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15 Abstract
16 High throughput quantitative analysis of microscopy images presents a challenge due to the complexity
17 of the image content and the difficulty to retrieve precisely annotated datasets. In this paper we intro-
18 duce a weakly-supervised MICRoscopy Analysis neural network (MICRA-Net) that can be trained on a
19 simple main classification task using image-level annotations to solve multiple the more complex auxiliary
20 semantic segmentation task and other associated tasks such as detection or enumeration. MICRA-Net
21 relies on the latent information embedded within a trained model to achieve performances similar to
22 state-of-the-art architectures when no precisely annotated dataset is available. This learnt information is
23 extracted from the network using gradient class activation maps, which are combined to generate detailed
24 feature maps of the biological structures of interest. We demonstrate how MICRA-Net significantly alle-
25 viates the Expert annotation process on various microscopy datasets and can be used for high-throughput
26 quantitative analysis of microscopy images.

» 1 Introduction

2s  The development of powerful microscopy techniques that allow to characterize biological structures with
20 subcellular resolution and on large field of views tremendously increased the complexity of quantitative
30 image analysis tasks [I]. The resulting images exhibit a wide range of structures that need to be identified,
;1 counted, precisely located, and segmented. Expert knowledge is commonly required to achieve successful
sz identification and segmentation of the multiple structures of interest in microscopy images [2], B]. These
33 tasks can be tedious and time consuming especially for large databanks or for the comparison of multiple
s biological conditions. It was recently demonstrated that deep convolutional neural networks (CNN) are
s excellent feature extractors [4]. They were successfully applied to segmentation (e.g. whole cells, nuclei,
3¢ dendritic spines), enumeration (e.g. cell counting), and classification (e.g. state of cell) of structures in
sz microscopy images [5HI2]. The most common deep learning (DL) approaches applied to microscopy and
s biomedical images are fully-supervised and require precisely annotated datasets [9, 11, 12]. Hence, it is
3o often a limiting step in the application of DL for quantitative analysis of biomedical imaging [3, 13, [14].
s To alleviate the annotation process, weakly-supervised DL methods were introduced [I4H17]. Bounding box


flavie.lavoie-cardinal@cervo.ulaval.ca
https://doi.org/10.1101/2021.06.29.448970
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.29.448970; this version posted June 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

.1 annotations are commonly used for weakly-supervised segmentation tasks as they are simple, allow the task
.2 to be spatially constrainted [2) [16] 18-20], and were shown to decrease the annotation phase by 15-fold
a3z compared to precise identification of structure boundaries [2I]. Methods for training with binary, image-
aa level targets, reducing even further the complexity and duration of the annotation task, have been proposed
«s  when multiple instances are displayed on a single image [22]. Unfortunately, when applied to microscopy
s and biomedical image analysis, such weakly-supervised approaches using whole image annotations, resulted
«z in lower segmentation precision compared to approaches using precisely identified structures [23H25].

as In this paper we propose MICRA-Net (MICRoscopy Analysis Neural Network), a new approach relying
s only on image-level classification annotations for training a deep neural network to perform different type
so of microscopy image analysis tasks such as semantic segmentation, cell counting, and detection of sparse
s features. MICRA-Net builds on latent learning [26], which refers to a model retaining information (i.e. latent
s2 space) that is not required for the task at hand in order to learn new auxiliary complementary tasks [26].
sz In this work, we leverage the information embedded within a trained classification network to solve multiple
sa complementary, yet very different, tasks relevant to microscopy image analysis. The network uses binary
ss classification targets as input to build a general representation of the specific dataset and generates detailed
se feature maps from which specific tasks, such as instance segmentation, semantic segmentation, detection,
sz and classification, can be addressed. Even further this showcases the potential of MICRA-Net for addressing
ss various high-throughput microscopy analysis challenges, relying solely on weak image-level annotations for
so training.

o 2 Results

e1  The generation of precisely annotated large datasets to train deep neural networks in a fully-supervised
s2 manner remains a challenge in the field of microscopy and biomedical imaging. MICRA-Net, a CNN-based
es method, addresses this challenge by using solely whole-image binary targets for training. This approach
ea outperforms state-of-the-art DL baselines trained in a weakly-supervised manner for the semantic segmenta-
es tion of diverse biological structures. It is therefore of great interest for the automated quantitative analysis
es of microscopy datasets for which no fully-supervised training dataset is available. In the following we first
ez investigate the impacts of the annotation burden, before characterizing the performance of MICRA-Net on
es synthetic and real data for various tasks. We then evaluate how MICRA-Net can be fine-tuned in order to
e leverage information from a previously acquired, but different, dataset. Finally, we show how the proposed
7o approach could be used to support Experts in the annotation of sparse and small structures in large images.

» 2.1 Annotation task reduction analysis

72 MICRA-Net is trained on a simple multi-class classification task and therefore only requires the Expert to
73 identify class-specific positive and negative images with respect to the structures of interest. In contrast to
za the identification of the structure boundaries using precise or bounding box contours, image-level annotations
75 do not require to specify the positions of the object in the field of view of the microscopy images (Figure )
76 We quantified the required time to generate annotations with different levels of precision (precise, bound-
7z ing boxes, and points) by conducting a User-Study in which we asked participants to annotate the testing
zs images from the Cell Tracking Challenge on 6 different cell lines [§] (see Methods). We analysed the inter-
7o participant variability by comparing the annotations of the participants in a one-versus-all manner. The
so metric used to assess this variability combines both the level of association between objects (Fl-score) and
a1 the precision on the contour of annotated objects [27] (IOU, Figure [Ip and Supplementary Fig. . Since
sz it is not possible to report the IOU between points annotations, we show the average F1l-score as a constant
ss line on Figure [[b. As a general tendency, simpler annotation tasks reduced the inter-participant variabil-
sa ity (higher Fl-score at given IOU). For each selected cell lines, we report the median distances between
ss associated point markers (centroid of objects, Figure ) and the average distance between the contours of
ss associated objects (Figure |1d) as a mean to probe the variability of annotations. We measured a median
sz error on the cell boundaries ranging from 2 to 7 pixels depending on the cell line (Figure ) Several factors
ss can reduce the precision of the annotations, such as the contrast (Fluo-N2DL-HeLa - high contrast vs PhC-
so  C2DL-PSC - low contrast) and the shape (Fluo-N2DH-GOWT1 - round vs PhC-C2DH-U373 - irregular)
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(Figure 7d and Supplementary Fig. . The required time to annotate a single cell is increased by approx-
imately 2 folds when going from points annotations to bounding boxes, and from bounding boxes to precise
annotations (Figure[l). Finally, we evaluated the difference between weak-supervision using MICRA-Net’s
training scheme and fully-supervised training both in terms of interactions and annotation time (Figure [1f
and Methods). Compared to the precise annotations required to train fully-supervised DL approaches, the
generation of whole image binary annotations reduces on average by 6 folds the required annotation duration.
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Figure 1 : Caption is on the next page

2.2 MICRA-Net architecture and baselines

Figure shows the architecture of MICRA-Net, which was designed around a CNN architecture, more
specifically using a U-Net-like encoder, composed of 8 convolutional layers (L' to L®) followed by a fully
connected layer. The rationale is that U-Net is an established method able to solve multiple biomedical
tasks. The gradient class activated maps (Grad-CAM, see Methods) were extracted for each predicted class
and at every layer of the network (Figure -c & Supplementary Fig. ,b). Thereafter, Rectified Linear
Unit (ReLU) activation and thresholding on the Grad-CAM of the last convolutional layer (L?) were applied
to generate a coarse class-specific feature map [28]. To increase the information contained in the extracted
feature map, local maps from layers L'~7 were concatenated, resulting in a class-specific 7-dimensions feature
space (Figure 7C). We retrieved the first principal component of every pixel using principal component
analysis (PCA) decomposition on the feature space to generate a single feature map that was used to solve
different sets of specific auxiliary tasks (Figure 2b,c & Methods).

To characterize the performance of MICRA-Net we compared the results obtained on different datasets
with three established baselines: i) pretrained U-Net (in the following sections referred to as U-Net) [9], ii)
Mask R-CNN [10], and iii) Hastik [29]. These baselines were chosen as they are widely used in the literature
and they allow semantic segmentation with none or simple modifications (see Supplementary Note [2| & (3] for
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Figure 1: Various supervision levels can be employed for training a DL model to segment structures of interest
in microscopy images. a) Representative image from the Cell Tracking Challenge dataset [8] overlayed with
the corresponding fully- and weakly-supervised annotations. Annotated images are presented in decreasing
spatial level of supervision and required annotation time (from left to right). b) We report the averaged
inter-participant variability from the User-Study from 6 selected cell lines of the Cell Tracking Challenge
using three levels of supervision (precise, bounding boxes (BBOX), and points). Representative examples
from the participants may be found in Supplementary Fig. as well as the specific curves per cell line in
Supplementary Fig. @] The inter-participant agreement was calculated using the Fl-score as a function of
IOU for precise (blue) and BBOX (orange) annotations in a all versus one manner [27]. The Fl-score for
points annotation (green) was calculated with a maximal distance of association of 30 pixels. Plotted are
the bootstrapped mean (line) and 95% confidence interval (shade, 10000 repetitions). c-e) Shown are the
distribution of median scores from the inter-participant comparison calculated in a all versus one manner. c)
Distance between associated point markers. d) Average distance between the precise contours of participants
annotations was calculated for precise annotations. e) Average required time per objects on different cell
lines for each supervision level. f) Evaluation of the annotation task required to generate the training set for
all microscopy datasets used throughout the paper for fully-supervised (FS) and MICRA-Net approaches.
Reported above is the effective number of decisions (number of extracted crops for MICRA-Net and number
of edge pixels for fully-supervised learning) and the required time in hours. For MICRA-Net the number of
decisions corresponds to the number of extracted crops and the annotation time per crop (assignation of a
positive or negative annotation) was on average 2 seconds for all datasets. For fully-supervised learning, the
decision and annotation time was evaluated for each dataset separately on a precisely annotated subset of
images (see Methods).

dataset specific implementation details). This rendered a similar task between the baselines and MICRA-Net.

2.3 Multi-class segmentation of synthetic images

To validate the classification and segmentation performance of MICRA-Net, we created a synthetic dataset
containing N randomly sampled cluttered handwritten digits from the MNIST dataset [30] (Modified MNIST
dataset, Figure [2c & Methods). Each image may contain several instances of digits (from 0 to 9), as well
as variable levels of noise and signal to mimic slight variations akin to those that may be observed in
microscopy images (see Methods). The first step was to classify the digits appearing on each image to
validate the representation capability of the network, which is confirmed by the obtained class-wise mean
classification testing accuracy of (98.9 & 0.5) % (mean =+ std).

In addition to the classification task, MICRA-Net generates class-specific segmentation maps of the digits
in the modified MNIST dataset. Using the information embedded in the Grad-CAMs of the hidden layers
(L'~7) to precisely locate each digit in the image significantly increased the segmentation performance of the
network when compared to the maps obtained from the Grad-CAMs of the last layer only (L®) (Figure ,
Supplementary Fig. ,d & Supplementary Fig. @ A U-Net [3]] trained on the same dataset using a
fully- and weakly-supervised training scheme was used as a baseline to better evaluate the performance of
MICRA-Net. Fully-supervised learning consisted in training with the binary digits contours from MNIST,
while weak contours were generated by a dilation of the digits with a square of size {5,10,25} pixel as
a structuring element (see Supplementary Note [1). Figure shows that MICRA-Net achieves similar
or superior segmentation performance compared to all weakly-supervised training instances of the U-Net
and is only outperformed on all measured metrics (F1-score, intersection over union (IOU), and symmetric
boundary dice (SBD)) by fully-supervised training (Supplementary Fig. 7| & Supplementary Tab. 1).

2.4 Class-specific segmentation of super-resolution microscopy images

The next question that needed to be addressed was the applicability of our approach for super-resolution
microscopy image segmentation, for which precisely annotated datasets are rarely available. The auxiliary
task was the semantic segmentation of STimulated Emission Depletion (STED) microscopy images of two
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Figure 2: MICRA-Net architecture and experimental results on the modified MNIST dataset. a) MICRA-
Net architecture (detailed in the Methods section). Each depth is composed of two sequential convolutional
layers (Conv2D), batch normalization (BatchNorm2D), and Rectified Linear Unit activation (ReLU). A 2x 2
max pooling (MaxPool2D) was employed to increase the richness of the representation from the model. A
linear layer is used to project the globally pooled L® layer (256 filters, Global Maxpool2D) to the specified
number of classes. b) Concatenation of low- and high-level feature maps obtained from the Grad-CAMs
of every layer is performed to generate the multi-dimensional feature space for every predicted class. c¢)
Feature maps generated from the calculated Grad-CAMs for class 0 and 6 on the modified MNIST dataset.
Each activated class is backpropagated through the network and a local map for each layer of the network
(L'~8) is computed. See Supplementary Fig. [5| for layer specific grad-CAMs. d) Detailed segmentation
maps of the digits of a representative image (256 x 256 pixel) and insets (right, dashed white box) from
the modified MNIST dataset using MICRA-Net. The color code corresponds to the digit class and the
red arrow indicates a missed digit in the field of view. e) Mean performance over the 10 classes obtained
with the U-Net trained with and without dilation of the ground truth contours. The segmentation maps
are presented in Supplementary Fig. . MICRA-Net segmentation performance (color-coded dashed lines,
see Supplementary Fig. [5| for distributions) surpasses the U-Net trained with 10 pixels dilation and is not
statistically different from the U-Net trained with 5 pixels dilation on all measured metrics. Only fully-
supervised training outperforms MICRA-Net segmentation on all measured metrics. p-values are calculated
using resampling (see Methods) and are reported in Supplementary Tab. 1. Bar graphs show the mean values
and standard deviation.

nanostructures of the F-actin cytoskeleton in neurons: 1) a periodical lattice structure (rings) and 2) lon-
gitudinal fibers (Figure 7b) [2]. The F-actin nanostructure segmentation task is challenging since the
morphology of neurons is highly variable throughout the dataset, and there are many distractors around
the structures of interest [2]. Figure [If shows that image-level annotation reduced by more than 19 folds
the time required by an Expert to generate the training dataset compared to precise identification of the
structure boundaries that would be required for fully-supervised DL approaches. This also corresponds to a
reduction of the annotation time of more than 3 folds compared to the tracing of polygonal bounding boxes,
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Figure 3: Semantic segmentation of F-actin nanostructures observed on super-resolution microscopy images.
a,c) Representative raw images from a dataset of STimulated Emission Depletion (STED) microscopy images
of two F-actin nanostructures in fixed cultured hippocampal neurons: periodical lattice (a) and longitudinal
fibers (c). Arrows point towards the periodical lattice (green) and longitudinal fibers (magenta). Segmen-
tation masks obtained from an Expert, MICRA-Net, weakly-supervised U-Net, weakly-supervised Mask
R-CNN, and weakly-supervised Ilastik are also reported for both structures as comparison. b) Performance
evaluation of MICRA-Net and weakly-supervised baselines segmentation on the precisely annotated testing
dataset using custom metrics for periodical lattice (rings). The FFT metrics compares the frequency con-
tent of the provided masks. The segmentation resulting from MICRA-Net is not significantly different from
the Expert annotations, while the other baselines are (U-Net, Mask R-CNN, and Ilastik). d) The intensity
distribution metric evaluates the difference between the pixels found within the precise Expert annotations
and the DL-based segmentation approaches for the F-actin fibers nanostructures (see Methods). The raw
number of low intensity pixel segmented by MICRA-Net is not significantly different for any low value of
intensity pixel from the Expert. This is not the case for all baselines (U-Net, Mask R-CNN; and Ilastik)
which annotated a significantly different number of low intensity pixels. The complete range of pixel values
is shown in Supplementary Fig 12. p-values are calculated using resampling (see Methods) and are reported
in Supplementary Tab. 4, 5. Performance evaluation was performed within the dendritic mask (a,c: yellow
line). a,c) Scale bars: 1 pm.

1as  which were recently used for weakly-supervised training of the U-Net architecture on this dataset [2].
145 On the main classification task, MICRA-Net achieves an accuracy of 75.2% and 83.7% on the testing
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e dataset for the F-actin periodical lattice and longitudinal fibers, respectively. This is inline with a mean
147 inter-participant classification accuracy of (80 +5) % and (75 £ 7) % for periodical lattice and longitudinal
s fibers respectively (calculated from 6 participants using a leave-one-out scheme from 50 images), confirming
e the model capability to handle data of this nature (Supplementary Fig. 8). As described in the previous
10 section, an informative feature map was generated from the PCA decomposition of the combined L'~7
151 extracted features. Thresholding of this feature map resulted in detailed binary masks that were used to
152 solve the segmentation task. We relied on a precisely annotated dataset consisting of 25 images of each
153 structure (Supplementary Fig. 9) to evaluate the performance of all trained models: i) MICRA-Net, ii)
15« multi-participants polygonal bounding box annotations (6 participants on 25 images of each structure: User-
15 Study), iii) U-Net trained with polygonal bounding boxes [2], iv) Mask R-CNN trained with polygonal
1ss  bounding boxes, and v) Ilastik trained using scribbles (see Methods & Supplementary Note [2| for specific
157 details). MICRA-Net achieved equivalent or superior segmentation performance on the precisely annotated
1ss dataset in comparison to both the User-Study and all baselines when comparing the common segmentation
1se metrics (Supplementary Fig. 9-11 & Supplementary Tab. 2, 3). Thus, even if trained with weak image-level
10 annotations, MICRA-Net can extract the necessary structural information to generate detailed segmentation
161 maps for both nanostructures.

162 A qualitative visual inspection of the segmentation masks suggested that MICRA-Net segmentation
163 produced a finer detailed mask compared to the weakly-supervised baseline segmentation [2], especially for
1ea  fibers, for which it provides detailed segmented contours of single fiber strains (Figure , Fibers). Custom
165 performance metrics that were adapted to the F-actin nanostructures were required to better characterize this
16 Observation. For the F-actin periodical lattice, we measured the Fourier Transform (FFT) of the segmented
17 areas for frequencies corresponding to the periodicity of the lattice (180-190 nm [32]) (Figure [3p & Methods).
1es  The FFT-metric calculated on the areas segmented with MICRA-Net is not significantly different from the
1 one obtained from the precisely annotated dataset (Figure ) For all other baselines, evaluation of the
170 FFT-metric on the segmented areas shows a significant difference with the precisely annotated dataset. This
11 suggests a better segmentation of the periodic structure for our approach over weakly-supervised baselines
iz (Supplementary Tab. 3, 4). Similarly, a custom metric based on the pixel intensity distribution of the
173 segmented areas was developed to evaluate the approaches on the fiber segmentation task (see Methods).
17 While no difference was observed for the regions identified with MICRA-Net compared to the regions from the
s precisely annotated dataset, a significant increase in the proportion of low-intensity pixels (regions between
176 single fibers) was observed for all weakly-supervised baselines (Figure & Supplementary Tab. 5). This
177 supports a higher accuracy to precisely identify the contours of individual fibers or periodical lattice regions
17 of MICRA-Net over weakly-supervised U-Net segmentation.

e 2.5 Single cell semantic segmentation

10 Cell counting and segmentation is a common challenge in high-throughput analysis of optical microscopy
s images [8, 9, 12} 33| 34]. Both fully- and weakly-supervised DL approaches were shown to be very powerful
182 to assess these tasks on multiple cell lines [7, 25]. We first highlight some prerequisite of the dataset to train
13 MICRA-Net (and baselines) at solving an instance segmentation task using 6 selected cell lines from the Cell
18 Tracking Challenge (CTC) [8]. For weakly-supervised learning from image-level targets, a sufficient amount
s of negative samples (images not containing the object of interest) is required to extract informative context
16 from an image, i.e. to distinguish the cells in the field of view. We trained MICRA-Net on 256 x 256 pixel
187 crops from the resampled images of the CTC (with an effective pixel size of 0.5 um, Supplementary Tab. 6)
1ss  and obtained a classification accuracy of (95.8 £0.4) % (calculated from 5 network instances). Despite
1o having a high classification accuracy, MICRA-Net detection and segmentation performances were strongly
10 reduced when no negative samples were provided (Supplementary Fig. 13, DIC-C2DH-HeLa and Fluo-N2DH-
11 GOWT1). It is therefore necessary to adapt the size of the training images that are provided to the network
102 to the size of the structures of interest, ensuring that enough images contain only background (Supplementary
103 Tab. 6 for selected factors). Another requirement when training a deep learning architecture is that the object
10a  Of interest can fit entirely within the field of view. Otherwise the model has no information on how different
105 parts of an object should be tied together. To reflect this statement, we trained both U-Net and Mask
16 R-CNN on a resized version of the CTC dataset containing positive and negative samples on all cell lines
107 (Supplementary Fig. 14 and Supplementary Tab. 6 for scale factors). We observe that the performance of all
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1es  models is significantly lower on the DIC-C2DH-HeLa cell line at this scale. Since both training conditions
100 cannot be met on this cell line, we removed it from training. Hence, we report the performance of all trained

200 models on 5 selected cell lines from the CTC.
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Figure 4: Cell counting and segmentation on 5 selected cell lines of the Cell Tracking Challenge dataset
(CTC). a) Representative examples of various level of supervision used to train the selected baselines. The
altered-X are obtained from a binary object dilation/erosion where the transformation is sampled from a
normal distribution with 0-mean and X-standard-deviation. b) Quantification of the IOU between associated
objects for the User-Study and altered versions (ALT-X) of the testing set with the ground truth objects for
each cell line of the CTC. The precision of the participants is equivalent to an ALT-5 version of the testing
set. ¢) Representative examples of MICRA-Net semantic instance segmentation. Each outline color depicts
a different segmented object. See Supplementary Fig. 16-18 for baseline examples. d, left) We compared the
difference of the pooled area under the curve (AUC, Fl-score vs. IOU) of all cell lines for MICRA-Net over
the baselines on the precisely annotated dataset. The raw curves are available in Supplementary Fig. 19-
23, and the non-pooled data in Supplementary Fig. 24. Higher and lower performance of MICRA-Net are
reported in blue and red respectively. MICRA-Net is only outperformed by U-Net trained using ALT-2 or
fully-supervised training. d, right) We compared the pooled AUC for all cell lines for the conducted User-
Study using precise annotations and bounding boxes. The precision of the segmentation masks generated
with MICRA-Net is similar to the precise annotations and better than the bounding boxes obtained in the
User-Study. Stars are used to highlight a significant change (Supplementary Tab. 9, 10). All scale bars are
25 pm.

201 As a proof of concept, using the CTC, for which precise annotations are available, we compared the
202 semantic instance segmentation of MICRA-Net with fully- and weakly-supervised baselines: U-Net [9], Mask
203 R-CNN [I0], and Ilastik [29] (see Supplementary Note |3| for specific implementation details). The weak
20a  supervision consisted in dilating/eroding each object of the fully-supervised dataset by a value sampled from
205 a normal distribution with 0 mean and standard deviation in {2,5,10} (Altered-X or ALT-X'), or by taking
206 the bounding boxes of each objects (see Methods and Figure ) Since no precisely annotated testing dataset
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200 was provided for the CTC, we precisely annotated 4 images for each cell line to evaluate the segmentation
20 performance of both approaches (precisely annotated dataset). We compared the achievable annotation
200 precision from participants to that of altered versions of the precisely annotated dataset (Figure ,b).
210 Figure shows the distribution of IOU between associated objects (Object-IOU) of the User-Study (8
211 participants) and the altered versions of the dataset (8 repetitions) when comparing to the original precisely
212 annotated dataset testing set for each selected cell lines of the CTC. From Figure[dp we can conclude that the
213 distribution of the User-Study is similar to the distribution of ALT-5. Hence, training a DL architecture with
214 a training set obtained from multiple participants (e.g. crowd-sourced) should result in baseline performance
215 similar to the one trained with ALT-5.

216 To solve the semantic instance segmentation task for MICRA-Net, we trained MICRA-Net to predict both
217 the presence of a cell and the contact between cells, which was subtracted from the former (see Methods
2 & Supplementary Fig. 15). A binary segmentation map was obtained by using an Otsu threshold [35]
210 (Figure [4k). We used the Fl-score detection as a function of the intersection over union (IOU) between
220 associated objects (see Methods) to quantify the results [27]. We extracted a single score from the curves by
2z calculating the normalized area under the curve (AUC). Figure 4d (left) reports the variation of MICRA-
222 Net in AUC from baselines trained with various level of supervision when pooling data from all selected cell
223 lines (see Methods and Supplementary Fig. 16-24). As shown in Figure and Supplementary Fig 24, the
224 performance of baselines which were developed for fully-supervised datasets is affected when reducing the
225 supervision level (Supplementary Fig. 16-18). This is also depicted by the low classification accuracy of the
226 baselines compared to MICRA-Net (Supplementary Tab. 7). Strikingly, MICRA-Net achieves cumulative
227 similar performance to fully-supervised Mask R-CNN and Ilastik for the semantic instance segmentation on
22s  the 5 cell lines. MICRA-Net is only significantly outperformed by U-Net when training is performed on the
220 fully-supervised or a slightly altered (ALT-2) dataset. Therefore, when no precisely annotated and proofed
230 dataset is available, or when the annotation error may be high, the performance of baseline architectures
231 cannot be guaranteed to achieve superior semantic instance segmentation performance on all cell lines (see
232 Supplementary Fig. 24, and Supplementary Tab. 8 and 9). The performance of the conducted User-Study
233 on the testing dataset were also compared to MICRA-Net (Figure [4d (right), Supplementary Fig. .
232 A significant increase in performance is measured for MICRA-Net for bounding boxes and no significant
235 change is observed when comparing to precise annotations. Given the previous results, an approach like
23s - MICRA-Net will perform similarly (or better) to the presented baselines for semantic instance segmentation
23z when no precisely annotated dataset is available. More importantly, MICRA-Net reduced by a factor of
23z 40 the number of Expert decisions required to annotate the training dataset and by more than 150h the
230 necessary annotation time usually needed to complete this task while achieving precise human-level precision

2¢0 (Figure [If and Figure [ik).

2n 2.6 Multi-device analysis

22 While DL approaches can be very powerful when tackling tasks on very similar images, challenges are often
2a3  encountered when the imaging conditions change over time (e.g. due to a new device) [37, [38]. To increase
2aa  the applicability of the proposed method to various experimental conditions, we investigated how MICRA-
25 Net could be fine-tuned on a new dataset that contains similar structures but acquired on a new device.
2es ' To address this, a brightfield microscopy dataset of Giemsa-stained [39] P. Vivax (malaria) infected human
247 blood smears was used (Figure ), for which the training and testing datasets had very distinct intensity
2es  distributions (Figure [5h,b) [33] 136].

249 The first attempt to solve the classification task consisted in predicting the presence of infected smears in
a0 a 256 X 256 pixel image. A mean testing classification accuracy of (80 & 10) % (mean + standard deviation,
a1 calculated from 5 different instances of the network) was obtained. Since the testing images had a very
252 different pixel intensity distribution, we investigated whether the classification results could be improved
253 by adjusting for this. To this aim, we considered i) modifying the threshold of the linear layer and ii)
25 fine-tuning a model by training on {12,24,36} sampled images from the test set using a k-fold training
2ss  scheme (see Supplementary Note 4| & Supplementary Fig. 25). We repeated the fine-tuning process 5 times
ass  from each of the 5 naive instantiations (as starting points) while allowing i) linear layer [Linear], ii) linear
a7 layer and depth 4 [Linear + /], iii) linear layer and depths 3 and 4 [Linear + 3, 4], and iv) all [All] layers
2ss to be updated (Figures 2h & ) A testing classification accuracy over 87% was obtained when updating
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Figure 5: Segmentation of two different datasets of bright field microscopy images of Giemsa-stained red
blood cells from [36]. a) Representative images from the training (2 left) and testing (2 right) datasets.
The training dataset is composed of images taken from two different laboratories, while the testing images
were acquired in a third laboratory. b) A change in the brightness and contrast is observed between the
training and testing dataset. This results in a large difference in the mean pixel intensities (training: blue
line, testing: orange line, with standard deviation: pale region) of the training and testing images. c, left) A
precision-recall graph quantifies the detection performance of MICRA-Net on the testing dataset. Without
fine-tuning, the performance on the testing dataset (Naive, grey ellipse) is characterized by a recall of 0.79,
and a poor precision of 0.32. A variable number of images ({12,24,36}) from the testing dataset were used
to adjust the detection threshold (Threshold, blue ellipse), which increased the precision but also reduced
the recall by approximately 2 folds. Fine-tuning of the model on the sampled {12,24,36} images from the
testing set with different settings: i) allowing the linear layer (orange), and ii) different depths (depth 4:
green; depth 3, 4: red) to be updated (see Supplementary Fig. 25 & Supplementary Note [4]) resulted in
precision-recall above human level detection. c, right) Zoomed region of the precision-recall performance
of MICRA-Net. When the number of trainable parameters increases, the number of images required for a
model with good generalization properties also increases. d) Detection efficiency (Fl-score) of the various
trained fine-tuned models. As a general tendency, increasing the number of images sampled from the testing
set and allowing more layers to be updated resulted in better detection of infected red blood cells. The best
detection accuracy of all trained models is highlighted in bold. See Supplementary Tab. 17 for calculated
p-values.

the threshold and over 88% for all fine-tuned models, demonstrating the capability of MICRA-Net to be
fine-tuned on similar tasks performed on images acquired on different devices (Supplementary Table. 16 for
detailed classification results).

In the context of parasite detection and stage determination for malaria, the most important task consists
in the detection of infected cells [33]. When trained solely on the original training set, MICRA-Net performed
worse on the detection task, obtaining a Fl-score of 0.44 4+ 0.13 (Figure , d). However, with fine-tuning of
at least the linear layer and the depth 4 of the architecture, the F1-score was significantly increased, beating
the inter-expert accordance (0.61 [36]). Additionally, increasing the number of images sampled from the
testing set can significantly increase the detection accuracy (Supplementary Tab. 17). The best detection
accuracy (0.82 # 0.01) was obtained by updating either Linear + 8, 4 or All layers. This again demonstrates
the capability of MICRA-Net to be fine-tuned and used across different microscopes.

10
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270 We compared the segmentation results of MICRA-Net with Expert precise annotations. Due to the lack of
ann a precisely annotated dataset in the original publication by [33], we manually segmented all infected smears
a2 from the test set (303 smears). In contrast to the results obtained for the detection accuracy, updating
273 more layers while fine-tuning (Linear + 3, 4 {12, 24, 36}, and All {12, 24}) significantly reduced the IOU
a7a  compared to only updating the linear layer (Supplementary Fig. 26 & Supplementary Table 18). Hence, a
275 trade-off should be made by the users according to their specific needs. For instance, with these P. Vivax
27ze  datasets, the best trade-off to maximize both detection and segmentation efficiency requires the fine-tuning
277 of at least the linear layer and depth 4.

as 2.7  Expert detection and segmentation assistance

2z The next step was to assess how MICRA-Net could be implemented as a tool to guide Experts in the
280 annotation of sparse and small structures in large images of an electron microscopy dataset. Our approach
2s1 was tested on a dataset of Scanning Electron Microscopy (SEM) images of ultrathin mouse brain sections
2s2  in which axons were genetically labeled with a small engineered peroxidase APEX2 [40)] (refered to as Axon
283 DAB, see Methods). In the SEM dataset, 1-10 small axonal regions (with an averaged size of 113 x 113
28 pixel) needed to be identified in images of around 10000 x 10000 pixel (Figure @1) Applied to this dataset,
2ss  MICRA-Net was used to suggest regions containing the Axon DAB marker and generate segmentation masks
286 Of the structure in the regions that were accepted by the Expert.

287 An Expert identified Axon DAB positive regions on the training (158 images) and testing (44 images)
2ss  sets using point annotations (see Methods). To train MICRA-Net, all positive regions (1024 x 1024 pixel
280 i.e. 5.12 x 5.12 pm?) centered on the detected Axon DAB were extracted from the original images (image
200 size of 10240 x 10240). As previously stated, MICRA-Net requires negative crops (not containing Axon
200 DAB) for training. Therefore, all negative 1024 x 1024 pixel crops without overlap (Figure Eh, Methods &
202 Supplementary Note 5) were also included in the dataset.

203 In the context of very sparse detections, positive-unlabeled (PU) learning can improve the performance of
20a & given architecture [41]. On the main classification task, an accuracy between 83% and 90% was obtained for
205 all PU ratios (Supplementary Tab. 19). We next investigated how PU learning could improve the detection
206 rate of Axon DAB in the SEM images and obtained best performances for a PU ratio between 1:5 and 1:16
207 (Figure |§|b & Supplementary Tab. 20). The usage of MICRA-Net for this sparse detection task resulted
208 in an increase of the measured recall above the inter-expert accordance (0.791, Supplementary Fig. 27),
200 while requiring from an Expert to proof only 3.13% of a newly acquired image. Accordingly, the area that
300 was inspected by the Expert and consequently the annotation time were reduced by 30 folds. Additionally,
s:00  MICRA-Net allowed the Expert to detect 57 new Axon DAB regions in the test set (representing 25% more
302 detections) that had been missed by the Expert during the initial image annotation process (Figure @)
303 This demonstrates the potential of MICRA-Net as a tool to assist Experts in the analysis of newly acquired
30 1mages, not only reducing the manual annotation time, but also increasing the recall above the inter-expert
s0s  variability. An attempt was made at comparing the detection results with Ilastik as a baseline trained
306 ON positive pixels obtained from points annotations with constant size. Ilastik achieved a classification
307 accuracy of 8% resulting in an almost complete annotation of a new image (Supplementary Fig. 28). We also
s inspected how MICRA-Net performed on a second auxiliary task: the segmentation of Axon DAB regions
s00  (Supplementary Fig. 29a). For this purpose, an Expert carefully highlighted the boundaries of 170 positive
si0 Axon DAB regions sampled from the testing set. As in the detection task, MICRA-Net had the same
s tendency of achieving better performance with PU ratios above 1:2 and could obtain a maximal IOU score
sz 0f 0.62 & 0.03 with the 1:5 ratio (Supplementary Fig. 29 & Supplementary Tab. 21). Application of MICRA-
s13 Net to this electron microscopy annotation task was thus successful to reduce the burden of generating the
;14 training dataset, while also significantly increasing the discovery of regions of interest that were missed by
;15 the manual Expert annotation.

s 3 Discussion
s1z - While pixel-wise metrics and ground-truth annotations are well established in the field of DL and computer

s1s  vision with natural images, retrieval of ground truth annotations in biomedical imaging is a laborious process,
a0 requires highly-trained Experts, and annotation imprecision often occurs [3, 42] (Figure [1). This stresses
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Figure 6: MICRA-Net is used as a tool to assist Experts in the detection of sparse Axon DAB markers in
large SEM images of ultrathin mouse brain sections. a) Schematic representation of the proposed approach.
MICRA-Net is first swept over the entire field of view with a 75% overlap in both directions to output the
probability of presence of an axonal DAB markers. The probability of overlapping crops are then averaged
to generate a probabilistic map of positions. The plausible regions are then viewed by the Expert who can
accept or decline it. For each accepted region, MICRA-Net generates a segmentation map of the Axon DAB.
b) The total percentage of annotated area is color-coded as a function of the positive-unlabeled (PU) ratio
at the inter-expert for different recall. Using MICRA-Net trained with a PU ratio of 1:5 as an assisting
tool results in the validation of approximately 3% of an image which would require an Expert less than 15
minutes to validate the complete testing set (44 images) and result in a recall of 0.9. The annotated area as
a function of the recall for each PU ratio is shown in Supplementary Fig. 27. ¢) Total number of detections
from the testing dataset with and without assistance from MICRA-Net. Using MICRA-Net the Expert could
identify 57 new Axon DAB positive regions which correspond to an increase of 25% in the total number of
detections. The scale bar is 5 pm for the full field of view and and is 1 pm for extracted crops.

the need for weakly-supervised DL approaches that do not rely on spatially precise annotations of the
structure of interest, but rather on annotations that are easier and faster to retrieve. MICRA-Net, a CNN-
based method, relies on the information embedded in the latent space of a main simple task, in our case
classification, to learn multiple complementary tasks without the need to generate task-specific precisely
annotated training sets. We designed multiple experiments to challenge MICRA-Net at solving common
microscopy tasks (segmentation, enumeration, or localization) relevant to high-throughput microscopy image
analysis [3, 9]. Unlike multi-task learning [43], MICRA-Net does not combine auxiliary tasks to increase the
learning performance of a main task, nor requires more annotations from the dataset for each task [44l, 45].
Hence, the use of MICRA-Net should significantly reduce the burden of task-specific annotation of bioimaging
datasets thereby increasing the accessibility of such deep learning based microscopy image analysis.

Our results show that MICRA-Net can be applied to various microscopy modalities and biological con-
texts, while significantly reducing the number of required Expert decisions to generate the training dataset
(Figure ) While fully-supervised DL approaches (e.g. based on U-Net or Mask R-CNN architectures) have
the drawback of being costly to train, they can benefit from pre-training [9, 406, [47] given the image space
is similar [48], and have access to precise information about the structure boundaries. On the other hand,
MICRA-Net leverages on the extraction of spatial features from the hidden layers of the network to generate
detailed feature maps using solely, easy to retrieve, binary image-level annotations for training. Considering
the observed reduction of the inter-expert variability when diminishing the complexity of the annotations,
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338 this will be an important aspect for future applications leveraging on crowd-sourced annotations for training.
s3s  MICRA-Net provides similar or even superior performance on multiple tasks to the state-of-the art weakly-
a0 and fully-supervised learning approaches, thus making it an unprecedented alternative to address bioimaging
sa1  analysis challenges for which large and precisely annotated datasets are not available.

342 Additionally we demonstrated that MICRA-Net could be fine-tuned when facing strong variations in
sa3 the quality of the available datasets, for example when images were acquired on two different microscopes.
saa Fine-tuning of the architecture on few images from another microscopy system was sufficient to achieve
sas  better detection efficiency than inter-expert agreement. This is of particular interest for large-scale studies,
sas  conducted on multiple sites, that require analysis framework to be easily adaptable to new experimental
sz conditions [33], 49, 50]. Future work on fine-tuning of such approaches to new structures of interest and
sas  analysis task will be an important step to increase their accessibility to a larger network of researchers.

340 Lastly, MICRA-Net was used to assist an Expert to perform a complex annotation task, that is the
3o detection of small sparse objects (sections of genetically-labeled axons) in large fields of view of brain sections
51 imaged with Scanning Electron Microscopy. Originally, this task was prone to identification errors and
2 fatigue, limiting the performance of the Experts, and increasing inter-expert variability. MICRA-Net was
ss3 successfully applied to assist the Experts at finding possible positive regions in the images. Instead of
ssa  screening the whole field of view, Experts could focus their attention on less than 5% of the image and
s quickly decline or accept the proposed regions. This allowed an increase in the total number of detected
sse  regions of interest (genetically-tagged axons) by 25% while reducing the required annotation time for newly
37 acquired images by 30 folds.

358 Precise annotations, even if obtained from trained Experts, are associated with inter-participant variabil-
30 ity, especially when defining the boundaries (Figure . This variability needs to be assessed to characterize
s the annotated dataset and the precision of the neural network precision [3] 51]. We observed that image-level
se1  binary annotations can help to increase the consistency among Experts by reducing the complexity of the
sz annotation task. By alleviating the annotation burden, an approach such as MICRA-Net can help increasing
ses  the accessibility of deep learning assisted quantitative image analysis in microscopy. As a whole, it can be
sea  used in multi-class detection, segmentation, counting, and classification tasks in bioimaging, for which a
ses precisely annotated dataset is not available or tedious to obtain.
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=« 4 Methods

sis 4.1 MICRA—Net
s1e 4.1.1 Architecture

si7  Figure [Zh shows the schematic representation of the MICRA-Net architecture. MICRA-Net is based on
sie the encoder part of a U-Net [3I]. The rationale is that U-Net is an established method to solve different
s10  analysis tasks (e.g. segmentation, localization, detection) on biomedical datasets. Each depth of the network
s20 contains two blocks of convolutions (kernel size of 3) followed by batch normalization, and ReLU activation.
s22 ' The number of filters in the convolutional layers is doubled after maxpooling (stride and kernel size of 2) to
s22 increase the richness of the representation. The number of filters for each layer is {32,64,128,256}. Global
523 maxpooling on the output layer allows a reduction of the dimensionality and a fully connected layer (FCL)
s2 is used to provide a classification prediction. Dropout (probability of 0.5) is applied on the input features of
s2s  the FCL.

526 At inference, MICRA-Net predicts a whole image target from a given sample. Then, from each activated
s2z class ¢, a local map L! is calculated from the weighted combination of the activation map A“* and the
s22 mean gradient af , of each [ layer [28]. The mean gradient «f , is calculated from the backpropagated class
s20 activation y° 7 ,

(&
o=y 1)
i g aAi,j
gradients via backprop

530 The local map L' is calculated as the linear combination of the activation map and the mean gradient of
ss1 each layer of convolutions in the network

L'=Y"af, AW, (2)
k

532 Since MICRA-Net produced spatially reduced feature maps, local maps were upsampled using nearest
s33 neighbor interpolation to match the input image size of 256 x 256 pixel. These images were then normalized in
ssa  the range [0, 1] using a min-max scaling. ReLU activation is applied on the last layer (L®) of the network, as
s35  in the seminal implementation of Grad-CAM [2§], to be used for the coarse segmentation. Local maps from
sse layers L1~7 (Figure —c) were concatenated into a feature space and retrieved the first principal component
sz of every pixel using principal component analysis (PCA) [62] decomposition to retain prominent information
sss  from the feature space. The network was built and trained with the PyTorch library [53].

539 To facilitate the analysis of new images using MICRA-Net, a graphical user interface (GUI) is provided
se0  to qualitatively analyse the influence of each local map (Supplementary Fig. 30). While the implementation
sar of MICRA-Net uses layers L'~7 with a PCA decomposition of the resultant feature space, the GUI allows to
sz arbitrarily combine different local maps of the MICRA-Net architecture and threshold the resultant detailed
sa3 feature map.
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sas 4.1.2 Training procedure

ses The general training procedure of the MICRA-Net architecture are reported within this section. For specific
sas  training details for each dataset, see Supplementary Notes [I}5. MICRA-Net was trained using the Adam
se7  Optimizer with a learning rate specific to each dataset and other default parameters [54]. A learning rate
sas scheduler was used to reduce the learning rate of the optimizer with a minimal possible learning rate of
sao 1 x 107°. The number of training epochs was adapted to the specific dataset (Supplementary Tab. 22-26).
sso  Rarly stopping was used to reduce overfitting. Unless otherwise specified, we used binary cross entropy with
ss1 logits loss. We kept the model with the best generalization properties on the validation set (calculated from
ss2 the objective loss function).

553 Data augmentation was used to increase the performance of the network. Refer to Supplementary Tab. 22-
ssa 26 for a detailed data augmentation procedure for each dataset. All operations were applied in a random
sss  order with a probability of 50%.

sse 4.1.3 Auxiliary tasks

ss7 T'his section presents how MICRA-Net can be used to solve the common auxiliary tasks in microscopy images.
558 Classification. The classification task is used on all presented dataset in the paper. It serves as a
sso  guideline to validate the representation capability of MICRA-Net. The classification task is solved by design
seo using MICRA-Net since it is trained using a classification task. The prediction from MICRA-Net are mapped
sex  in the [0, 1] range using a sigmoid function.

562 Semantic segmentation. The semantic segmentation task is solved on all presented dataset in the
sez  paper. This task is solved by first extracting a detailed semantic feature map as described in Section 4.1.1
sea The semantic segmentation masks are obtained by thresholding the resultant semantic feature map using
ses  common thresholding algorithm (e.g. Otsu or percentile thresholding). The dataset specific thresholding is
ses detailed in Supplementary Notes [I}5.

567 Detection. The detection task on the P. Vivax and EM microscopy dataset is solved by predicting the
ses probability of presence of an object on all extracted crops. The overlap between the crops is of 75% in both
seo  directions. Overlapping crops are averaged and reassigned to an output feature map of the same shape as
s70  the image. The detection threshold is inferred from the validation set using a precision-recall curve.

571 Semantic instance segmentation. The semantic instance segmentation task is required on the Cell
sz Tracking Challenge dataset. MICRA-Net is required to predict i) the presence of an object and ii) the contact
sz between objects. The grad-CAMs of the activated objects are extracted from the architecture and combined
s7a using a principal component analysis (PCA) as presented in Section If a contact is predicted on an
s7s  image, the grad-CAM from L® which contains the prominent information of the contact is extracted. The
s7e - contact feature map is subtracted from the object feature map as in some fully-supervised techniques [27].
s77 An Otsu threshold is used to generate the semantic segmentation masks of the instances.

s« 4.2 Datasets
s7o 4.2.1 Modified MNIST dataset

sso  We generated the modified MNIST training dataset by randomly sampling N digits from the original MNIST
se1  training dataset and randomly distributed them on a 256 x 256 pixel field of view. To avoid overlap between
ss2  digits we used a random Poisson disc sampling algorithm with a radius size of 25 pixels [55]. The number of
ss3  digits N was uniformly sampled from {1,2,3,4,5,10,15,20,Max}, where Max corresponds to the maximum
ssa  number of digits that can be placed without overlap. A rotation of +30° uniformly sampled was applied
sss  to the digits before placement on the image. We applied, in a random order, a Gaussian blur with sigma
sss uniformly sampled in [0,2[ and artificial normalized Poisson noise with A = @ The resulting image
ss7  intensities were clipped to lie in [0, 1]. Using this technique, we generated 2000 and 1000 images for training
sss and validation respectively.

589 The modified MNIST testing dataset consists of 1000 images of handwritten digits sampled from the
seo  original MINIST testing dataset. As for the training dataset, we also applied, in a random order, Gaussian
se1  blur and artificial normalized Poisson noise sampled as before.
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so2 4.2.2 F-actin dataset

sos The F-actin dataset was generated by using a sliding window of size 256 x 256 pixel with a stride of 192
sea  pixels over 260 complete images with an approximate size of 1000 x 1000 pixel. Since the super-resolution
ses microscopy images used are mostly composed of background, we set out to keep the crops containing at least
ses  10% of dendritic area thereby reducing the number of crops to identify. The dendritic mask was obtained
sez from the foreground detection on the confocal imaged of the dendritic marker MAP2 using a global Otsu
sos  thresholding on the normalized Gaussian blurred image [2, [35]. The sigma parameter of the Gaussian blur
soo  was set to 20 pixels as it provided suitable dendrite detection over a wide range of images. We next annotated
eoo each generated crop as being positive to the presence of the F-actin periodical lattice or longitudinal fibers.
sox The resulting training dataset contained 3832 crops (256 x 256 pixel, 897 images positive to the periodical
ez lattice and 1456 positive to the longitudinal fibers), the validation dataset contained 1287 crops (405 positive
e03 to periodical lattice and 377 positive to fibers), and the testing dataset contained 416 crops (83 positive to
sos periodical lattice and 132 positive to fibers). The images were rescaled to lie in the [0,1] interval. The
eos maximum value for scaling (max) was obtained by sampling the maximal value of all training images from
eos which we calculated the median in addition to 3 standard deviation. The minimum value was calculated as
ez the median of minimas (min). To ensure a proper scaling of the images we also added a scaling factor of 0.8
T —min

/
x

3)
608 To evaluate the segmentation performance of the trained models, an Expert precisely highlighted the
eos contours of the structures in 50 images (25 images positive to periodical lattice and 25 images positive to
e10 fibers) randomly sampled from the testing set. This small segmentation dataset only served to compare
e11  the segmentation performance from the MICRA-Net, weakly-supervised baselines (U-Net, Mask-R-CNN,
sz Ilastik), and User-Study.

- 0.8(max — min)’

61z 4.2.3 Cell Tracking Challenge dataset

s1a  We selected 6 cell line datasets from the Cell Tracking Challenge (CTC) [8]: the DIC-C2DH-HeLa dataset
e1s  which was acquired using differential interferometry contrast microscopy, three non-synthetic fluorescence
e16 microscopy datasets (Fluo-C2DL-MSC, Fluo-N2DH-GOWT1, and Fluo-N2DL-HeLa) and two phase contrast
ez microscopy datasets (PhC-C2DH-U373, and PhC-C2DL-PSC). All original images were rescaled in the [0,
e 1] range using a per image min-max scale. We then resized each image and associated precise annotations
e10 according to the specific needs using bi-linear interpolation and nearest neighbors respectively with the
o0 Scikit-Image [56] Python library (Supplementary Table 6 for scaling factors). We used a sliding window of
621 size 128 x 128 pixel or 256 x 256 pixel with a 25% overlap between crops in both directions. Using this sliding
e22  window technique yielded a total of 27,106 positive crops and 3,364 negative crops for the 256 x 256 pixel
e23 crops resized to have an effective pixel size of 0.5 pm. The sliding window with size 128 x 128 pixel crops
e2« and resized to have single cells in the field of view yielded a total of 66,466 positive crops (20,724 positive
e2s  to contact) and 88,722 negative crops for training and 17,621 positive crops (5,606 positive to contact) and
e26 22,279 negative crops for validation. We simulated weak annotations from the precise contours of the cells
ez provided in the original CTC dataset by identifying an image crop as positive if the corresponding annotated
e2s crop contained at least the size of the average annotated cell, and negative otherwise. To evaluate the
e20 segmentation and detection tasks, we manually segmented 4 images randomly sampled per cell line in the
e30 testing set.

31 4.2.4 P. Vivax dataset

ez We used image set BBBC041v1, available from the Broad Bioimage Benchmark Collection [33]. The complete
e33 dataset contained 1327 3-channel images and was already split into a training (1207 images) and testing
e3s (120 images) set. The dataset is composed of blood smears that were stained with Giemsa reagent [39]
e3s and acquired on three different brightfield microscopes from three different laboratories. All blood smears
e3¢ (infected or uninfected) were annotated using bounding boxes. The blood smears were later classified as
e37 infected (gametocytes, rings, trophozoites, and schizonts) or uninfected (red blood cells, and leukocytes)
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e3s by an Expert. The task was to differentiate infected from uninfected blood smears. The dataset is highly
e3o unbalanced towards red blood cells which composes over 95% of the annotated cells.

640 For training and testing, we applied a whitening normalization (null mean and standard deviation of 1)
eax  to each image (and channel) to minimize the impact of a very different intensity distribution. The binary
es2 targets for training were generated using the provided bounding boxes. A crop was considered as positive if
ess it contained at least 5% of overlap with an infected cell, otherwise as negative. The crops were 256 x 256
644 pixel.

6as We manually extracted and precisely annotated all infected cells in the testing set resulting in 303 small
eas  crops of size 256 x 256 pixel centered on the cell of interest.

eaz 4.2.5 Scanning Electron Microscopy dataset

ess  The dataset contained 92 images of 10,240 x 10, 240 pixel for training, 66 for validation, and 44 for testing.
sss  An Expert annotated the images using positional markers to locate the Axon DAB markers. On average the
eso large fields of view contained 3 small detections (113 x 113 pixel, between 1 and 10 detections per image).
es1  This resulted in an annotation time of approximately 30 minutes per field of view. Training and inference
es2 was performed on 512 x 512 pixel size crops. The dataset contained all positive crops (1024 x 1024 pixel,
es3  centered on the Axon DAB markers), and all negative crops (without overlap). To manually annotate the
esa images the Expert inverted the acquired images. Hence, we provided MICRA-Net with the inverted image
ess  to mimic the Expert task. We rescaled the provided 8-bit depth images in the [0, 1] range by dividing by a
ess  scalar value of 255.

657 All Axon DAB markers were extracted from the testing set (170 positive markers) and an Expert carefully
ess  identified their contours.

o 4.3 Evaluation procedure
es0 4.3.1 Classification

esx The classification accuracy of MICRA-Net was evaluated by inferring the testing images. To quantitatively
es2 assess the performances, the classification accuracy was calculated for each trained model. We reported the
ez mean + standard deviation of the trained models.

eea 4.3.2 Detection

ess The centroid of each detected object was obtained from MICRA-Net by using the dataset specific procedures
sss detailed in Supplementary Notes[I}5. Each detected centroid was associated with the centroid of objects in
ez the ground truth mask using the Hungarian algorithm [57] with a maximal distance of N pixels, where N
ess 1S approximately the object radius. In this context, an associated detected object is considered as a true
eeo positive, a non-associated detected object is a false positive, and a missed ground truth object is a false
oo negative. To evaluate the detection capability of MICRA-Net, we reported the Fl-score. For a quantitative
o1 comparison, we repeated the evaluation for each trained model. We then bootstrapped the average of the
o2 trained models to show the bootstrapped mean and 95% confidence interval (10000 repetitions).

o3 4.3.3 Segmentation

e7a The segmentation performance of the trained models was evaluated using three common evaluation metrics:
ers  Fl-score, Intersection Over Union (IOU), and the Symmetric Boundary Dice (SBD) [58]. If multiple instances
e7e  Oof a model were trained on the same task, we bootstrapped the average of the trained models to show the
ez bootstrapped mean and 95% confidence interval (10000 repetitions).

s 4.3.4 Instance segmentation

oo Prior to evaluation, we removed small objects (<20 x 20 pixels) from the segmentation mask and filled holes
eso for all trained models. All segmentation masks were resized to the baseline scale (Supplementary Table 6)
es1 for proper comparison. The instance segmentation performance were evaluated using the method proposed
es2 by [27] (Supplementary Figures 19-22). Briefly, this method evaluates the detection and failures of the
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es3 architecture dependant on the IOU. [27] used a minimal IOU of 0.5 to avoid multiple predicted objects to
esa be associated with a ground truth object. The goal is to maximize the Fl-score vs. IOU, while the failure
ess modes should be minimized. We on the other hand solved the association between the ground truth and
ess predicted objects using the Hungarian algorithm [57], which allowed to report the performance and failure
esz modes across the entire range of IOU. Using a broader range of IOU allows to report the performance
ess in instance detection and segmentation. The normalized area under the resultant curves for each trained
eso model is bootstrapped to obtain the mean and 95% confidence interval (10000 repetition) and is reported
soo in Figure[4]

o1 4.3.5 Custom performance metrics

e02 The F-actin periodical lattice is detected as an oscillating pattern between high- and low-intensity stripes
e03  with 180-190 nm periodicity [32]. We designed a metric that would take this periodicity into account to
eea evaluate the MICRA-Net detailed segmentation performance. We computed, as a baseline, the Fourier
eos transform (FT) of the original image (FT},) and the FT of the segmented regions: for the Expert (FT,),
eos and for the predicted segmentation masks (FTpreq). The variation from the baseline was computed as the
sor difference in the FT spectrum, for spatial frequencies in the range [170,200[ nm, between FT, ,rcq and FT,
eos over the sum of FT,. A smaller absolute difference between the variation of the Expert and the variation of
e00 the predicted mask implies more similar segmentation.

700 Since F-actin fibers are contiguous and have a high intensity on the dendrites, we designed a metric that
7o would use the distribution of pixels under a segmented mask. The rational behind this metric is that the
72 F-actin nanostructures on dendrites are composed of both high- and low-intensity pixels. Since F-actin fibers
703 have high intensities, a detailed segmentation of fibers would imply few low intensity pixels annotated, while
70a @ coarse segmentation would introduce more low-intensity identified pixels. Hence, we considered a pixel
zos  within the segmentation mask as part of a fiber if its value was superior to a given threshold. We calculated
706 this threshold by first measuring the 25" percentile of pixel intensities outside of the Expert mask for all
7z images. We then extracted the 90" percentile intensity values from all images containing F-actin fibers.
zs  This resulted in a threshold between high- and low-intensity pixels within the dendritic mask of 9.

70 4.4 User-Study

720 We conducted two different User-Study in this paper, one for the F-actin nanostructure segmentation and one
711 for the instance segmentation on the Cell Tracking Challenge. All participants were familiar with bio-medical
712 images.

713 4.4.1 F-Actin segmentation

71 We performed a User-Study in which six participants highlighted the contours of the F-actin periodical
715 lattice and longitudinal fibres on a small dataset of 50 images using polygonal bounding boxes. We used
716 polygonal bounding boxes as this annotation method reduces the time required by a participant by more
71z than 3 folds compared to precisely identifying the boundaries of the structures (Supplementary Fig. 11). We
718 used our own annotation application that was optimized for this type of task. Annotation of the full dataset
7o required approximately 40 minutes for the participants. The averaged performance of the six participants
720 was compared to MICRA-Net using Fl-score, IOU, and SBD.

721 4.4.2 Cell Tracking Challenge instance segmentation

722 A User-Study was conducted using the Cell Tracking Challenge to analyse the required time per cells and
723 the achievable performance of inter-participant annotation for such task. The User-Study consisted in the
72 annotation the 24 testing image using different level of supervision (precise, bounding boxes, and points).
725 For each level of supervision, the participants were asked to annotate a quarter of the testing image, which
726 was the same for all participants. The image intensity scale was set at a constant value for all participants.
72z The participants used the Fiji software to annotate the images. The median of the participant scores on
728 the testing set are reported, as well as the inter-participant scores. The time required by the participant to
720 annotate each image was recorded, which allowed to calculate the time per cell for each cell-line.
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0 4.5 In-house datasets acquisition
=1 4.5.1 Cell culture, Immunostaining and STED imaging for F-actin imaging

722 Before dissection of hippocampi, neonatal Sprague Dawley rats were sacrificed by decapitation, in accordance
733 to the procedures approved by the animal care committee of Université Laval. Dissociated cells were plated
73 on poly-d-lysine coated glass coverslips, fixed and immunostained as described previously [2]. F-Actin was
235 stained with Phalloidin-STAR635 (Abberior GmbH, Germany). Dendrites Microtubule-Associated-Protein
73s  (MAP2) [2]. STED images of the F-Actin nanostructures were acquired on a 4 color Abberior Expert-Line
737 STED microscope (Abberior Instruments GmbH, Germany), equiped with a 100x 1.4 NA oil objective and
73e  using pulsed (40 MHz) excitation (640 nm) and depletion (775 nm) lasers. Fluorescence was detected with
73 an Avalanche Photodiode (APD) and a ET685/70 (Chroma, USA) fluorescence filter. Pixel size was set to
7a0 20 nm.

7za1 4.5.2 Animals and stereotaxic injections for scanning electron microscopy dataset

72 This study was carried out on 3-month-old mice, weighing 25-35g. Animals were housed under a 12h light-
7a3  dark cycle with water and food ad libitum. All procedures were approved by the Comité de Protection des
7aa  Animauz de I’Université Laval, in accordance with the Canadian Council on Animal Care’s Guide to the Care
zas and Use of Experimental Animals (Ed2), and with the ARRIVE guidelines. Maximum efforts were made
746 to minimize the number of animals used. Transgenic e-Pet Cre mice expressing Cre recombinase under the
za7  control of Fev promoter, known to be specific for serotonin (5-HT') neurons [59], were injected in the dorsal
zes raphe nucleus (DRN) with 1ul of AAV9-CAG-DIO-APEX2NES-WPRE. Stereotaxic injections were done
7a0  using a 30° angle along the frontal plane at AP: -4.78; ML: +2.00 and DV: -3.20. In these injected transgenic
70 mice, the small engineered peroxidase APEX2 [40)] is specifically expressed in the cytosol/cytoplasm of 5-HT-
71 infected neurons of the DRN and is used, in presence with hydrogen peroxide, to oxidize 3,3 Diaminobenzidine
72 (DAB) chromogen that can readily be visible at the light and electron microscope levels.

73 4.5.3 Tissue preparation for scanning electron microscopy dataset

7sa  After a period of 21 days following stereotaxic injection, mice were anesthetized with a mixture of ketamine
75 (100mg/kg) and xylazine (10 mg/kg) and transcardially perfused with 50ml of phosphate-buffered-saline
76 (PBS: 50mM at pH 7.4) followed by 150 ml of 4% paraformaldehyde (PFA) and 1% glutaraldehyde diluted
757 in phosphate buffer (PB; 100 mM at pH 7.4). Brains were dissected out, post-fixed for 24h in the same fixative
7ss  solution and cut with a vibratome (model VT'1200; Leica, Germany) into 50 pm-thick frontal sections, which
70 were serially collected in sodium phosphate buffer saline (PBS, 100 mM, pH 7.4). Frontal brain sections at
760 the level of the subthalamic nucleus (STN) were processed to reveal the presence of APEX2 in axons arising
761 from DRN-infected neurons using 3,3’diaminobenzidine (DAB; catalog no. D5637; Sigma-Aldrich) as the
7e2 chromogen. Briefly, selected 50 pm-thick sections were washed 3 times in PBS and then twice in Tris.
7z Sections were then incubated for 1h in 0.05% DAB solution diluted in Tris, then for 1h in 0.05% DAB
76 solution containing 0.015% hydrogen peroxide (H2O2). Sections were then rinsed twice in Tris and 3 times
7es in PBS. Sections were temporally mounted in PBS and coversliped for light microscope examination. STN
7es  sections containing DAB-labeled axons were selected for further processing. These sections were washed
767 3 times in PB, then incubated during 1h in 2% osmium tetroxide diluted in 1.5% potassium ferrocyanide
7es  solution. They were then washed 3 times in ddH5O, incubated for 20 min in 1% thiocarbohydrazide (TCH)
76 solution and washed again 3 times in ddHO. Sections were placed 30 min in 2% osmium tetroxide and
770 washed 3 times in ddH5O. Sections were then dehydrated in ethanol and propylene oxide and flat-embedded
772 in Durcupan (Electron microscopy Science). Areas of interest were cut from embedded sections and glued
772 to the tip of resin blocks. Blocks were cut with an ultramicrotome (Leica EM UC7) in ultrathin sections
773 (80 nm), which were serially collected on silicon-coated 10 x 10 mm chip wafer (Ted Pella, Inc; #16006).

772 4.5.4 Scanning electron microscopy (SEM)

775 Serial sections were imaged in a SEM (Zeiss Gemini 540) with the help of the ATLAS acquisition software.
776 Images were acquired at a resolution of 5 nm/pixel, using acceleration voltage of 1.4kV and current of 1.2 nA.
77z Serial sections acquisitions produced a stack of 38 rectangle images of 25370 x 25633 pixel (126.850 x 128.165
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77s microns) taken out of 38 ultrathin sections. In addition, a large single section acquisition was acquired and
77 produced a single trapezoidal image of 31065 pixels for the small base (155.329 microns), 91393 pixel for the
780 large base (456.967 microns) and 53161 pixels for the height (265.809 microns). All acquired images were
zs1  subdivided into overlapping square tiles of 10240 x 10240 pixel (51.2 x 51.2 microns).

2 4.6 Statistical assessment using resampling

zs3  Resampling was used as a statistical test to verify the statistical difference between two groups [60]. Statistical
7sa  analysis was performed using a randomization test with the null hypothesis being that the different conditions
7ss (A, B) belong to the same distribution. The absolute difference between mean values of A and B was
7ss  calculated (Dgy = |4 — pp|). For the randomization test, each value belonging to A and B was randomly
ze7 reassigned to A’ and B’, with the sizes of A’ and B’ being N4 and Np, respectively. The absolute difference
7ss  between the mean values of A’ and B’ was determined (Dyana = |tas — 45/]) and the randomization test was
7o repeated 10000 times. The obtained distribution was compared with the absolute difference of the mean of
70 A and B (Dyy) to verify the null hypothesis.

701 When the number of groups was greater than 2, the F-statistic was sampled from each group using a
72 resampling method. The F-statistic was calculated from all groups (A, B, C, etc.) as a ground truth (Fgt).
703 Each value was randomly re-assigned to new groups (A’, B’, C’, etc.) where group X’ has the same size
70 as group X. The F-statistic of newly formed groups (Franga) was calculated and this process was repeated
705 10000 times. We compared Frang with Fg¢ to confirm the null hypothesis that the groups have the same
7e6 mean distribution. When the null hypothesis was rejected, i.e. at least one group did not have the same
7ez  mean distribution, we compared each group in a one-to-one manner using the randomization test described
7es above. In all cases, a confidence level of 0.05 was used to reject the null hypothesis. Since the precision of
700 the calculation of the p-value is limited to %7 where N in the number of repetitions, we report a p-value of
soo < 1.0000 x 10~* instead of 0.

sa 4.7 Evaluation of required decisions and time for fully-supervised training

so2 F-actin: The number of decisions for a fully-supervised training dataset was estimated as the mean number of
sz edge pixels in the 50 precisely annotated images multiplied by the total number of positive crops. The mean
soa annotation time per crop was calculated using the precisely annotated dataset. Cell Tracking Challenge:
sos The mean image annotation time of 900 seconds was obtained from the precise annotation of each image of
sos the testing set. P. Vivax: The annotation time for fully-supervised annotations was estimated at 2 minutes
soz per image from the precise annotation of 10 images. Electron Microscopy: The required annotation time
sos was calculated as the average time required by the Expert per image (30 minutes per image, 156 images)
sos  to detect all axon DAB markers. We added 14 seconds (calculated from highlighting the contours of the
s10  Axon DAB regions on the testing set) for each positive detection (537 detections) to account for precise
s11  annotation.
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