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Abstract

Mean-Shift Super Resolution (MSSR) is a principle based on the Mean Shift theory that

improves the spatial resolution in fluorescence images beyond the diffraction limit. 

MSSR works on low- and high-density fluorophore images, is not limited by the 

architecture of the detector (EM-CCD, sCMOS, or photomultiplier-based laser scanning

systems) and is applicable to single images as well as temporal series. The theoretical 

limit of spatial resolution, based on optimized real-world imaging conditions and 

analysis of temporal image series, has been measured to be 40 nm. Furthermore, MSSR 

has denoising capabilities that outperform other analytical super resolution image 

approaches. Altogether, MSSR is a powerful, flexible, and generic tool for 

multidimensional and live cell imaging applications. 

Key Words: super-resolution microscopy, diffraction limit, single frame, Mean Shift, 

fluorescence microscopy, live-cell imaging.

Introduction

Super-resolution Microscopy (SRM), which encompasses a collection of 

methods that circumvent Abbe's optical resolution limit, has dramatically increased our 

capability to visualize the architecture of cells and tissues at the molecular level. There 

are several approaches to SRM which vary in terms of the final attainable spatial and 

temporal resolution, photon efficiency, as well as in their capacity to image live or fixed

samples at depth [1, 2]. One class of techniques exceed the diffraction limit by 

engineering the illumination or the point spread function (PSF), such as SIM and STED 

[3-5]. These techniques can be used for live imaging although they require specialized 

hardware and dedicated personnel for maintenance and operation. Single-molecule 

localization methods (e.g., STORM, PAINT, PALM) [6-9] that localize individual 

emitters with nanometer precision require temporal analysis of several hundred-to-

thousands of images and are prone to error due to fast molecular dynamics within live 

specimens.

Some SRM computational methods have few or no demands on hardware or 

sample preparation and provide resolution improvements beyond the diffraction limit 

[10-13]. The quantity and performance of computational methods have both increased 

over the past decade given the many advantages they present, such as their low barriers 

to entry and generic applicability to data acquired with any microscopy modality (wide-
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field, confocal, or light-sheet). However, these methods also present some limitations, 

such as the possible introduction of artifacts [14], the requirement for high signal-to-

noise ratio (SNR) data and the acquisition of tens to hundreds of frames [10-13], which 

limit their applicability to reconstruct fast dynamical processes.

Here, we introduce the Mean Shift Super-Resolution principle for digital images

‘MSSR’ (pronounced as messer), derived from the Mean Shift (MS) theory [15, 16]. 

MSSR improves the resolution of any single fluorescence image up to 1.6 times, 

including its use as a resolution enhancement complement after the application of other 

super-resolution methods. Additionally, we demonstrate the super-resolving capabilities

of MSSR as a standalone method for a variety of fluorescence microscopy applications, 

through a single-frame and temporal stack analysis, allowing resolution improvements 

towards a limit of 40 nm.

Open-source implementations of MSSR are provided for ImageJ (as a plugin), 

R, and MATLAB, some of which take advantage of the parallel computing capabilities 

of regular desktop computers (Supplementary Note 7). The method operates almost free

of parameters; users only need to provide an estimate of the point spread function (PSF, 

in pixels) of the optical system, choose the MSSR order, and decide whether a temporal 

analysis will take place (Supplementary material MSSR Manual). The provided open-

source implementations of MSSR represent a novel user-friendly alternative for the 

bioimaging community for unveiling life at its nanoscopic level.

Results

The MSSR principle.

MSSR is tailored around the assumption that fluorescence images are formed by

signals collected from point sources (i.e., fluorophores) convolved with the PSF of the 

microscope (Supplementary Notes 1, 2 and 3). Processing a single image with MSSR 

starts with the calculation of the MS, which guarantees that large intensity values on the 

diffraction-limited (DL) image coincide with large positive values in the MSSR image 

(Supplementary Note 4). Further algebraic transformations then restore the raw intensity

distribution and remove possible artifacts caused by the previous step (edge effects and 

noise dependent artifacts), giving rise to an image that contains objects with a narrower 

full width at half maximum (FWHM) (Figure 1a). This procedure is denoted by MSSR0,

as the first stage to shrink emitter distribution. 
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The MS is locally computed by a kernel window that slides throughout the entire

image, subtracts the sample mean (weighted local mean) as well as the central value of 

the kernel using a spatial-range neighborhood (Supplementary Notes 2 and 3, Figure S4 

and S5, Table S1) [15, 16]. The MS is a vector that always points towards the direction 

of the intensity gradient and its length provides a local measure of the fluorescence 

density and brightness [17-19]. Since the MS lies within the gradient space, its values 

depend on the difference between the central pixel of the neighborhood and the 

surrounding pixels and thus is not necessarily linked to the fluorescence intensity values

of the raw image. A mathematical proof, provided in Supplementary Note 4, 

demonstrates that the minimum MS value, computed from a Gaussian distribution, 

matches with the point of maximum intensity of the initial distribution (Supplementary 

Note 4, Figure S6).

The increase in resolution offered by MSSR0 was evaluated by the Rayleigh and 

Sparrow limits [20-22], which are two criteria that establish resolution bounds for two 

near-point sources (Figure 1b). Processing with MSSR0 of two-point sources located at 

their resolution limit (2.5 σ and 2 σ for Rayleigh and Sparrow limit respectively, Figure 

1c vertical discontinuous lines) decreases the dip (height at the saddle point) [23] within

their intensity distributions (Figure 1b and 1c). Processing a single image with MSSR0 

shifts the resolution limit by 26 % and 20 %, according to the Rayleigh and Sparrow 

limits respectively (Figure 1c vertical continuous lines). Therefore, processing a single 

fluorescence image with MSSR0 will reduce the FWHM of individual emitters. Also, a 

comparison of the shrinkability of MSSR0 applied to Gaussian and Bessel distributions 

are shown in Figure S7. Additionally, the reduction of FWHM of Bessel distribution at 

different wavelengths of the visible spectrum are shown in Figure S8.

Since the result of MSSR is an image, we used the resulting image to seed an 

iterative process (Figure 2a). We refer to this as higher-order MSSR (MSSRn, n>0), 

which delivers a further gain of resolution per n-iteration step (Figures. 2a and S9). As 

the order of MSSRn increases, both the FWHM of emitters (Figure S10) and the dip of 

their intensity distribution decrease (Figure 2b). Numerical approximations indicate that

two point-sources separated at 1.6 σ are resolvable with MSSR3, but not when their 

separation is 1.5 σ (Figure 2b). The separation of 1.6 σ sets the theoretical resolution 

limit of MSSRn.
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To empirically test the ability of MSSRn to achieve super-resolution image 

within a single frame, a commercial nanoruler sample (GATTA-SIM140B, 

GATTAquant) was imaged by Structured Illumination Microscopy (SIM) and widefield

fluorescence microscopy, which was then processed by MSSRn. The iterative 

processing of the widefield data with MSSR3 reveals the two fluorescence emitters 

located at a separation of 140 nm which is consistent with the result obtained by SIM 

(Figure 2c).

MSSR further increases the resolution of super-resolved images.

Based on the MSSR capabilities to generate a super-resolved micrograph after 

processing a single fluorescence image, we explored if a pre-existing super-resolved 

image can be further enhanced by MSSR. 

First, we used temporal stack of DL images of tubulin-labeled microtubules 

collected at high fluorophore density [24] (previously used to test and compare a variety

of SRM algorithms) [25], which were subject to ESI, SRRF or MUSICAL analysis [11-

13], where each was used to compute a single super-resolved image (Figure 3a). 

Supplementary note 9 contains an in-depth comparison of MSSR reconstructions 

combined with other SRM analytical methods (ESI, SRRF and MUSICAL), which 

achieve super-resolution through a temporal analysis [12-14]. Post-processing of ESI, 

SRRF or MUSICAL images with MSSR0 increases contrast and resolution (Figure 3a).

Second, a sequence of images of randomly blinking emitters placed along a 

synthetic tubular structure [26] was processed with MSSR0 after analysis with 

MUSICAL. In both reconstructions, three regions (small squares in Figure 3b) were 

chosen to assess the gain in resolution, visualized in terms of the distance between the 

normalized intensity distributions peaks. MSSR further resolves the edges of the 

synthetic structures on the MUSICAL-processed image without changing the position 

of the distribution peaks (Figure 3b) as predicted by our theory.

Lastly, we applied MSSR on a super-resolved SIM image of sister chromatids of

mouse chromosomes (Figure 3c). Similar to the results obtained above, processing with 

MSSR increases both the contrast and resolution of the final image. Each of the 

individual SRM methods tested performs optimally under specific experimental 
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conditions; one can thus choose whichever of them to use based on the available 

infrastructure, optical setup, and biological or experimental conditions that best fit the 

specific research goals. Altogether these data show that post-processing with MSSR 

increases resolution by a factor up to 1.6 times of any tested super-resolution technique.

Temporal analysis of MSSR

In theory, MSSR can be applied to a sequence of images (Supplementary Note 

5). Based on the increase in resolution offered by computational methods that rely on 

temporal analyses (SRRF, ESI, MUSICAL), we investigated whether a further 

resolution gain could be achieved by applying a temporal analysis to a sequence of 

single frame MSSR images (t-MSSRn) (Figure 4a). Pixel-wise temporal functions 

(PTF), such as average (Mean), variance (Var), the temporal product mean (TPM), 

coefficient of variation (CV) or auto-cumulant function of orders 2 to 4 (SOFI2, SOFI3, 

SOFI4) [10], can be used to create an image with enhanced spatial resolution 

(Supplementary Note 5, Table S2).

To experimentally validate the increase in resolution from single-frame (sf-

MSSRn) to t-MSSRn, we used two different nanoruler systems, an in-lab CRISPR/ 

dCas12a nanoruler, used to score nanoscopic distances between individual fluorescent 

sites down to 100 nm, and a commercial nanoruler with fluorophores positioned at 40 

nm of separation (GATTA-PAINT, 40G, and 40RY. Gattaquant).

The CRISPR/dCas12a nanoruler system consists of a dsDNA with four binding 

sites for dCas12a uniformly distributed every 297 bp (equivalent to ~ 100 nm of 

separation) (Figure S33a). To validate this system, we imaged the association of the 

CRISPR/dCas12a complex to the binding sites on the dsDNA by atomic force 

microscopy (AFM) and measured the distance between each dCas12a complex (Figure 

S33b). 

The CRISPR-dCas12a nanorulers were then imaged in buffer by total internal 

reflection fluorescence microscopy (TIRFM) for further MSSR analysis. We used a 

DNA-PAINT approach for fluorescence indirect tagging [27], in which a fluorescent 

ssDNA probe hybridizes with an extension of the gRNA. The “blinking” of the 

fluorescence signal is attained by events of association and dissociation between the 

fluorescent probe and the gRNA on the CRISPR/dCas12a nanoruler at the binding site.  
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In the DL image, amorphous spot-like fluorescent patterns were observed 

(Figure 4b). sf-MSSR3 processing of either an isolated frame or an average projection of

the corresponding stack of 100 images (DL-AVG) could not resolve individual 

CRISPR/dCas12a binding sites (Figure 4b), and only after processing by t-MSSR3 did 

individual binding sites became resolved (Figure 4c). The result of t-MSSR3 varied in 

relation to the temporal function used (Figure 4c). The best result for this nanoruler was 

obtained by the pixel-wise temporal variance (Var) of the sf-MSSR3 stack (Figure 4c). t-

MSSR3-Var resolved nearby emitters engineered to recognize binding sites located at 

100 nm (Supplementary Movie S1), provided by scoring association-dissociation events

between the imaging probe and the gRNA. 

To determine the distance between two dCas12a sites along the DNA chain we 

obtained the distribution of distances between dCas12a binding sites taking in 

consideration their unidimensional association to a semi-flexible polymer such as the 

DNA [28]. Estimated distances after t-MSSR3-Var in the CRISPR/dCas12a nanoruler 

are 85 ± 14 nm, 152 ± 21 nm, 232 ± 37 nm (Figure 4d). These results confirm that t-

MSSR3 can successfully resolve nanoscopic distances.

To explore the resolution limit attainable by t-MSSRn even further, we looked at 

a nanoruler system with smaller separation between fluorophore sites (from Gattaquant)

(Figure S34a). Analysis with t-MSSR3 of 100 images revealed individual fluorescent 

spots at 40 nm apart (Figure 4e and Supplementary Figure S34b). The data presented in 

Figure 4e demonstrate that t-MSSR3 resolves nanoscopic distances in the 30-80 nm 

range, validating a lower experimental spatial resolution bound of 0.5 σ (≈ 40 nm), 

which depends on the emission wavelength of the fluorophore (Figure 4e, 

Supplementary Figure S8c). In comparison, SRRF, ESI and MUSICAL were not able to

resolve fluorescent emitters located 40 nm apart, consistent with their limit within the 

range of 50–70 nm (Figure 4f) [11-13].

Single frame nanoscopy, free of noise-dependent artifacts

The theory of image processing by MSSR (Supplementary Note 5), suggests that

it should be robust over a wide range of SNR, granted by four factors. First, when 

processing a single frame, MS works as a local spatial frequency filter (a smoothing 

filter); regions corresponding to the image background are homogenized by the kernel 

window, reducing variation in background noise. Second, one of the steps of the MSSR 
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procedure is to remove the MS negative constraints. This threshold operation exerts 

influence on structures at σ, at about 65% of the intensity distribution of the emitters; 

values below this threshold will be considered as noise and set to zero value. Third, 

when using a PTF, nanoscopic information is enriched due to temporal oversampling of 

the hidden fluorescent structure. Fourth, the spatial kernel of the MSSR algorithm 

operates within the subpixel realm; the number of neighboring pixels is digitally 

increased through bicubic interpolation providing digital oversampling of the emitters’ 

locations (Supplementary Note 6).

We then experimentally assessed the capacity of MSSR to denoise fluorescence 

images and determine whether it introduces noise-related artifacts. We used a PSFcheck

slide [29], which contains an array of regular fluorescent nanoscopic patterns shaped by 

laser lithography (Figure 5). Analysis with sf-MSSRn or t-MSSRn showed, in 

comparison to alternative approaches, striking denoising capabilities without 

introducing noticeable artifacts (Figure 5a) (Supplementary Note 9). These artifacts, 

resembling amorphous nanoscopic structures around the fluorescent ring or within it, 

were commonly found at reconstructions generated by other analytical techniques 

(Figure S22).

Starting at a SNR > 2, sf-MSSR1 provides reliable SRM reconstructions of 

comparable quality to other SRM approaches, which demand the temporal analysis of 

the fluorescence dynamics (Figure 5a and Supplementary Note 9). We quantified the 

quality of the reconstructions by calculating the Resolution Scaled Pearson (RSP) 

coefficient and the Resolution Scaled Error (RSE), which provide a global measurement

of the quality of the reconstruction by comparing the super-resolution image and the 

reference image (in this case, the DL image) [14]. Higher RSP and lower SRE values 

are associated with reliable reconstructions (Supplementary Note 8). When the SNR is 

above 5, all tested algorithms perform similarly well in quality (Figure 5b), but their 

global errors differ from each other (Figure 5c). As expected, the RSE increased as a 

function of the SNR of the input images for any tested algorithm (Figure 5c).

Furthermore, the performance of MSSR in achieving a satisfactory 

reconstruction was assessed by varying the number of input images using a temporal 

analysis scheme (Supplementary Note 8). With SNR > 2 input data, RSP reaches near 

maxima values and RSE near minima values when processing a single frame (Figure 

S19-20, Supplementary Movie S2). However, when computing MSSR using low SNR 
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input data (SNR ~ 2) a temporal analysis is required as RSP and RSE values reach a 

plateau only when a temporal stack of as few as 20 images is used (Figure S20-21, 

Supplementary Movie S3). These findings illustrate that the minimal number of frames 

needed by MSSR to provide a reliable reconstruction depends on the information itself, 

i.e., on the SNR and on the photophysical properties of the specimen (movies S1 - S3); 

and can be determined by computing RSP and RSE as function of the number of 

analyzed frames with t-MSSRn (Figure S21).

Nanoscopic resolution with conventional fluorescence imaging

To showcase the versatility of MSSR to super-resolve data acquired from 

different fluorescence applications, we evaluated its performance over a collection of 

experimental scenarios (Supplementary Note 10).

Analysis with MSSR provided nanoscopic resolution of rotavirus replication 

machineries (Figure S25), which were recently described by Garcés et al as a layered 

array of viral protein distributions [30]. Originally, it took the authors several days to 

weeks to generate a single super-resolution image by means of analyzing several stacks 

of hundreds of DL images using 3B-ODE SRM. With MSSR, we were able to achieve 

comparable results, through analyzing single DL frames within seconds with a regular 

desktop computer with either sf-MSSR1 or t-MSSR1 (Supplementary Note 7).

Mouse sperm cells are used to study the acrosomal exocytosis (AE), a unique 

secretory process which results from fusion events between the plasma membrane and a

specialized vesicle called acrosome located in the sperm head [31,32]. Nanoscopic 

remodeling of both plasma membrane and actin cytoskeleton was imaged during the AE

by means of sf-MSSR1, showing single frame temporal resolution (of milliseconds) 

(Figs. S26). At the onset of the AE, the FM4-64 fluorescence (a probe that fluoresces 

when bound to membranes) was confined to the plasma membrane and was visible 

above of a F-actin cytoskeleton fringe. During the AE, several fenestration events were 

observed to occur at both the plasma and acrosome membranes, as consequence of that, 

a notorious increase of FM4-64 was observed close-bellow the F-actin fringe 

(Supplementary Movie S5 a-f). The AE is a dynamic remodeling process that takes 

minutes to occur, sf-MSSR1 allows the observation of events occurring at the 

millisecond scales, which are hindered when using other SRM multi-frame analytical 

approaches, such as SRRF or 3B [11, 33], due to their mandatory need of a temporal 
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analysis of the fluorescence dynamics to unveil nanoscopic detail (compare Figures S26

and S27).

Background noise is known to be an important issue in single-particle tracking 

(SPT) applications as it decreases the ability to faithfully localize particles and follow 

them through time [34, 35]. Moreover, the spatial overlap of PSFs derived from 

individual particles makes it challenging for SPT algorithms to recognize them as 

separate entities. The denoising capabilities of sf-MSSR1 enhanced both the contrast and

spatial resolution of freely diffusing in-silico particles previously used as benchmarks to

test a variety of SPT algorithms (Figure S28) [36]. Pre-processing of the images with sf-

MSSR1 improved the tracking performance of three commonly employed SPT tracking 

algorithms: (i) the LAP framework for Brownian motion as in [37, 38], (ii) a linear 

motion tracker based on Kalman filter [39-41], and (iii) a tracker based on Nearest 

neighbors [42-44] within a wide range of particle densities and SNR (Figure S29). 

Additional testing with sf-MSSRn showed an increase in nanoscopic colocalization 

accuracy in double imaging experiments in single-molecule DNA curtain assays (Figure

S30) [45].

Plasmalemma- and nuclear-labeled transgenic Arabidopsis thaliana plants are 

routinely used to study cell fate and proliferation during root development in time-lapse 

confocal microscopy experiments in two and three dimensions [46, 47]. When applied 

to lateral root primordium cells, located deep inside the parent root, sf-MSSR1 

demonstrated the capacity to achieve multidimensional nanoscopic resolution as it 

revealed isolated nanodomains resembling nucleosome clutches, previously reported in 

mammalian cells [48, 49], within the nuclei of a lateral root primordium cells (Figure 

S31 and Supplementary Movie S10). Similar observations were performed upon 

epidermal root tissues visualized via selective plane illumination microscopy (SPIM) 

after examination of volumetric data with sf-MSSR1 (Figure S32). In combination, these

studies provide evidence for the capabilities of MSSR to resolve biological detail at 

nanoscopic scales using either simple or advanced fluorescence microscopy 

technologies.
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Discussion 

- Novel theoretical contributions

From the historical point of view, since the seminal development of the MS 

theory [15, 16] and until the present day, few statistical and imaging applications based 

on the theory of MS compute the MS vector itself [50]. This can be explained, in part, 

because previous applications of MS are based on finding modes in the features space 

and did not operate directly in the derivative space. In contrast, MSSR represents an 

application of MS theory that operates in the second derivative space. By computing the

MS vector and estimating densities among pixels, MSSR computes a probability 

function for the fluorophore estimates whose individual fluorescence distributions are 

narrowed in comparison with the PSF of the optical system. The exploration of the 

information stored on the second derivative space of the image can be also achieved by 

substituting the MS by similar functions that operate in such space, e.g., Laplacian, 

Hessian, Difference of Gaussians [51] which, in comparison with the MS, offer 

computational advantages as they can be expressed in the Fourier space and 

implemented using the FFT algorithm [51]. The information harbored in the second 

derivative space of the DL image is used by MSSR to compute a super-resolved image 

with higher spatial frequencies than the corresponding DL image, hence, overcoming 

both the Rayleigh and Sparrow limits, and setting up an undescribed limit of resolution 

which deserves further exploration and characterization.

The MS theory is not restricted by the number of dimensions of the information 

required to compute the kernel windows over which MSSR operates (Supplementary 

notes 2 and 3). Given that, MSSR parameters are suitable to extend its application to 

assess data with higher dimensions. For example, in 2D images, the spatial parameter of

MSSR, which encompasses the lateral resolution width of the PSF, is defined to be the 

same in the x and y dimensions of the image. In such case, the shape of the kernel is 

circle- or square-like, depending on the application used. For three-dimensional (3D) 

microscopy imaging, the lateral (x-y plane) and axial (x-z and y-z planes) dimensions 

are affected in different ways by diffraction. The MSSR principle can be further 

extended for explicit volumetric imaging by means of using an asymmetric kernel 

which can be defined following the 3D lateral-axial aspect ratio of the PSF. In addition, 

the definition of the spatial kernel can be refined to also consider possible deformations 

of axial symmetry of the PSF due to optical aberrations introduced by the imaging 
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system or by the sample itself. A similar reasoning aimed to extend the portfolio of 

applications of MSSR can be envisaged considering spatial-range parameter, the latter 

narrowing down the working intensity space where local calculations of MSSR take 

place. 

Novel contributions to microscopy

We present a new SRM approach capable of achieving multidimensional nanoscopy

through single-frame analysis under low SNR conditions and with minimal noise-

dependent artifacts. Limited only by the imaging speed of the optical system setup, 

MSSR increases resolution by analyzing either a single frame, or by applying MSSR to 

each individual image in a stack followed by the application of a pixel-wise temporal 

function. MSSR is a powerful stand-alone method for either single or multi-frame SRM 

approaches, or as post-processing method which can be applied to other analytical 

multi-frame (restricted to camera-based systems) or hardware dependent SRM methods 

for further enhancement of resolution and contrast. We demonstrated MSSR 

compatibility with other SRM methods and showed that its usage improved resolution 

and overall image quality in all the cases tested.

SRM analytical multi-frame approaches such as SRRF, ESI, MUSICAL and 3B 

demand a temporal analysis which limits their utility for multi-dimensional imaging of 

live samples [46]. The need to collect hundreds to thousands of images of the same 

pseudo-static scene, challenges the applicability of these methods in multidimensional 

imaging. The temporal multi-frame requirement imposes a tradeoff between the 

achievable temporal and spatial resolutions. MSSR removes these constraints while 

maintaining computational efficiency (Supplementary note 7).

We present applications of the MSSR principle that revealed fast molecular 

dynamics through single-frame analysis of live-cell imaging data, with reduced 

processing times in comparison with similar SRM approaches (Supplementary notes 7 

and 10). Moreover, MSSR greatly improves the tracking efficacy of SPT methods by 

means of reducing background noise and increasing both the contrast and SNR of noisy 

SPT movies, enhancing the ability to resolve the position of single emitters. MSSR 

further pushes the limits of live-cell nanoscopy by its excellent single-frame 

performance. This flexibility extends its utility to most fluorescence microscopy and 

alternative SRM methods.
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Achieving both high (or sufficient) temporal and spatial resolution within a 

broad range of fluorescence microscopy applications is a common goal among the 

bioimaging community. With recent advances in microscopy equipment and imaging 

protocols, the gap between the highest attainable resolution in the temporal and spatial 

dimensions within the same experiment, has narrowed. This has been a challenge 

especially because both parameters often involve mutually exclusive optical 

instrumentation and experimental strategies. The introduction of MSSR represents one 

more step in the right direction as it drastically reduces the amount of data needed to 

reconstruct a single super-resolved micrography.

No longer having to sacrifice either temporal or spatial resolution over the other,

has led some scientists to propose new ways to analyze imaging data. Some 

approximations have been tailored to study millisecond molecular dynamics and 

structural feature changes within the same experiment [52], e.g., by taking advantage of 

the simultaneous use of image correlation spectroscopy (ICS) and SRM methods such 

as SRRF [11]. In these contexts, MSSR could improve the analysis in three ways: a) it 

delivers reliable SRM images in low SNR scenarios, which are common in the 

experimental regimes of ICS due to the relatively fast frame rates of its applications, b) 

MSSR introduces no noise-dependent artifacts which further refines the quality of the 

spatial analysis and c) since no temporal binning is necessary for MSSR, there is no 

restriction in the level of temporal detail retrievable from the ICS analysis.

Sub-millisecond time-lapse microscopy imaging can now be achieved by 

sCMOS technologies, with applications for particle velocimetry [53], rheometry [54], 

and optical patch clamp [55]. We envisage further applications for MSSR in these areas 

through unveiling nanoscopic detail hidden in single DL images. Moreover, MSSR can 

facilitate correlative nanoscopic imaging through crosstalk with other imaging 

techniques such as electron microscopy, i.e., CLEM: correlative light electron 

microscopy [56]; or atomic force microscopy, i.e., CLAFEM: Correlative light atomic 

force electron microscopy [57]. In addition, MSSR can be applied to nanoscopic 

volumetric imaging by using it together with expansion microscopy [58], oblique angle 

microscopy [59], SPIM, and lattice light sheet microscopy [60], extending their 

capabilities to previous unattainable resolution regimes. 

A recent study by Chen R. et al., suggests that deep-learning based artificial 

intelligence (AI) can reconstruct a super-resolution image from a single frame of a DL 

image [61]. Such AI-based SRM approaches are promising, however, they are limited to
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the existence of a maximum likelihood image obtained with another SRM, such as 

STORM, that is required for neural network training an error minimization. Otherwise, 

the method it is prompted to bias the final reconstruction toward the topological 

information used to train the AI - network [61]. Our approach works completely 

independent of other SRM methods and provides evidence of the existence of a new 

resolution limit which lies on the second derivative space of the DL image, information 

inaccessible when using neural networks.

MSSR applications might impact far beyond the field of microscopy, as its 

principles can be applied to any lens-based system such as astronomy [62] and high-

resolution satellite imagery [63].
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Figures 

Figure 1. MSSR of zero order increases resolution by reducing the width of the 

spatial distribution of photons emitted from modelled fluorescent emitters. a) The 

MS is applied to the initial Gaussian distribution of photons emitted by a point-source 

(left) resulting in a MS graph (center). Application of further algebraic transformations 
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(see Supplementary Note 5 and Figure S7 (ii-iv)) provides the MSSR0 distribution 

(right). b) Sparrow and Rayleigh limits (blue, diffraction-limited) and the corresponding

MSSR0 transformation (brown) for two point-sources. Red dots represent each emitter’s

location. The dip is indicated by a vertical black line. The inter-emitter distance is 

expressed as σ-times their individual standard deviation before MSSR processing. c) 

Dip computed for two point-source emitters of Gaussian distribution located away at 

distinct σ (blue line) where the corresponding MSSR0 result is also depicted (red line). 

For Gaussian: Rayleigh limit – gray discontinuous line, Sparrow limit - black 

discontinuous line. For MSSR0: Rayleigh limit - gray solid line, Sparrow limit - gray 

solid line. The solid vertical lines represent the distance between emitters such that 

when processed with MSSR0, the criterions of Rayleigh and Sparrow are obtained.
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Figure 2. Single-frame MSSR analysis of higher order attains a resolution limit of 

1.6 σ for nearby emitters. a) The algorithm for computing higher-order MSSR 

(MSSRn) is presented. The first iteration of MSSR (MSSR1) is given by subtracting the 

MSSR0 from the original image , resulting in a donut-like region centered at the 

emitter’s location. MSSR1 is computed after applying further algebraic transformations 

(see Supplementary Note 5 and Figure S8 (ii-iv) for a full description of the MSSRn 

process). The second iteration encompasses the subtraction of MSSR1 from MSSR0 and 

the same algebraic transformations as used for generation of MSSR1. The process is 

repeated by updating consecutive MSSR images which generates higher MSSR orders. 

b) Theoretical limit of resolution achievable by MSSRn. Dip computed for two Gaussian

emitters in accordance with the variation of the inter-emitter distance (expressed as σ-

times their standard deviation before MSSR processing). Colored lines represent the dip

of MSSR order, from 0 to 3, computed at a given σ distance between emitters. Images 

on the right are the bidimensional representation of the MSSRn processing for two 

single emitters separated at distances of 1.5σ and 1.6σ. Note that, for 1.5σ, emitters are 

unresolved up to the third order of MSSR. c) Experimental demonstration of the 

resolution increases attainable with higher order MSSR using the GATTA-SIM 140B 

nanoruler system. The intensity distribution of the emitter shrinks, both in σ and 

intensity, as the order of the MSSR increases (Figure S8). Nearby emitters (Alexa 

Fluor® 488) located 140 nm apart are resolved using MSSR1, MSSR2 and MSSR3 (right 

side). SIM images collected from the same sample (distinct fields) are shown as a 

positive control. Scale bar: 100 nm.
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Figure 3. MSSR enhances resolution and contrast of single super-resolved images. 

a) Comparison of SRM results of ESI, SRRF and MUSICAL alone and after post-

processing with MSSR0 (ESI + MSSR0, SRRF + MSSR0, MUSICAL + MSSR0), over a 

temporal stack of 500 DL images of tubulin-labeled microtubules. The average 

projection of the DL stack is shown on the leftmost side. b) Comparison of the increase 

in spatial resolution of MUSICAL with and without post-processing with MSSR0 

(MUSICAL + MSSR0), over a temporal stack of 361 DL images of modelled 

fluorophores bounded to a synthetic array of nanotubules (average projection shown on 
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left). The graphs show the intensity profiles along the lines depicted in each of the insets

in the images of the upper row; black, blue and red lines correspond to the average DL, 

MUSICAL and MUSICAL + MSSR0 images, respectively. c) Sister chromatids of 

mitotic mouse chromosomes visualized by TIRFM (left), SIM (middle) and SIM + 

MSSR0 (right). Scale bars: a) 1 μm, insets = 200 nm; b) 500 nm, insets = 100 nm; c) 

200 nm.
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Figure 4. The temporal analysis of MSSR provides a further increase in resolution 

to approximately 40 nm. a) Single-frame analysis of MSSR of a given order n is 

applied to each frame of a sequence, becoming the sf-MSSRn stack. Next, a pixel-wise 

temporal function (PTF) converts the MSSR stack into a single super-resolved t-MSSRn

image. Depending on the temporal entropy of the dataset and on the PTF used, a 

resolution enhancement can be obtained. b) Left: a stack of DL images of a 

CRISPR/dCas12a nanoruler system. Scale bar: 1 μm. Right: zoomed region of the first 

frame in the stack, along with the average projection (DL-AVG) of a stack of 100 

images, before and after MSSR processing. Scale bar: 400 nm. c) PTF applied to a stack

of MSSR3 images (t-MSSR3). Fluorescent emitters are separated by 100 nm, as 

established by the CRISPR/dCas12a nanoruler system. Four types of PTF were 

computed: TPM, Var, Mean and SOFI4. d) Euclidean distances between nearby emitters

automatically computed from t-MSSR3-Var images, following a worm-like chain model
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(16 regions of interest used, 1.5 µm2 each). e) Comparison of the results obtained with 

each of the PTF analysis available with MSSR (see Table S3), for a commercially 

available GATTA-PAINT nanoruler system. The Var column shows inter-emitter 

distances resolved in the range 30 –75 nm. Atto 488 (green), Atto 550 (orange) and Atto

655 (magenta) fluorescent probes were used. f) Same nanorulers shown in e) but 

analyzed with either ESI, SRRF or MUSICAL.
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Figure 5. MSSR is robust to image noise and shows high global performance when 

compared to other SRM analytical procedures. a) sf-MSSR1 and t-MSSR1 of 100 

images provide consistent reconstructions across a wide range of SNR. The expected 

feature is a uniform fluorescent ring located at the center of the image with a dark 

background lacking fluorescence. Each image is displayed to show its full intensity 

range. The row for DL images (Widefield, WF) exemplifies a stack of 100 frames 

collected at the corresponding SNR. The central row represents a resolved stack using 

sf-MSSR1. The third row shows the super-resolved micrography after t-MSSR1 analysis 

of 100 DL images using TPM for temporal analysis (see table S2). Scale bar: 1 μm. b-c)

Resolution Scaled Pearson (RSP) coefficient (b) and Resolution Scaled Error (RSE) (c),

computed for the super-resolution reconstructions provided by SRRF, MUSICAL, ESI, 

sf-MSSR1 and t-MSSR1 (100 frames). b) RSP measures a global correlation between 

reconstruction and reference (input DL image), values closer to 1 indicate a reliable 

reconstruction. c) RSE measures the absolute difference of the reconstructed image and 
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its reference. Lower values of RSE at a particular SNR mean reduced global error in the

reconstruction. Scale bar: 1 μm.
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Data availability

All raw imaging data which support the findings of this study are available from the 

corresponding author upon request. Source data are provided with this paper. 

Correspondence and requests for materials should be addressed to A.G. 

Code availability

Source code for R and MATLAB platforms is available as supplementary materials, the 

MSSR plugin for FIJI/ImageJ is available at  https://github.com/MSSRSupport/MSSR.
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