficial layers previously described (Whitaker et 

al., 2016). Furthermore, to obtain SWM T1w/T2w values, the T1w/T2w ratio was sampled at 

25% of CT translated in the direction of white matter. 

2.4.6 R1. 

Quantitative MRI sequences differ from conventional (i.e., weighted) MRI 

sequences in that they directly measure the absolute relaxation times of the observable 

protons. As a result, they are a more interpretable measure of the physical properties of the 

tissue, and to some degree of the biology (Weiskopf et al., 2021). Since they are not 

influenced by extrinsic factors (e.g., acquisition parameters, specific hardware specifications, 

etc.), the images can theoretically be directly compared between scanners and studies 

(Deoni, 2010). The rate of longitudinal relaxation time R1 (1/T1) has been shown to be 

positively correlated with myelin content (Stüber et al., 2014). Since R1 is more specific to 

the underlying physical properties of the tissue than the T1w/T2w ratio, we assessed the 

extent of the spatial overlap between the two measures. 

The R1 images (Marques et al., 2010) in native space were used to extract GM and 

SWM R1 values. The CIVET surfaces of each subject generated on T1w images were 

registered and transformed to the subject-specific R1 volume. The R1 values were sampled 

at both 25% and 50% of CT in GM at each vertex, and at 25% of CT in the direction of white 

matter. An example of the R1 volume for one subject is available in supplementary figure 12.  

2.5 Examination of relationships with histological data.  

The <BigBrain= is an ultrahigh resolution (up to 20 um isotropic voxel dimension) 

digital reconstruction of a complete brain which was sliced and stained for cell bodies 

(Amunts et al., 2013) using the Merker staining method (Merker, 1983), where areas with 
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high cellular density (e.g., gray matter) have a low intensity value and areas with low cellular 

density (e.g., white matter) have a high intensity value (i.e., intensity is inversely related to 

the density of cells), as can be seen in supplementary figure 12. The brain was donated by a 

65 year old male. The digital reconstruction was then non-linearly registered to the standard 

MRI template ICBM152 (Fonov et al., 2009). High-resolution gray-white matter boundary and 

pial surfaces were then generated on the BigBrain volume downsampled to 400 um isotropic 

voxels in MNI space (Lewis et al., 2014). In this study, we used the 8-bit 400 um resolution 

BigBrain volume in MNI ICBM 152 space, which is the same space as our MRI results. It is 

important to note that the BigBrain surfaces were downsampled from 163842 vertices per 

hemisphere to 40962 vertices per hemisphere (i.e. the same number of vertices as MRI 

CIVET surfaces), thus allowing for direct comparison between BigBrain and MRI findings. 

Markers on the BigBrain were generated in the same way as MRI markers, but on 

the BigBrain volume (Figure 1). CT estimates were calculated in native space. GWC and 

BSC measures were calculated as described above using the BigBrain volume and surfaces 

in MNI space. GM and SWM T1w/T2w ratio measures were compared with inverted BigBrain 

intensities sampled at the same distances (i.e. 25% of CT in GM, 50% of CT in GM, and 

25% of CT in SWM). These values were inverted to simplify the interpretation of results 

since BigBrain intensities are inversely related to cell density. All sampled intensity values, 

used by all markers except for CT, were divided by 100 so that the value range was 

approximately in the same realm as MRI intensities (otherwise BSC and GWC values were 

very small and went beyond the computer9s numerical precision). 

2.6 Statistical analyses. 

2.6.1 Correlation with mean curvature. 

We observed widespread vertex-wise correlations between curvature and the BSC, 

GWC and CT metrics (see supplementary figure 2). As such, curvature was regressed out of 
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all markers at the vertex-wise level to limit its influence on our downstream analyses for age-

related trajectories. 

2.6.2 Comparing the spatial distributions. 

The spatial distribution of each marker was generated by calculating the vertex-wise 

mean value across-subjects, which were then mapped to the cortical surface for comparison. 

The values used for this analysis were not residualized for curvature, since by definition, the 

sum of residuals following a least-squares fitting procedure always equals to 0, thus 

rendering the mean of residuals meaningless. The spatial correlations between the surface 

maps were hypothesis-tested following the <spin test= procedure detailed in see section 

2.6.7. 

2.6.3 Comparing the shape of age trajectories. 

Age trajectories were modeled using linear models in R version 3.5.1 (https://www.r-

project.org), more specifically with the vertexLm function of the RMINC package version 

1.5.2.3 (Lerch et al., 2017). To evaluate the shape of the age trajectory of each marker, we 

compared linear, quadratic, and cubic models of age, with sex as a covariate, at each vertex 

using the Akaike information criterion (AIC) as in our previous work (Bedford et al., 2019; 

Bussy et al., 2021; Tullo et al., 2019): 

1: Marker ~ age + sex 

2: Marker ~ age + age2 + sex 

3: Marker ~ age + age2 + age3 + sex 

The AIC respects the principle of parsimony by penalizing every additional predictor 

variable added to the statistical model (Mazerolle, 2006). Hence, the model with the lowest 

AIC at each vertex was considered the model which best fit the data. The results were 
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mapped onto the common cortical surface for visualization and the number of vertices that 

were best fitted by each model was computed for each marker in order to compare the 

shape of the age trajectories between the markers (see Figure 4). 

2.6.4 Comparing the spatial distribution of the age trajectories. 

In order to further quantitatively compare the age trajectories between the markers, 

we compared the spatial distribution of the age effect. To do so, using a unified and simple 

age model for all markers was necessary. As a result, a linear age model with sex as a 

covariate (model 1 above) was fit at each vertex of each marker. The resulting p-values were 

corrected for multiple comparisons using the False Discovery Rate (FDR) correction, which 

controls the proportion of null hypotheses that are falsely rejected (Genovese et al., 2002). 

The betas of the age component were then mapped onto the common cortical surface for 

comparison (see Figure 5A). The correlations between the surface maps were then 

assessed and hypothesis-tested following the <spin test= procedure detailed below in section 

2.6.7. We visualized linear trajectories for each marker at a single vertex in the precentral 

gyrus, where the linear age effect of all markers was significant (see Figure 5B).  

2.6.5 Comparing MRI and BigBrain markers. 

In order to assess the potential impact of cell density on the markers, the spatial 

correspondence between markers generated on MRI and on BigBrain was assessed (see 

Figure 6). More specifically, the same cortical maps of spatial distribution from MRI data, 

which were generated by calculating the vertex-wise across-subjects mean values of the 

markers, were used. While we cannot assume that the values are directly comparable 

between these two modalities because of the difference in intensity values, the spatial 

distribution of the values can be compared. Hence, the correlations between the surface 

maps were assessed and hypothesis-tested following the <spin test= procedure detailed 

below in section 2.6.7. 
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2.6.6 Comparing T1w/T2w ratio findings with R1. 

Using only the subjects in the subsample that passed QC of the R1 map, the spatial 

distribution correlations between BSC, GWC, CT, GM T1w/T2w ratio, SWM T1w/T2w ratio, 

GM R1 and SWM R1 were assessed (see supplementary figure 6). The correlations were 

then hypothesis-tested following the <spin test= procedure detailed below in section 2.6.7. 

2.6.7 Spatial correspondence between surface maps. 

The spatial correspondence between bilateral surface maps (i.e., left and right 

hemispheres bundled together) generated with the previous steps was assessed with the 

Pearson9s correlation coefficient. Each correlation was then hypothesis-tested using a 

bilateral 8spin test9 (Alexander-Bloch et al., 2018). This novel statistical technique generates 

a null distribution of the spatial overlap by performing a large number of random rotations to 

spherical projections of the surfaces around each axis. Critically, this approach maintains the 

spatial relationship between vertices, in contrast with conventional parametric approaches 

that falsely assume independence of each vertex which lead to excessively high rates of 

false positives (Alexander-Bloch et al., 2018). In our analyses, we chose to do 1000 

permutations, because results have been shown to converge between 500 and 1000 

permutations (Markello & Misic, 2020). This technique outputs a p-value for each correlation. 

The p-values were then corrected for multiple comparisons using the FDR within each 

analysis (i.e. each correlation matrix) and considered significant below the 0.05 threshold. Of 

note, the medial wall was excluded from all analyses since the cortical markers are not valid 

in those regions. Furthermore, the correlation coefficient has to be interpreted in a spatial 

context. For example, if the correlation coefficient is positive, it means that where the values 

of the first surface are higher, the values on the second surface also tend to be higher, and 

vice versa. 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.477925doi: bioRxiv preprint 

https://paperpile.com/c/m0uy1t/hYZAP
https://paperpile.com/c/m0uy1t/hYZAP
https://paperpile.com/c/m0uy1t/SHoNR
https://doi.org/10.1101/2022.01.27.477925
http://creativecommons.org/licenses/by-nc/4.0/


 

In addition to the correlations, linear regressions on the Z-scored cortical maps were 

calculated. By definition, the beta of that regression, which is standardized, is exactly the 

same value as the Pearson9s correlation coefficient. This allows us to 1) graphically look at 

the relationship between cortical maps, and 2) map the residuals to the common cortical 

surface. It is then possible to assess which areas exhibit the relationship more (i.e. areas 

with lower residuals) and which areas exhibit the relationship less (i.e. areas with higher 

residuals).  
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3. Results 

3.1 Correlation with mean curvature. 

The vertex-wise correlation of each marker with mean curvature was assessed (see 

supplementary figure 2). CT, GWC and BSC measures correlated significantly with mean 

curvature in regions across the cortex, while all T1w/T2w ratio measures only displayed a 

significant correlation in very small and isolated regions. However, significant correlations 

with mean curvature were less widespread for the BSC than for the GWC, supporting 

previous results (Olafson et al., 2021). In order for the markers to be directly comparable, all 

markers were regressed against mean curvature on a vertex-wise basis to limit the influence 

of curvature on the findings. 

3.2 Comparing the spatial distributions. 

The vertex-wise mean values across-subjects were calculated for each marker (see 

Figure 2), resulting in metric-specific spatial distribution maps. The values used for this 

analysis were not residualized for curvature, since by definition, the sum of residuals 

following a least-squares fitting procedure always equals 0, thus rendering the mean of 

residuals meaningless. The values of the BSC were higher, indicating a sharper gray-white 

matter transition, in the temporal pole, the precentral gyrus, and the insula, while the values 

were lower in the occipital pole and postcentral regions, indicating a more gradual gray-white 

matter transition. For the GWC, the values were higher in lateral temporal regions, prefrontal 

lobe and temporo-parietal regions, while the values were lower in sensorimotor areas, 

occipital pole and insula. For CT, the values were higher in the temporal pole and insula, 

while the values were lower in the occipital lobe and postcentral gyrus. For the GM T1w/T2w 

ratio at both cortical depths (i.e. 25% of CT and 50% of CT), the values were higher in the 

occipital lobe and sensorimotor regions, while the values were lower in the frontal lobe, the 
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lateral temporal and temporo-parietal regions. Lastly, for the SWM T1w/T2w ratio, the values 

were higher in the lateral occipital and superior temporal lobe while the values were lower in 

the insula and temporal pole. 

The spatial correspondence between these surface maps was assessed with 

correlations, which were then hypothesis-tested via spin tests and the resulting p-values 

were corrected for multiple comparisons using the FDR (see Figure 2). There was a positive 

spatial correspondence between BSC and CT maps (r=0.77, p<0.001). Moreover, this 

relationship was exhibited across the vast majority of the cortex, as only a few regions in the 

medial temporal inferior cortex displayed high residuals (see Figure 3). 

The spatial distribution of GM T1w/T2w ratio sampled at 25% of CT correlated 

negatively and significantly with all other markers, and the correlation was highest with the 

GWC (r=-0.73, p<0.001), followed by the correlation with CT (r=-0.63, p<0.001) and the 

correlation with the BSC (r=-0.52, p<0.001). In general, these relationships showed higher 

residuals in the precentral gyrus, the insula, and the lateral temporal pole, indicating a poorer 

fit of the correlation in those regions (see Figure 3). Also, a significant positive correlation 

was found between GM T1w/T2w ratio and SWM T1w/T2w ratio (r=0.58, p<0.001). This 

relationship showed higher residuals in sensorimotor regions, the medial occipital lobe, and 

the inferior lateral temporal lobe (see Figure 3). The correlations assessed with the GM 

T1w/T2w ratio at 50% of CT were not meaningfully different (see Figure 2). 

Lastly, a significant and negative spatial correspondence was found between SWM 

T1w/T2w ratio and the BSC (r=-0.62, p<0.001), which showed higher residuals mostly in 

medial cortical regions (see Figure 3). All other correlations of the spatial distribution 

between the markers were not significant at the 0.05 level. 
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Figure 2. Spatial distributions of the markers and correlations. For each 
marker, the mean and standard deviation of the surface were calculated and used 
to threshold the colors. Purple areas indicate lower values relative to the mean of 
that marker, while yellow areas indicate higher values. The correlation matrix 
includes Pearson's correlation coefficients (r) and FDR-corrected p-values. The 
color of each correlation block is linked to the correlation coefficient: positive 
coefficients are red and negative coefficients are blue, and high coefficients are 
more saturated and low coefficients tend towards white. Significant correlations at 
the FDR 0.05 level are highlighted with a green outline. 
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Figure 3. Spatial distribution relationships: graphs and residuals. For each 
significant correlation, the left figure is the spatial regression in graph form, where 
the x-axis are the Z-scored values of the first marker, the y-axis are the Z-scored 
values of the second marker, the regression line is shown in black, and the +1 SD 
and -1 SD lines are shown in red and blue respectively (representing the thresholds 
set for values that are far from the regression line and exhibit less the observed 
relationship). The right figure is the vertex-wise residuals from the regression 
thresholded at +/- 1 SD (cold colors indicate vertices below the regression line in 
blue in the left graph and warm colors indicate vertices above the regression line in 
red in the left graph, and lighter colors indicate higher residual values and darker 
colors indicate lower residual values). For example, the relationship between GWC 
and GM T1w/T2w ratio (top right) is linear in most areas, as seen in the graph on 
the left, except for a group of vertices below the regression line which we can locate 
in the residual figure on the right (in this case, in the insula and medial temporal 
pole) 

3.3 Comparing the shape of age trajectories. 
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In order to determine which age trajectory shape was more appropriate for each 

marker, linear models with linear, quadratic, and cubic age variables at each vertex (with sex 

as a covariate) were compared using the AIC. For each marker, the number of vertices for 

which each age model was the best fit was counted (see Figure 4A). For CT and GWC 

measures, a linear model was the best fit for most vertices, followed by a cubic model and a 

quadratic model. For the BSC, a quadratic model was the best fit for most vertices, followed 

by a linear model and a cubic model. For all T1w/T2w ratio measures, a quadratic model 

was the best fit for the most vertices, followed by a cubic model and a linear model. The 

spatial distribution of age trajectory shapes is available in Figure 4B. 
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Figure 4. Vertex-wise best age trajectory shape between linear, quadratic, and 
cubic for each marker. A. Table illustrating the proportion of vertices best fitted by 
each age model for each marker according to the Akaike Information Criterion 
(AIC), with the age model best fitting the highest proportion of vertices highlighted in 
green. B. Spatial distribution of the AIC results. Purple areas indicate a better fit of 
the linear age trajectory, green areas indicate a better fit of the quadratic age 
trajectory, and yellow areas indicate a better fit of the cubic age trajectory. 

3.4 Comparing the spatial distribution of the age trajectories. 

To compare the spatial distribution of the age trajectories of the different markers, 

linear models with a linear age term and sex as a covariate were fit at each vertex. Since the 

goal of this study is not to best describe the age trajectories of the different markers, but to 
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compare the age effect between markers, using a uniform and simpler linear age model 

across the markers is a preferred approach. 

The betas of the age term were mapped onto the common cortical surface (see 

Figure 5A). A significant linear increase of the BSC with age was found primarily in anterior 

superior frontal regions, and in parts of the insula and lateral occipital lobe. For the GWC, a 

significant linear decrease with age was observed across most of the cortex, and this 

decrease was steeper in frontal regions. For CT, a similar widespread significant linear 

decrease with age was observed, which was steeper in frontal and temporal regions. For 

GM T1w/T2w ratio, a significant linear increase with age was found across most of the 

frontal lobe and in temporo-parietal regions, with the latter mostly in the right hemisphere, 

and no areas showed drastically steeper change with age. For SWM T1w/T2w ratio, a 

significant linear decrease was observed across most of the cortex, and was steeper in the 

inferior temporal lobe. Graphs of the linear age trajectories of each marker at one vertex in 

the precentral gyrus (where the linear age betas of all markers were significant) are available 

in Figure 5B. 

The spatial correspondence between these surface maps was assessed with 

correlations, which were then hypothesis-tested via spin tests and the resulting p-values 

were corrected for multiple comparisons using the FDR (see Figure 5A). While the vertex-

wise age betas shown in the figure are thresholded for significance at the FDR 0.05 level, 

the cortical maps that were correlated were not thresholded. There was a significant positive 

relationship between the spatial distribution of the age betas of the GWC and the SWM 

T1w/T2w ratio (r=0.48, p<0.001), meaning that where the GWC decreases more rapidly with 

age, the SWM T1w/T2w ratio also tends to decrease more rapidly. There was a significant 

negative relationship between the GWC and the GM T1w/T2w ratio only at mid cortical 

depth, meaning that where the GWC decreases more rapidly with age, the GM T1w/T2w 

ratio at mid cortical depth tends to increase more rapidly. Higher residuals of both 
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relationships were mostly found in superior frontal and medial temporal regions (see 

supplementary figure 3).  

Even if it is not the main goal of this article, the quadratic age trajectories of each 

marker were described, in order to compare our results with previous findings of quadratic 

age trajectories for some markers (Drakulich et al., 2021; Grydeland et al., 2013, 2019) and 

to accurately describe for the first time the quadratic age trajectory of the BSC. To do so, 

linear regressions with age linear, age quadratic and sex as predictors were fit at each 

vertex for each marker. The betas of the quadratic age term were then thresholded at the 

FDR 0.05 level and mapped to the common cortical surface (see supplementary figure 4A). 

For the BSC, the quadratic age term was significant and positive, indicating a u-shaped 

trajectory, across most of the cortex, except for sensorimotor regions and in the occipital 

pole. CT and GWC measures did not show significant quadratic age betas across the cortex. 

The T1w/T2w ratio, both in GM and in SWM, showed significant and negative quadratic age 

terms across the cortex, indicating inverted U-shaped age trajectories. Graphs of the 

quadratic age trajectories of each marker at one vertex in the precentral gyrus are available 

in supplementary figure 4B. 
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Figure 5. Spatial distribution of the linear age effect of the markers and 
correlations. A. For each marker, the mean and standard deviation of the age 
betas were calculated and used to threshold the colors. Cortical maps are 
thresholded for significance at the FDR 0.05 level. Cold colors indicate negative age 
betas and warm colors indicate positive age betas. Light colors indicate higher age 
betas and dark colors indicate lower age betas. The correlation matrix includes 
Pearson's correlation coefficient (r) and FDR-corrected p-values. The color of each 
correlation block is linked to the correlation coefficient: positive coefficients are red 
and negative coefficients are blue, and high coefficients are more saturated and low 
coefficients tend towards white. Significant correlations at the FDR 0.05 level are 
highlighted with a green outline. B. Example of the age trajectory of each marker at 
one vertex in the precentral gyrus where the age beta of each marker was 
significant at the FDR 0.05 level. Blue observations represent male participants and 
red observations represent female participants. The x-axis is age and the y-axis is 
the marker value residualized for mean curvature. 

3.5 Comparing MRI and BigBrain markers. 
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In order to probe the sensitivity of the markers to cellular organization, we compared 

the spatial distribution of the markers generated on BigBrain to the markers generated on 

MRI (see Figure 6). The spatial distribution of the MRI BSC was significantly positively 

correlated with the BigBrain BSC (r=0.55, p<0.001). Again, residuals were higher in the 

precentral gyrus and around the medial wall, although there were also high residuals 

sparsely distributed on the lateral cortical surface (see supplementary figure 5). For the 

GWC, there was a significant and negative correlation between the spatial distribution of the 

MRI GWC and BigBrain GWC (r=-0.57, p<0.001). Higher residuals of that relationship were 

observed in medial and lateral occipital lobe, insula, and medial temporal regions. For CT, 

there was a significant and positive correlation between the spatial distribution of MRI CT 

and BigBrain CT (r=0.66, p<0.001), while the residuals were higher around the medial wall, 

in the precentral gyrus, and in temporo-parietal regions. The correlation between the spatial 

distribution of GM BigBrain intensities and GM T1w/T2w ratio at 25% of CT was not 

significant (r=0.44, p=0.123), and neither was the correlation between SWM BigBrain 

intensities and SWM T1w/T2w ratio (r=-0.10, p=0.489). However, there was a positive 

spatial correlation approaching significance between GM BigBrain intensities at 50% of CT 

and GM T1w/T2w ratio at 50% of CT (r=0.51, p=0.053), with higher residuals in most of the 

lateral temporal lobe (except the temporal pole) and part of the prefrontal cortex. 
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Figure 6. Correlations between the spatial distributions of the markers 
generated on MRI and markers generated on BigBrain. For each marker, the 
mean and standard deviation were calculated and used to threshold the colors. 
More specifically, purple areas indicate lower values relative to the mean of that 
marker, while yellow areas indicate higher values. The Pearson9s correlation 
coefficient and p-value are colored green if the relationship is significant at the 0.05 
level. 

3.6 Comparing the T1w/T2w ratio with R1 maps.  

The vertex-wise across-subjects mean values were calculated for each marker in 

the subsample of subjects that had a R1 map that passed quality control (see supplementary 

figure 6). Of note, the values used for this analysis were not residualized for curvature, as 

the sum of residuals from a linear regression following a least-squares fitting procedure is 

always equal to 0, thus rendering the mean meaningless. The spatial distribution of the BSC, 

GWC, CT, and T1w/T2w ratio measures were highly similar to the ones previously 
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calculated in the whole sample. For the GM R1 at both cortical depths, the values were 

higher in the occipital lobe and sensorimotor regions, while the values were lower in the 

frontal lobe, the lateral temporal and temporo-parietal regions. For the SWM R1, the values 

were higher in the lateral occipital and superior temporal lobe while the values were lower in 

the insula and temporal pole. 

The spatial correspondence between these surface maps was assessed with 

correlations, which were then hypothesis-tested via spin tests and the resulting p-values 

were corrected for multiple comparisons using the FDR (see supplementary figure 5). R1 

and T1w/T2w ratio sampled at the same cortical depths showed very high positive spatial 

correspondence, which was slightly higher in GM (r=0.94, p<0.001) than in SWM (r=0.90, 

p<0.001). However, the small differences between R1 and T1w/T2w ratio resulted in bigger 

discrepancies in spatial correlations with other markers, at least in some instances. Indeed, 

the correlation between GM R1 and CT (r=-0.38, p=0.07) was lower than the correlation 

between GM T1w/T2w ratio and CT (r=-0.59, p<0.001). The correlation between SWM R1 

and CT (r=-0.16, p=0.45) was lower than the correlation between SWM T1w/T2w ratio and 

CT (r=-0.35, p=0.06). The correlation between GM R1 and BSC (r=-0.36, p=0.05) was lower 

than the correlation between GM T1w/T2w ratio and BSC (r=-0.5, p<0.001). The correlation 

between SWM R1 and BSC (r=-0.44, p<0.001) was lower than the correlation between SWM 

T1w/T2w ratio and BSC (r=-0.63, p<0.001). However, other correlations with other markers 

were very similar between R1 and T1w/T2w ratio. Indeed, the correlation between GM R1 

and GWC (r=-0.72, p<0.001) was the same as the correlation between GM T1w/T2w ratio 

and GWC (r=-0.72, p<0.001). The correlation between SWM R1 and GWC (r=-0.11, p=0.58) 

was highly similar to the correlation between SWM T1w/T2w ratio and GWC (r=0.00, 

p=0.99). 

3.7 Influence of smoothing kernel and curvature regression order 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.477925doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.27.477925
http://creativecommons.org/licenses/by-nc/4.0/


 

 The main analyses done on markers smoothed with a 20 mm FWHM heat kernel 

applied before regressing out curvature (Figures 2, 4-6) are compared with supplementary 

analyses done on markers smoothed with a 5 mm FWHM heat kernel applied after 

regressing out curvature (Supplementary figures 8-11). For the spatial distribution analysis, 

the supplementary analysis shows generally lower correlation coefficients, but a significant 

spatial correlation between SWM T1w/T2w ratio and CT not found in the main analysis. For 

the age trajectory shape analysis, the supplementary analysis shows a mainly linear age 

trajectory for the BSC, compared to a mainly quadratic age trajectory reported in the main 

analysis. Results also visually appear more noisy with the 5 mm smoothing kernel. For the 

spatial distribution of the linear age effect, significant linear changes with age are less 

spatially extensive and visually noisier in the supplementary analysis, but spatial correlations 

between markers are more significant (i.e., lower p-values), although correlation coefficients 

remain generally low and similar to ones in the main analysis. For the BigBrain-MRI 

comparisons, the supplementary analysis show generally lower spatial correlations between 

BigBrain-derived markers and MRI-derived markers, although the GM T1w/T2w ratio at 50% 

of CT and SWM T1w/T2w ratio correlations are significant as opposed to the main analysis. 

Again, in this analysis, cortical maps again appear visually more noisy in the supplementary 

analysis.  
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4. Discussion 

In this study, we assessed the similarities and differences of commonly used MRI 

cortical markers that aim to quantify pericortical myelin and microstructure, namely CT, 

GWC, BSC, and T1w/T2w ratio. Although these measures are sometimes used 

interchangeably, there is significant relevance to compare these measures against one 

another and to assess their biological sensitivity to cytoarchitectural information derived from 

human histological data. 

Our results show high correlations between the spatial distributions of these markers, 

indicating that the gross anatomical distribution of these markers could stem from the same 

microstructural property. However, the age trajectories of these markers diverge to a large 

extent, both in the shape, direction, and spatial distribution of the age effect, indicating that 

different microstructural properties are likely at the source of more subtle age-related 

changes. 

4.1 Similarities and disparities with literature. 

At the level of individual metrics, our results are highly consistent with the literature. 

Indeed, we found spatial distributions in of CT (Fjell et al., 2009), GWC (Salat et al., 2009), 

BSC (Olafson et al., 2021), T1w/T2w ratio (Glasser & Van Essen, 2011), and R1 measures 

(Sereno et al., 2013) that correspond with previously reported spatial patterns. This provides 

confidence in our methodology and in the generalizability of our findings outside our sample. 

Furthermore, we have replicated the age trajectories of the markers described in the 

literature. Indeed, a widespread linear decrease of CT in healthy aging was observed both in 

(Fjell et al., 2009) and in our sample, with a steeper age-related decline in frontal regions. 

For the GWC, our observation of a linear decline with aging higher in the frontal lobe was 

consistent with previous findings (Vidal-Piñeiro et al., 2016). For the GM T1w/T2w ratio, we 
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reproduce the well-known inverted-U-shaped age trajectory (Grydeland et al., 2013, 2019). 

To our knowledge, this is the first time the age trajectory of SWM T1w/T2w ratio was 

characterized, showing an inverted-U-shaped aging pattern similar to GM T1w/T2w ratio, but 

with a steeper decline in the elderly. This is somewhat similar to previously described age 

trajectories of fractional anisotropy (FA) in SWM (Nazeri et al., 2015), but we observed a 

more pronounced increase in SWM T1w/T2w ratio in early adulthood and a delayed decline 

compared to SWM FA. Compared to one study reporting a mixture of inverted-U shaped and 

linear age trajectories of the magnetization transfer ratio (MTR) in SWM, another measure 

sensitive to myelin, our SWM T1w/T2w ratio quadratic age trajectories are more widespread 

(Wu et al., 2016). Lastly, we have described the age effect of the BSC in the adult lifespan 

for the first time. Paired with the developmental trajectories described in (Olafson et al., 

2021), we can describe for the first time the general age trajectory of the BSC across the 

whole lifespan: the boundary between GM and SWM becomes more gradual during 

childhood and adolescence, plateaus in adulthood, and becomes sharper in the elderly, 

showing a U-shaped age trend across the whole lifespan. 

One discrepancy with the literature is the negligible correlation between T1w/T2w 

ratio and curvature observed in our sample compared to more extensive correlations 

reported in other studies (Shafee et al., 2015). Possible explanations for this discrepancy 

include a smaller sample size (1555 vs 127 participants in our study), different surface 

extraction method (FreeSurfer vs CIVET in our study), and smaller smoothing kernels (5mm 

vs 20mm FWHM kernels in our study). However, we replicate more widespread correlations 

with curvature for the GWC (Olafson et al., 2021) and CT (Sereno et al., 2013), and spatially 

restricted correlations for the BSC (Olafson et al., 2021). 

4.2 Independence of GWC and BSC. 

An interesting finding was the observed independence of the BSC and the GWC, 

two measures that aim to represent similar cortical features, namely cortical blurring and 
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contrast between gray and white matter. Indeed, the spatial distributions between BSC and 

GWC were completely uncorrelated (r=-0.02, p=0.93), the spatial distributions of the linear 

age effects were completely uncorrelated (r=0.03, p=0.91), and the age trajectory of the BSC 

showed a U-shaped age trajectory with increases in the elderly across the cortex while the 

age trajectory of the GWC showed a linear decline with age. This discrepancy between BSC 

and GWC has been observed in one study before (Olafson et al., 2021), and the authors 

have hypothesized the causes of this discrepancy to be differences in preprocessing, 

analyses methods, sample size and characteristics, quality control procedures, and the 

uncertainty of the boundary placement which would theoretically affect the GWC to a greater 

extent than the BSC. However, in the present study, we can exclude almost all of these 

possible biases, except for the boundary placement explanation, due to a rigorous matching 

between the two markers for processing, analyses, and sample.  

One other explanation could be that the BSC values are driven by CT, possibly 

because the intensities of the cortical profile are sampled as fractions of CT. Indeed, there 

was a very high positive correlation between the spatial distributions of BSC and CT (r=0.77, 

p<0.001), which means that where BSC is higher, CT also tends to be higher. Hence, areas 

of high CT would induce deeper SWM and GM sampling distances, making the differences 

between SWM and GM intensities and possibly the sharpness of the GM/SWM boundary 

higher. However, it is also possible that CT is higher in areas of greater boundary sharpness, 

as the nature of correlations prevents us from determining the direction of the relationship. 

On the other hand, while the BSC and CT show synchronous changes between childhood 

and adulthood (BSC and CT decrease), their trajectories diverge in the elderly, as the BSC 

gets higher while CT continues its linear decrease. Hence, it is possible that the gross 

anatomical distribution of the BSC is influenced by CT, but that smaller age-related changes 

are more independent. Determining the direction of the relationship between the BSC and 

CT would be highly relevant, as one marker could indicate a source of bias on the other. 
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In sum, it is possible that both BSC and GWC are valid measures that don9t capture 

the same cortical features. Indeed, it is possible that the contrast between gray and white 

matter becomes lower in aging, while the transition between the two entities becomes 

sharper.  

4.3 Differences between spatial distributions and age trajectories. 

An important contribution of this paper is the observed discrepancy between spatial 

distribution relationships and aging relationships. Most of the correlations between the 

spatial distributions of the markers are significant at <0.05 FDR, and correlations range from 

r=-0.73 to r=0.77. As an example, GM T1w/T2w ratio, which we interpret as the most 

sensitive measure of intracortical myelin amongst all markers, correlated significantly and 

negatively with the BSC, GWC and CT, which could be interpreted as a myelin-specific 

dependency for these markers. On the other hand, the spatial correlations of the linear age 

effect between the markers are mostly non-significant at <0.05 FDR and range from r=-0.43 

to r=0.48. Furthermore, the shape of the age trajectories differs, with the BSC showing 

quadratic U-shaped trajectories, T1w/T2w ratio measures showing quadratic inverted U-

shaped trajectories, and CT and GWC showing linear decline trajectories. This discrepancy 

highlights an important point: microstructural properties driving spatial distributions of MRI 

markers can be different from microstructural properties driving, in our case, age-related 

effects. This rationale can also potentially extend to other pathology-related effects. 

As an example, the spatial distribution of the BSC correlated negatively with the GM 

T1w/T2w ratio, meaning that where the BSC tends to be higher, the GM T1w/T2w ratio tends 

to be lower. Meanwhile, the spatial distribution of the linear age effect of the BSC does not 

correlate significantly with the GM T1w/T2w ratio. Hence, the microstructural properties 

impacting the spatial distribution of the BSC are different from the microstructural properties 

at the source of the age effect. 
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This finding warrants caution in the interpretation of age- and pathology-related MRI 

effects as being driven by the same microstructural properties as the spatial distribution. In 

other words, our finding of spatial correlations being higher for mean values than for linear 

age effect indicates that while some measures tend to covary at the cortex-wide level, age 

trajectories are likely influenced by different interactions of microstructural changes. 

4.4 Similarity between T1w/T2w ratio and R1. 

We assessed the similarity between T1w/T2w ratio and R1 measures in the 

subsample of participants that had a clean R1 map (N = 35). The spatial distribution 

correlations between T1w/T2w ratio and R1 measures sampled at the same depths show 

very high similarities (between r=0.90 and r=0.94; see supplementary figure 6), which is in 

accordance with previous reports (Shams et al., 2019). However, relationships between 

these measures and BSC, GWC, and CT differed, with the spatial correlations being higher 

for T1w/T2w ratio than R1. This can possibly be explained by the fact that the BSC, GWC, 

and CT measures are generated on T1w images, which are also included in the calculation 

of the T1w/T2w ratio. This finding highlights that subtle differences between T1w/T2w ratio 

and R1 can lead to larger differences when correlating these measures to other measures, 

both in the results and interpretations (i.e. some relationships were significant at the <0.05 

FDR only with T1w/T2w ratio and not R1). Also, considering that the R1 maps are more 

specific to myelin, our findings suggest that the most myelin-specific cortical marker derived 

from weighted MRI images is the T1w/T2w ratio given its higher correspondence with R1. 

This is further supported by the qualitatively similar inverted-U shaped age trajectories 

between T1w/T2w ratio observed in this study and R1 reported in other studies (Erramuzpe 

et al. 2021). A more quantitative assessment of this relationship was not possible in this 

study due to the limited sample size of the R1 subsample, but would be highly pertinent. 

4.5 Relationships with cytoarchitecture. 
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We observed relatively few meaningful correlations between the MRI- and BigBrain-

derived markers. First, while the spatial distribution of the MRI BSC did correlate significantly 

with the BigBrain BSC, it is highly likely this relationship is mediated by CT, given the very 

high positive correlation between the spatial distribution of the BSC and CT, and the high 

positive correlation between MRI CT and BigBrain CT. Hence, this finding is not informative 

of the possible influence of cytoarchitecture on the BSC. 

Secondly, we found a significant negative correlation between the spatial distribution 

of the MRI GWC and BigBrain GWC. This is somewhat visually evident when looking at the 

sagittal medial view of the BigBrain and the T1w images (see supplementary figure 12): the 

GM/SWM contrast in cell density is higher in posterior and lower in anterior regions, which is 

contrary to the contrast T1w intensities. This relationship is likely due to the nature of the 

BigBrain dataset, where the intensities are inversely related to the cell density, thus 

rendering comparisons difficult. The relationship between cytoarchitecture and MRI signal is 

better expressed with the correlations between BigBrain intensities and T1w/T2w ratio 

measures. 

Indeed, we found a positive correlation approaching significance between the 

spatial distribution of the GM T1w/T2w ratio and the inverted BigBrain intensities only at 50% 

of cortical depth and not at 25%. While not quite reaching significance, this increased 

dependence of the T1w signal on the density of cells in cortical areas of scarce myelination 

is in agreement with (Eickhoff et al., 2005). It is thus possible that the T1w/T2w ratio 

depends more on cytoarchitecture in more superficial layers of GM, but this causal 

relationship would need to be empirically tested. Interestingly, this relationship was less 

expressed in temporo-parietal regions and in parts of the prefrontal cortex, showing higher 

residuals from the correlation. Higher residuals in those areas are either due to the BigBrain 

donor9s brain being different than the group average in these regions, or due to a different 

relationship between MRI signal and cytoarchitecture in these regions than the rest of the 
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cortex. In partial support of the first hypothesis, the residuals from the BigBrain-MRI 

relationship of CT, a metric less influenced by modality differences, showed partial overlap 

with the regions mentioned above, mostly in temporo-parietal regions. 

 In sum, further investigations are needed to assess the impact of 

cytoarchitecture on the MRI cortical markers. Despite significant correlations between the 

BigBrain- and MRI-derived BSC and GWC, and correlations approaching significance for the 

T1w/T2w ratio only at half cortical depth, we cannot conclude with confidence that these 

markers are impacted to a large extent by cytoarchitecture. On the other hand, the influence 

of cytoarchitecture on weighted MRI images is not to be discarded, especially in more 

superficial cortical layers. 

4.6 High residuals in medial cortex. 

One incidental finding in our analyses was the high residuals from most spatial 

correlations in medial regions, most prominently in the medial temporal lobe. While it is 

possible that this area has a different relationship between biological microstructure and MRI 

signal than the rest of the cortex, a more probable explanation is the unreliability of the 

measures caused by very low cortical thickness (<2mm), which could induce partial volume 

effects. Indeed, the GWC, BSC and T1w/T2w ratio measures are calculated by sampling the 

signal at different fractions of CT. Hence, very low CT could lead to the multiple sampling 

points being very close to each other, thus leading to unreliable measures. In order to test 

this hypothesis, we spatially correlated CT with the residuals from the 6 significant spatial 

distribution correlations (see supplementary figure 7B). Supporting this hypothesis, 4 out of 6 

of those correlations were significant. Furthermore, we calculated the sum of squared 

residuals from the sigmoid curve used to generate the BSC at each vertex, then averaged 

the values across-subjects, and found high residuals in the same areas, meaning a worse fit 

of the sigmoid curve to the cortical profile in those areas (supplementary figure 6A). 
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Following those observations, we advise caution in interpreting results of these cortical 

markers in medial areas of very low CT. 

4.7. Influence of smoothing kernel and curvature regression order 

 The main analyses done on markers smoothed with a 20 mm FWHM heat kernel 

applied before regressing out curvature (Figures 2, 4-6) are compared with supplementary 

analyses done on markers smoothed with a 5 mm FWHM heat kernel applied after 

regressing out curvature (Supplementary figures 8-11). In general, results from the 

supplementary analyses are similar and lead to similar conclusions compared to results from 

the main analyses, with the possible exception of a mostly linear age trajectory of the BSC in 

the supplementary analysis as opposed to a mostly quadratic age trajectory in the main 

analysis. Since cortical maps in supplementary analyses appear visually noisier, probably 

due to the lower smoothing kernel, we conclude that the higher smoothing kernel used in the 

main analyses was the most appropriate for our data. Interestingly, correlation coefficients 

are in general lower in the supplementary analyses, but p-values derived from spin tests 

(Alexander-Bloch et al., 2018) are generally lower (more significant). One possible 

explanation is that correlation coefficients from spinned surfaces (i.e. correlations forming 

the null distribution for the spin test) are disproportionately lower than the correlation of the 

non-spinned surfaces at lower smoothing kernel values, thus leading to a bigger difference 

between the original correlation and the null distribution resulting in a lower p-value. This 

interaction between p-values derived from spin-tests and smoothing kernels should be 

further investigated in the future.  

4.8 Limitations. 

As a first limitation, it is important to note that our analyses are at the cortex-wide 

level. Hence, some interactions in local areas between markers and microstructure could still 

be present. For instance, (Natu et al., 2019) reported that the increased myelination of the 
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cortex during development directly leads to reductions in CT specifically in the ventral 

temporal cortex, and this finding was validated histologically. 

Secondly, our analyses cannot exclude that different characteristics of the 

myeloarchitecture could cause the age-related changes of the markers. In other words, the 

overall density of myelin in GM can be uncorrelated with some markers, but specific changes 

in laminar patterns of myelin could still differentially affect each of the markers, leading to 

dissimilar age trajectories that are caused by changes in myelination. For example, the GWC 

could represent the myelination similarity between GM and SWM, the BSC could represent 

the sharpness of myelin change between GM and SWM, and the T1w/T2w ratio could 

represent the density of myelin at the sampled cortical depth. However, we argue that such 

interpretation would need to be precisely characterized and empirically justified. It is also 

possible that the gross anatomical distribution of the markers, and of the T1w signal, 

represents myelin to a large extent, but that more subtle age- or disease-related changes 

could stem from changes in other microstructural properties also contributing to the signal, 

such as iron (Callaghan et al., 2014). 

Thirdly, the linear age effects we used to compare the spatial distribution of the age 

trajectories between the markers are not optimal models in all cases, since the BSC and 

T1w/T2w ratio measures display mostly quadratic trajectories. However, those markers still 

display a significant linear component of those age trajectories, with the possible exception 

of the BSC showing somewhat spatially constrained significant linear age effects in anterior 

frontal areas. Furthermore, we argue that the different age trajectory shapes between the 

markers, rendering the quantitative comparison of the spatial distribution of the age effect 

more difficult, supports our interpretation that the age trajectories are different and driven by 

divergent microstructural changes. 

Lastly, the observed correlations between the spatial distributions of MRI- and 

BigBrain-derived markers could be due to the idiosyncrasies of the BigBrain, which stems 
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from a single brain of a 65-year-old male. However, it is unlikely that important differences 

between spatial distributions would arise from using different brains, hence our conclusions 

are unlikely to change. 

4.9 Future work 

Our results advise against attributing a specific microstructural property at the 

source of age- or pathology-related changes of MRI cortical biomarkers. While our findings 

highlight a discrepancy is the microstructural interpretation of the cortical markers, our 

conclusions do not aim to discourage the use of these MRI-derived markers, as they have 

been reported to be sensitive to various pathologies (Olafson et al., 2021; Salat et al., 2011), 

and could be useful for such purposes. In that regard, our finding of relative independence of 

the markers in aging indicates that they could be used complementarily as they could be 

sensitive to different cortical pathologies, thus highlighting the richness of information 

available in standard T1w and T2w images. Future work aiming to assess specific cortical 

microstructural properties should consider the use of multimodal quantitative MRI. Indeed, 

the advent of quantitative MRI allows for the unprecedented assessment of brain 

microstructural properties in-vivo, sometimes referred to as in-vivo histology (Weiskopf et al., 

2021). Those techniques show increased biological specificity and are less sensitive to 

scanner- and sequence-specific differences, rendering them theoretically directly 

comparable between sites and scanners. However, the same rationale displayed here could 

also apply to quantitative MRI, meaning that the microstructural properties contributing the 

most to the contrast could be different from microstructural properties at the source of 

statistical effects. Hence, we advise for the use of multimodal quantitative MRI in order to 

increase the confidence of biological interpretations, as we have demonstrated in recent 

work from our group (Patel et al., 2019; Robert et al., 2021). However, as the adoption of 

quantitative MRI is lagging, our findings illustrate that many largely independent markers can 

be derived from the growing number of publicly available standard T1w and T2w scans, 
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although specific biological interpretations of these markers would need to be further 

investigated. 

4.10 Conclusion. 

In this study, we examined and compared the spatial distributions and age 

trajectories of the BSC, GWC, CT, and T1w/T2w ratio. These markers are all thought to be 

influenced by GM myelin (i.e. intracortical myelin), but evidence supporting these 

interpretations is lacking. Our results show similar spatial distributions between the markers, 

but few relationships in aging. Hence, we conclude that the microstructural properties at the 

source of spatial distributions of MRI cortical markers (e.g. GM myelin) can be different from 

microstructural changes that affect these markers in aging. This warrants care in interpreting 

the age- or disease-related effects of these MRI markers when aiming to show changes in a 

specific property of the cortical microstructure.   
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Figure and tables 

 

 Pre-QC Post-QC R1 subsample 

 Total ADB HA Total ADB HA Total ADB HA 

N 174 68 106 127 45 82 35 26 9 

Mean age 

(years +/- SD) 

55.3 

+/- 

17.59 

69.9 

+/- 

5.59 

45.8 

+/- 

16.12 

53.4 +/- 

17.97 

69.6 

+/- 

5.72 

44.5 +/- 

16.1 

62.7 +/- 

13.33 

70 +/- 

5.17 

41.8 +/- 

4.87 

Sex 

(female:male) 

95 : 79 41 : 27 54 : 52 76 : 51 29 : 

16 

47 : 35 21 : 14 16 : 

10 

5 : 4 

WASI (+/- SD) 104.3 

+/- 

18.8 

- 104.3 

+/- 

18.8 

105.5 

+/- 18.8 

- 105.5 

+/- 18.8 

102.1 

+/- 21.1 

- 102.1 

+/- 21.1 

MMSE (+/- 

SD) 

28.6 

+/- 1.5 

28.3 

+/- 1.7 

28.8 

+/- 1.3 

28.7 +/- 

1.5 

28.2 

+/- 1.8 

29 +/- 

1.3 

28.5 +/- 

1.6 

28.3 

+/- 1.8 

29 +/- 

0.8 
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MOCA (+/- 

SD) 

25.5 

+/- 2.7 

25.5 

+/- 2.7 

- 25.2 +/- 

2.8 

25.2 

+/- 2.8 

- 25.2 +/- 

3 

25.2 

+/- 3 

- 

RBANS (+/- 

SD) 

99.9 

+/- 

13.8 

97.1 

+/- 

12.9 

101.6 

+/- 14 

101.3 

+/- 13 

98.2 

+/- 

13.6 

102.9 

+/- 12.4 

98 +/- 

13 

94.5 

+/- 

12.8 

106.6 

+/- 9.1 

 

Table 1. Subject demographics. Demographic information by dataset before quality control 
(QC), after QC and in the R1 subsample. HA = Healthy Aging cohort, ADB = Alzheimer9s 
Disease Biomarkers cohort (controls only)  
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Figure 1. Methods for generating markers. A. Cortical Thickness (CT) estimates were 
calculated as the Laplacian distance between the pial surface and the gray-white matter 
boundary surface at each vertex on the T1-weighted volume in native space. B. Gray-white 
matter contrast (GWC) was calculated by dividing the intensity at 25% of CT translated into 
superficial white matter (SWM) by the intensity at 25% of CT into gray matter (GM) at each 
vertex on the T1-weighted volume in MNI space. C. The T1w/T2w ratio measures were 
generated by sampling the T1w/T2w volume in native space at various distances. GM 
T1w/T2w ratio was sampled at 25% of CT. SWM T1w/T2w ratio was sampled at 25% of CT 
translated into SWM. Additionally, a second GM T1w/T2w ratio measure was sampled at 
50% of CT in GM (referred to as GM T1w/T2w ratio at 50% of CT). D. The boundary 
sharpness coefficient (BSC) was calculated by first sampling 10 T1-weighted intensities in 
MNI space around the gray-white matter boundary (between 50% of CT in GM and 25% of 
CT in SWM), then fitting a sigmoid curve to the resulting intensity profile at each vertex. The 
BSC represents the growth parameter of the sigmoid curve, with a higher BSC indicating a 
sharper gray-white matter transition and a lower BSC representing a more gradual transition. 
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Figure 2. Spatial distributions of the markers and correlations. For each marker, the 
mean and standard deviation of the surface were calculated and used to threshold the 
colors. Purple areas indicate lower values relative to the mean of that marker, while yellow 
areas indicate higher values. The correlation matrix includes Pearson's correlation 
coefficients (r) and FDR-corrected p-values. The color of each correlation block is linked to 
the correlation coefficient: positive coefficients are red and negative coefficients are blue, 
and high coefficients are more saturated and low coefficients tend towards white. Significant 
correlations at the FDR 0.05 level are highlighted with a green outline.  
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Figure 3. Spatial distribution relationships: graphs and residuals. For each significant 
correlation, the left figure is the spatial regression in graph form, where the x-axis are the 
values of the first marker, the y-axis are values of the second marker, the regression line is 
shown in black, and the +1 SD and -1 SD lines are shown in red and blue respectively. The 
right figure is the vertex-wise residuals from the regression thresholded at +/- 1 standard 
deviation (cold colors indicate vertices below the regression line in blue in the left graph and 
warm colors indicate vertices above the regression line in red in the left graph, and lighter 
colors indicate higher residual values and darker colors indicate lower residual values). For 
example, the relationship between GWC and GM T1w/T2w ratio (top right) is linear in most 
areas, as seen in the graph on the left, except for a group of vertices below the regression 
line which we can locate in the residual figure on the right (in this case, in the insula and 
medial temporal pole)  
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Figure 4. Vertex-wise best age trajectory shape between linear, quadratic and cubic 
for each marker. A. Table illustrating the proportion of vertices best fitted by each age 
model for each marker according to the Akaike Information Criterion (AIC), with the age 
model best fitting the highest proportion of vertices highlighted in green. B. Spatial 
distribution of the AIC results. Purple areas indicate a better fit of the linear age trajectory, 
green areas indicate a better fit of the quadratic age trajectory, and yellow areas indicate a 
better fit of the cubic age trajectory.  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.477925doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.27.477925
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Figure 5. Spatial distribution of the linear age effect of the markers and correlations. 
A. For each marker, the mean and standard deviation of the age betas were calculated and 
used to threshold the colors. Cortical maps are thresholded for significance at the FDR 0.05 
level. Cold colors indicate negative age betas and warm colors indicate positive age betas. 
Light colors indicate higher age betas and dark colors indicate lower age betas. The 
correlation matrix includes Pearson's correlation coefficient (r) and FDR-corrected p-values. 
The color of each correlation block is linked to the correlation coefficient: positive coefficients 
are red and negative coefficients are blue, and high coefficients are more saturated and low 
coefficients tend towards white. Significant correlations at the FDR 0.05 level are highlighted 
with a green outline. B. Example of the age trajectory of each marker at one vertex in the 
precentral gyrus where the age beta of each marker was significant at the FDR 0.05 level. 
Blue observations represent male participants and red observations represent female 
participants. The x-axis is age and the y-axis is the marker value residualized for mean 
curvature. 
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Figure 6. Correlations between the spatial distributions of the markers generated on 
MRI and markers generated on BigBrain. For each marker, the mean and standard 
deviation were calculated and used to threshold the colors. More specifically, purple areas 
indicate lower values relative to the mean of that marker, while yellow areas indicate higher 
values. The Pearson9s correlation coefficient and p-value are colored green if the 
relationship is significant at the 0.05 level.  
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