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Nanoscopic resolution within a single imaging frame
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Abstract

Mean-Shift Super Resolution (MSSR) is a principle based on the Mean Shift theory that
improves the spatial resolution in fluorescence images beyond the diffraction limit.
MSSR works on low- and high-density fluorophore images, is not limited by the
architecture of the detector (EM-CCD, sCMOS, or photomultiplier-based laser scanning
systems) and is applicable to single images as well as temporal series. The theoretical
limit of spatial resolution, based on optimized real-world imaging conditions and
analysis of temporal image series, has been measured to be 40 nm. Furthermore, MSSR
has denoising capabilities that outperform other analytical super resolution image
approaches. Altogether, MSSR is a powerful, flexible, and generic tool for

multidimensional and live cell imaging applications.

Key Words: super-resolution microscopy, diffraction limit, single frame, Mean Shift,

fluorescence microscopy, live-cell imaging.

Introduction

Super-resolution Microscopy (SRM), which encompasses a collection of
methods that circumvent Abbe's optical resolution limit, has dramatically increased our
capability to visualize the architecture of cells and tissues at the molecular level. There
are several approaches to SRM which vary in terms of the final attainable spatial and
temporal resolution, photon efficiency, as well as in their capacity to image live or fixed
samples at depth [1, 2]. One class of techniques exceed the diffraction limit by
engineering the illumination or the point spread function (PSF), such as SIM and STED
[3-5]. These techniques can be used for live imaging although they require specialized
hardware and dedicated personnel for maintenance and operation. Single-molecule
localization methods (e.g., STORM, PAINT, PALM) [6-9] that localize individual
emitters with nanometer precision require temporal analysis of several hundred-to-
thousands of images and are prone to error due to fast molecular dynamics within live
specimens.

Some SRM computational methods have few or no demands on hardware or
sample preparation and provide resolution improvements beyond the diffraction limit
[10-13]. The quantity and performance of computational methods have both increased
over the past decade given the many advantages they present, such as their low barriers

to entry and generic applicability to data acquired with any microscopy modality (wide-
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field, confocal, or light-sheet). However, these methods also present some limitations,
such as the possible introduction of artifacts [14], the requirement for high signal-to-
noise ratio (SNR) data and the acquisition of tens to hundreds of frames [10-13], which
limit their applicability to reconstruct fast dynamical processes.

Here, we introduce the Mean Shift Super-Resolution principle for digital images
‘MSSR’ (pronounced as messer), derived from the Mean Shift (MS) theory [15, 16].
MSSR improves the resolution of any single fluorescence image up to 1.6 times,
including its use as a resolution enhancement complement after the application of other
super-resolution methods. Additionally, we demonstrate the super-resolving capabilities
of MSSR as a standalone method for a variety of fluorescence microscopy applications,
through a single-frame and temporal stack analysis, allowing resolution improvements
towards a limit of 40 nm.

Open-source implementations of MSSR are provided for Image]J (as a plugin),
R, and MATLAB, some of which take advantage of the parallel computing capabilities
of regular desktop computers (Supplementary Note 7). The method operates almost free
of parameters; users only need to provide an estimate of the point spread function (PSF,
in pixels) of the optical system, choose the MSSR order, and decide whether a temporal
analysis will take place (Supplementary material MSSR Manual). The provided open-
source implementations of MSSR represent a novel user-friendly alternative for the

bioimaging community for unveiling life at its nanoscopic level.

Results
The MSSR principle.

MSSR is tailored around the assumption that fluorescence images are formed by
signals collected from point sources (i.e., fluorophores) convolved with the PSF of the
microscope (Supplementary Notes 1, 2 and 3). Processing a single image with MSSR
starts with the calculation of the MS, which guarantees that large intensity values on the
diffraction-limited (DL) image coincide with large positive values in the MSSR image
(Supplementary Note 4). Further algebraic transformations then restore the raw intensity
distribution and remove possible artifacts caused by the previous step (edge effects and
noise dependent artifacts), giving rise to an image that contains objects with a narrower
full width at half maximum (FWHM) (Figure 1a). This procedure is denoted by MSSR®,

as the first stage to shrink emitter distribution.
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99 The MS is locally computed by a kernel window that slides throughout the entire
100 image, subtracts the sample mean (weighted local mean) as well as the central value of
101  the kernel using a spatial-range neighborhood (Supplementary Notes 2 and 3, Figure S4
102 and S5, Table S1) [15, 16]. The MS is a vector that always points towards the direction
103  of the intensity gradient and its length provides a local measure of the fluorescence
104  density and brightness [17-19]. Since the MS lies within the gradient space, its values
105 depend on the difference between the central pixel of the neighborhood and the
106 surrounding pixels and thus is not necessarily linked to the fluorescence intensity values
107  of the raw image. A mathematical proof, provided in Supplementary Note 4,

108 demonstrates that the minimum MS value, computed from a Gaussian distribution,
109  matches with the point of maximum intensity of the initial distribution (Supplementary

110 Note 4, Figure S6).

111 The increase in resolution offered by MSSR® was evaluated by the Rayleigh and
112 Sparrow limits [20-22], which are two criteria that establish resolution bounds for two
113  near-point sources (Figure 1b). Processing with MSSR? of two-point sources located at
114  their resolution limit (2.5 o and 2 ¢ for Rayleigh and Sparrow limit respectively, Figure
115 1c vertical discontinuous lines) decreases the dip (height at the saddle point) [23] within
116  their intensity distributions (Figure 1b and 1¢). Processing a single image with MSSR”’
117  shifts the resolution limit by 26 % and 20 %, according to the Rayleigh and Sparrow
118 limits respectively (Figure 1c vertical continuous lines). Therefore, processing a single
119  fluorescence image with MSSR® will reduce the FWHM of individual emitters. Also, a
120  comparison of the shrinkability of MSSR® applied to Gaussian and Bessel distributions
121  are shown in Figure S7. Additionally, the reduction of FWHM of Bessel distribution at

122  different wavelengths of the visible spectrum are shown in Figure S8.

123 Since the result of MSSR is an image, we used the resulting image to seed an
124  iterative process (Figure 2a). We refer to this as higher-order MSSR (MSSR", n>0),

125  which delivers a further gain of resolution per n-iteration step (Figures. 2a and S9). As
126  the order of MSSR" increases, both the FWHM of emitters (Figure S10) and the dip of
127  their intensity distribution decrease (Figure 2b). Numerical approximations indicate that
128  two point-sources separated at 1.6 o are resolvable with MSSR?, but not when their

129  separation is 1.5 o (Figure 2b). The separation of 1.6 o sets the theoretical resolution

130 limit of MSSR".

~N
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131 To empirically test the ability of MSSR" to achieve super-resolution image

132  within a single frame, a commercial nanoruler sample (GATTA-SIM140B,

133 GATTAquant) was imaged by Structured Illumination Microscopy (SIM) and widefield
134  fluorescence microscopy, which was then processed by MSSR". The iterative

135 processing of the widefield data with MSSR’ reveals the two fluorescence emitters

136 located at a separation of 140 nm which is consistent with the result obtained by SIM

137  (Figure 2c¢).
138
139 MSSR further increases the resolution of super-resolved images.

140 Based on the MSSR capabilities to generate a super-resolved micrograph after
141 processing a single fluorescence image, we explored if a pre-existing super-resolved

142 image can be further enhanced by MSSR.

143 First, we used temporal stack of DL images of tubulin-labeled microtubules

144  collected at high fluorophore density [24] (previously used to test and compare a variety
145  of SRM algorithms) [25], which were subject to ESI, SRRF or MUSICAL analysis [11-
146  13], where each was used to compute a single super-resolved image (Figure 3a).

147  Supplementary note 9 contains an in-depth comparison of MSSR reconstructions

148 combined with other SRM analytical methods (ESI, SRRF and MUSICAL), which

149  achieve super-resolution through a temporal analysis [12-14]. Post-processing of ESI,

150 SRRF or MUSICAL images with MSSR" increases contrast and resolution (Figure 3a).

151 Second, a sequence of images of randomly blinking emitters placed along a
152  synthetic tubular structure [26] was processed with MSSR? after analysis with

153 MUSICAL. In both reconstructions, three regions (small squares in Figure 3b) were
154  chosen to assess the gain in resolution, visualized in terms of the distance between the
155 normalized intensity distributions peaks. MSSR further resolves the edges of the

156  synthetic structures on the MUSICAL-processed image without changing the position
157  of the distribution peaks (Figure 3b) as predicted by our theory.

158 Lastly, we applied MSSR on a super-resolved SIM image of sister chromatids of
159  mouse chromosomes (Figure 3c). Similar to the results obtained above, processing with
160 MSSR increases both the contrast and resolution of the final image. Each of the

161 individual SRM methods tested performs optimally under specific experimental

10
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conditions; one can thus choose whichever of them to use based on the available
infrastructure, optical setup, and biological or experimental conditions that best fit the
specific research goals. Altogether these data show that post-processing with MSSR

increases resolution by a factor up to 1.6 times of any tested super-resolution technique.
Temporal analysis of MSSR

In theory, MSSR can be applied to a sequence of images (Supplementary Note
5). Based on the increase in resolution offered by computational methods that rely on
temporal analyses (SRRF, ESI, MUSICAL), we investigated whether a further
resolution gain could be achieved by applying a temporal analysis to a sequence of
single frame MSSR images (t-MSSR") (Figure 4a). Pixel-wise temporal functions
(PTF), such as average (Mean), variance (Var), the temporal product mean (7PM),
coefficient of variation (CV)) or auto-cumulant function of orders 2 to 4 (SOFI., SOF1;,
SOF1,) [10], can be used to create an image with enhanced spatial resolution

(Supplementary Note 5, Table S2).

To experimentally validate the increase in resolution from single-frame (sf-
MSSR") to t-MSSR", we used two different nanoruler systems, an in-lab CRISPR/
dCas12a nanoruler, used to score nanoscopic distances between individual fluorescent
sites down to 100 nm, and a commercial nanoruler with fluorophores positioned at 40

nm of separation (GATTA-PAINT, 40G, and 40RY. Gattaquant).

The CRISPR/dCas12a nanoruler system consists of a dSDNA with four binding
sites for dCas12a uniformly distributed every 297 bp (equivalent to ~ 100 nm of
separation) (Figure S33a). To validate this system, we imaged the association of the
CRISPR/dCas12a complex to the binding sites on the dsDNA by atomic force
microscopy (AFM) and measured the distance between each dCas12a complex (Figure

333b).

The CRISPR-dCas12a nanorulers were then imaged in buffer by total internal
reflection fluorescence microscopy (TIRFM) for further MSSR analysis. We used a
DNA-PAINT approach for fluorescence indirect tagging [27], in which a fluorescent
ssDNA probe hybridizes with an extension of the gRNA. The “blinking” of the
fluorescence signal is attained by events of association and dissociation between the

fluorescent probe and the gRNA on the CRISPR/dCas12a nanoruler at the binding site.
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In the DL image, amorphous spot-like fluorescent patterns were observed
(Figure 4b). st-MSSR?processing of either an isolated frame or an average projection of
the corresponding stack of 100 images (DL-AVG) could not resolve individual
CRISPR/dCas12a binding sites (Figure 4b), and only after processing by t-MSSR’ did
individual binding sites became resolved (Figure 4¢). The result of t-MSSR? varied in
relation to the temporal function used (Figure 4c). The best result for this nanoruler was
obtained by the pixel-wise temporal variance (Var) of the sf-MSSR? stack (Figure 4c). t-
MSSR’-Var resolved nearby emitters engineered to recognize binding sites located at
100 nm (Supplementary Movie S1), provided by scoring association-dissociation events

between the imaging probe and the gRNA.

To determine the distance between two dCas12a sites along the DNA chain we
obtained the distribution of distances between dCas12a binding sites taking in
consideration their unidimensional association to a semi-flexible polymer such as the
DNA [28]. Estimated distances after t-MSSR>-Var in the CRISPR/dCas12a nanoruler
are 85 = 14 nm, 152 =21 nm, 232 £ 37 nm (Figure 4d). These results confirm that t-

MSSR? can successfully resolve nanoscopic distances.

To explore the resolution limit attainable by t-MSSR" even further, we looked at
a nanoruler system with smaller separation between fluorophore sites (from Gattaquant)
(Figure S34a). Analysis with t-MSSR’ of 100 images revealed individual fluorescent
spots at 40 nm apart (Figure 4e and Supplementary Figure S34b). The data presented in
Figure 4e demonstrate that t-MSSR’ resolves nanoscopic distances in the 30-80 nm
range, validating a lower experimental spatial resolution bound of 0.5 ¢ (= 40 nm),
which depends on the emission wavelength of the fluorophore (Figure 4e,
Supplementary Figure S8¢). In comparison, SRRF, ESI and MUSICAL were not able to
resolve fluorescent emitters located 40 nm apart, consistent with their limit within the

range of 50-70 nm (Figure 4f) [11-13].

Single frame nanoscopy, free of noise-dependent artifacts

The theory of image processing by MSSR (Supplementary Note 5), suggests that
it should be robust over a wide range of SNR, granted by four factors. First, when
processing a single frame, MS works as a local spatial frequency filter (a smoothing
filter); regions corresponding to the image background are homogenized by the kernel

window, reducing variation in background noise. Second, one of the steps of the MSSR
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226 procedure is to remove the MS negative constraints. This threshold operation exerts

227 influence on structures at G, at about 65% of the intensity distribution of the emitters;
228 values below this threshold will be considered as noise and set to zero value. Third,

229 when using a PTF, nanoscopic information is enriched due to temporal oversampling of
230 the hidden fluorescent structure. Fourth, the spatial kernel of the MSSR algorithm

231 operates within the subpixel realm; the number of neighboring pixels is digitally

232 increased through bicubic interpolation providing digital oversampling of the emitters’

233  locations (Supplementary Note 6).

234 We then experimentally assessed the capacity of MSSR to denoise fluorescence
235 1images and determine whether it introduces noise-related artifacts. We used a PSFcheck
236  slide [29], which contains an array of regular fluorescent nanoscopic patterns shaped by
237 laser lithography (Figure 5). Analysis with sf-MSSR" or t-MSSR" showed, in

238 comparison to alternative approaches, striking denoising capabilities without

239 introducing noticeable artifacts (Figure 5a) (Supplementary Note 9). These artifacts,
240 resembling amorphous nanoscopic structures around the fluorescent ring or within it,
241 were commonly found at reconstructions generated by other analytical techniques

242  (Figure S22).

243 Starting at a SNR > 2, sf-MSSR' provides reliable SRM reconstructions of

244  comparable quality to other SRM approaches, which demand the temporal analysis of
245  the fluorescence dynamics (Figure 5a and Supplementary Note 9). We quantified the
246  quality of the reconstructions by calculating the Resolution Scaled Pearson (RSP)

247  coefficient and the Resolution Scaled Error (RSE), which provide a global measurement
248 of the quality of the reconstruction by comparing the super-resolution image and the
249 reference image (in this case, the DL image) [14]. Higher RSP and lower SRE values
250 are associated with reliable reconstructions (Supplementary Note 8). When the SNR is
251 above 5, all tested algorithms perform similarly well in quality (Figure 5b), but their
252  global errors differ from each other (Figure 5¢). As expected, the RSE increased as a
253  function of the SNR of the input images for any tested algorithm (Figure 5c¢).

254 Furthermore, the performance of MSSR in achieving a satisfactory

255 reconstruction was assessed by varying the number of input images using a temporal
256 analysis scheme (Supplementary Note 8). With SNR > 2 input data, RSP reaches near
257 maxima values and RSE near minima values when processing a single frame (Figure

258 S19-20, Supplementary Movie S2). However, when computing MSSR using low SNR

15 8
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259 input data (SNR ~ 2) a temporal analysis is required as RSP and RSE values reach a
260 plateau only when a temporal stack of as few as 20 images is used (Figure S20-21,

261 Supplementary Movie S3). These findings illustrate that the minimal number of frames
262 needed by MSSR to provide a reliable reconstruction depends on the information itself,
263 1i.e., on the SNR and on the photophysical properties of the specimen (movies S1 - S3);
264 and can be determined by computing RSP and RSE as function of the number of

265 analyzed frames with t-MSSR" (Figure S21).

266

267  Nanoscopic resolution with conventional fluorescence imaging

268 To showcase the versatility of MSSR to super-resolve data acquired from
269 different fluorescence applications, we evaluated its performance over a collection of

270 experimental scenarios (Supplementary Note 10).

271 Analysis with MSSR provided nanoscopic resolution of rotavirus replication
272  machineries (Figure S25), which were recently described by Garcés ef al as a layered
273 array of viral protein distributions [30]. Originally, it took the authors several days to
274  weeks to generate a single super-resolution image by means of analyzing several stacks
275 of hundreds of DL images using 3B-ODE SRM. With MSSR, we were able to achieve
276  comparable results, through analyzing single DL frames within seconds with a regular

277  desktop computer with either sEMSSR' or t-MSSR' (Supplementary Note 7).

278 Mouse sperm cells are used to study the acrosomal exocytosis (AE), a unique
279  secretory process which results from fusion events between the plasma membrane and a
280 specialized vesicle called acrosome located in the sperm head [31,32]. Nanoscopic

281 remodeling of both plasma membrane and actin cytoskeleton was imaged during the AE
282 by means of sf-MSSR', showing single frame temporal resolution (of milliseconds)

283  (Figs. S26). At the onset of the AE, the FM4-64 fluorescence (a probe that fluoresces
284  when bound to membranes) was confined to the plasma membrane and was visible

285 above of a F-actin cytoskeleton fringe. During the AE, several fenestration events were
286 observed to occur at both the plasma and acrosome membranes, as consequence of that,
287 anotorious increase of FM4-64 was observed close-bellow the F-actin fringe

288 (Supplementary Movie S5 a-f). The AE is a dynamic remodeling process that takes

289 minutes to occur, sf-MSSR' allows the observation of events occurring at the

290 millisecond scales, which are hindered when using other SRM multi-frame analytical

291 approaches, such as SRRF or 3B [11, 33], due to their mandatory need of a temporal

17 9
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analysis of the fluorescence dynamics to unveil nanoscopic detail (compare Figures S26

and S27).

Background noise is known to be an important issue in single-particle tracking
(SPT) applications as it decreases the ability to faithfully localize particles and follow
them through time [34, 35]. Moreover, the spatial overlap of PSFs derived from
individual particles makes it challenging for SPT algorithms to recognize them as
separate entities. The denoising capabilities of s-MSSR' enhanced both the contrast and
spatial resolution of freely diffusing in-silico particles previously used as benchmarks to
test a variety of SPT algorithms (Figure S28) [36]. Pre-processing of the images with sf-
MSSR' improved the tracking performance of three commonly employed SPT tracking
algorithms: (i) the LAP framework for Brownian motion as in [37, 38], (ii) a linear
motion tracker based on Kalman filter [39-41], and (iii) a tracker based on Nearest
neighbors [42-44] within a wide range of particle densities and SNR (Figure S29).
Additional testing with st-MSSR" showed an increase in nanoscopic colocalization
accuracy in double imaging experiments in single-molecule DNA curtain assays (Figure

330) [45].

Plasmalemma- and nuclear-labeled transgenic Arabidopsis thaliana plants are
routinely used to study cell fate and proliferation during root development in time-lapse
confocal microscopy experiments in two and three dimensions [46, 47]. When applied
to lateral root primordium cells, located deep inside the parent root, sf-MSSR'
demonstrated the capacity to achieve multidimensional nanoscopic resolution as it
revealed isolated nanodomains resembling nucleosome clutches, previously reported in
mammalian cells [48, 49], within the nuclei of a lateral root primordium cells (Figure
S31 and Supplementary Movie S10). Similar observations were performed upon
epidermal root tissues visualized via selective plane illumination microscopy (SPIM)
after examination of volumetric data with sf-MSSR' (Figure S32). In combination, these
studies provide evidence for the capabilities of MSSR to resolve biological detail at
nanoscopic scales using either simple or advanced fluorescence microscopy

technologies.

10
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324 Discussion

325 - Novel theoretical contributions

326 From the historical point of view, since the seminal development of the MS

327 theory [15, 16] and until the present day, few statistical and imaging applications based
328 on the theory of MS compute the MS vector itself [5S0]. This can be explained, in part,
329 Dbecause previous applications of MS are based on finding modes in the features space
330 and did not operate directly in the derivative space. In contrast, MSSR represents an
331 application of MS theory that operates in the second derivative space. By computing the
332  MS vector and estimating densities among pixels, MSSR computes a probability

333 function for the fluorophore estimates whose individual fluorescence distributions are
334 narrowed in comparison with the PSF of the optical system. The exploration of the

335 information stored on the second derivative space of the image can be also achieved by
336 substituting the MS by similar functions that operate in such space, e.g., Laplacian,

337 Hessian, Difference of Gaussians [51] which, in comparison with the MS, offer

338 computational advantages as they can be expressed in the Fourier space and

339 implemented using the FFT algorithm [51]. The information harbored in the second
340 derivative space of the DL image is used by MSSR to compute a super-resolved image
341  with higher spatial frequencies than the corresponding DL image, hence, overcoming
342  both the Rayleigh and Sparrow limits, and setting up an undescribed limit of resolution
343 which deserves further exploration and characterization.

344 The MS theory is not restricted by the number of dimensions of the information
345 required to compute the kernel windows over which MSSR operates (Supplementary
346 notes 2 and 3). Given that, MSSR parameters are suitable to extend its application to
347  assess data with higher dimensions. For example, in 2D images, the spatial parameter of
348 MSSR, which encompasses the lateral resolution width of the PSF, is defined to be the
349 same in the x and y dimensions of the image. In such case, the shape of the kernel is
350 circle- or square-like, depending on the application used. For three-dimensional (3D)
351 microscopy imaging, the lateral (x-y plane) and axial (x-z and y-z planes) dimensions
352 are affected in different ways by diffraction. The MSSR principle can be further

353 extended for explicit volumetric imaging by means of using an asymmetric kernel

354  which can be defined following the 3D lateral-axial aspect ratio of the PSF. In addition,
355 the definition of the spatial kernel can be refined to also consider possible deformations

356 of axial symmetry of the PSF due to optical aberrations introduced by the imaging
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system or by the sample itself. A similar reasoning aimed to extend the portfolio of
applications of MSSR can be envisaged considering spatial-range parameter, the latter
narrowing down the working intensity space where local calculations of MSSR take
place.

Novel contributions to microscopy

We present a new SRM approach capable of achieving multidimensional nanoscopy
through single-frame analysis under low SNR conditions and with minimal noise-
dependent artifacts. Limited only by the imaging speed of the optical system setup,
MSSR increases resolution by analyzing either a single frame, or by applying MSSR to
each individual image in a stack followed by the application of a pixel-wise temporal
function. MSSR is a powerful stand-alone method for either single or multi-frame SRM
approaches, or as post-processing method which can be applied to other analytical
multi-frame (restricted to camera-based systems) or hardware dependent SRM methods
for further enhancement of resolution and contrast. We demonstrated MSSR
compatibility with other SRM methods and showed that its usage improved resolution
and overall image quality in all the cases tested.

SRM analytical multi-frame approaches such as SRRF, ESI, MUSICAL and 3B
demand a temporal analysis which limits their utility for multi-dimensional imaging of
live samples [46]. The need to collect hundreds to thousands of images of the same
pseudo-static scene, challenges the applicability of these methods in multidimensional
imaging. The temporal multi-frame requirement imposes a tradeoff between the
achievable temporal and spatial resolutions. MSSR removes these constraints while

maintaining computational efficiency (Supplementary note 7).

We present applications of the MSSR principle that revealed fast molecular
dynamics through single-frame analysis of live-cell imaging data, with reduced
processing times in comparison with similar SRM approaches (Supplementary notes 7
and 10). Moreover, MSSR greatly improves the tracking efficacy of SPT methods by
means of reducing background noise and increasing both the contrast and SNR of noisy
SPT movies, enhancing the ability to resolve the position of single emitters. MSSR
further pushes the limits of live-cell nanoscopy by its excellent single-frame
performance. This flexibility extends its utility to most fluorescence microscopy and

alternative SRM methods.
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Achieving both high (or sufficient) temporal and spatial resolution within a
broad range of fluorescence microscopy applications is a common goal among the
bioimaging community. With recent advances in microscopy equipment and imaging
protocols, the gap between the highest attainable resolution in the temporal and spatial
dimensions within the same experiment, has narrowed. This has been a challenge
especially because both parameters often involve mutually exclusive optical
instrumentation and experimental strategies. The introduction of MSSR represents one
more step in the right direction as it drastically reduces the amount of data needed to
reconstruct a single super-resolved micrography.

No longer having to sacrifice either temporal or spatial resolution over the other,
has led some scientists to propose new ways to analyze imaging data. Some
approximations have been tailored to study millisecond molecular dynamics and
structural feature changes within the same experiment [52], e.g., by taking advantage of
the simultaneous use of image correlation spectroscopy (ICS) and SRM methods such
as SRRF [11]. In these contexts, MSSR could improve the analysis in three ways: a) it
delivers reliable SRM images in low SNR scenarios, which are common in the
experimental regimes of ICS due to the relatively fast frame rates of its applications, b)
MSSR introduces no noise-dependent artifacts which further refines the quality of the
spatial analysis and c) since no temporal binning is necessary for MSSR, there is no
restriction in the level of temporal detail retrievable from the ICS analysis.

Sub-millisecond time-lapse microscopy imaging can now be achieved by
sCMOS technologies, with applications for particle velocimetry [53], rheometry [54],
and optical patch clamp [55]. We envisage further applications for MSSR in these areas
through unveiling nanoscopic detail hidden in single DL images. Moreover, MSSR can
facilitate correlative nanoscopic imaging through crosstalk with other imaging
techniques such as electron microscopy, i.e., CLEM: correlative light electron
microscopy [56]; or atomic force microscopy, i.e., CLAFEM: Correlative light atomic
force electron microscopy [57]. In addition, MSSR can be applied to nanoscopic
volumetric imaging by using it together with expansion microscopy [58], oblique angle
microscopy [59], SPIM, and lattice light sheet microscopy [60], extending their
capabilities to previous unattainable resolution regimes.

A recent study by Chen R. et al., suggests that deep-learning based artificial
intelligence (AI) can reconstruct a super-resolution image from a single frame of a DL

image [61]. Such Al-based SRM approaches are promising, however, they are limited to

13
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the existence of a maximum likelihood image obtained with another SRM, such as
STORM, that is required for neural network training an error minimization. Otherwise,
the method it is prompted to bias the final reconstruction toward the topological
information used to train the Al - network [61]. Our approach works completely
independent of other SRM methods and provides evidence of the existence of a new
resolution limit which lies on the second derivative space of the DL image, information
inaccessible when using neural networks.

MSSR applications might impact far beyond the field of microscopy, as its
principles can be applied to any lens-based system such as astronomy [62] and high-

resolution satellite imagery [63].
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586 Figure 1. MSSR of zero order increases resolution by reducing the width of the
587 spatial distribution of photons emitted from modelled fluorescent emitters. a) The
588 MS is applied to the initial Gaussian distribution of photons emitted by a point-source

589  (left) resulting in a MS graph (center). Application of further algebraic transformations
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(see Supplementary Note 5 and Figure S7 (ii-iv)) provides the MSSR® distribution
(right). b) Sparrow and Rayleigh limits (blue, diffraction-limited) and the corresponding
MSSR® transformation (brown) for two point-sources. Red dots represent each emitter’s
location. The dip is indicated by a vertical black line. The inter-emitter distance is
expressed as o-times their individual standard deviation before MSSR processing. ¢)
Dip computed for two point-source emitters of Gaussian distribution located away at
distinct o (blue line) where the corresponding MSSR? result is also depicted (red line).
For Gaussian: Rayleigh limit — gray discontinuous line, Sparrow limit - black
discontinuous line. For MSSR’: Rayleigh limit - gray solid line, Sparrow limit - gray
solid line. The solid vertical lines represent the distance between emitters such that

when processed with MSSR?, the criterions of Rayleigh and Sparrow are obtained.
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Figure 2. Single-frame MSSR analysis of higher order attains a resolution limit of
1.6 o for nearby emitters. a) The algorithm for computing higher-order MSSR
(MSSR") is presented. The first iteration of MSSR (MSSR') is given by subtracting the
MSSR’ from the original image , resulting in a donut-like region centered at the
emitter’s location. MSSR' is computed after applying further algebraic transformations
(see Supplementary Note 5 and Figure S8 (ii-iv) for a full description of the MSSR"
process). The second iteration encompasses the subtraction of MSSR' from MSSR? and
the same algebraic transformations as used for generation of MSSR'. The process is
repeated by updating consecutive MSSR images which generates higher MSSR orders.
b) Theoretical limit of resolution achievable by MSSR". Dip computed for two Gaussian
emitters in accordance with the variation of the inter-emitter distance (expressed as o-
times their standard deviation before MSSR processing). Colored lines represent the dip
of MSSR order, from 0 to 3, computed at a given o distance between emitters. Images
on the right are the bidimensional representation of the MSSR" processing for two
single emitters separated at distances of 1.5¢ and 1.6c. Note that, for 1.5c, emitters are
unresolved up to the third order of MSSR. ¢) Experimental demonstration of the
resolution increases attainable with higher order MSSR using the GATTA-SIM 140B
nanoruler system. The intensity distribution of the emitter shrinks, both in ¢ and
intensity, as the order of the MSSR increases (Figure S8). Nearby emitters (Alexa
Fluor® 488) located 140 nm apart are resolved using MSSR', MSSR* and MSSR’ (right
side). SIM images collected from the same sample (distinct fields) are shown as a

positive control. Scale bar: 100 nm.
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628 Figure 3. MSSR enhances resolution and contrast of single super-resolved images.
629 a) Comparison of SRM results of ESI, SRRF and MUSICAL alone and after post-

630 processing with MSSR’ (ESI + MSSR’, SRRF + MSSR’, MUSICAL + MSSR"), over a
631 temporal stack of 500 DL images of tubulin-labeled microtubules. The average

632 projection of the DL stack is shown on the leftmost side. b) Comparison of the increase
633 in spatial resolution of MUSICAL with and without post-processing with MSSR®

634 (MUSICAL + MSSR"), over a temporal stack of 361 DL images of modelled

635 fluorophores bounded to a synthetic array of nanotubules (average projection shown on
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636 left). The graphs show the intensity profiles along the lines depicted in each of the insets
637 in the images of the upper row; black, blue and red lines correspond to the average DL,
638 MUSICAL and MUSICAL + MSSR" images, respectively. ¢) Sister chromatids of

639 mitotic mouse chromosomes visualized by TIRFM (left), SIM (middle) and SIM +

640 MSSR” (right). Scale bars: a) 1 um, insets = 200 nm; b) 500 nm, insets = 100 nm; c)
641 200 nm.

642

49 25
50


https://doi.org/10.1101/2021.10.17.464398
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.17.464398; this version posted October 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

643

645
646
647
648
649
650
651
652
653
654
655
656
657

51
52

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a Raw DL stack sf-MSSR" stack t-MSSR"

Temporal analysis:

sf-MSSR"
Mean, Var, TPM, CV, SOFI,
—_— —_—
t\:« t\\ ~050
~250 ~160 (further resolution gain)
(limit of resolution) (MSSR theoretical limit)
b DL stack C t-MSSR?® d Localization distances
R —- DL frame DL -AVG
=7 ] 152 + 21
. 200 nm ¥
_______________ 100 s 2,32 +37

Count

| stMSSR® | Mean SOFI,

-- 0-
e t-MSSR? f
Var Mean TPM cv SOFl, SOFl, SOFl, SRRF  MUSICAL
75 nm
aw
35 nm
——

Figure 4. The temporal analysis of MSSR provides a further increase in resolution

100 200 300
Distance (nm)

to approximately 40 nm. a) Single-frame analysis of MSSR of a given order 7 is
applied to each frame of a sequence, becoming the sf-MSSR" stack. Next, a pixel-wise
temporal function (PTF) converts the MSSR stack into a single super-resolved t-MSSR"
image. Depending on the temporal entropy of the dataset and on the PTF used, a
resolution enhancement can be obtained. b) Left: a stack of DL images of a
CRISPR/dCas12a nanoruler system. Scale bar: 1 pm. Right: zoomed region of the first
frame in the stack, along with the average projection (DL-AVG) of a stack of 100
images, before and after MSSR processing. Scale bar: 400 nm. ¢) PTF applied to a stack
of MSSR”® images (t-MSSR?). Fluorescent emitters are separated by 100 nm, as
established by the CRISPR/dCas12a nanoruler system. Four types of PTF were
computed: TPM, Var, Mean and SOF1,. d) Euclidean distances between nearby emitters

automatically computed from t-MSSR*-Var images, following a worm-like chain model
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658 (16 regions of interest used, 1.5 um? each). €) Comparison of the results obtained with
659 each of the PTF analysis available with MSSR (see Table S3), for a commercially

660 available GATTA-PAINT nanoruler system. The Var column shows inter-emitter

661 distances resolved in the range 30 —75 nm. Atto 488 (green), Atto 550 (orange) and Atto
662 655 (magenta) fluorescent probes were used. f) Same nanorulers shown in e) but

663 analyzed with either ESI, SRRF or MUSICAL.
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Figure 5. MSSR is robust to image noise and shows high global performance when
compared to other SRM analytical procedures. a) sf-MSSR' and t-MSSR' of 100
images provide consistent reconstructions across a wide range of SNR. The expected
feature is a uniform fluorescent ring located at the center of the image with a dark
background lacking fluorescence. Each image is displayed to show its full intensity
range. The row for DL images (Widefield, WF) exemplifies a stack of 100 frames
collected at the corresponding SNR. The central row represents a resolved stack using
sf-MSSR'. The third row shows the super-resolved micrography after t-MSSR' analysis
of 100 DL images using 7PM for temporal analysis (see table S2). Scale bar: 1 um. b-¢)
Resolution Scaled Pearson (RSP) coefficient (b) and Resolution Scaled Error (RSE) (c),
computed for the super-resolution reconstructions provided by SRRF, MUSICAL, ESI,
sf-MSSR' and t-MSSR' (100 frames). b) RSP measures a global correlation between
reconstruction and reference (input DL image), values closer to 1 indicate a reliable

reconstruction. ¢) RSE measures the absolute difference of the reconstructed image and
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679 its reference. Lower values of RSE at a particular SNR mean reduced global error in the

680 reconstruction. Scale bar: 1 um.
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