

Genomic analysis of a parasite invasion: colonization of the Americas by the blood fluke, *Schistosoma mansoni*

Roy N. Platt II^{*1}, Winka Le Clec'h^{*1}, Frédéric D. Chevalier^{*1}, Marina McDew-White¹, Philip T. LoVerde², Rafael R. de Assis³, Guilherme Oliveira^{3,4}, Safari Kinunghi⁵, Amadou Garba Djirmay⁶, Michelle L. Steinauer⁷, Anouk Gouvas⁸, Muriel Rabone⁸, Fiona Allan^{9,10}, Bonnie L. Webster^{8,10}, Joanne P. Webster^{9,10}, Aidan Emery^{8,10}, David Rollinson^{8,10}, Timothy J. C. Anderson¹

¹Texas Biomedical Research Institute, San Antonio, San Antonio, TX, United States

²University of Texas Health Science Center, San Antonio, San Antonio, TX, United States

³Centro de Pesquisas René Rachou - Fiocruz/MG, Belo Horizonte, Brazil

⁴ Instituto Tecnológico Vale, Belém, Brazil

⁵ National Institute for Medical Research, Mwanza, Tanzania.

⁶ Réseau International Schistosomiases Environnemental Aménagement et Lutte (RISEAL), Niamey, Niger.

⁷ Western University of Health Sciences, Corvallis, OR, United States

⁸ Natural History Museum, London, United Kingdom

⁹ Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom

¹⁰ London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, London, United Kingdom

Abstract

Schistosoma mansoni, a snail-vectored, blood fluke that infects humans, was introduced into the Americas from Africa during the Trans-Atlantic slave trade. As this parasite shows strong specificity to the snail intermediate host, we expected that adaptation to S. American *Biomphalaria* spp. snails would result in population bottlenecks and strong signatures of selection. We scored 475,081 single nucleotide variants (SNVs) in 143 *S. mansoni* from the Americas (Brazil, Guadeloupe, and Puerto Rico) and Africa (Cameroon, Niger, Senegal, Tanzania, and Uganda), and used these data to ask: (i) Was there a population bottleneck during colonization? (ii) Can we identify signatures of selection associated with colonization? And (iii) what were the source populations for colonizing parasites? We found a 2.4-2.9-fold reduction in diversity and much slower decay in linkage disequilibrium (LD) in parasites from East to West Africa. However, we observed similar nuclear diversity and LD in West Africa and Brazil, suggesting no strong

34 bottlenecks and limited barriers to colonization. We identified five genome regions showing selection in
35 the Americas, compared with three in West Africa and none in East Africa, which we speculate may
36 reflect adaptation during colonization. Finally, we infer that unsampled African populations from central
37 African regions between Benin and Angola, with contributions from Niger, are likely the major source(s)
38 for Brazilian *S. mansoni*. The absence of a bottleneck suggests that this is a rare case of a serendipitous
39 invasion, where *S. mansoni* parasites were preadapted to the Americas and were able to establish with
40 relative ease.

41

42 **Keywords**

43 co-dispersal, migration, human parasite, exome, Africa, Brazil

44

45 **Introduction**

46 Genomic characterization of parasites and pathogens is increasingly used as an aid to traditional
47 epidemiological methods in reconstructing transmission patterns (de Oliveira et al., 2020; Nadeau,
48 Vaughan, Scire, Huisman, & Stadler, 2021). On a longer time-scale genomic data can be used to
49 understand biological invasions of pathogens into new continents, just as these methods are used for
50 investigating biological invasions in free-living organisms (Rius, Bourne, Hornsby, & Chapman, 2015;
51 Sherpa & Després, 2021). Such methods can determine the colonization route, source population, number
52 of colonization events, whether diversity is reduced during colonization and evidence for adaptation in
53 colonizing populations. Examining the consequences of historic invasions can inform our understanding
54 of extant invasions.

55 The Trans-Atlantic slave trade lasted from 1502-1888 when the last remaining slave ports in
56 Brazil were shutdown (Bergad, 2007). During this time, more than 12 million people were trafficked
57 from Africa to slave ports in the Americas, representing one of the largest forced migration events in
58 human history (Eltis, 2001). Along with the human cargo, a number of human pathogens were introduced
59 into the Americas as well. For example, Parvo and hepatitis B viruses were successfully introduced into
60 the Americas and rapidly spread through native populations leading to large scale outbreaks (Guzmán-
61 Solís et al., 2021). *Trypanosoma brucei*, the etiological agent for African Sleeping Sickness, was also
62 introduced but failed to establish due to the absence of its' intermediate host; the Tsetse fly (Steverding,
63 2020). Today viable populations of pathogens including Herpes simplex virus 2 (Forni et al., 2020),
64 yellow fever virus (Bryant, Holmes, & Barrett, 2007), the parasitic nematode *Wuchereria bancrofti*
65 (Small et al., 2019), among others (Steverding, 2020) are all a direct result of introductions during the
66 Trans-Atlantic slave trade. In some cases, the genetic signatures of the introduction are still visible. For

67 example, genetic diversity in South American *Leishmania chagasi* populations is halved and the effective
68 population size (Ne) is reduced from 43.6M to 15.5K when compared to source populations in Africa
69 (Leblois, Kuhls, François, Schönian, & Wirth, 2011; Schwabl et al., 2021). Here, we focus on successful
70 invasion of the human-parasitic trematode, *Schistosoma mansoni*.

71 *S. mansoni* is distributed from Oman, through sub-Saharan Africa, to the Caribbean and countries
72 along the eastern coast of South America. Phylogenetic evidence indicates that *S. mansoni* in West Africa
73 and the Americas are closely related (Crenn et al., 2016; Després, Imbert-Establet, & Monnerot, 1993;
74 Fletcher, LoVerde, & Woodruff, 1981; Morgan et al., 2005; Webster et al., 2013) and these observations,
75 along with demographic reconstructions (Crenn et al., 2016), indicate a recent origin of *S. mansoni* in
76 the Americas. As a result, there is strong evidence that *S. mansoni* co-migrated to the Americas during
77 the forced human migrations of the Trans-Atlantic slave trade (Files, 1951). Furthermore, reduced
78 diversity in mitochondrial haplotypes (Després et al., 1993; Fletcher et al., 1981; Morgan et al., 2005;
79 Webster et al., 2013) in South American *S. mansoni* suggests the presence of a bottleneck during parasite
80 establishment.

81 Our central goal was to use parasite genomic data to investigate this human-mediated, biological
82 invasion and the impacts of a relatively recent, trans-continental, migration event. Parasites in the genus
83 *Schistosoma* have a complex life cycle involving human definitive hosts and snail intermediate hosts
84 (reviewed in Anderson & Enabulele, 2021). Eggs are expelled in human feces (*S. mansoni* and *S.*
85 *japonicum*) or urine (*S. haematobium*). Larvae (miracidia) hatch in fresh water and infect receptive snails.
86 Once inside the snail host, the schistosomes reproduce asexually, and 2nd stage larvae (cercariae) are
87 released back into the water where they infect humans, mature into adult worms, and restart their life
88 cycle. *S. mansoni* is diploid, with a well characterized 363Mb genome (Berriman et al., 2009;
89 International Helminth Genomes Consortium, 2019; Protasio et al., 2012), ZW sex determination,
90 obligate sexual reproduction of adult worms, and a relatively long life-span; from 5-10 years (Fulford,
91 Butterworth, Ouma, & Sturrock, 1995).

92 The distribution of the intermediate snail host is a major driver of schistosome distribution. *S.*
93 *haematobium*, a sister-taxon to *S. mansoni*, infects a different snail host; *Bulinus* spp. While people
94 infected with both *S. mansoni* and *S. haematobium* were transported to S. America, only *S. mansoni*
95 would have been able to establish due to the presence of the *Biomphalaria* spp. intermediate snail host(s)
96 prior to their arrival (Morgan et al., 2005). *S. mansoni* shows strong specificity for species, and even
97 strains of snails in the genus *Biomphalaria* (Webster & Woolhouse, 1998), however the *Biomphalaria*
98 species assemblages differ between the Americas and Africa (DeJong et al., 2001). *B. pfeifferi*, *B.*
99 *sudanica*, and *B. alexandrina*, are the primary intermediate hosts in Africa (DeJong et al., 2001), while

100 *B. glabrata*, *B. tenagophila*, *B. straminea*, are the known snail hosts in South America (Vidigal et al.,
101 2000). *S. mansoni* infections can impact the reproductive viability of their snail hosts, and there are strong
102 co-evolutionary interactions driving resistance to infection in snails and for infectivity in parasites
103 (Davies, Webster, & Woolhous, 2001; Theron, Rognon, Gourbal, & Mitta, 2014; Webster, Gower, &
104 Blair, 2004). Several schistosome resistance genes have been localized within the snail genome (Tennessen
105 et al., 2020; Tennessen et al., 2015) and polymorphic loci in both snail and parasites are thought to
106 determine compatibility between snail and parasite (Mitta et al., 2017; Webster & Woolhouse, 1998;
107 Woolhouse & Webster, 2000). Based on these observations, we hypothesize that the adaptation to novel,
108 *Biomphalaria* spp. hosts would place strong selective pressures on *S. mansoni* as it became established
109 in the Americas.

110 Adult schistosomes live in the blood vessels, making them difficult to sample. Genome and
111 exome sequencing of schistosomes is now possible using whole genome amplification of miracidia larvae
112 isolated from feces or urine (Doyle et al., 2019; Le Clec'h et al., 2018; Shortt et al., 2017) and several
113 genome scale population analyses have recently been published (Berger et al., 2021; Platt et al., 2019;
114 Shortt et al., 2017). Our goal is to address the following questions with the available sequence data from
115 both the Africa (Niger, Senegal, Uganda, and Tanzania) and the Americas (Caribbean, Brazil): (i) Are the
116 genomic data consistent with a West African origin of colonizing schistosome populations?; (ii) is there
117 evidence for genetic bottlenecks during colonization; (iii) are there genomic signatures suggesting
118 adaptation of colonizing parasites to the Americas; (iv) can we determine the source country or countries
119 for Americas parasite populations?

120

121 Materials and Methods

122 *Data and sample information* – We examined published exomic and genomic data from 178 individual
123 *Schistosoma* samples/isolates, from multiple geographical locations, available from three studies
124 (Berriman et al., 2009; Chevalier et al., 2019; Crennen et al., 2016). All exome data is from Chevalier *et*
125 *al.* (2016) and Chevalier *et al.* (2019). These data were generated from individual larval miracidia hatched
126 from *S. mansoni* eggs and preserved on FTA cards. Exome libraries were generated via whole genome
127 amplification followed by targeted capture of the exome (Le Clec'h et al., 2018). This method specifically
128 targets 95% (14.81 Mb) of the exome with 2x tiled probes. The whole genome sequence data came from
129 adult worms cultured through laboratory rodents and snails for two or more generations before whole
130 genome library prep and sequencing (Berriman et al., 2009; Crennen et al., 2016; International Helminth
131 Genomes Consortium, 2019). Sample origins are shown in Figure 2. Detailed metadata is available for

132 each sample in Supplemental Table 1 including country of origin, species identification, NCBI Short
133 Read Archive (SRA) accession, *etc.*

134

135 *Computational environment* – We used conda v4.8.3 to manage virtual environments for all analyses.
136 Sequence read filtering through genotyping steps were documented in a Snakemake v5.18.1 (Köster &
137 Rahmann, 2012) workflow and all other analyses were performed in a series of Jupyter v1.0.0 notebooks.
138 The code for this project including shell scripts, Snakemake workflows, notebooks, and environmental
139 yaml files are available at https://github.com/nealplatt/sch_man_nwinvasion/releases/tag/v0.2 (last
140 accessed 21 Oct 2021) and accessioned at <https://doi.org/10.5281/zenodo.5590460> (last accessed 21 Oct
141 2021).

142

143 *Genotyping* – Paired end reads were quality filtered with trimmomatic v0.39 (Bolger, Lohse, & Usadel,
144 2014) with the following parameters ‘LEADING:10 TRAILING:10 SLIDINGWINDOW:4:15
145 MINLEN:36’. Filtered reads were mapped to the *S. mansoni* genome (GenBank Assembly accession:
146 GCA_000237925.3) using bwa v0.7.17-r1188 (Li & Durbin, 2010). We allowed up to 15 mismatches per
147 100 bp read (-n 15) to account for divergence between *S. mansoni* and *S. rodhaini*. Mapped single and
148 paired reads were merged into a single file and all optical/PCR duplicates were removed with GATK
149 v4.1.2.0’s (McKenna et al., 2010) MarkDuplicates. Single nucleotide variants (SNVs) were called with
150 HaplotypeCaller and GenotypeGVCFs on a contig-by-contig basis, combined into a gvcf per individual,
151 and finally merged into a single gvcf for the entire dataset. We used a high quality SNV data from Le
152 Clec’h *et al.* (2021) as a training dataset for variant recalibration and scored SNV quality using ‘-an SOR
153 -an MQ -an MQRankSum -an ReadPosRankSum’. Sensitivity Tranches (--truth-sensitivity-tranche) were
154 set at 100, 99.5, 99, 97.5, 95, and 90. We re-calibrated SNVs using the 97.5 sensitivity tranche and filtered
155 low confidence sites with the following set of filters (--filter-expression) QD < 2.0, MQ < 30.0, FS >
156 60.0, SOR > 3.0, MQRankSum < -12.5, and ReadPosRankSum < -8.0”. All genotyping steps from read
157 filtering through variant re-calibration were contained within a single Snakemake v5.18.1 (Köster &
158 Rahmann, 2018) script.

159 We used VCFtools v0.1.16 (Danecek et al., 2011) for additional rounds of filtering. First, we
160 removed low quality sites with quality score <25, read depth <12, and non-biallelic sites. Second, we
161 removed sites and individuals with a genotyping rate less than 50%. Third, we removed all sites that were
162 on unresolved haplotigs by retaining only those SNVs that were on one of seven autosomal scaffolds
163 (GenBank Nucleotide accessions: HE601624.2-30.2), the sex-linked ZW scaffold (HE601631.2), or the
164 mitochondria (HE601612.2). Finally, for analyses requiring unlinked SNVs, we filtered linked sites

165 within 250Kb windows using Plink v1.90b4 (Purcell et al., 2007) with the following parameters “—
166 indep-pairwise 250kb 1 0.20”.

167

168 *Summary Statistics* – We quantified read depth per probed-exome region with MosDepth v0.2.5
169 (Pedersen & Quinlan, 2018) and calculated genome-wide summary statistics for each population,
170 including F_3 , F_{ST} , Tajima’s D , π , and the Watterson estimator (Θ) with scikit-allele v1.2.1 (Miles, Ralph,
171 Rae, & Pisupati, 2019). We examined genome regions that were targeted by the Le Clec’h *et al.* (2018)
172 probe set for these calculations, non-target regions (i.e. non-exomic) were ignored since most samples
173 lacked information from these regions. F_{ST} between populations was calculated from the average Weir-
174 Cockerham F_{ST} (Weir & Cockerham, 1984) in windows of 100 SNVs. Effective population size (N_e)
175 was estimated from Θ and the mutation rate ($\mu = 8.1 \times 10^{-9}$ per base per generation; Crellin *et al.*, 2016)
176 with:

177

$$N_e = \frac{\Theta}{4\mu}$$

178 We examined linkage disequilibrium (LD) within each population by calculating r^2 (–r2) values
179 with PLINK v1.90b6.18 (Purcell et al., 2007). We excluded invariant sites from the analyses. Intra-
180 autosomal, pairwise comparisons between SNVs within 1Mb of one another were allowed by setting the
181 following parameters: “–ldwindow 1000000”, “–ld-window-kb 1000”, and “–ld-window-r2 to 0.0”. r^2
182 values were then binned into 500 bp windows and averaged for each population using the R v3.6.1
183 stats.bin function in the fields v11.6 (Nychka, Furrer, Paige, & Sain, 2017) library. We used local
184 regression to smooth the binned r^2 values with the loessMod function in the base R v3.6.1 package and
185 a span size of 0.5.

186 We used a Pearson Mantel test to examine correlation between genetic and physical distance.
187 Since we did not have exact collection coordinates from whole genome samples, or they were lab derived,
188 we excluded them from the analyses and instead focused only on the *S. mansoni* exome samples. We
189 calculated pairwise p-distances with VCF2Dis (<https://github.com/BGI-shenzhen/VCF2Dis>; commit:
190 b7684d3, accessed 13 Feb 2021) and physical distances between samples the Python haversine 2.3.0
191 module. Finally, we used the mantel() function in the scikit-bio 0.2.1 Python library to conduct a Pearson
192 Mantel test that included 1,000 permutations.

193

194 *Population structure and admixture* - We examined population substructure using PCA and Admixture
195 with unlinked autosomal SNVs (described above). Two PCAs were calculated in PLINK v1.90b6.18,
196 with and without the *S. rodhaini* samples. Population ancestry was estimated with ADMIXTURE v1.3.0

197 (Alexander, Novembre, & Lange, 2009). We examined between $k=1$ to $k=20$ populations and used the
198 Cross-validation scores and the Evanno *et al.* (2005) method were used to determine a range of viable
199 k 's. Q estimates were used as proxy for ancestry fractions.

200 We examined D (Patterson *et al.*, 2012), D_3 (Hahn & Hibbins, 2019) and F_3 (Patterson *et al.*,
201 2012) to identify gene flow between *S. rodhaini* and *S. mansoni* populations with emphasis on the
202 Tanzanian *S. mansoni* population since it is from East Africa as are the *S. rodhaini* samples. For D_3 , we
203 calculated the mean-pairwise (Euclidean) distances between populations using scikit-allele's
204 `allel.pairwise_distance()` function. To determine significance, we used 1,000 block bootstrap replicates
205 of 1,000 SNV blocks. We calculated the average F_3 across the genome in blocks of 100 variants. Here we
206 ran multiple test that included some combination of an African *S. mansoni* population (Niger, Senegal,
207 and Tanzania) as the test group and Brazilian *S. mansoni* and *S. rodhaini* as the potential source
208 populations. D, or the ABBA-BABBA statistic, averaged over blocks of 1,000 variants assuming a
209 phylogeny of (((*a*, Tanzania), *S. rodhaini*), *S. margrebowiei*), where the *a* population was either Brazil,
210 Niger, or Senegal. D, D_3 and F_3 values were calculated using scikit-allel.

211
212 *Phylogenetics* – We used three different phylogenetic methods to visualize relationships among sampled
213 schistosomes: a mitochondrial haplotype network, a coalescent-based species tree, and a phylogenetic
214 network.

215 (i) Mitochondrial haplotype network. We extracted mitochondrial SNVs from all *S. mansoni*
216 individuals with VCFtools and converted the subsequent VCF file to Nexus format with
217 `vcf2phylip` v2.0 (Ortiz, 2019). A median joining network ($\varepsilon = 0$) was created in from the
218 mitochondrial haplotypes with PopArt v1.7 (Leigh & Bryant, 2015).

219 (ii) Coalescent-based species tree. We generated a coalescent-based species tree with
220 SVDQuartets (Chifman & Kubatko, 2015) packaged in PAUP* v4.0.a.build166 (Swofford,
221 2003). We examined parsimony-informative, autosomal SNVs by removing private alleles
222 (singleton and doubletons). All samples were assigned to a population based on their country
223 of origin (ex. Niger, Puerto Rico, Brazil, Cameroon, etc.) except for the lab-derived,
224 Caribbean samples. Each of these samples was considered to represent an individual
225 population given their histories of extensive lab passage (ex. Guadeloupe1, Guadeloupe2,
226 Puerto Rico). We randomly evaluated 100,000 random quartets and bootstrapped the quartet
227 tree with 1,000 standard replicates. The tree was rooted on the single *S. margrebowiei*
228 individual.

229 (iii) Phylogenetic network. We used a phylogenetic network to visualize and quantify migration
230 among schistosome populations. We only included *S. mansoni* populations with more than 4
231 individuals, which excluded all whole genome samples from this analysis including those
232 from the Caribbean and the *S. rodhaini* samples. We used autosomal SNVs after filtering
233 linked sites in 250Kb blocks with PLINK v1.90b6.18 and then used TreeMix v1.12 (Pickrell
234 & Pritchard, 2012) to generate the phylogenetic network. This analysis used a co-variance
235 matrix generated from blocks of 500 SNVs without sample-size correction (“--noss”) and the
236 number of migration events was limited to 3.

237

238 *Selection* –We scanned the genome to identify regions under selection using haplotype (H-scan v1.3;
239 Schlamp et al., 2016), allele-frequency (SweepFinder2 v2.1; DeGiorgio, Huber, Hubisz, Hellmann, &
240 Nielsen, 2016), and PCA-based (pcadapt v4.3.3; Luu, Bazin, & Blum, 2017) methods. In addition, to
241 avoid false positives, we used msprime v0.7.4 (Kelleher, Etheridge, & McVean, 2016) to conduct
242 simulations to estimate the range of values expected under neutrality from H-Scan and SweepFider2.

243 (i) Neutral simulations. We used msprime v0.7.4 (Kelleher et al., 2016) to simulate a set of
244 neutrally evolving SNVs along a single chromosome for each population and then used the
245 simulated data with H-Scan and SweepFinder2 to define the range of values expected in the
246 absence of selection. For these simulations we used a mutation rate ($\mu = 8.1 \text{ e-9}$ per base per
247 generation; Crellin et al., 2016) and recombination rate (3.4e-8 per base per generation;
248 Criscione, Valentim, Hirai, LoVerde, & Anderson, 2009) from previous work on *S. mansoni*.
249 Population-specific estimates of Ne are described above. The chromosome length was set to
250 88.9 Mb which is equal to chromosome 1 (HE601624.2) in the *S. mansoni* assembly. The
251 number of chromosomes sampled per msprime run was equal to the number of samples we
252 collected in each population. We used these parameters to perform 342 simulations for each
253 population, roughly equivalent to 100 genomes worth of simulated data. Next, we down
254 sampled the SNVs along the entire simulated chromosome so that they were comparable with
255 our targeted sequencing approach (i.e. only SNVs from “exomic” regions). Since the simulated
256 chromosomes were the same size as chromosome 1 we transposed the chr1 annotation onto the
257 simulated chromosome and extracting only those SNVs occurring in regions accessible by our
258 biotinylated probes with VCFtools. The simulated data was run through H-Scan and
259 SweepFinder2 in parallel with the actual SNV data to establish a range of neutral values for
260 each test (described above).

- 261 (ii) H-scan. This method measures the length of homozygous haplotypes to identify regions under
262 selection. Strong selection on adaptive alleles drives SNVs under selection and any linked
263 alleles to high frequency and reduces homozygosity in the surrounding region. For each
264 population, we converted autosomal SNVs from VCF to H-Scan format using vcf2hscan.py
265 script from vcf2phylip v2.0 (Ortiz, 2019) and ran H-Scan on each chromosome with a maximum
266 gap length (-g) of 10Kb. H values were smoothed ($H_{smoothed}$) by median filtering values in 201
267 SNV windows (step size = 1) using the medfilt function in the SciPy v1.5.2 (Virtanen et al.,
268 2020) for visualization purposes.
- 269 (iii) SweepFinder2. This method uses deviations in allele frequency from a neutral expectation to
270 estimate the selection while accounting for the possibility of background selection via a
271 likelihood ratio (LR) test (DeGiorgio et al., 2016). Empirical site-frequency spectra were
272 calculated for each population and within each population LR was estimated along each
273 autosome individually. We examined grid points ('g'), or window sizes, of 1, 5, 10, and 20 Kb
274 with minimal impact on the results. Downstream analyses are reported on the runs with 'g' =
275 1kb.
- 276 (iv) pcadapt – We used the R v4.0.5 package pcadapt v4.3.3 (Luu et al., 2017) to identify highly
277 differentiated loci among populations via variants associated with population structure as
278 identified by PCA. We only included all samples from Brazil, Niger, and Senegal since our
279 primary goal was to identify variants involved in adaptation the Americas. Rare variants
280 (MAF<5%) were excluded with VCFtools v0.1.16. We identified the appropriate number of
281 principal components from the data by running an initial *pcadapt* run with 20 populations
282 (K=20) and LD filtered variants (LD.clumping = list(size = 100, thr = 0.2)). The major break
283 in the subsequent scree plot was used as the optimal K choice. We used a second *pcadapt* run
284 with the optimal K and the same LD filtering parameters as the initial run to assign *p* values to
285 each site. Finally, we adjusted *p* values for multiple tests with Bonferroni correction and an α
286 = 0.05 to identify SNV outliers associated with population differentiation.
- 287 (v) Identifying regions of selection- We identified regions potentially under positive selection using
288 a three-step process. First, we identified SNVs whose H-Scan and Sweepfinder2 values were
289 in the 99th percentile of and greater than the neutral thresholds established with msprime. These
290 were SNVs with the strongest signal of selection. Then, we expanded from the SNV to a broader
291 region by merging all variants within 333,333 bp whose H-Scan or Sweepfinder2 values were
292 greater than the neutral thresholds. Finally, we looked for *pcadapt* outliers in each region. These
293 regions are referred to as “putative selected regions” or “putative regions of selection”. Gene

294 names and putative functions were taken from UniProtKB (release 2020_06) or HHsearch
295 (Steinegger et al., 2019) annotations from Le Clech et al. (2021). The entire process is
296 summarized in Figure 1.

297

298 **Results**

299 *Summary of Sequence Data* – After genotyping and filtering, we removed 25 of the 178 samples with
300 low numbers of reads, poor coverage, or low genotyping rates. The final dataset included 135 *S. mansoni*
301 (exome), 8 *S. mansoni* (genome), 8 *S. rodhaini* (exome), 1 *S. rodhaini* (genome), and 1 *S. margrebowiei*
302 (genome). We genotyped 1,823,890 sites, which was reduced to 475,081 autosomal and 815
303 mitochondrial variants after quality filtering. The final dataset comprises 153 samples with mean read
304 depths of 520.7x (range: 251.4-998.2x) and 66.0x (range: 14.8-726.2) at mitochondrial and autosomal
305 loci. Location and sequence coverage statistics for all samples in the final dataset are listed in
306 Supplemental Table 1.

307

308 *Summary statistics* – Autosomal and mitochondrial summary statistics for π , H , Tajima’s D , Θ , and Ne
309 are shown in Table 1. π , Θ , and Ne are similar between the West African and Brazilian *S. mansoni*
310 populations but are 2-3 times lower than observed in Tanzanian *S. mansoni*. Tajima’s D values range
311 between slightly positive to negative (Tajima’s $D = -1.417 - 0.034$) in *S. mansoni* (Table 1; Supplemental
312 Table 2). All the African populations show negative Tajima’s D , consistent with natural selection or
313 population expansion. However, the Brazilian Tajima’s D is positive, which is inconsistent with a
314 bottleneck during colonization of South America. Mitochondrial diversity was quantified with π and
315 haplotype diversity (H). H in all populations is very high (<0.978) indicating that all mitochondrial
316 haplotypes are unique. Mitochondrial π follows the same pattern as autosomal π with the exception that
317 the mitochondrial π in Brazil is lower than may be expected when compared to measures in Niger and
318 Senegal. FST values between *S. mansoni* populations are shown in Table 2 and were highest in pairwise
319 comparisons that included the Tanzanian population. Mantel tests showed significant signs of isolation-
320 by-distance within Africa ($r = 0.64$, $p = 0.001$) and in African and Brazilian ($r = 0.77$, $p = 0.001$) *S.*
321 *mansoni* samples.

322

323 Diversity and Ne values were lower in *S. rodhaini* than all *S. mansoni* populations but should be
324 interpreted with caution. Eight of the nine *S. rodhaini* samples came the same laboratory-maintained
325 population. FST between *S. rodhaini* and individual *S. mansoni* populations ranged from 0.844 (*S.*
326 *rodhaini* vs. Sm Tanzania) - 0.937 (*S. rodhaini* vs. Sm Senegal).

327 Figure 3 shows linkage disequilibrium (LD) decay (binned and smoothed) from pairwise r^2
328 values. LD decays to $r^2 \leq 0.2$ within 500Kb for all populations. LD was weakest in the Tanzania
329 population with r^2 decaying to 0.5 in 28 bp. LD decay in the other three populations (Senegal, Niger,
330 and Brazil) was relatively consistent with LD decaying by half ($r^2 = 0.5$) between 15,150 bp (Niger) and
331 26,196 bp (Brazil). Both Senegal and Niger show high levels of LD even between SNVs on different
332 chromosomes: this results from lower sample size (Senegal, n=25; Niger, n=10) in these two populations.
333

334 *Admixture with S. rodhaini.* We asked whether hybridization with *S. rodhaini*, a closely-related
335 schistosome infecting rodents, might contribute to the high genetic diversity observed in East Africa vs
336 West Africa/south American *S. mansoni*. To investigate this, we used three statistics (D, D_3 , and F_3) to
337 test for admixture between *S. mansoni* and *S. rodhaini*, with particular emphasis on the Tanzanian
338 populations of *S. mansoni*. Each of these statistics, attempts to identify the presence of admixture in
339 different ways. D and D_3 values $\neq 0$ indicate admixture and positive and negative values determining
340 the direction of introgression. F_3 values < 0 indicate admixture between the two source populations. None
341 of the three statistics, or any of the population combinations, returned values containing significant
342 signals for admixture (Table 3). These results suggest that hybridization/introgression between *S.*
343 *mansoni* and *S. rodhaini* may make no detectable contribution to elevated diversity in East Africa.
344

345 *Population structure* - We examined population structure using PCA and ADMIXTURE with 38,197
346 unlinked autosomal SNVs. Two PCAs were generated, with and without the *S. rodhaini* outgroup (Figure
347 4). The two species were differentiated along PC1 (34.7% variance) when *S. rodhaini* was included
348 (Figure 4A). *S. mansoni* samples cluster into geographically defined groups when *S. rodhaini* is excluded
349 (Figure 4B). East African samples were distinct from all other *S. mansoni* samples, except for one whole
350 genome sample collected in Kenya (see below). Samples from the Americas, including those from the
351 Caribbean and Brazil, showed a closer relationship with Cameroon and Nigerien samples than those from
352 Senegal.

353 We used ADMIXTURE to assign individuals to one of k populations, where k is between 1 and
354 20 (Figure 5). Cross-validation scores (Evanno et al., 2005) were minimized when k was 4 or 5. Both k
355 = 4 or 5 split *S. mansoni* samples into geographically defined populations with two major differences.
356 First, $k=4$ showed that the allelic component primarily associated with Brazil was found at moderate
357 levels in Cameroon and Nigerien individuals. Second $k=5$ split the West African samples into a
358 Senegalese and a Cameroonian + Nigerien populations.

359 As observed in the PCA, the Kenyan , whole-genome sample contained a large portion of alleles
360 associated with samples from the Americas (~40-60%) in the ADMIXTURE analysis. Crennen *et al.*
361 (2016) recovered similar results and hypothesized that the Kenyan sample may be reflecting human-
362 trafficking routes between Portuguese and Arab slave traders out of the port of Mombasa. Given that
363 only a single sample is available from this region, and contamination with South American strains during
364 laboratory passage is a possible alternative explanation, we chose to remove the Kenyan sample from
365 downstream analyses.

366

367 *Phylogenetics* – We used three different phylogenetic methods to investigate the evolutionary
368 relationships between sequences (Figure 6). First, we generated median-joining network from 815
369 mitochondrial SNVs of which 477 were phylogenetically informative (Figure 6A). The haplotype
370 network identified three major haplotypes roughly corresponding with the geographic partitioning of the
371 samples. The haplogroups include an East African clade (Tanzania, Uganda), a Senegal group, and
372 intermediate haplogroup with samples from the Brazilian and Nigerien populations. Caribbean samples
373 were not assigned to a single haplogroup. The single sample from Puerto Rico was associated with the
374 major Brazilian and Nigerien haplotype, and the two Guadalupe samples tended to be more strongly
375 associated with Senegalese haplotypes. Additionally, the sample from Cameroon was only single step
376 removed from the most common Brazilian haplotype.

377 A coalescent-based species tree from 100,819 parsimony informative SNVs was generated with
378 SVD-quartets (Figure 6B). Quartet sampling was limited to 100k quartets which sampled 0.43% of all
379 distinct quartets present in the alignment. The final species tree was consistent with 84.7% of all the
380 quartets sampled. Unlike the mitochondrial tree, samples fall into well supported clades corresponding
381 with geography with two exceptions. Samples from East Africa and Niger formed independent
382 paraphyletic clades. In both cases paraphyly was induced by a single individual. Bootstrap support was
383 generally higher in the quartet species tree than in the mitochondrial tree. West African samples formed
384 a well-supported monophyletic clade with the Brazilian and Caribbean samples, indicating a shared
385 origin for these parasites. Brazilian and Caribbean samples appear to have a polyphyletic origin within a
386 larger clade containing West African parasites.

387 Finally, migration between populations was quantified with TreeMix (Figure 6C). We only
388 examined populations with more than 5 individuals which excluded Cameroonian and Caribbean samples
389 from the analysis. The topologies linking the remaining populations (East Africa, Niger, Senegal, and
390 Brazil) in the TreeMix and species tree were identical. The species tree was slightly improved with the

391 addition of a single migration edge from Brazil to Niger. This migration edge significantly improved the
392 likelihood score of the topologies from 73.6026 to 73.7165 with an edge weight of 0.1 ($p = 0.0081$).
393

394 *Selection* – We used msprime to generate a set of neutrally evolving SNVs based on parameters specific
395 to each of the sampled populations. These neutrally evolving SNVs were distributed across an 88.9 Mb
396 chromosome that was equal in size to *S. mansoni* chromosome 1 (HE601624.2). We then transposed the
397 HE601624.2 exome annotation onto the simulated chromosome to extract “exome” data. This process
398 was repeated 342 times per population to produce a set of neutrally evolving loci to use as controls when
399 examining selection on actual samples. We used these neutral simulations to generate maximum (100%)
400 threshold values for H-Scan and Sweepfinder2 test statistics expected under neutrality (see below). The
401 mean (\bar{x}) simulated SNV count across all replicates was: $\bar{x}_{\text{Brazil}} = 11,198$ (range = 10,874-11,552), $\bar{x}_{\text{Niger}} = 8,448$
402 (range = 8,141-8,706), $\bar{x}_{\text{Senegal}} = 11,977$ (range = 11,642-12,309), $\bar{x}_{\text{Tanzania}} = 33,168$ (range =
403 32,575-33,741). The number of observed SNVs was between 72.2-89.7% of the mean number of
404 simulated SNVs (Brazil = 8,947; Niger = 6,107; Senegal = 9,381; Tanzania = 29,765). The reduced
405 number of SNVs in the neutral data is likely due to the absence of selection that is presumed to be acting
406 on the exome data sets.

407 The H-Scan and SweepFinder2 results are shown in Figure 7. *pcadapt* results are show in
408 Supplemental Figure 1. Each program uses different methodology to detect sites under selection. H-Scan
409 calculates H with homozygous tract length and the number of haplotypes to identify genome regions that
410 have undergone selective sweeps. H values were highly variable for each population, even within
411 windows smaller than 100Kb. In Tanzania only 2 of the 475,081 SNVs had H values higher than were
412 generated from neutral simulations. SweepFinder2 calculates deviations from a neutral site frequency
413 spectrum correcting for the possibility of background selection. A likelihood ratio (LR) describes the
414 probability of positive selection vs. neutral evolution and background selection within a designated
415 window. Sweepfinder2 was able to clearly define multiple peaks for each population when compared to
416 H-Scan. Each of the four populations had regions greater than neutral expectations. *pcadapt* identifies
417 SNVs significantly associated with population differentiation. In this analysis we found 442 SNV
418 outliers, after multiple test correction, that were distributed across all seven autosomes at 127 loci. These
419 regions were distributed across 280.2 Mb. F_{ST} of the *pcadapt* outliers ($F_{ST} = 0.544$) was significantly
420 higher than in the remaining population outliers ($F_{ST} = 0.195$).

421 We defined “putative regions of selection”, as those that have most likely experienced positive
422 selection. These regions contain variants (i) with both H and LR values in the 99th percentile (ii) are

423 greater than the neutral thresholds and (iii) have a signal of population-specific directional. All SNVs
424 meeting one or more of these criteria are listed in Supplemental Table 4.

425 Our results recovered 5, 3, and 3 putative selected regions in Brazil, Niger, and Senegal
426 respectively (Figure 7; Supplemental Table 5). Information regarding the number of regions, SNVs, and
427 genes identified are presented in Table 4 and Table 5. π (Supplemental Figure 2) and Tajima's D
428 (Supplemental Figure 3) were depressed in these regions compared to genome-wide values
429 (Supplemental Table 3) which is consistent with loci experiencing selection. On average the size of each
430 region was relatively small (1,395,643 bp) and in two instances, these sites were shared between
431 populations. The Brazilian and Senegalese populations shared a site on chromosome 3 at
432 HE601626.2:30,092,830:31,936,551, while the Nigerien and Senegalese populations shared a peak on
433 chromosome 4 at HE601627.2:31,216,154:32,138,352. We did not recover any regions or sites of interest
434 in the Tanzanian population in large part because only two of 475,081 sites had higher H values the
435 largest H from neutral simulations ($H = 45532.9$). These variants are on chromosome 3 at
436 HE601626.2:6,500,422 and HE601626.2:6,503,809 and are adjacent to each other in our filtered SNV
437 dataset.

438 We identified 116-157 genes within "putative selected regions" in the Brazilian, Nigerien, and
439 Senegalese populations (Supplemental Table 6). Within these populations 10, 5, and 7 genes contain
440 SNVs meeting the 99th percentile. Several genes identified in these regions were shared between
441 populations. Brazil and Senegal shared 48 genes in target regions, and Senegal and Niger shared 22 genes
442 in target regions. Three genes with 99th percentile SNVs were shared between populations: Smp_313490
443 and Smp_167890 (Niger and Senegal), Smp_123520 (Brazil and Senegal; Table 5).

444

445 Discussion

446 We examined the impact of human-mediated dispersal of *S. mansoni* during the Trans-Atlantic
447 slave trade. Previous analyses with *S. mansoni* used mitochondrial data or had limited sampling from the
448 Americas (Crellin et al., 2016; Morgan et al., 2005; Webster et al., 2013). To further these studies, we
449 included 135 exome sequences available from natural populations in Brazil (n=45), Niger (n=10),
450 Senegal (n=25), and Tanzania (n=55) which we combined with the existing genome sequences from
451 Cameroon (n=1), the Caribbean (n=4), Senegal (n=1), and Uganda (n=2) (Berriman et al., 2009;
452 Chevalier et al., 2016; Crellin et al., 2016). We used these data to examine *S. mansoni* expansion across
453 Africa, explore examine parasite colonization of the Americas, quantify signatures of selection during
454 colonization, and detect hybridization with *S. rodhaini*, a closely related parasite utilizing a rodent host.

455

456 *Elevated East African diversity and S. mansoni expansion across Africa* – A striking result from this
457 study is the dramatic reduction in genetic diversity between East and West Africa. Sequence summary
458 statistics indicate that the East African population has 2-3-fold greater nucleotide diversity (π), larger N_e
459 and greater mitochondrial diversity than the other populations (Table 1; Figure 6A). Phylogenetic
460 analyses rooted with *S. rodhaini* clearly indicate that the East African *S. mansoni* samples from Tanzania
461 and Uganda are sister to a clade containing all other *S. mansoni*, including those from the Caribbean,
462 Brazil, Senegal, Niger, and Cameroon. Our data supports previous work from whole genomes,
463 mitochondrial genes, and microsatellites suggesting that *S. mansoni* emerged in East Africa (Crennen et
464 al., 2016; Morgan et al., 2005; Webster et al., 2013). In addition, our estimates of N_e are in within a range
465 book-ended by other whole genome studies (Berger et al., 2021; Crennen et al., 2016).

466 The rapid decay in LD observed in E. Africa compared with W. African and American populations
467 provides further evidence that East African *S. mansoni* populations are ancestral. Similar reductions in
468 rate of LD decay have been observed in humans and malaria parasites, outside of their ancestral Africa
469 range (Anderson et al., 2000; Gurdasani et al., 2015; Neafsey et al., 2008). Rapid breakdown in LD also
470 has important practical applications for genome wide association analyses, because it allows mapping of
471 phenotypic traits to very narrow regions of the genome (Mackay & Huang, 2018). There are multiple
472 biomedically important traits of interest that vary in *S. mansoni* populations, including drug susceptibility
473 or resistance, host-specificity and cercarial production (Anderson, LoVerde, Le Clec'h, & Chevalier,
474 2018). We recently used GWAS for mapping resistance to the first line drug (Praziquantel) in laboratory
475 schistosome populations (Le Clec'h et al., 2021). Most laboratory *S. mansoni* populations tested were
476 from S. America, where LD decays relatively slowly: these are not ideal for GWAS. Establishment of
477 laboratory *S. mansoni* populations from East Africa, or GWAS analyses using parasites directly from the
478 field would be valuable for future GWAS with *S. mansoni*.

479 There is minimal allele sharing or migration between East African and other *S. mansoni* populations.
480 FST comparisons that include Tanzania are greater than other comparisons, (with Tanzania - FST = 0.355;
481 excluding Tanzania - FST = 0.206). East African populations are among the most strongly differentiated
482 populations in the PCA analyses (Figure 4B) and the East African population component in
483 ADMIXTURE analyses is absent, or at minimal levels, in other *S. mansoni* populations. Finally,
484 mitochondrial haplotypes in Uganda and Tanzania form a distinct haplogroup from other *S. mansoni*
485 populations. These data indicate that, while E. Africa is the likely origin of *S. mansoni*, migration or allele
486 sharing between E. Africa and other populations is restricted.

487 We do not expect that human movement is a major barrier between East and West African
488 schistosome populations. However, differences in snail – schistosome compatibility in East and West

489 Africa may provide barriers to gene flow. Sympatric host–parasite combinations tend to show greater
490 compatibility than allopatric combinations. This is seen in multiple host parasite systems including
491 *Daphnia*–microsporidia (Ebert, 1994), trematode infections of snails (Lively, 1989) and minnows
492 (Ballabeni & Ward, 1993). Strong host-specificity exists within the *Biomphalaria* and *S. mansoni* system
493 (Mitta et al., 2017; Theron et al., 2014; Webster & Woolhouse, 1998) and a review shows that
494 compatibility is greater between sympatric *Biomphalaria*–*S. mansoni* combinations (Morand, Manning,
495 & Woolhouse, 1996). Sympatric schistosome–snail combinations result in rapid immune suppression
496 and rapid parasite development, while allopatric schistosome-snail combinations result in a slower
497 immune cell proliferation and a non-specific generalized immune response which reduced parasite
498 growth and establishment (Portet et al., 2019). There is a developing understanding of *Biomphalaria*
499 phylogenetics (Jorgenson, Kristensen, & Stothard, 2007), phylogeography (Dejong et al., 2003), and
500 compatibility relationships among East African snail species (*B. sudanica*, *B. pfeifferi* and *B.
501 choanomphala*) and *S. mansoni* (Mutuku et al., 2021; Mutuku et al., 2017), but further research is needed
502 to understand compatibility of allopatric snail–schistosome combinations from East and West Africa. We
503 suggest that the presence of fine-scale geographic structure of *Biomphalaria* populations (Webster et al.,
504 2001) and local adaptation in sympatric *Biomphalaria*–schistosome combinations may limit parasite
505 gene flow between E. African and W. Africa.

506 PCA analyses differentiate *S. mansoni* populations on an East-to-West gradient along PC2 (Figure
507 4B). Mitochondrial haplotypes in Senegal and Cameroon are intermediate to Tanzania and Senegal
508 (Figure 6A). The species tree from autosomal SNV data (Figure 6A) indicates that *S. mansoni* is in a
509 series of nested, well-supported clades from East Africa (Tanzania + Uganda) to Cameroon to West Africa
510 (Niger + Senegal). F_{ST} and r (Mantel) values between Tanzania, Niger, and Senegal reflect increasing
511 isolation with distance across Africa. These observations combined with the origination of *S. mansoni* in
512 East Africa confirms an East-to-West, stepwise expansion of *S. mansoni* from Tanzania and Uganda →
513 Cameroon → Niger → Senegal (Crellin et al., 2016; Morgan et al., 2005; Webster et al., 2013).

514

515 *Does Hybridization between *S. rodhaini* and *S. mansoni* contribute to elevated East African
516 Diversity*—Several closely related *Schistosoma* species are able to hybridize with the production of viable
517 offspring confirmed via experimental rodent infections. The potential for hybridization between animal
518 and human *Schistosoma* species is a significant public health concern (Borlase et al., 2021; Léger et al.,
519 2020; Leger & Webster, 2017; Stothard, Kayuni, Al-Harbi, Musaya, & Webster, 2020). Our group, and
520 others, have recently shown that ancient hybridization and adaptive introgression has resulted in the

521 transfer of genes from the livestock species *Schistosoma bovis* into *S. haematobium*: west African *S.*
522 *haematobium* genomes contain 3-8% introgressed *S. bovis* sequences and *S. bovis* alleles have reached
523 high frequency in some genome regions (Platt et al., 2019; Rey, Toulza, et al., 2021). The sister species
524 of *S. mansoni*, *S. rodhaini*, parasitizes rodents and is primarily located in Eastern Africa (Rey, Webster,
525 et al., 2021). *S mansoni* and *S. rodhaini* have been shown to readily hybridize in and produce fertile
526 offspring in the lab (Théron, 1989). Natural hybrids have been reported in Kenya and Tanzania (Morgan
527 et al., 2003; M. Steinauer et al., 2008), although hybrids have only been detected from their snail
528 intermediate host and never encountered in the mammalian hosts humans and rodents (Rey, Webster, et
529 al., 2021). We were unable to find evidence of hybridization in 55 samples collected from Tanzania.
530 Both species are clearly separated in genotypic space with differences between the species accounting
531 for the largest component in the PCA (Figure 4A; PC1=34.7% variation) and FST between *S. rodhaini*
532 and *S. mansoni* populations is very high (FST = 0.912). Admixture analyses also clearly differentiated *S.*
533 *rodhaini* from all other *S. mansoni* populations (Figure 5) and we were unable to identify admixture
534 signal between *S. rodhaini* and the Tanzanian population with genome-wide statistics including D, D₃,
535 or F₃, (Table 3).

536 Hybridization between these two species is thought to be rare ($\leq 7.2\%$) (Morgan et al., 2003; Rey,
537 Webster, et al., 2021; M. Steinauer et al., 2008; M Steinauer et al., 2008). Our sample size may not be
538 large enough to identify rare hybrids. Further we analyzed exome (coding) data, which may
539 underrepresent introgressed alleles if they are selected against. These caveats aside, our analyses clearly
540 fail to identify recent hybridization between *S. mansoni* and *S. rodhaini*. We conclude that *S. rodhaini*
541 introgression does not contribute to the high, genetic diversity in our Tanzanian *S. mansoni* samples.
542

543 *Expansion into the Americas* – Previous work has shown that *S. mansoni* was exported from Africa to
544 the Americas during the Trans-Atlantic slave trade (Crennen et al., 2016; Després et al., 1993; Files, 1951;
545 Fletcher et al., 1981; Morgan et al., 2005; Webster et al., 2013). Here, we use genomic data to investigate
546 the likely source population(s), number of introductions, evidence for bottlenecks and parasite adaptation
547 during colonization.
548

549 Source populations. Of the two West African populations sampled (Niger and Senegal), our
550 results support stronger relationships between Brazil and Niger, than with Senegal. While the species tree
551 (Figure 6B) appears to rule out Niger or Senegal as the direct source population for Brazilian *S. mansoni*,
552 there is evidence of allele sharing between the Nigerian and Brazil populations. First, the dominant
553 mtDNA haplotype in Brazilian and Nigerien samples are shared (Figure 6A). Second, every Nigerien

554 population contains at least 10.1% of the Brazilian component as shown in the Admixture analyses (mean
555 15.8%; Figure 5). Third, Niger and Brazil are more closely associated with each other in the genotypic
556 continuum represented by PC2 than Brazil is to other African populations (Figure 4B). Finally, TreeMix
557 identified a single weak migration edge between Brazil and Niger (Figure 6C) confirming a relationship
558 between these two populations.

559 A simple hypothesis from the data is that, assuming the general East-to-West expansion holds at
560 finer geographic scales, the source population that was eventually exported to Brazil, likely occurs
561 somewhere between Benin and Angola. These countries fell within the Bight of Benin, Bight of Biafra,
562 and West Central Africa slave trading regions (Figure 8). Our Brazilian samples were collected in Ponto
563 dos Volantes in Minas Gerais, Brazil. This location is relatively equidistant from major slave ports in
564 Bahia (527 Km) and around Rio de Janeiro (706 Km). In all, more than 3.5 million (M) enslaved peoples
565 were imported into Brazil (Supplemental Table 7; Slave Voyages Database, 2009). Of all the enslaved
566 people exported to Brazil, 82% disembarked at ports in either Bahia (1.3M) or Rio de Janeiro (1.5M). In
567 Africa, slave exporting markets in the Bights of Benin and Biafra and West Central Africa were
568 responsible for 53.6%, 5.0% and 33.8% of peoples exported to Bahia and 1.3%, 1.1% and 74.9% of
569 peoples exported to south east Brazilian ports (Slave Voyages Database, 2009). Taken together these
570 data imply that the Brazilian population we sampled in Ponto dos Volantes most likely originated from
571 markets in the Bight of Benin or West Central Africa. In our phylogenetic analyses, the Brazilian
572 population falls within a clade containing samples from Senegal, Niger, and the Caribbean but excludes
573 the single Cameroonian sample. If the Cameroonian sample is representative of the Cameroonian
574 population, then it may be that Cameroon and Niger represent the eastern and western limits of the
575 unrepresented source population. This area more closely aligns with the Bight of Benin, a region
576 containing parts of Nigeria and Benin. Additional samples from these regions are needed to test this
577 hypothesis. It is also important to note that, the Brazilian samples here represent a single, geographic
578 location (Ponto dos Volantes) and that the source for this population may not extrapolate to larger regions,
579 or even to other locations in Brazil.

580

581 No evidence for population bottlenecks during colonization. Previous mtDNA analyses have
582 shown reduced diversity in S. American parasites (Després et al., 1993; Fletcher et al., 1981; Morgan et
583 al., 2005; Webster et al., 2013) suggesting bottlenecks during colonization. Our data is consistent with
584 this showing a 2-3-fold reduction in mtDNA in Brazil compared to W. African parasites. However,
585 genome-wide summary statistics of autosomal sequence data tell a different story, and provide no
586 evidence for population bottlenecks associated with *S. mansoni* introduction and establishment in Ponto

587 dos Volantes, Brazil (Table 1). Nucleotide diversity, measured by π , was higher in Brazil than either of
588 the West African populations (Niger or Senegal), perhaps because the Brazilian population is derived
589 from several west African source populations. The Brazilian N_e was roughly the same as Niger and
590 comparable to Senegal. Mean Tajima's D calculated from genome-wide, SNV data is negative in each
591 of the African populations and highest in the Caribbean samples (mean Tajima's D = 0.929; Supplemental
592 Table 2). Tajima's D values in our study using exome SNV data from different regions of Niger, Senegal
593 and Tanzania were comparable with values calculated with whole genome SNV data from Ugandan *S.*
594 *mansonii* (Berger et al., 2021). By contrast mean Tajima's D in Brazilian samples is close to 0 (mean
595 Tajima's D = 0.034; 95% CI [-0.18 to -.085]) and is significantly greater than mean Tajima's D in the
596 African samples (T-Test $p<0.001$; Supplemental Table 2).

597 The nuclear genomic data clearly suggest that the establishment of *S. mansonii* in Brazil was not
598 associated with a significant population bottleneck and had minimal impacts on genome-wide levels of
599 genetic diversity. The discrepancy between mtDNA and nuclear DNA may stem from two sources. First,
600 mtDNA has an effective population size $\frac{1}{4}$ that of nuclear genes (Birky, Maruyama, & Fuerst, 1983), and
601 can potentially provide a more sensitive indicator of bottlenecks. Second, and perhaps more critical,
602 mtDNA constitutes a single marker, so may poorly reflect population history (Anderson, 2001).
603 Extensive laboratory passage may also result in bias in population summary statistics. For example, the
604 Caribbean samples examined have undergone 2-15 generations of lab passage which is probably
605 responsible for the elevated Tajima's D at in this population (Crellin et al., 2016).

606

607 Number of introductions. All Brazilian and Caribbean samples are paraphyletic fall between the
608 Cameroonian sample and West African clade in Figure 6B. The relationships among these samples are
609 resolved but not supported outside of a monophyletic clade containing all Brazilian samples. As a result,
610 the autosomal phylogeny by itself does not conclusively support one or multiple introductions into the
611 Americas. The two Caribbean samples from Guadeloupe island contain unique mitochondrial haplotypes
612 absent from Brazilian (Figure 6A); however, this is, at best, only weak evidence for independent
613 introductions into Brazil and the Caribbean from the data we have available. The higher autosomal
614 diversity of Brazilian *S. mansonii* compared with two sampled West African populations provides
615 additional indirect evidence for multiple origins.

616 *Plasmodium falciparum* and *Wuchereria bancrofti* became established in the Americas at the
617 same time as *S. mansonii*, and without apparent bottlenecks (Small et al., 2019; Yalcindag et al., 2012).
618 In both cases it is hypothesized that high levels of diversity were maintained by recurring introductions
619 from multiple sources (Rodrigues et al., 2018; Small et al., 2019; Yalcindag et al., 2012). More than 3.5

620 M enslaved peoples were exported into Brazil from across the continent of Africa (Supplemental Table
621 7; Slave Voyages Database, 2009). *S. mansoni* prevalence varies widely between sites in western and
622 central Africa, with estimates ranging from 0.3% (Gambia; Sanneh et al., 2017) to 89% (Democratic
623 Republic of the Congo; Kabongo et al., 2018). Assuming *S. mansoni* prevalence during the period of the
624 Atlantic Slave Trade is comparable to current levels and that infected persons contained multiple *S.*
625 *mansoni* individuals (genotypes; Van den Broeck et al., 2014), it is plausible that hundreds of thousands,
626 and more likely millions, of reproductively viable *S. mansoni* were introduced into Brazil from across
627 Africa. As a result, individual genotypes that may have been separated by thousands of miles in Africa
628 were brought into close contact in the Americas and would lead to higher levels of diversity in there than
629 in any single population in Africa.

630

631 Adaptation during colonization – We hypothesized that *S. mansoni* introduced into the Americas
632 would have been exposed to novel selective pressures as they adapted to new biotic and abiotic
633 challenges. For example, the *S. mansoni* life cycle requires an intermediate snail host in which miracidia
634 mature into cercariae that are capable of infecting humans. In Africa, *S. mansoni* use *Biomphalaria*
635 *alexandrina*, *camerunensis*, *choanomphala*, *pfeifferi*, *stanleyi*, and / or *sudanica* as the snail host, none
636 of which are present in the Americas. Instead, these parasites have adapted to using different
637 *Biomphalaria* hosts, including *B. glabrata*, *B. straminea*, and *B. tenagophila* (Figure 2; Hailegebriel,
638 Nibret, & Munshea, 2020; Kengne-Fokam, Nana-Djeunga, Bagayan, & Njiokou, 2018; Vidigal et al.,
639 2000). We examined exomic SNV data to identify genes and larger regions of the genome under selection
640 at a finer scale and identified 0-5 putative regions of selection from each of the major populations (Table
641 4).

642 In the Brazilian samples, we identified five putative selected regions that contain 126 genes
643 (Supplemental Table 6). π and Tajima's *D* was significantly reduced in these five regions compared to
644 genome wide averages which is expected if these loci are, or have been, under selection (Supplemental
645 Table 3). One region is shared between the Brazilian and Senegalese populations. Forty-six genes fall
646 within this Sengal:Brazil overlapping region, leaving 80 genes and 4 loci that are likely experiencing
647 population specific, positive selection specific. Even within the group of 80 genes, there are 9 with strong
648 signals of selection (Table 5). These genes contained variants with *H* and *LR* values in the 99th percentile
649 in addition to being greater than the threshold defined by neutral simulations. Several genes within this
650 group are associated with housekeeping functions, including transcription and protein degradation
651 (Smp_060090, Smp_162000, and Smp_246630). Two uncharacterized proteins were identified
652 (Smp_341570 and Smp_123590) but we are not able to speculate on their function. Of particular interest

653 are two possible transcription factors, an uncharacterized protein containing a *helix, loop, helix* domain
654 (Smp_123570) and a putative TATA-box binding protein (Smp_073680). It is possible that adaptation to
655 the Brazilian environment was driven by changes in gene expression, however more work is needed to
656 understand the potential role of these loci in adaptation to the Americas.

657

658 *Selection on African *S. mansoni** – We examined selection on African *S. mansoni* as part of the
659 process to identify unique signals of selection in the Brazilian population. We identified 112 and 157
660 genes under selection in 3 regions each for the Nigerien and Senegalese populations (Table 4). One of
661 the three regions, and 22 genes, were shared between Niger and Senegal. We failed to identify any regions
662 of selection in Tanzania using our combined criteria, however results from individual tests of selection
663 (H-Scan, SweepFinder2) did overlap at nine of 25 regions identified in large Ugandan by Berger et al.
664 (2021) (Supplemental Table 8). These regions were identified using a variety of within (iHS) and
665 between population (FST, XP-EHH) tests on miracidia isolated from two Kenyan locations with differing
666 histories of praziquantel treatment.

667

668 **Conclusions**

669 Our analyses identified an East-to-West expansion of *S. mansoni* across Africa. Sometime during
670 this expansion one or more Central African population(s), likely located between Angola and Benin, were
671 transported to Brazil. Genome-wide signatures of diversity, measures of allele frequencies (Tajima's *D*),
672 and estimates of *Ne* are comparable between *S. mansoni* in Brazil, Niger, and Senegal and do not imply
673 the presence of a bottleneck during the establishment of *S. mansoni* in Brazil. We did find five genome
674 regions under selection in Brazil, 4 of which are population specific. In total, 80 genes fall within these
675 regions and may be associated with *S. mansoni*'s adaptation to novel selection pressures associated with
676 the Americas. We identified 9 genes with the strongest signals of selection that are candidates for future
677 experimental work.

678

679 **Acknowledgments**

680 Sandra Smith and John M. Heaner (Texas Biomedical Research Institute) provided computational
681 research support. Matthew Berriman provided the most recent *S. mansoni* genome sequence and
682 annotation prior to publication. This research was funded by the National Institute of Allergy and
683 Infectious Diseases (NIAD R01 AI097576-01 and NIAD 5R21AI096277-01), Texas Biomedical
684 Research Institute Forum (award 0467). Samples acquisition was supported by funding from the
685 Wellcome Trust (104958/Z/14/Z), the Gates Foundation coordinated by the University of Georgia

686 Research Foundation Inc. (RR374-053/5054146 and RR374-053/4785426), and a ZELS research grant
687 (combined BBSRC, MRC, ESRC, NERC, DSTL, and DFID: BB/L018985/1). The authors declare no
688 competing interests.

689

690 **Author Contributions**

691 Study design done by F.D.C., T.J.A., and W.L.C; formal analysis done by F.D.C, R.N.P., and T.J.A.;
692 writing, original draft, done by R.N.P. and T.J.A.; reviewing and editing, done by A.G., A.E., B.W., D.R.,
693 F.D.C., G.O., J.P.W., M.M, P.T.L., R.R.dA., R.N.P., S.K., T.J.A., and W.L.C.; investigation was done by.
694 F.D.C., M.M., and W.L.C.; resources were provided by: F.D.C., and T.J.A.

695

696 **Data Availability**

697 Data used in this manuscript was previously published in (Berriman et al., 2009; Chevalier et al., 2019;
698 Crellin et al., 2016; International Helminth Genomes Consortium, 2019; Le Clec'h et al., 2021) under
699 multiple NCBI BioProject (PRJNA439266, PRJNA560070, PRJEB522, PRJEB526, PRJNA743359 and
700 PRJNA773498) and NCBI Short Read Archive (ERR046038, ERR103049, ERR103050, ERR119614,
701 ERR119615, ERX284221, ERR310938, ERR539846, ERR539847, ERR539848, and ERR9974)
702 accessions.

703

704 **Code Availability**

705 Scripts, notebooks, and environmental yaml files are available at
706 https://github.com/nealplatt/sch_man_nwinvasion/releases/tag/v0.2 (last accessed 21 Oct 2021) or
707 <https://doi.org/10.5281/zenodo.5590460> (last accessed 21 Oct 2021).

708

Table 1. Whole genome summary statistics for *Schistosoma mansoni* populations and *S. rodhaini*

	n	π	π (mito)	H (mito)	Tajima's D	Θ	Ne	π (PRS)	Tajima's D (PRS)
<i>S. rodhaini</i>	9 ^a	5.61E-04	Na ^b	Na ^b	0.479	4.29E-04	13,226	Na ^c	Na ^c
Sm (Brazil)	45	6.93E-04	2.10E-03	0.984	0.034	5.84E-04	18,032	2.22E-04	-1.218
Sm (Niger)	10	6.00E-04	5.89E-03	0.978	-0.579	6.07E-04	18,737	2.46E-04	-1.018
Sm (Senegal)	25	4.97E-04	4.72E-03	0.997	-1.417	-1.375	21,992	1.75E-04	-1.816
Sm (Tanzania)	55	1.45E-03	7.25E-03	1.0	-0.729	-0.739	51,508	Na ^c	Na ^c

"Sm" - *Schistosoma mansoni*, "n" - number of samples, " π " - nucleotide diversity, "H" - haplotype diversity, " Θ " - Watterson estimator, "Ne" - effective population size, "PRS" - putative region of selection

a) 8 of 9 *S. rodhaini* samples came from a single lab population: population statistics are likely biased

b) No *S. rodhaini* reads mapped to the *S. mansoni* mitochondria.

c) Not calculated.

Table 2. F_{ST} between *Schistosoma* species and populations

Pop1	Pop2	F_{ST}	S.E.
<i>S. rodhaini</i>	Sm (Caribbean)	0.929	0.0012
<i>S. rodhaini</i>	Sm (Tanzania)	0.844	0.0016
<i>S. rodhaini</i>	Sm (Senegal)	0.937	0.0013
<i>S. rodhaini</i>	Sm (Niger)	0.931	0.0011
<i>S. rodhaini</i>	Sm (Brazil)	0.919	0.0013
Sm (Caribbean)	Sm (Tanzania)	0.279	0.0036
Sm (Caribbean)	Sm (Senegal)	0.323	0.0085
Sm (Caribbean)	Sm (Niger)	0.236	0.0071
Sm (Caribbean)	Sm (Brazil)	0.154	0.0067
Sm (Tanzania)	Sm (Senegal)	0.416	0.0032
Sm (Tanzania)	Sm (Niger)	0.348	0.0031
Sm (Tanzania)	Sm (Brazil)	0.379	0.0034
Sm (Senegal)	Sm (Niger)	0.135	0.0042
Sm (Senegal)	Sm (Brazil)	0.235	0.0047
Sm (Niger)	Sm (Brazil)	0.152	0.0036

Abbreviations: "Sm" - *Schistosoma mansoni*; "S.E." - standard error

Table 3. Admixture statistics

Comparison	Test Stat	SE	Z
D (Patterson <i>et al.</i> 2012)			
((Br,Tz)Sr),Smr	-0.033	0.0404	-0.807
((Ni,Tz)Sr),Smr	0.006	0.0437	0.129
((Se,Tz)Sr),Smr	0.051	0.0473	1.070
F ₃ (Patterson <i>et al.</i> 2012)			
Br: Tz, Sr	0.764	0.0207	36.910
Ni: Tz, Sr	0.993	0.0299	33.214
Se: Tz, Sr	1.265	0.0461	27.428
D ₃ (Hahn and Hibbens 2019)			
(Br, Tz, Sr)	-0.0047	0.00036	0.418
(Ni, Tz, Sr)	-0.0046	0.00034	0.419
(Se, Tz, Sr)	-0.0054	0.00048	0.353
(Cm, Tz, Sr)	0.0005	0.00066	-0.022
(Cr, Tz, Sr)	-0.0048	0.00029	0.517
(Ug, Tz, Sr)	0.0034	0.00062	-0.174

SE - standard error, "Z" - Z-score of the mean from 0.

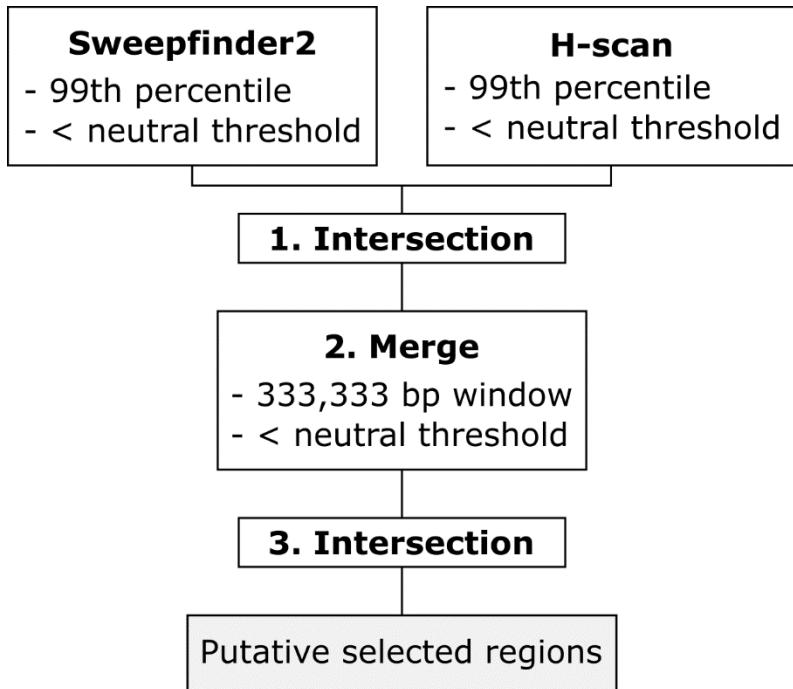
Population abbreviations: "Br" - Brazil, "Cm" - Cameroon, "Cr" - Caribbean, "Ni" - Niger, "Se" - Senegal, "Smr" - *Schistosoma margrebowiei*; "Sr" - *Schistosoma rodhaini*; "Tz" - Tanzania; "Ug" - Uganda

Table 4. Number of SNPs and regions indentified in genome-wide scans for selection

	Brazil	Niger	Senegal	Tanzania
Outlier SNVs (H-Scan)	4,366	44,024	9,182	2
Outlier SNVs (Sweepfinder)	12,871	41,525	23,379	4,288
Merged Regions (1/3 Mb)	113	250	168	46
99th Percentile SNPs	703	239	176	0
Outlier SNPSs (pcadapt)		442		Na
Putative regions under selection	5	3	3	0
Genes in selected regions	116	112	157	0
Genes w/99th Perc SNPs	10	5	7	0

*Outlier SNPS are those that are greater than the maximum value derived from neutrally simulated data

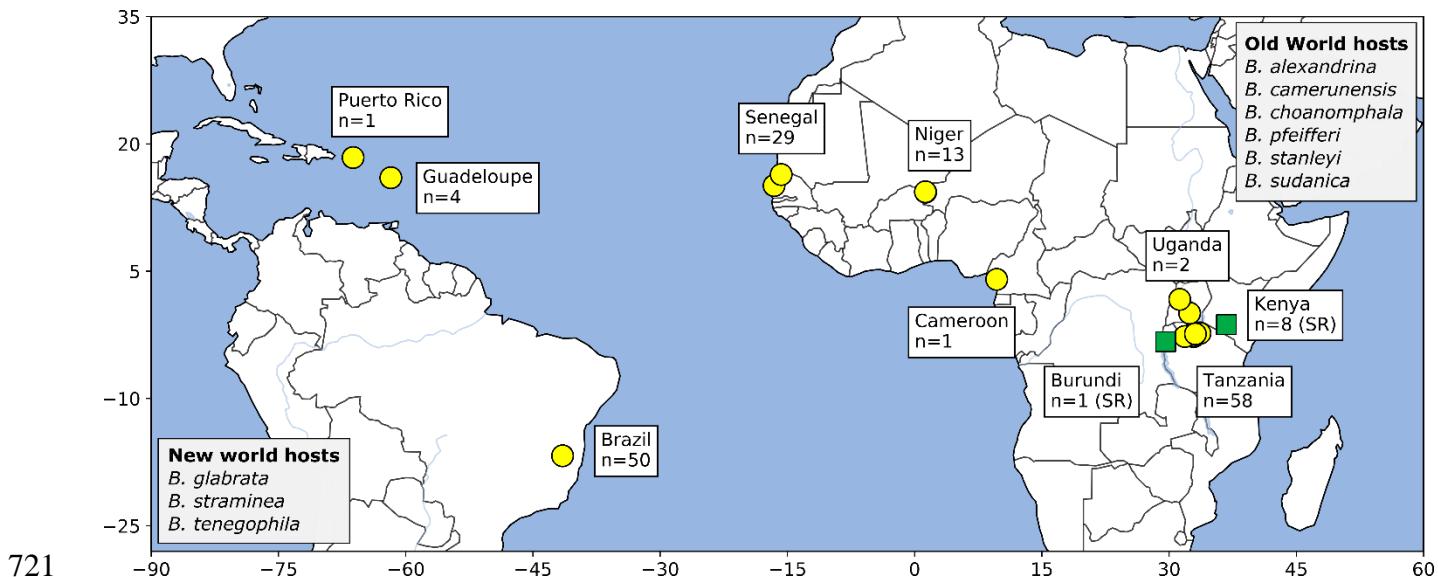
Table 5. Genes in *Schistosoma mansoni* populations with the strongest signals of directional selection

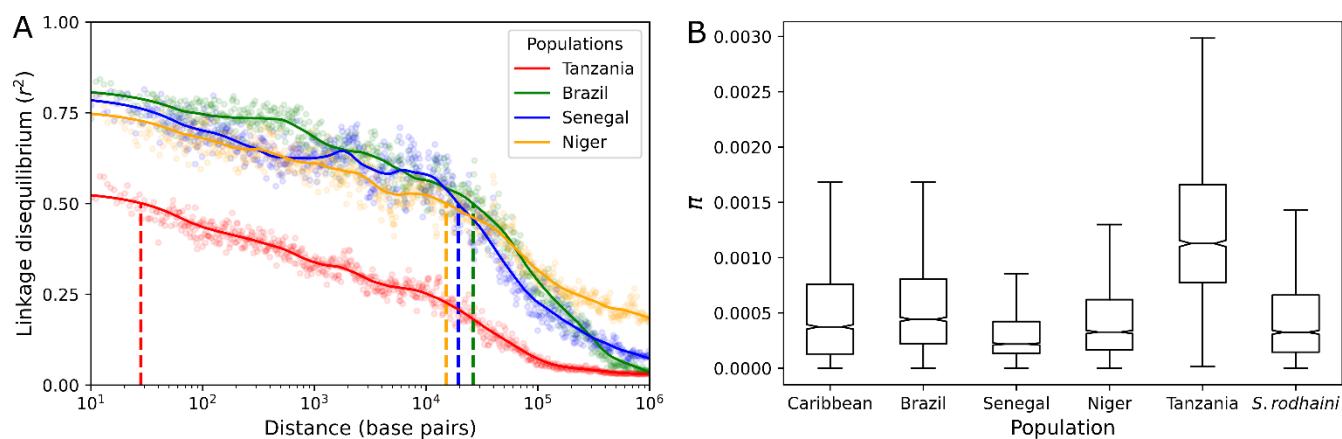

Gene ID	UniProtKB Accession	UniProtKB Description	HHsearch Annotation
Brazil			
Smp_060090	G4VAJ9	40S ribosomal protein S12	Ribosomal protein S12e Ribosome
Smp_073680	G4V701	Putative TATA-box binding protein	DNA-directed RNA polymerase II subunit
Smp_123510	A0A5K4EKW3	Vacuolar protein sorting-associated protein 16 homolog	Vps16_C
Smp_123520 ¹	A0A3Q0KKK4	Putative RNA M ⁵ U methyltransferase	rRNA (Uracil-5)-methyltransferase RumA
Smp_123570	A0A3Q0KKM5	BHLH domain-containing protein	Aryl hydrocarbon receptor nuclear translocator
Smp_123590	A0A5K4EL22	Uncharacterized protein	Swi5-dependent recombination DNA repair protein
Smp_148460	A0A3Q0KPP3	Putative neurofibromin	GAP related domain of neurofibromin
Smp_162000	A0A5K4ETP0	UBR-type domain-containing protein	E3_UbLigase_R4
Smp_246630	A0A5K4F427	UBC core domain-containing protein	E2 Ubiquitin conjugating enzyme
Smp_341570	A0A5K4FC62	Uncharacterized protein	Uncharacterised protein family UPF0183
Niger			
Smp_008230	G4V7H8	Putative rab-18	di-Ras2
Smp_126620	A0A3Q0KL42	Uncharacterized protein	Ligand-binding domain of low-density lipoprotein receptor
Smp_165060	A0A3Q0KRY3	Uncharacterized protein	Uncharacterized protein
Smp_167890 ²	Q6BC90	Peptide-methionine (R)-S-oxide reductase	C-terminal MsrB domain of methionine sulfoxide reductase PilB
Smp_313490 ²	A0A5K4F3H5	Uncharacterized protein	Transforming protein RhoA, Rho-associated, coiled-coil
Senegal			
Smp_070780	G4VEM1	UDP-glucose 4-epimerase	Uridine diphosphogalactose-4-epimerase
Smp_123440	A0A3Q0KKL2	Putative fad oxidoreductase	D-amino-acid oxidase
Smp_123520 ¹	A0A3Q0KKK4	Putative RNA M ⁵ U methyltransferase	rRNA (Uracil-5)-methyltransferase RumA
Smp_164560	A0A3Q0KRR1	Uncharacterized protein	Na
Smp_167890 ²	Q6BC90	Peptide-methionine (R)-S-oxide reductase	C-terminal MsrB domain of methionine sulfoxide reductase PilB
Smp_213150	A0A5K4EZI5	Uncharacterized protein	Ribonucleases P/MRP protein subunit POP1
Smp_313490 ²	A0A5K4F3H5	Uncharacterized protein	Transforming protein RhoA, Rho-associated, coiled-coil

1. Shared between the Brazil and Senegal

2. Shared between Niger and Senegal

UniProtKB descriptions are from release 2020_06

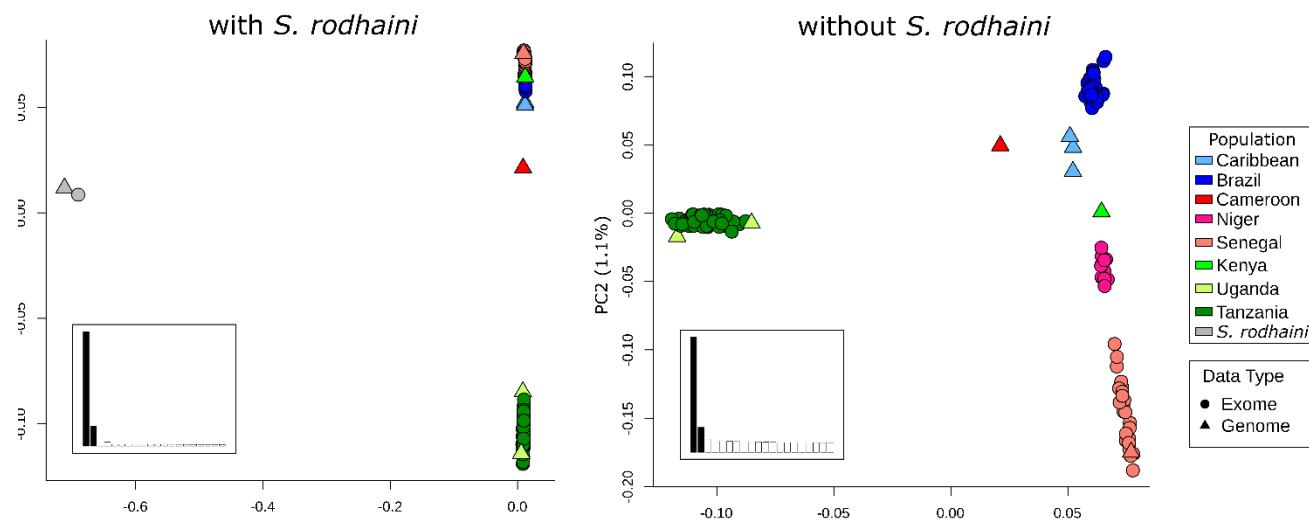

HHsearch annotations are from Le Clec'h et al. (2021)



714

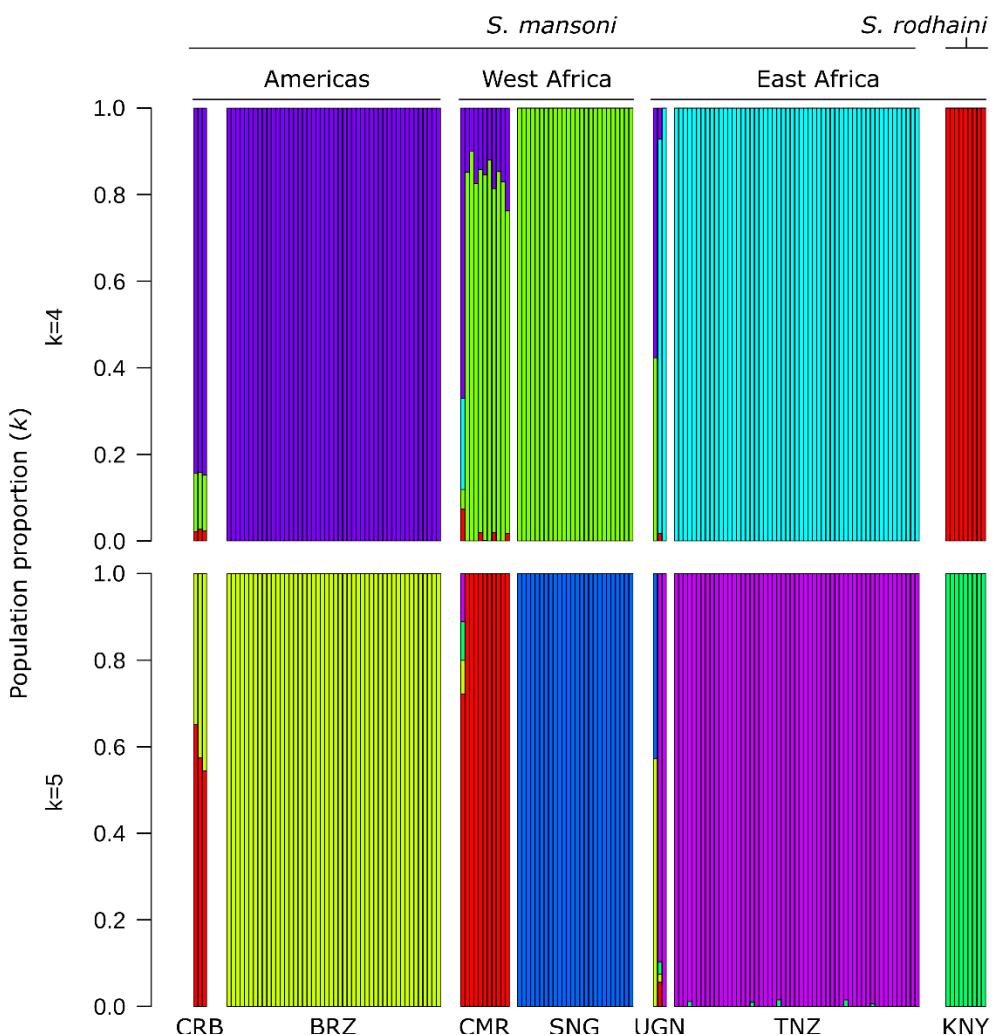
715 **Figure 1. Identifying regions of selection** – Flow chart shows how three separate analyses were
716 combined to identify regions most likely experiencing positive selection. These regions are referred to
717 as “putative selected regions”. We established neutral thresholds by simulating neutrally evolving SNVs
718 for each population. The simulated data was then run through H-Scan and Sweepfinder2 to determine
719 the maximum expected values from neutral data for each analysis.

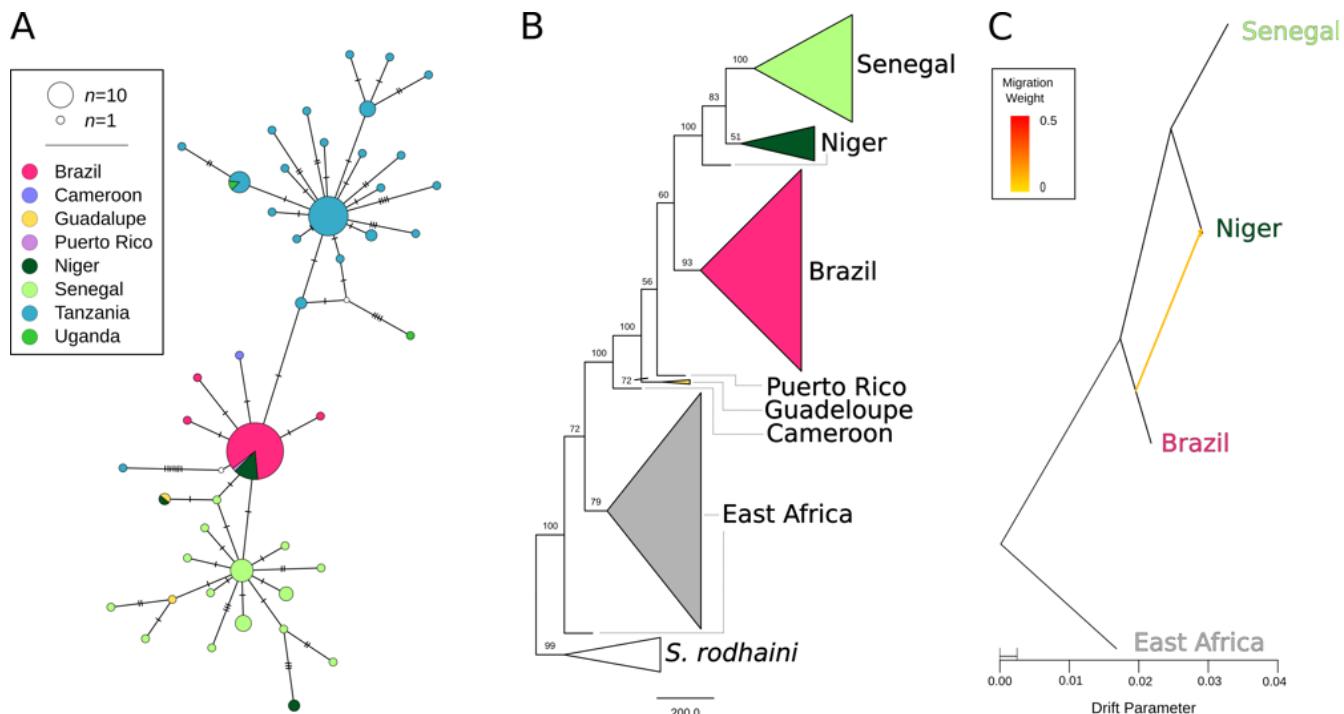
720



728

729 **Figure 3. Linkage Disequilibrium Decay and diversity within populations** – (A) Linkage
730 disequilibrium between SNVs was quantified with r^2 values for each population. Mean r^2 values were
731 taken in 500 bp windows and loess smoothed. Vertical dotted lines indicate the distance where $r^2 = 0.5$
732 for each population. LD decayed to $r^2=0.5$ in 28 bp (Tanzania), 15,150 bp (Niger), 19,318 bp (Senegal),
733 and 26,196 bp (Brazil). (B) Nucleotide diversity (π) varied between *S. mansoni* populations with the
734 highest levels of diversity occurring in E. Africa (Tanzania). Π was measured in 100 Kb windows
735 across the autosomal chromosomes. Outliers are not shown.

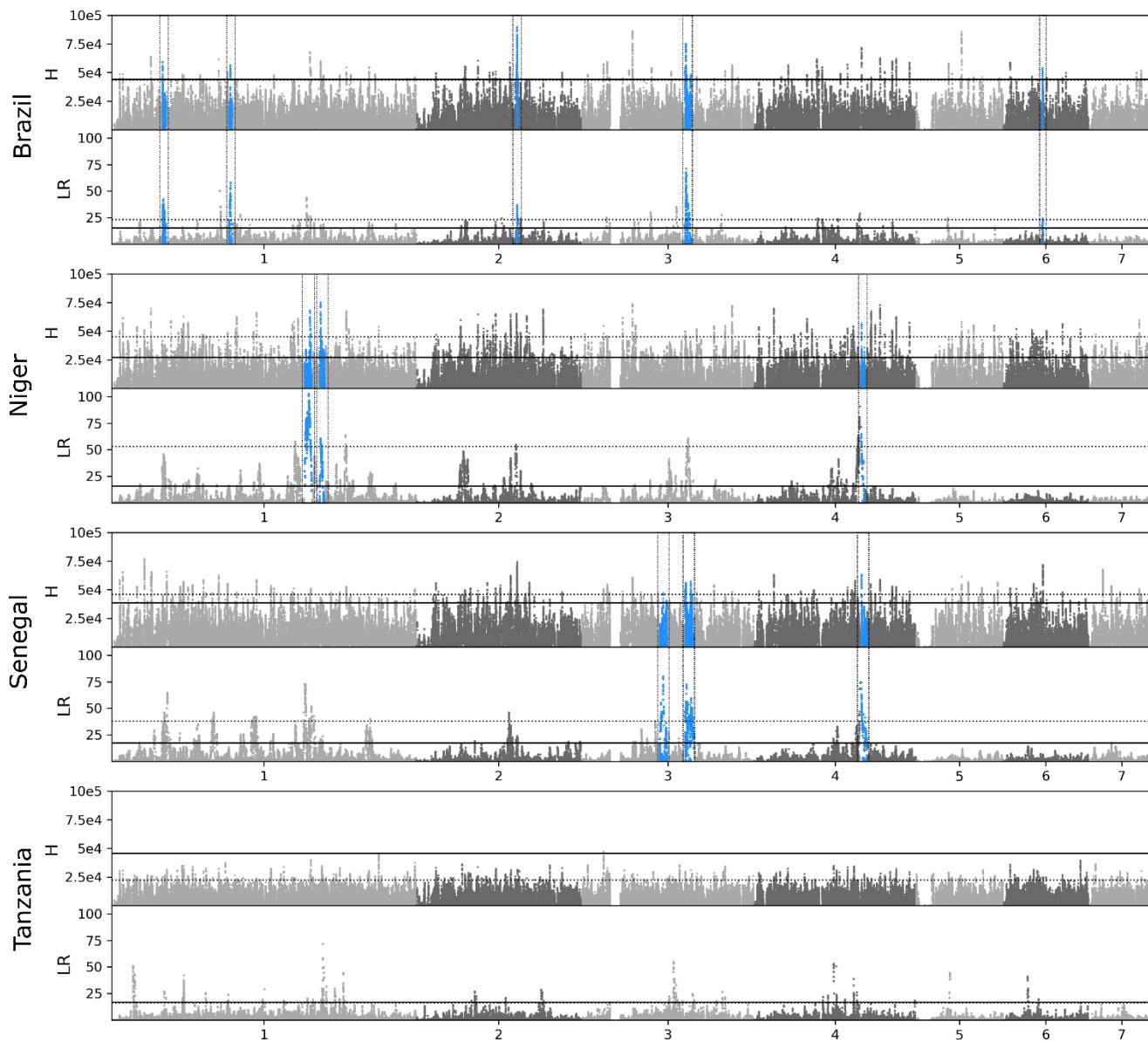

736



737

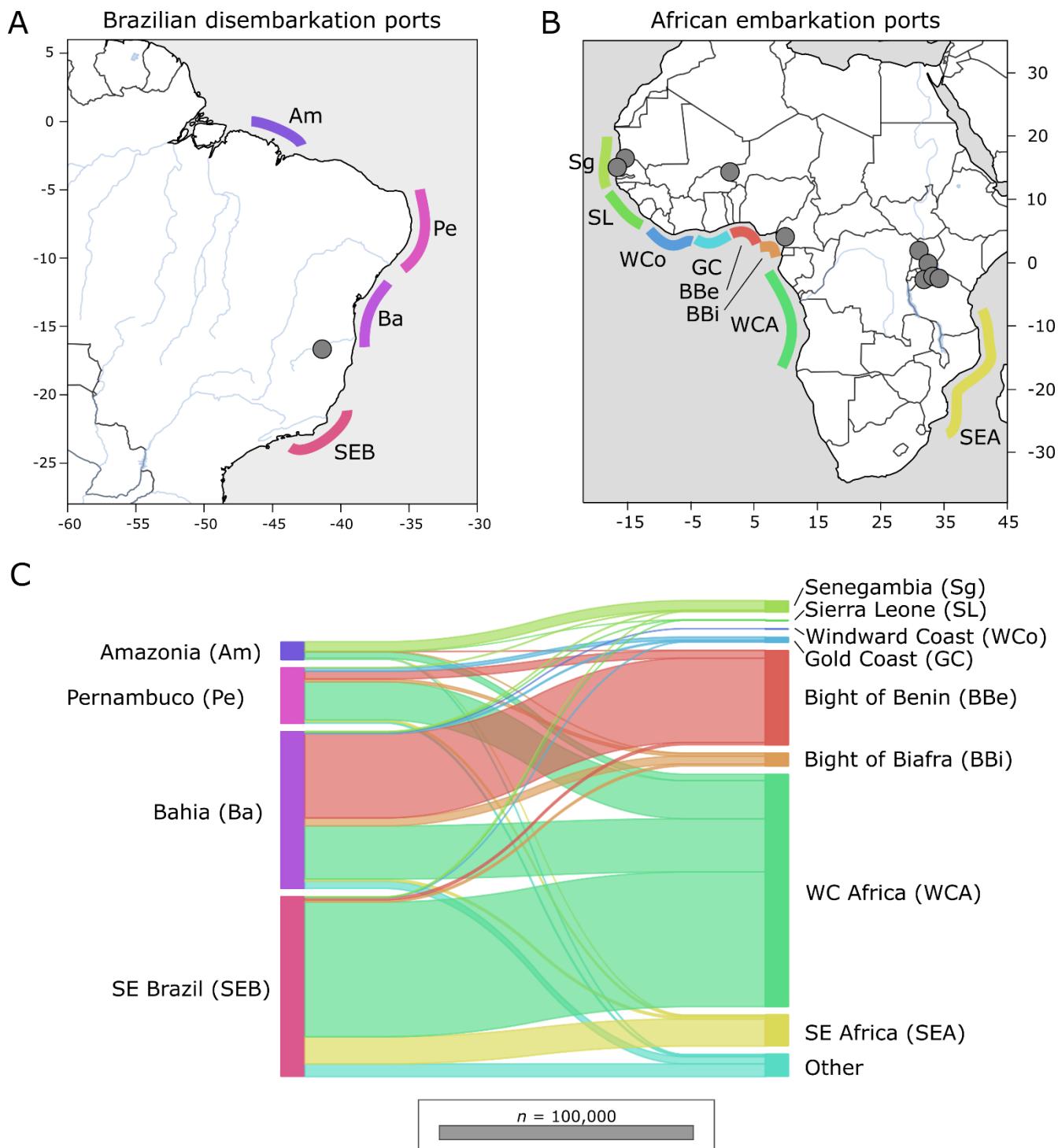
738 **Figure 4. A PCA of unlinked autosomal SNVs** – The PCA plot that included *S. mansoni* and *S. rodhaini*
739 (left) clearly shows a large distinction between the two species with some variation within *S. mansoni*
740 along PC2. A PCA with only *S. mansoni* (right) differentiates East African *S. mansoni* along PC1. The
741 remaining *S. mansoni* samples fall along a continuum on PC2 that goes from samples in West Africa and
742 transitions to the Americas.

743



753

754 **Figure 6. Phylogenetic relationships between *S. mansoni* populations** – Multiple phylogenetic
 755 analyses and marker types were used to discern relationships between *S. mansoni* populations. (A) A
 756 median-joining haplotype network was constructed from 815 variations variants across the mitochondria
 757 of all *S. mansoni* samples. (B) A coalescent-based species tree from 100,819 parsimony informative with
 758 bootstrap values shown on each clade. Monophyletic populations are shown as a collapsed clade except
 759 in the case of E. Africa which contains samples from Tanzania and Uganda. (C) A maximum likelihood
 760 phylogenetic network of autosomal variants identified a single, weak migration edge oriented from Brazil
 761 to Niger. All three analyses identify a relationship between Senegal, Niger, and Brazil that excludes East
 762 African samples. The mitochondrial (A) and autosomal (C) networks both allow for direct relationship
 763 or allele sharing between Brazil and Niger. The species tree (B) indicates a strong relationship between
 764 Senegal and Niger that excludes Brazil (bootstrap percentage = 100).


765

766

767 **Figure 7. Positive Selection across the *S. mansoni* genome** – Selection across the *S. mansoni* genome
768 was calculated with haplotype (H) and allele frequency (likelihood ratio; LR) - based methods. Dotted
769 lines represent positions with an H or LR value in the 99th percentile. The solid black line represents the
770 maximum H or LR calculated from simulated data under neutral conditions. Regions of interest (blue,
771 boxed) were identified by finding sites where the H and LR values were in the >99th percentile and were
772 both greater than the max H or LR from simulated data. Once these sites were identified we combined
773 variants within 333,333 bp windows that showed signs of selection; an H or LR greater than the simulated
774 threshold.

775

- 784 **References**
- 785 Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in
786 unrelated individuals. *Genome Res*, 19(9), 1655-1664. doi:10.1101/gr.094052.109
- 787 Anderson, T. (2001). The dangers of using single locus markers in parasite epidemiology: Ascaris as a
788 case study. *Trends Parasitol*, 17(4), 183-188. doi:10.1016/s1471-4922(00)01944-9
- 789 Anderson, T., & Enabulele, E. E. (2021). Schistosoma mansoni. *Trends Parasitol*, 37(2), 176-177.
790 doi:10.1016/j.pt.2020.06.003
- 791 Anderson, T., Haubold, B., Williams, J. T., Estrada-Franco, J. G., Richardson, L., Mollinedo, R., . . .
792 Day, K. P. (2000). Microsatellite markers reveal a spectrum of population structures in the
793 malaria parasite *Plasmodium falciparum*. *Molecular Biology and Evolution*, 17(10), 1467-1482.
794 doi:10.1093/oxfordjournals.molbev.a026247
- 795 Anderson, T., LoVerde, P. T., Le Clec'h, W., & Chevalier, F. D. (2018). Genetic Crosses and Linkage
796 Mapping in Schistosome Parasites. *Trends Parasitol*, 34(11), 982-996.
797 doi:10.1016/j.pt.2018.08.001
- 798 Ballabeni, P., & Ward, P. I. (1993). Local Adaptation of the Tremadote *Diplostomum phoxini* to the
799 European Minnow *Phoxinus phoxinus*, its Second Intermediate Host. *Functional Ecology*, 7(1),
800 84-90. doi:10.2307/2389870
- 801 Bergad, L. W. (2007). *The comparative histories of slavery in Brazil, Cuba, and the United States*:
802 Cambridge University Press New York.
- 803 Berger, D. J., Crellin, T., Lamberton, P. H., Allan, F., Tracey, A., Noonan, J. D., . . . Holroyd, N. (2021).
804 Whole-genome sequencing of *Schistosoma mansoni* reveals extensive diversity with limited
805 selection despite mass drug administration. *Nature Communications*, 12(1), 1-14.
- 806 Berriman, M., Haas, B. J., LoVerde, P. T., Wilson, R. A., Dillon, G. P., Cerqueira, G. C., . . . El-Sayed,
807 N. M. (2009). The genome of the blood fluke *Schistosoma mansoni*. *Nature*, 460(7253), 352-
808 358. doi:10.1038/nature08160
- 809 Birk, C. W., Jr., Maruyama, T., & Fuerst, P. (1983). An approach to population and evolutionary
810 genetic theory for genes in mitochondria and chloroplasts, and some results. *Genetics*, 103(3),
811 513-527.
- 812 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence
813 data. *Bioinformatics*, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170
- 814 Borlase, A., Rudge, J. W., Léger, E., Diouf, N. D., Fall, C. B., Diop, S. D., . . . Webster, J. P. (2021).
815 Spillover, hybridization, and persistence in schistosome transmission dynamics at the human-
816 animal interface. *Proc Natl Acad Sci U S A*, 118(41). doi:10.1073/pnas.2110711118
- 817 Bryant, J. E., Holmes, E. C., & Barrett, A. D. J. P. P. (2007). Out of Africa: a molecular perspective on
818 the introduction of yellow fever virus into the Americas. *PLoS Pathog*, 3(5), e75.
- 819 Chevalier, F. D., Le Clec'h, W., Eng, N., Rugel, A. R., Assis, R. R., Oliveira, G., . . . Anderson, T. J.
820 (2016). Independent origins of loss-of-function mutations conferring oxamniquine resistance in
821 a Brazilian schistosome population. *International Journal for Parasitology*, 46(7), 417-424.
822 doi:10.1016/j.ijpara.2016.03.006
- 823 Chevalier, F. D., Le Clec'h, W., McDew-White, M., Menon, V., Guzman, M. A., Holloway, S. P., . . .
824 Anderson, T. J. C. (2019). Oxamniquine resistance alleles are widespread in Old World
825 *Schistosoma mansoni* and predate drug deployment. *PLoS Pathog*, 15(10), e1007881.
826 doi:10.1371/journal.ppat.1007881
- 827 Chifman, J., & Kubatko, L. (2015). Identifiability of the unrooted species tree topology under the
828 coalescent model with time-reversible substitution processes, site-specific rate variation, and
829 invariable sites. *Journal of Theoretical Biology*, 374, 35-47. doi:10.1016/j.jtbi.2015.03.006
- 830 Crellin, T., Allan, F., David, S., Durrant, C., Huckvale, T., Holroyd, N., . . . Cotton, J. A. (2016). Whole
831 genome resequencing of the human parasite *Schistosoma mansoni* reveals population history
832 and effects of selection. *Scientific reports*, 6, 20954. doi:10.1038/srep20954

- 833 Criscione, C. D., Valentim, C. L., Hirai, H., LoVerde, P. T., & Anderson, T. J. (2009). Genomic linkage
834 map of the human blood fluke *Schistosoma mansoni*. *Genome Biology*, 10(6), R71.
835 doi:10.1186/gb-2009-10-6-r71
- 836 Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., . . . Durbin, R. (2011).
837 The variant call format and VCFtools. *Bioinformatics*, 27(15), 2156-2158.
838 doi:10.1093/bioinformatics/btr330
- 839 Davies, C. M., Webster, J. P., & Woolhous, M. E. (2001). Trade-offs in the evolution of virulence in an
840 indirectly transmitted macroparasite. *Proc Biol Sci*, 268(1464), 251-257.
841 doi:10.1098/rspb.2000.1367
- 842 de Oliveira, T. C., Corder, R. M., Early, A., Rodrigues, P. T., Ladeia-Andrade, S., Alves, J. M. P., . . .
843 Ferreira, M. U. (2020). Population genomics reveals the expansion of highly inbred
844 *Plasmodium vivax* lineages in the main malaria hotspot of Brazil. *PLoS neglected tropical
845 diseases*, 14(10), e0008808.
- 846 DeGiorgio, M., Huber, C. D., Hubisz, M. J., Hellmann, I., & Nielsen, R. (2016). SweepFinder2:
847 increased sensitivity, robustness and flexibility. *Bioinformatics*, 32(12), 1895-1897.
848 doi:10.1093/bioinformatics/btw051
- 849 DeJong, R. J., Morgan, J. A., Paraense, W. L., Pointier, J.-P., Amarista, M., Ayeh-Kumi, P. F., . . .
850 evolution. (2001). Evolutionary relationships and biogeography of *Biomphalaria* (Gastropoda:
851 Planorbidae) with implications regarding its role as host of the human bloodfluke, *Schistosoma
852 mansoni*. *Molecular biology*, 18(12), 2225-2239.
- 853 DeJong, R. J., Morgan, J. A., Wilson, W. D., Al-Jaser, M. H., Appleton, C. C., Coulibaly, G., . . . Loker,
854 E. S. (2003). Phylogeography of *Biomphalaria glabrata* and *B. pfeifferi*, important intermediate
855 hosts of *Schistosoma mansoni* in the New and Old World tropics. *Mol Ecol*, 12(11), 3041-3056.
856 doi:10.1046/j.1365-294x.2003.01977.x
- 857 Després, L., Imbert-Establet, D., & Monnerot, M. (1993). Molecular characterization of mitochondrial
858 DNA provides evidence for the recent introduction of *Schistosoma mansoni* into America. *Mol
859 Biochem Parasitol*, 60(2), 221-229. doi:10.1016/0166-6851(93)90133-i
- 860 Doyle, S. R., Sankaranarayanan, G., Allan, F., Berger, D., Jimenez Castro, P. D., Collins, J. B., . . .
861 Holroyd, N. (2019). Evaluation of DNA Extraction Methods on Individual Helminth Egg and
862 Larval Stages for Whole-Genome Sequencing. *Front Genet*, 10, 826.
863 doi:10.3389/fgene.2019.00826
- 864 Ebert, D. (1994). Virulence and local adaptation of a horizontally transmitted parasite. *Science*,
865 265(5175), 1084-1086. doi:10.1126/science.265.5175.1084
- 866 Eltis, D. (2001). The volume and structure of the transatlantic slave trade: A reassessment. *The William
867 and Mary Quarterly*, 58(1), 17-46.
- 868 Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the
869 software STRUCTURE: a simulation study. *Molecular ecology*, 14(8), 2611-2620.
- 870 Files, V. S. (1951). A study of the vector-parasite relationships in *Schistosoma mansoni*. *Parasitology*,
871 41(3-4), 264-269.
- 872 Fletcher, M., LoVerde, P. T., & Woodruff, D. S. (1981). Genetic variation in *Schistosoma mansoni*:
873 enzyme polymorphisms in populations from Africa, Southwest Asia, South America, and the
874 West Indies. *American Journal of Tropical Medicine and Hygiene*, 30(2), 406-421.
875 doi:10.4269/ajtmh.1981.30.406
- 876 Forni, D., Pontremoli, C., Clerici, M., Pozzoli, U., Cagliani, R., & Sironi, M. (2020). Recent Out-of-
877 Africa Migration of Human Herpes Simplex Viruses. *Molecular Biology and Evolution*, 37(5),
878 1259-1271. doi:10.1093/molbev/msaa001
- 879 Fulford, A. J., Butterworth, A. E., Ouma, J. H., & Sturrock, R. F. (1995). A statistical approach to
880 schistosome population dynamics and estimation of the life-span of *Schistosoma mansoni* in
881 man. *Parasitology*, 110 (Pt 3), 307-316. doi:10.1017/s0031182000080896

- 882 Gurdasani, D., Carstensen, T., Tekola-Ayele, F., Pagani, L., Tachmazidou, I., Hatzikotoulas, K., . . .
883 Sandhu, M. S. (2015). The African Genome Variation Project shapes medical genetics in Africa.
884 *Nature*, 517(7534), 327-332. doi:10.1038/nature13997
- 885 Guzmán-Solís, A. A., Villa-Islas, V., Bravo-López, M. J., Sandoval-Velasco, M., Wesp, J. K., Gómez-
886 Valdés, J. A., . . . Ávila Arcos, M. C. (2021). Ancient viral genomes reveal introduction of
887 human pathogenic viruses into Mexico during the transatlantic slave trade. *Elife*, 10.
888 doi:10.7554/eLife.68612
- 889 Hahn, M. W., & Hibbins, M. S. (2019). A Three-Sample Test for Introgression. *Molecular Biology and*
890 *Evolution*, 36(12), 2878-2882. doi:10.1093/molbev/msz178
- 891 Hailegebriel, T., Nibret, E., & Munshea, A. (2020). Prevalence of *Schistosoma mansoni* and *S.*
892 *haematobium* in Snail Intermediate Hosts in Africa: A Systematic Review and Meta-analysis.
893 *Journal of tropical medicine*, 2020.
- 894 International Helminth Genomes Consortium. (2019). Comparative genomics of the major parasitic
895 worms. *Nat Genet*, 51(1), 163-174. doi:10.1038/s41588-018-0262-1
- 896 Jorgenson, A., Kristensen, T. K., & Stothard, J. R. (2007). Phylogeny and biogeography of African
897 Biomphalaria (Gastropoda: Planorbidae), with emphasis on endemic species of the great East
898 African lakes. *Zoological Journal of the Linnean Society*, 151(2), 337-349.
- 899 Kabongo, M. M., Linsuke, S., Baloji, S., Mukunda, F., Raquel, I. D. L., Stauber, C., . . . Lutumba, P.
900 (2018). Schistosoma mansoni infection and its association with nutrition and health outcomes: a
901 household survey in school-aged children living in Kasansa, Democratic Republic of the
902 Congo. *Pan African Medical Journal* 31, 197. doi:10.11604/pamj.2018.31.197.16364
- 903 Kelleher, J., Etheridge, A. M., & McVean, G. (2016). Efficient Coalescent Simulation and Genealogical
904 Analysis for Large Sample Sizes. *PLoS Computational Biology*, 12(5), e1004842.
905 doi:10.1371/journal.pcbi.1004842
- 906 Kengne-Fokam, A. C., Nana-Djeunga, H. C., Bagayan, M., & Njiokou, F. (2018). *Biomphalaria*
907 *camerunensis* as a viable alternative intermediate host for *Schistosoma mansoni* in southern
908 Cameroon. *Parasites & vectors*, 11(1), 1-9.
- 909 Köster, J., & Rahmann, S. (2012). Snakemake—a scalable bioinformatics workflow engine.
910 *Bioinformatics*, 28(19), 2520-2522.
- 911 Köster, J., & Rahmann, S. (2018). Snakemake-a scalable bioinformatics workflow engine.
912 *Bioinformatics*, 34(20), 3600. doi:10.1093/bioinformatics/bty350
- 913 Le Clec'h, W., Chevalier, F. D., McDew-White, M., Allan, F., Webster, B. L., Gouvras, A. N., . . .
914 Anderson, T. J. C. (2018). Whole genome amplification and exome sequencing of archived
915 schistosome miracidia. *Parasitology*, 145(13), 1739-1747. doi:10.1017/S0031182018000811
- 916 Le Clec'h, W., Chevalier, F. D., McDew-White, M., Menon, V., Arya, G. A., & Anderson, T. J. C.
917 (2021). Genetic architecture of transmission stage production and virulence in schistosome
918 parasites. *Virulence*, 12(1), 1508-1526. doi:10.1080/21505594.2021.1932183
- 919 Le Clec'h, W., Chevalier, F. D., Mattos, A. C. A., Strickland, A., Diaz, R., McDew-White, M., . . .
920 Anderson, T. J. C. (2021). Genetic analysis of praziquantel response in schistosome parasites
921 implicates a Transient Receptor Potential channel. 2021.2006.2009.447779.
922 doi:10.1101/2021.06.09.447779 %J bioRxiv
- 923 Leblois, R., Kuhls, K., François, O., Schönian, G., & Wirth, T. (2011). Guns, germs and dogs: On the
924 origin of *Leishmania chagasi*. *Infection, Genetics and Evolution*, 11(5), 1091-1095.
925 doi:10.1016/j.meegid.2011.04.004
- 926 Léger, E., Borlase, A., Fall, C. B., Diouf, N. D., Diop, S. D., Yasenev, L., . . . Webster, J. P. (2020).
927 Prevalence and distribution of schistosomiasis in human, livestock, and snail populations in
928 northern Senegal: a One Health epidemiological study of a multi-host system. *Lancet Planet
929 Health*, 4(8), e330-e342. doi:10.1016/s2542-5196(20)30129-7

- 930 Leger, E., & Webster, J. P. (2017). Hybridizations within the genus *Schistosoma*: implications for
931 evolution, epidemiology and control. *Parasitology*, 144(1), 65-80.
- 932 Leigh, J. W., & Bryant, D. (2015). POPART: full-feature software for haplotype network construction.
933 *Methods in Ecology Evolution*, 6(9), 1110-1116.
- 934 Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform.
935 *Bioinformatics*, 26(5), 589-595. doi:10.1093/bioinformatics/btp698
- 936 Lively, C. M. (1989). Adaptation by a parasitic trematode to local populations of its snail host.
937 *Evolution*, 43(8), 1663-1671. doi:10.1111/j.1558-5646.1989.tb02616.x
- 938 Luu, K., Bazin, E., & Blum, M. G. (2017). pcadapt: an R package to perform genome scans for
939 selection based on principal component analysis. *Molecular ecology resources*, 17(1), 67-77.
- 940 Mackay, T. F. C., & Huang, W. (2018). Charting the genotype-phenotype map: lessons from the
941 *Drosophila melanogaster* Genetic Reference Panel. *Wiley Interdiscip Rev Dev Biol*, 7(1).
942 doi:10.1002/wdev.289
- 943 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., . . . DePristo, M. A.
944 (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation
945 DNA sequencing data. *Genome Res*, 20(9), 1297-1303. doi:10.1101/gr.107524.110
- 946 Miles, A., Ralph, P., Rae, S., & Pisupati, R. (2019). scikit-allel (Version 1.2.1).
- 947 Mitta, G., Gourbal, B., Grunau, C., Knight, M., Bridger, J., & Théron, A. (2017). The compatibility
948 between *Biomphalaria glabrata* snails and *Schistosoma mansoni*: an increasingly complex
949 puzzle. In *Advances In Parasitology* (Vol. 97, pp. 111-145): Elsevier.
- 950 Morand, S., Manning, S. D., & Woolhouse, M. E. (1996). Parasite-host coevolution and geographic
951 patterns of parasite infectivity and host susceptibility. *Proc Biol Sci*, 263(1366), 119-128.
952 doi:10.1098/rspb.1996.0019
- 953 Morgan, J., DeJong, R. J., Lwambo, N. J., Mungai, B. N., Mkoji, G. M., & Loker, E. S. (2003). First
954 report of a natural hybrid between *Schistosoma mansoni* and *S. rodhaini*. *Journal of
955 Parasitology*, 89(2), 416-418.
- 956 Morgan, J. A., DeJong, R. J., Adeoye, G. O., Ansa, E. D., Barbosa, C. S., Bremond, P., . . . Loker, E. S.
957 (2005). Origin and diversification of the human parasite *Schistosoma mansoni*. *Molecular
958 ecology*, 14(12), 3889-3902. doi:10.1111/j.1365-294X.2005.02709.x
- 959 Mutuku, M. W., Laidemitt, M. R., Spaan, J. M., Mwangi, I. N., Ochanda, H., Steinauer, M. L., . . .
960 Mkoji, G. M. (2021). Comparative Vectorial Competence of *Biomphalaria sudanica* and
961 *Biomphalaria choanomphala*, Snail Hosts of *Schistosoma mansoni*, From Transmission
962 Hotspots In Lake Victoria, Western Kenya. *J Parasitol*, 107(2), 349-357. doi:10.1645/20-138
- 963 Mutuku, M. W., Lu, L., Otiato, F. O., Mwangi, I. N., Kinuthia, J. M., Maina, G. M., . . . Mkoji, G. M.
964 (2017). A Comparison of Kenyan *Biomphalaria pfeifferi* and *B. Sudanica* as Vectors for
965 *Schistosoma mansoni*, Including a Discussion of the Need to Better Understand the Effects of
966 Snail Breeding Systems on Transmission. *J Parasitol*, 103(6), 669-676. doi:10.1645/17-72
- 967 Nadeau, S. A., Vaughan, T. G., Scire, J., Huisman, J. S., & Stadler, T. (2021). The origin and early
968 spread of SARS-CoV-2 in Europe. *Proceedings of the National Academy of Sciences*, 118(9).
- 969 Neafsey, D. E., Schaffner, S. F., Volkman, S. K., Park, D., Montgomery, P., Milner, D. A., Jr., . . . Wirth,
970 D. F. (2008). Genome-wide SNP genotyping highlights the role of natural selection in
971 *Plasmodium falciparum* population divergence. *Genome Biology*, 9(12), R171. doi:10.1186/gb-
972 2008-9-12-r171
- 973 Nychka, D., Furrer, R., Paige, J., & Sain, S. (2017). fields: Tools for Spatial Data (Version 11.6):
974 University Corporation for Atmospheric Research. Retrieved from
975 <https://github.com/NCAR/Fields>
- 976 Ortiz, E. M. (2019). vcfl2phylo v2.0: convert a VCF matrix into several matrix formats for
977 phylogenetic analysis. Retrieved from DOI:10.5281/zenodo.2540861

- 978 Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., . . . Reich, D. (2012). Ancient
979 admixture in human history. *Genetics*, 192(3), 1065-1093. doi:10.1534/genetics.112.145037
- 980 Pedersen, B. S., & Quinlan, A. R. (2018). Mosdepth: quick coverage calculation for genomes and
981 exomes. *Bioinformatics*, 34(5), 867-868. doi:10.1093/bioinformatics/btx699
- 982 Pickrell, J. K., & Pritchard, J. K. (2012). Inference of population splits and mixtures from genome-wide
983 allele frequency data. *PLoS Genetics*, 8(11), e1002967. doi:10.1371/journal.pgen.1002967
- 984 Platt, R. N., McDew-White, M., Le Clec'h, W., Chevalier, F. D., Allan, F., Emery, A. M., . . . Anderson,
985 T. J. C. (2019). Ancient hybridization and adaptive introgression of an invadolysin gene in
986 schistosome parasites. *Molecular Biology and Evolution*, 36(10), 2127-2142.
987 doi:10.1093/molbev/msz154
- 988 Portet, A., Pinaud, S., Chaparro, C., Galinier, R., Dheilly, N. M., Portela, J., . . . Gourbal, B. (2019).
989 Sympatric versus allopatric evolutionary contexts shape differential immune response in
990 Biomphalaria / Schistosoma interaction. *PLoS Pathog*, 15(3), e1007647.
991 doi:10.1371/journal.ppat.1007647
- 992 Protasio, A. V., Tsai, I. J., Babbage, A., Nichol, S., Hunt, M., Aslett, M. A., . . . Berriman, M. (2012). A
993 systematically improved high quality genome and transcriptome of the human blood fluke
994 *Schistosoma mansoni*. *PLoS Negl Trop Dis*, 6(1), e1455. doi:10.1371/journal.pntd.0001455
- 995 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., . . . Sham, P. C.
996 (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses.
997 *American Journal of Human Genetics*, 81(3), 559-575. doi:10.1086/519795
- 998 Rey, O., Toulza, E., Chaparro, C., Allienne, J. F., Kincaid-Smith, J., Mathieu-Bagné, E., . . . Boissier, J.
999 (2021). Diverging patterns of introgression from *Schistosoma bovis* across *S. haematobium*
1000 African lineages. *PLoS Pathog*, 17(2), e1009313. doi:10.1371/journal.ppat.1009313
- 1001 Rey, O., Webster, B. L., Huyse, T., Rollinson, D., Van den Broeck, F., Kincaid-Smith, J., . . . Boissier, J.
1002 (2021). Population genetics of African *Schistosoma* species. *Infection, Genetics and Evolution*,
1003 89, 104727. doi:10.1016/j.meegid.2021.104727
- 1004 Rius, M., Bourne, S., Hornsby, H. G., & Chapman, M. A. (2015). Applications of next-generation
1005 sequencing to the study of biological invasions. *Current Zoology*, 61(3), 488-504.
- 1006 Rodrigues, P. T., Valdivia, H. O., de Oliveira, T. C., Alves, J. M. P., Duarte, A. M. R., Cerutti-Junior,
1007 C., . . . Hirano, Z. M. (2018). Human migration and the spread of malaria parasites to the New
1008 World. *Scientific reports*, 8(1), 1-13.
- 1009 Sanneh, B., Joof, E., Sanyang, A. M., Renneker, K., Camara, Y., Sey, A. P., . . . Ogovu, K. (2017).
1010 Field evaluation of a schistosome circulating cathodic antigen rapid test kit at point-of-care for
1011 mapping of schistosomiasis endemic districts in The Gambia. *PLoS One*, 12(8), e0182003.
1012 doi:10.1371/journal.pone.0182003
- 1013 Schlam, F., van der Made, J., Stambler, R., Chesebrough, L., Boyko, A. R., & Messer, P. W. (2016).
1014 Evaluating the performance of selection scans to detect selective sweeps in domestic dogs.
1015 *Molecular ecology*, 25(1), 342-356. doi:10.1111/mec.13485
- 1016 Schwabl, P., Boité, M. C., Bussotti, G., Jacobs, A., Andersson, B., Moreira, O., . . . Traub-Csekö, Y.
1017 (2021). Colonization and genetic diversification processes of *Leishmania infantum* in the
1018 Americas. *Communications biology*, 4(1), 1-13.
- 1019 Sherpa, S., & Després, L. (2021). The evolutionary dynamics of biological invasions: A multi-approach
1020 perspective. *Evolutionary Applications*.
- 1021 Shortt, J. A., Card, D. C., Schield, D. R., Liu, Y., Zhong, B., Castoe, T. A., . . . Pollock, D. D. (2017).
1022 Whole Genome Amplification and Reduced-Representation Genome Sequencing of
1023 *Schistosoma japonicum* Miracidia. *PLoS neglected tropical diseases*, 11(1), e0005292.
1024 doi:10.1371/journal.pntd.0005292
- 1025 Slave Voyages Database. (2009). Voyages: The Trans-Atlantic Slave Trade Database. Retrieved from
1026 <https://www.slavevoyages.org>

- 1027 Small, S. T., Labbe, F., Coulibaly, Y. I., Nutman, T. B., King, C. L., Serre, D., & Zimmerman, P. A.
1028 (2019). Human Migration and the Spread of the Nematode Parasite *Wuchereria bancrofti*.
1029 *Molecular Biology and Evolution*, 36(9), 1931-1941. doi:10.1093/molbev/msz116
- 1030 Steinauer, M., Hanelt, B., Mwangi, I. N., Maina, G. M., Agola, L. E., Kinuthia, J. M., . . . Loker, E. S.
1031 (2008). Introgressive hybridization of human and rodent schistosome parasites in western
1032 Kenya. *Molecular ecology*, 17(23), 5062-5074. doi:10.1111/j.1365-294X.2008.03957.x
- 1033 Steinauer, M., Mwangi, I. N., Maina, G. M., Kinuthia, J. M., Mutuku, M. W., Agola, E. L., . . . Loker,
1034 E. S. (2008). Interactions between natural populations of human and rodent schistosomes in the
1035 Lake Victoria region of Kenya: a molecular epidemiological approach. *PLoS neglected tropical
1036 diseases*, 2(4), e222.
- 1037 Steinegger, M., Meier, M., Mirdita, M., Vöhringer, H., Haunsberger, S. J., & Söding, J. (2019). HH-
1038 suite3 for fast remote homology detection and deep protein annotation. *BMC Bioinformatics*,
1039 20(1), 473. doi:10.1186/s12859-019-3019-7
- 1040 Steverding, D. (2020). The spreading of parasites by human migratory activities. *Virulence*, 11(1),
1041 1177-1191. doi:10.1080/21505594.2020.1809963
- 1042 Stothard, J. R., Kayuni, S. A., Al-Harbi, M. H., Musaya, J., & Webster, B. L. (2020). Future
1043 schistosome hybridizations: Will all *Schistosoma haematobium* hybrids please stand-up! *PLoS
1044 neglected tropical diseases*, 14(7), e0008201. doi:10.1371/journal.pntd.0008201
- 1045 Swofford, D. L. (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods)
1046 Sunderland, Massachusetts.: Sinauer Associates. Retrieved from <https://paup.phylosolutions.com/>
- 1047 Tennesen, J. A., Bollmann, S. R., Peremyslova, E., Kronmiller, B. A., Sergi, C., Hamali, B., & Blouin,
1048 M. S. (2020). Clusters of polymorphic transmembrane genes control resistance to schistosomes
1049 in snail vectors. *Elife*, 9, e59395. doi:10.7554/elife.59395
- 1050 Tennesen, J. A., Theron, A., Marine, M., Yeh, J. Y., Rognon, A., & Blouin, M. S. (2015). Hyperdiverse
1051 gene cluster in snail host conveys resistance to human schistosome parasites. *PLoS Genetics*,
1052 11(3), e1005067. doi:10.1371/journal.pgen.1005067
- 1053 Théron, A. (1989). Hybrids between *Schistosoma mansoni* and *S. rodhaini*: characterization by
1054 cercarial emergence rhythms. *Parasitology*, 99 Pt 2, 225-228. doi:10.1017/s0031182000058674
- 1055 Theron, A., Rognon, A., Gourbal, B., & Mitta, G. (2014). Multi-parasite host susceptibility and multi-
1056 host parasite infectivity: a new approach of the *Biomphalaria glabrata/Schistosoma mansoni*
1057 compatibility polymorphism. *Infection, Genetics and Evolution*, 26, 80-88.
1058 doi:10.1016/j.meegid.2014.04.025
- 1059 Van den Broeck, F., Meurs, L., Raeymaekers, J., Boon, N., Dieye, T., Volckaert, F., . . . Huyse, T.
1060 (2014). Inbreeding within human *Schistosoma mansoni*: do host-specific factors shape the
1061 genetic composition of parasite populations? *Heredity*, 113(1), 32-41.
- 1062 Vidigal, T., Kissinger, J., Caldeira, R. L., Pires, E., Monteiro, E., Simpson, A., & Carvalho, O. (2000).
1063 Phylogenetic relationships among Brazilian *Biomphalaria* species (Mollusca: Planorbidae)
1064 based upon analysis of ribosomal ITS2 sequences. *Parasitology*, 121(6), 611-620.
- 1065 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., . . . Bright, J.
1066 (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nature methods*,
1067 17(3), 261-272.
- 1068 Webster, B. L., Webster, J. P., Gouvas, A. N., Garba, A., Lamine, M. S., Diaw, O. T., . . . Mubila, L.
1069 (2013). DNA ‘barcoding’ of *Schistosoma mansoni* across sub-Saharan Africa supports
1070 substantial within locality diversity and geographical separation of genotypes. *Acta tropica*,
1071 128(2), 250-260.
- 1072 Webster, J. P., Davies, C. M., Hoffman, J. I., Ndamba, J., Noble, L. R., & Woolhouse, M. E. (2001).
1073 Population genetics of the schistosome intermediate host *Biomphalaria pfeifferi* in the
1074 Zimbabwean highveld: implications for co-evolutionary theory. *Ann Trop Med Parasitol*, 95(2),
1075 203-214. doi:10.1080/00034980120041062

- 1076 Webster, J. P., Gower, C. M., & Blair, L. (2004). Do hosts and parasites coevolve? Empirical support
1077 from the *Schistosoma* system. *Am Nat*, *164 Suppl 5*, S33-51. doi:10.1086/424607
- 1078 Webster, J. P., & Woolhouse, M. E. J. (1998). Selection and strain specificity of compatibility between
1079 snail intermediate hosts and their parasitic schistosomes. *Evolution*, *52*(6), 1627-1634.
1080 doi:10.1111/j.1558-5646.1998.tb02243.x
- 1081 Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population
1082 Structure. *Evolution*, *38*(6), 1358-1370. doi:10.1111/j.1558-5646.1984.tb05657.x
- 1083 Woolhouse, M. E., & Webster, J. P. (2000). In search of the red queen. *Parasitol Today*, *16*(12), 506-
1084 508. doi:10.1016/s0169-4758(00)01820-2
- 1085 Yalcindag, E., Elguero, E., Arnathau, C., Durand, P., Akiana, J., Anderson, T. J., . . . Prugnolle, F.
1086 (2012). Multiple independent introductions of *Plasmodium falciparum* in South America.
1087 *Proceedings of the National Academy of Sciences*, *109*(2), 511-516.
1088 doi:10.1073/pnas.1119058109
- 1089