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Abstract 19 

The SARS-CoV-2 pandemic has raised the concern for identifying hosts of the virus 20 

since the early-stage outbreak. To address this problem, we proposed a deep learning 21 

method, DeepHoF, based on extracting the viral genomic features automatically, to 22 

predict host likelihood scores on five host types, including plant, germ, invertebrate, 23 

non-human vertebrate and human, for novel viruses. DeepHoF made up for the lack of 24 

an accurate tool applicable to any novel virus and overcame the limitation of the 25 

sequence similarity-based methods, reaching a satisfactory AUC of 0.987 on the five-26 

classification. Additionally, to fill the gap in the efficient inference of host species for 27 

SARS-CoV-2 using existed tools, we conducted a deep analysis on the host likelihood 28 
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profile calculated by DeepHoF. Using the isolates sequenced in the earliest stage of 29 

COVID-19, we inferred minks, bats, dogs and cats were potential hosts of SARS-CoV-30 

2, while minks might be one of the most noteworthy hosts. Several genes of SARS-31 

CoV-2 demonstrated their significance in determining the host range. Furthermore, the 32 

large-scale genome analysis, based on DeepHoF’s computation for the later world-wide 33 

pandemic in 2020, disclosed the uniformity of host range among SARS-CoV-2 samples 34 

and the strong association of SARS-CoV-2 between humans and minks. 35 

KEYWORDS: Host prediction; Deep learning, Mink; SARS-CoV-2; Early stage of 36 

pandemic 37 

 38 

Introduction 39 

The global COVID-19 pandemic caused by severe acute respiratory syndrome 40 

coronavirus 2 (SARS-CoV-2) has raised the long-lasting quest for hosts of the virus 41 

since the pandemic outbreak, meanwhile the majority view is that the virus probably 42 

originated from bats [1]. So far there have been many discussions for the potential hosts 43 

despite an initial pointer to Manis javanica (pangolins) [2, 3], most of the suppositions 44 

were based on the increasing cases of animal infection, such as dogs, cats, tigers, lions, 45 

and minks [4, 5], etc. Several studies performed experiments to investigate the 46 

susceptibility of a limited number of model animals [6-8]. At the same time, some 47 

studies attempted to reveal the range of hosts based on analysis of molecular sequence 48 

or structural information [9, 10]. For instance, Damas et al., [10] conducted a 49 

computational analysis based on host receptor similarity using the angiotensin-50 

converting enzyme 2 (ACE2) protein and evaluated the infection risks for a broad range 51 

of animals. As the pandemic spreads, minks, which were even not referred to as high 52 

infection animal in above peer-review articles, have been frequently reported massively 53 

infected with COVID-19 over the world [5], and were the only known animal reported 54 

to transmit SARS-CoV-2 to humans [11, 12]. It is worth mentioning that, in January, 55 

2020, we have reported in the form of a preprint archive with predicting minks as a 56 

potential host based on the six earliest sequenced SARS-CoV-2 isolates [13]. However, 57 
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the later complication of pandemic prompts peoples again to have a full review of the 58 

issue of host determination for SARS-CoV-2. This raises a new challenge, which is how 59 

to implement and improve the capability of computational methods to predict the hosts 60 

of a novel virus like SARS-CoV-2, especially when we have relatively small amounts 61 

of samples of sequencing viral data at the early stage of the pandemic outbreak. It is 62 

certainly constructive for similar pandemic caused by novel viruses in the future. 63 

   Generally, the host range of viruses is dependent on molecular interactions between 64 

viruses and host cells including receptor recognition, adaptions to the host cellular 65 

machinery and evading innate immune recognition [14]. Of these, receptor recognition 66 

that facilitates the attachment of viruses to the host cells is the most primary step. Thus, 67 

the glycoproteins that viruses use to recognize the host receptor as well as the whole 68 

genome sequences are widely used in identifying the potential hosts of viruses [1]. To 69 

detect the potential host and pathogenicity of novel viruses, the conventional 70 

computational methods are almost based on similarity of either virus genome 71 

composition or host receptor. Limitations of the both strategies lie in that they assume 72 

phylogeny may reflect host association. However, this assumption is untenable from 73 

the perspective of epidemiology and evolution. On the one hand, viruses occasionally 74 

shift between distantly related host species. On the other hand, owing to the long-term 75 

adaptation to the hosts, the viral genomic characteristics acquired from hosts can be 76 

quite incompatible with the virus phylogenetic groups [15]. The specificity of 77 

recognition between viruses and host species also involves structural information in 78 

some key domains of both viral proteins and host receptor proteins, such as the receptor-79 

binding domain, that sequence similarity is insufficient to explain. For example, the 80 

civet-specific K479 and S487 residues of SARS-CoV spike glycoprotein can efficiently 81 

bind to civet ACE2 but have much less affinity to human ACE2 [16, 17]. This is also 82 

the reason that the similarity-based method of host ACE2 proteins sequences fails to 83 

predict minks as host of high and very high risk for SARS-CoV-2 infection [10]. 84 

   Until now, several published tools aimed to identify the hosts of viruses exceeded 85 

the limitation of sequence-similarity-based strategies by machine learning methods 86 
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with viral sequences or their genomic traits related to virus-host interactions, such as 87 

ViralHostPredictor [15], HostPhinder [18], WIsH [19], Host Taxon Predictor [20], and 88 

VIDHOP [21]. While these tools performed well under some conditions, they are 89 

actually not considered feasible to be applied to a novel virus without the knowledge 90 

of host range, like SARS-CoV-2. HostPhinder and WIsH predict hosts for only 91 

bacteriophages and they are inappropriate for non-phage viruses. Host Taxon Predictor 92 

focuses on distinguish bacteriophages and eukaryotic viruses. ViralHostPredictor 93 

predicts hosts and the existence and identity of arthropod vectors for human-infecting 94 

RNA viruses by Gradient boosting machines with the features of selected evolutionary 95 

genomic traits and phylogenetic information. It also illustrated the better ability of 96 

machine learning methods to predict virus hosts compared to the way of sequence 97 

similarity comparison. However, ViralHostPredictor cannot determine whether human 98 

is the host of a novel virus. With the utilization of evolutionary signatures, 99 

ViralHostPredictor lacks power to predict incidental hosts which do not maintain long-100 

term circulation of new viruses. Moreover, the predictive abilities of the methods above 101 

rely on the handcrafted features like codon pair scores, k-mer frequencies and amino 102 

acid biases, which might neglect other important information encoded in the virus 103 

genomes. VIDHOP, a deep-learning-based tool, is designed to predict potential hosts of 104 

viruses, but its application was limited into three viral species: influenza A, rabies 105 

lyssavirus and rotavirus A. 106 

   To address the challenge of predicting probable hosts of a novel virus like SARS-107 

CoV-2, we proposed the host prediction algorithm DeepHoF (Deep learning-based 108 

Host Finder) in the current study. Developed based on BiPath Convolutional Neural 109 

Network (BiPathCNN), DeepHoF automatically extracts the genomic features from the 110 

input viral sequences. The model finally outputs five host likelihood scores and their p-111 

values on five host types, including plant, germ, invertebrate, non-human vertebrate 112 

(refers to other vertebrates except humans) and human, where all the living organism 113 

hosts are covered. DeepHoF was designed as a five-class classifier containing five 114 

independent nodes in the output layer with sigmoid activation and binary cross-entropy 115 
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loss function for each node, corresponding to five independent binary classifications on 116 

the five host types individually. DeepHoF made up for the lack of efficient method 117 

applicable for any novel virus and significantly outperformed the Basic Local 118 

Alignment Search Tool (BLAST)-based strategy with the evidently high AUC of 0.987 119 

on the classification of five host types. In January 2020, we have reported the host 120 

prediction for six earliest sequenced SARS-CoV-2 isolates employing our algorithm 121 

[13]. In this study, we furthered the work using the 17 earliest sampled SARS-CoV-2 122 

isolates, which provides essential information in the early epidemic of the virus. 123 

DeepHoF evaluated the host likelihood scores on humans and non-human vertebrates 124 

for the earliest samples and characterized the isolates with their host likelihood score 125 

profiles. As there existed a blank in the inference of host species for SARS-CoV-2 using 126 

the tools which were state of the art, we conducted a deep analysis on the host likelihood 127 

score profile predicted by DeepHoF to find the detailed hosts, including both reservoirs 128 

and susceptible hosts which are not discriminated in this study. We inferred minks, bats, 129 

dogs and cats were the probable hosts, while minks maybe one of the most noteworthy 130 

hosts. The inference was supported by the infection facts or animal experiments in the 131 

later pandemic. Based on our model, several genes of SARS-CoV-2 were further 132 

investigated and demonstrated their significance in determining the host likelihood 133 

scores on human or the host range for SARS-CoV-2, respectively. With a large-scale 134 

genome analysis based on DeepHoF’s computation for the later world-wide pandemic, 135 

the uniformity of host inference among a large number of SARS-CoV-2 samples was 136 

verified, and the association of SARS-CoV-2 between humans and minks was disclosed. 137 

Supported by the satisfactory performance on five host type classification and the 138 

successful application in SARS-CoV-2, DeepHoF has the capability to provide reliable 139 

host information of novel virus, and is expected to narrow the time lag between novel 140 

virus discovery and prevention at the early-stage of epidemic prevention. 141 

 142 

Results 143 

Performance of the DeepHoF algorithm 144 
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The DeepHoF algorithm is designed as a five-class classifier using the deep learning 145 

method of BiPathCNN (see Methods). Herein five likelihood scores on five host types, 146 

including plants, germs, invertebrates, non-human vertebrates, and humans, are 147 

calculated by DeepHoF. The host likelihood score profile consisting of five predicted 148 

scores, is then analysed in depth to find the specific hosts of a novel virus such as SARS-149 

CoV-2 in this study. As mentioned above, the existed bioinformatics tools [15, 18-21] 150 

were not designed to perform the prediction of the host likelihood scores on the five 151 

host types for any given virus, and thus cannot be compared with DeepHoF directly. 152 

And therefore, we compared the performance of DeepHoF model with BLAST (details 153 

of finding host using BLAST are described in Supplementary Methods), adopting six 154 

classification metrics: true-positive rate (TPR), false-positive rate (FPR), area under the 155 

curve (AUC), precision, accuracy and F1-score. To assess the performance of predicting 156 

novel viruses, we used training and test datasets divided in chronological order [22] 157 

(Methods). There is no overlap of virus species in training and test sets. With an evident 158 

higher AUC of 0.987, DeepHoF can significantly outperform BLAST (with the average 159 

AUC of 0.833) as shown in Figure 1A and Table 1 (a detailed comparison on each host 160 

type is illustrated in Supplemental Figure S1 and Table S1). 161 

   In addition, we compared the utility of DeepHoF and a phylogenetic tree to 162 

discriminate the human-infecting and non-human-infecting coronaviruses using their 163 

whole genome sequences. As shown in Figure 1B (the left), DeepHoF could identify 164 

evidently higher probabilities of human-infecting coronaviruses to infect humans (two-165 

sided unpaired Welch Two Sample t-test, p-value = 1.73210-10). However, the 166 

phylogenetic analysis result was not satisfactory owing to the weak homology among 167 

the human-infecting coronaviruses, which were scattered around the phylogenetic tree 168 

of coronaviruses (Figure 1C). The comparison was similar for the inferences using their 169 

spike glycoprotein coding genes (S genes) as shown in Figure 1B (the right), and D 170 

(two-sided unpaired Welch Two Sample t-test, p-value=3.65710-5). This result is 171 

nontrivial because S genes are essential in coronavirus-host interaction [23]. Clearly, 172 
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DeepHoF can overcome the limitation of sequence similarity-based method and shows 173 

superior predictive ability especially for novel viruses. 174 

Host prediction of SARS-CoV-2 175 

The accurate prediction of hosts of earliest detected isolates can undoubtedly assist the 176 

public health system to take more appropriate preventive measures at the early stage of 177 

the pandemic outbreak. In view of this, we focused on the prediction with SARS-CoV-178 

2 isolates sequenced in the earliest stage of COVID-19 detection, which is closer to the 179 

most recent common ancestor of SARS-CoV-2. Previous to this paper, we have reported 180 

the prediction for the six earliest sequenced SARS-CoV-2 isolates using our algorithm 181 

on 21 January, 2020 [13]. In this study, we further strengthened the prediction of hosts 182 

of SARS-CoV-2 with all 17 earliest detected isolates (including the six earliest ones) 183 

sequenced in December, 2019. Herein we take NC_045512 (complete genome of 184 

SARS-CoV-2 isolate, Wuhan-Hu-1, collected on 31 December 2019 in Wuhan, China, 185 

and used as the representative genome of SARS-CoV-2 in most studies) as an example 186 

to illustrate the workflow of DeepHoF on SARS-CoV-2 isolates (Figure 2).  187 

   For all the 17 SARS-CoV-2 isolates listed in Figure 3A, the host likelihood scores 188 

on non-human vertebrates and humans were assigned p-values less than 0.05 (0.002 189 

and 0.027 respectively), illustrating a high possibility of non-human vertebrates and 190 

humans (Methods) to be the hosts of SARS-CoV-2. Besides, compared to other 191 

coronaviruses released on RefSeq [24], the high similarity of human and non-human 192 

vertebrate host likelihood scores among SARS-CoV-2, SARS-CoV and MERS-CoV 193 

(Figure 3B), would raise an alarm when the infection capabilities of SARS-CoV-2 was 194 

uncertain in the early stage of pandemic. 195 

   To describe the contribution of each gene in the determination of the host likelihood 196 

scores of SARS-CoV-2 isolates (use NC_045512 as a representation), we used each 197 

gene sequence of SARS-CoV-2 as the input of DeepHoF and predicted the host 198 

likelihood scores for each gene. We found that the S gene, ORF1ab and ORF7b indeed 199 

acquired high likelihood scores on human host type and thus playing important roles in 200 

determining human as the host (Figure 3C). The fact that several domains on S gene 201 
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and ORF1ab are essential for the coronavirus-host fusion process, host survival or viral 202 

replication [25-27] suggests the rationality of our findings. It is noteworthy that the 203 

linear correlation between the lengths and the host likelihood scores for genes is not 204 

tenable (Supplemental Figure S2). This shows that the importance of ORF1ab is not 205 

due to the remarkable length of the gene. Additionally, our prediction proposes the 206 

necessity of further experimental research on the function of ORF7b in SARS-CoV-2. 207 

Furthermore, we explored how each gene functioning on coronavirus life circle [25-28] 208 

contributed to the human host likelihood scores of SARS-CoV-2, SAR-CoV and 209 

MERS-CoV using the earliest sequenced samples, including 12 SARS-CoV isolates, 9 210 

MERS-CoV isolates and 17 SARS-CoV-2 isolates released in NCBI in 2003, 2012 and 211 

2019, respectively (Supplemental Table S2). The contributions of these genes were 212 

represented by their host likelihood scores on human. We found that ORF1ab was 213 

relatively important in the prediction for all these viruses, which was possibly due to its 214 

functions in viral replication and host survival [27]. The structural genes (S, M, N, and 215 

E genes) in these three viruses contributed differently on the human host type, 216 

illustrating these genes functioned inconsistently in these viruses. Specifically, S gene, 217 

participating in virus-host fusion process, contributed more in SARS-CoV-2 and SARS-218 

CoV, while N gene, eliciting the strong specific antibody responses, played the most 219 

important role in MERS-CoV. Two equivalent genes, ORF9b, attaching membrane in 220 

virion assembly of SARS-CoV, and ORF8b, related to or immune evasion of MERS-221 

CoV, made high contributions on human host likelihood scores for the two viruses. 222 

Moreover, two group-specific genes, ORF7b with unclear function in SARS-CoV, and 223 

ORF3 associated with virial replication and pathogenesis in MERS-CoV contributed 224 

significantly in the two viruses (Figure 3C, Supplemental Figure S3). These 225 

discrepancies might indicate the different significance of these genes among the three 226 

coronaviruses in the interaction with human and give hints to the target of drug design. 227 

It is disappointed that host determination for SARS-CoV-2 is extremely difficult due to 228 

the limited knowledge of the virus world. Therefore, the sequences and host 229 

information of viruses contained in the public database should be valued and fully 230 
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utilized. To fill the gap in the efficient inference of host species for SARS-CoV-2 using 231 

the tools which were state of the art, we deeply analyzed the host likelihood profiles of 232 

viruses output by DeepHoF to seek specific vertebrate hosts of the early-stage SARS-233 

CoV-2 isolates. In this study, we proposed that viruses with the same host species 234 

possessed the host likelihood score profiles close in the five-dimensional space. Based 235 

on this assumption, we compared the host likelihood score profile of SARS-CoV-2 with 236 

those of the non-human vertebrate viruses released in GenBank [29] before the 237 

pandemic outbreak of SARS-CoV-2 (Methods). We found that minks (Mustela 238 

lutreola/Neovison vison) were the most probable host, followed by Chinese rufous 239 

horseshoe bats (Rhinolophus sinicus), dogs (Canis lupus familiaris), Pomona roundleaf 240 

bats (Hipposideros Pomona) and cat family (Felidae) (Table 2, Supplemental Table S3). 241 

In contrast, minks, Chinese rufous horseshoe bats, dogs and cat family were 242 

respectively classified into very low, low or medium groups by Damas et al., [10], who 243 

divided 410 vertebrate species into five categories from very high to very low 244 

depending on the susceptibility to SARS-CoV-2 based on the analysis of sequence 245 

similarity of ACE2 and protein structure of ACE2/SARS-CoV-2 S-binding interface 246 

from the vertebrates. In the later world-wide pandemic, it should be pointed out that all 247 

the probable hosts we predicted were proved by animal experiments or the infection 248 

events [5], which illustrated the usefulness of such analysis for the host inference of 249 

SARS-CoV-2. Remarkably, SARS-CoV-2 has been reported largely to infect farmed 250 

minks in Netherlands, Denmark, Spain, the United States, Sweden, Italy, Greece, 251 

France, Lithuania, Canada, and Poland from April to Febrary, 2021. As of Febrary, 2021, 252 

SARS-CoV-2 had been reported to sweep 69 and 207 mink farms in Netherlands and 253 

Denmark, respectively, which accelerated the cull of minks and killed the fur industry 254 

in the two countries. On 9 October, 2020, at least 10,000 minks were reported dead at 255 

Utah and Wisconsin mink farms in the USA, and they were believed infected by SARS-256 

CoV-2 [5] (Table 2).  257 

   When evaluating the contributions of 11 genes of SARS-CoV-2 in determining 258 

mink as the most probable host, we found ORF1ab and ORF8 contributed the most 259 
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(Supplemental Table S4), which suggesting that genes show different contributions 260 

when determining different hosts. The rationality of this result is supported by the roles 261 

of ORF1ab in viral replication and host survival [27], and the roles of ORF8 related to 262 

immune evasion [30]. However, the interaction between the two genes and the mink 263 

cell should merit the further attention and investigation. 264 

   Additionally, novel coronaviruses, which possess high sequence similarity with 265 

SARS-CoV-2, were found on pangolin [2, 3] in China. Even though these pangolin-266 

associated coronaviruses were assigned similar host likelihood score profiles with 267 

early-stage SARS-CoV-2 isolates, our analysis demonstrated that the similarity of 268 

profiles between SARS-CoV-2 and pangolin-associated coronaviruses was lower than 269 

those between SARS-CoV-2 and certain viruses of mink and Chinese rufous horseshoe 270 

bat. 271 

Association of SARS-CoV-2 between humans and minks 272 

In April 2020, farmed minks in Netherlands were noticed to be infected by SARS-CoV-273 

2 because of the abnormal mortality [4]. Even though all the mink farms in Netherlands 274 

have been screened mandatorily since 28 May 2020, the transmission of coronavirus 275 

among the mink population did not seem to cease. Thus, a million farmed minks were 276 

culled in Netherlands, and followed by a plan to cull 2.5 million farmed minks in 277 

Denmark. 278 

   Characterizing SARS-CoV-2 by their host likelihood score profiles, we found the 279 

isolates detected on humans and minks in Netherlands distributed in a consistent mode, 280 

where both groups were divided into a major cluster and a divergence (Figure 3D, 1,746 281 

SARS-CoV-2 samples collected from humans in Netherlands as of September 15 and 282 

153 SARS-CoV-2 samples collected from farmed minks in Netherlands as of October 283 

15 were used respectively, Methods). For SARS-CoV-2, as the host likelihood score on 284 

susceptible hosts such as human and mink can also indicate the likelihood to infect 285 

these animals, the mode of host likelihood score profile can reflect its property of viral 286 

infection. Consequently, the consistency mentioned above hinted the close infection-287 
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related behaviors of SARS-CoV-2 on humans and minks in Netherlands and thus 288 

illustrated the association of SARS-CoV-2 isolates collected from the two populations.  289 

Furthermore, nine of 14 high-frequency variants in human-derived SARS-CoV-2 290 

genomes sequenced in Netherlands were absent in the genomes detected in other 291 

countries. Herein we used NC_045512 as the reference for variant calling, regarded the 292 

variants with ≥5% frequency as high-frequency ones and filtered out the synonymous 293 

single nucleotide polymorphisms (SNPs) (Supplemental Table S5). Among these 294 

unique high-frequency variants in Dutch human-derived SARS-CoV-2, two were found 295 

in Dutch mink-derived SARS-CoV-2, thus proved the circulation of SARS-CoV-2 296 

between humans and minks in Netherlands. It was remarkable that our findings could 297 

be supported by the conclusions from a research team in Netherland, who utilized more 298 

detailed information about patients and related mink farms [12]. In the 2020 world-299 

wide pandemic, minks are the only animal that has been reported to transmit SARS-300 

CoV-2 to humans [11, 12]. We further compared the high-frequency variants of SARS-301 

CoV-2 isolates in humans and minks in Netherlands. Except for four common variants, 302 

SARS-CoV-2 isolates derived from minks still had 23 unique high-frequency variants 303 

and six were found on S protein that is related to virus-host fusion process. This result 304 

indicated that the virus might have gained higher diversity after the intra-species 305 

circulation among mink herd and inter-species circulation between minks and human. 306 

As the mink infections are expanding worldwide, the association and circulation of 307 

SARS-CoV-2 between humans and minks in Netherlands notifies us of the importance 308 

to take precautions of the bidirectional transmission in other regions. 309 

Retrospective analysis of the world-wide pandemic 310 

To verify the stability and uniformity of the host inference among SARS-CoV-2 311 

samples, retrospective analysis of more isolates in the lasting pandemic was required. 312 

As the surge in variants of SARS-CoV-2 complicated the host prediction of the novel 313 

virus, we utilized 102,804 SARS-CoV-2 genomes released on GISAID EpiCoV 314 

Database (https://www.gisaid.org/) [31] as of 15 September 2020, before the rapid 315 

accumulation of mutations in SARS-CoV-2. We picked out 53,759 genomes which met 316 
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the quality standard given by Chinese Academy of Sciences [32] and trimmed their 317 

varied-length 5′- and 3′-untranslated regions (UTR) based on the annotation of 318 

NC_045512 (Methods). We calculated the host likelihood score profiles of the 53,759 319 

isolates (Supplemental Table S5) and conducted principal component analysis (PCA) 320 

on the profiles. As shown in Figure 4A, we found a clear cluster of all SARS-CoV-2 321 

isolates with 17 earliest ones locating in the center. The kernel density estimation curves 322 

displayed on the first two principal components were approximately normally 323 

distributed. As the profiles of the 53,759 isolates are under the normal distribution 324 

mentioned above, the host range of SARS-CoV-2 isolates keep consistent throughout 325 

the pandemic and it is therefore reasonable that the validity of the host inference using 326 

the earliest 17 isolates would be efficient in the later pandemic.  327 

   However, when the SARS-CoV-2 isolates were divided chronologically using 15 328 

April 2020 as the split date, which divided 53,759 isolates into two parts more evenly 329 

than other dates, we found that the two subsets have divergent distributions in each of 330 

the two dimensions of PCA (two-sided two-sample Kolmogorov-Smirnov test, p-value 331 

= 0, nisolates = 26,167 before 15 April 2020 and 27,592 after 15 April 2020) (Figure 4B). 332 

The approximately normal distribution of SARS-CoV-2 genomes and their time-333 

dependent feature indicate the overall consistency and a certain extent of divergence in 334 

the host likelihood score profiles of SARS-CoV-2 isolates. 335 

   To explain the divergence among host likelihood score profiles, we identified all 336 

variants in 53,759 genomes (Supplemental Table S5). The 13 high-frequency variants 337 

were located on S gene, N gene, ORF1ab, ORF8 and ORF3a, some of which are related 338 

to virus-host fusion process [22, 33]. Furthermore, we annotated our PCA result with 339 

the GISAID nomenclature system [31] which divides all SARS-CoV-2 genomes into 340 

six major clades based on marker variants that appeared over time. Most of the marker 341 

variants were recognized as high-frequency variants in the variant calling. As we can 342 

see in Figure 4C, SARS-CoV-2 isolates fell into several clear fusiform clusters 343 

according to their clades. This indicated that those marker variants might explain the 344 

divergence among host likelihood score profiles. When we manually mutated the 17 345 
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earliest sequenced genomes with those marker variants, we found the variants marking 346 

each clade drove the earliest sequenced SARS-CoV-2 to the corresponding cluster of 347 

the clade (Supplemental Figure S4), which verified our previous speculation and 348 

demonstrated the efficacy of DeepHoF to identify the important variants emerging in 349 

the virus’s evolution. However, as the consistency of the distribution of host likelihood 350 

score profiles were not disturbed, it hinted that these mutations did not change the host 351 

range of SARS-CoV-2. 352 

   Furthermore, to explore the trend of host likelihood of the SARS-CoV-2 over time, 353 

we finally examined the relationships between sampling time and the host likelihood 354 

scores on non-human vertebrates and humans (Figure 4D). We found that both scores 355 

gradually descended. As the host likelihood scores on susceptible hosts also indicate 356 

the likelihood to be infected by SARS-CoV-2 from a computational point of view, the 357 

trends might indicate the gradually descending infectiousness to human and other 358 

vertebrates from the outbreak to 15 September 2020. Those trends may not be so 359 

pronounced, but they should arouse our attention. 360 

 361 

Discussion 362 

In summary, we proposed a deep learning method, DeepHoF, based on extracting the 363 

viral genomic features, to calculate the host likelihood scores on five host types. 364 

DeepHoF made up for the vacancy of a universal tool feasible to any novel virus. For 365 

the identification of five host types, our model can significantly outperform BLAST 366 

and well discriminate the human-infecting and non-human-infecting viruses like 367 

coronaviruses.  Overcoming the limitation of sequence similarity-based methods to 368 

disclose the host information of novel viruses, DeepHoF demonstrated the practicality 369 

to SARS-CoV-2 in the 2020 pandemic. Using 17 SARS-CoV-2 isolates sequenced in 370 

the earliest stage of COVID-19 detection, DeepHoF evaluated the host likelihood 371 

scores on humans and non-human vertebrates for SARS-CoV-2. Filling the gap in 372 

predicting the host species for any novel virus that remained unsolved using the tools 373 

which were state of the art, we further analyzed the host likelihood score profile to 374 
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further infer the specific hosts of SARS-CoV-2. The hosts determined by DeepHoF can 375 

be either reservoirs or susceptible middle hosts, which are not discriminated in this 376 

study. We found minks, bats, dogs and cats could be potential hosts of SARS-CoV-2, 377 

while minks might be one of the most noteworthy animal hosts. Due to mutations, the 378 

host likelihood score profiles of the isolates in the long period of the later pandemic had 379 

slightly varied, but followed normal distribution where those of the early 17 isolates 380 

locate in the center. As a consequence, the host range inferred with the profiles of the 381 

isolates during the pandemic was consistent with the inference using the early samples. 382 

Additionally, based on the model, we further found three genes (S gene, ORF7b and 383 

ORF1ab) and two genes (ORF1ab and ORF8) were significant in determining the host 384 

likelihood score on human and the host range for SARS-CoV-2, respectively. The genes 385 

involving virus-host fusion process (S gene), viral replication (ORF1ab) and host 386 

survival (ORF1ab) played a significant role in determining human as the host, while 387 

the genes related to viral replication (ORF1ab), host survival (ORF1ab) and immune 388 

evasion (ORF8) were significant to determine the host range for SARS-CoV-2. For the 389 

prevention and control of a novel epidemic disease such as COVID-19, the prediction 390 

of probable hosts is essential at the early stage of the epidemic outbreak. In view of this, 391 

our study is expected to play a potentially effective role in support of those efforts. 392 

   Furthermore, according to the analysis results of host likelihood score profiles of 393 

humans and minks in Netherlands, we found a strong association of SARS-CoV-2 394 

isolates collected from the two populations and disclosed the contribution of mink on 395 

higher divergence in SARS-CoV-2. The phenomenon coincided with the analysis result 396 

of variant calling and could be explained by characteristics of minks in virus circulation. 397 

As reported by previous studies about avian-derived influenza A virus, minks serve as 398 

a significant node in the viral transmission network, connecting animals from different 399 

families and acting as domesticators for viral adaptation to mammals [34]. As the only 400 

one animal that has been reported to transmit SARS-CoV-2 to humans, the role of minks 401 

in the evolution of SARS-CoV-2 should be studied in depth. Therefore, with a large-402 

scale genome analysis based on DeepHoF’s computation for the later world-wide 403 
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pandemic, it should not be slighted for the relationship of SARS-CoV-2 between 404 

humans and minks. 405 

   Although we have applied DeepHoF to SARS-CoV-2 in the current study, the 406 

application of DeepHoF is not limited to this virus. DeepHoF is also feasible to 407 

determine the host ranges for many other novel viruses, such as the small circular rep-408 

encoding ssDNA viruses newly discovered on wild animals and domestic animals or in 409 

the environment. However, limitations of DeepHoF lie in that it does not consider the 410 

host sequence information, which can be improved in the future. DeepHoF also does 411 

not discriminate between reservoir hosts, vector hosts and other susceptible hosts. 412 

Meanwhile, the present study is expected to be further confirmed with both the ongoing 413 

events of pandemic and additional experimental findings, and the interpretation of our 414 

analysis should be still kept a certain caution. 415 

   Represented by SARS-CoV-2, more complex and larger numbers of viral genome 416 

data will be produced in similar epidemics in the future. In addition, the metagenome 417 

and the metavirome can also be used in the prevention and control of the epidemic. The 418 

United States Agency for International Development launched the Global Virus 419 

Program in 2018 to reduce possible epidemiological threats by studying metaviromic 420 

samples from more than 35 countries around the world [35]. It is estimated that there 421 

are about 1.67 million novel viruses in mammals, birds and other important hosts of 422 

zoonotic viruses. Among them, 631,000-827,000 have the potential to cause zoonotic 423 

diseases [35]. However, only 263 viruses from 25 virus families have been confirmed 424 

to infect humans [36]. Newly emerged infectious viruses keep threatening our health 425 

and well-being. Under the circumstances, using computational methods to discover 426 

pathogenetic viruses and acquire knowledge, including the host range, about novel 427 

viruses can provide timely response in the prevention of epidemics and pandemics. In 428 

the future, the detection of novel viruses will rely more heavily on high-throughput 429 

sequencing technologies such as metagenomics and metaviromics. Thus, more robust 430 

tools designed for metagenomes and metaviromes are required. 431 

 432 
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Materials and Methods 433 

Datasets construction for training and test 434 

We downloaded 63,049 whole viral genomes from GenBank by 9 July, 2019, and 435 

tagged them with five host labels (plant, germ, invertebrate, non-human vertebrate and 436 

human), which were integrated from the host metadata provided by GenBank 437 

(Supplemental Table S6). The five host types covered all the living organism hosts. For 438 

viruses infecting multiple host types, multiple labels were given. Following the data 439 

collection procedure, short fragments were generated randomly from those tagged 440 

whole genomes because of the computational cost in long sequence processing. The 441 

training set was constructed with short fragments from 55,283 genomes released before 442 

1 January, 2018, and the test set was constructed with the rest (the Accession list and 443 

the host information of the genomes used for training and test are in Supplemental Table 444 

S7). There is non-overlap of virus species in the training and test sets. 445 

Mathematical representation of viral whole genomes 446 

Due to the long-term adaptation to natural reservoirs, viruses share some evolutionary 447 

signatures in nucleotide sequences, such as codon pair, dinucleotide, codon, and amino 448 

acid biases, with their natural reservoirs [15]. Besides, viral proteins, especially the 449 

receptors that are effectively attached to the host cell membrane, are crucial factors for 450 

viruses to invade and infect the host cells [37]. In brief, the genome compositions of 451 

viruses can inform host-virus correlation.  452 

   Herein, we represent a given viral sequence with a base one-hot matrix (BOH) and 453 

a codon one-hot matrix (COH), digitizing the genetic information of the virus on 454 

nucleotide and codon level respectively. To start with, bases and codons are encoded 455 

with one-hot format to work with deep learning algorithms. In the coding of BOH, each 456 

consecutive base of a query sequence linked by its complementary strand is encoded 457 

by one-hot. For COH, we do not extract ORFs since coding sequences make up most 458 

of the viral genome. Instead, we directly concatenate the six phases of the input 459 

sequence (Supplemental Figure S5), and then each consecutive codon of the joined 460 

sequences is encoded by one-hot. Consequently, for an input sequence of length L, it 461 
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will be transformed to a BOH matrix, with the size of 2L×4, and a COH matrix, with 462 

the size of 2L×64. 463 

BiPathCNN Model descriptions 464 

In building the framework of DeepHoF, we firstly utilize a BiPathCNN [38], containing 465 

two CNN paths, digging information from the BOH matrix and COH matrix 466 

respectively. The information is naturally corresponding to the viral genomic features 467 

for the viruses which infect the same kind of hosts. After independent convolution and 468 

pooling operations at the beginning, the two paths are combined by a concatenation 469 

layer. Following a normalization layer, five prediction scores will be provided by five 470 

sub-paths, containing five independent nodes, corresponding to five independent binary 471 

classifications on plant, germ, invertebrate, non-human vertebrate and human 472 

individually, in the output layer with sigmoid activation and binary cross-entropy loss 473 

function for each node. The architecture of DeepHoF is shown in Supplemental Figure 474 

S6 and the details of each layer in BiPathCNN are described in Supplementary 475 

Information. 476 

Implementation of DeepHoF 477 

In the practical application, viral nucleotide sequence is the only input required by 478 

DeepHoF. For a viral whole genome sequence (or a partial genome sequence), a cut 479 

window moves along the long sequence without overlapping to separate it into suitable 480 

fragments for the pre-trained BiPathCNN model. DeepHoF firstly predicts the host 481 

infection scores for each fragment. Then it calculates the final score by weighting and 482 

summing the predicted scores of each fragment. For example, a 2,000 bp query 483 

sequence is separated into three consecutive fragments, corresponding to the first 800 484 

bp, the middle 800 bp and the last 400 bp of the query sequence. Then DeepHoF 485 

predicts the three fragments independently and calculates the weighted average of the 486 

three predicted score vectors with the weights of 800/2,000, 800/2,000, and 400/2,000 487 

respectively. For each input sequence, DeepHoF outputs five scores on five host types, 488 

respectively. Besides, DeepHoF provides the p-values of each score, statistically 489 

measuring of how distinct the scores are compared with those of non-infectious viruses 490 
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[22]. For example, if an input virus has a score of 0.4 on human, we compare 0.4 with 491 

the scores of non-human viruses in our dataset and provide the p-value as a judgment 492 

basis. If the p-value is less than 0.05, we conclude that human is the probable host of 493 

the input virus with a significantly higher score on human host type than non-human 494 

viruses. 495 

   As the host likelihood score profile of a virus, consisting of the five predicted scores 496 

given by DeepHoF, can be regarded as a host-related feature vector extracted by 497 

DeepHoF, we utilize it to characterize the virus. It is logistical to regard the viruses with 498 

the same host species possess the similar host likelihood score profiles. Based on this 499 

assumption, the potential host species of a virus can be inferred by the analysis of the 500 

profiles. To quantitatively compare host likelihood score profiles between viruses, we 501 

calculated the Euclidean distance between the profiles. In the case of SARS-CoV-2, we 502 

searched the detailed vertebrate host of the earliest detected isolates, which are closer 503 

to the most recent common ancestor of SARS-CoV-2. To start with, we added the host 504 

annotations provided by Virus-Host DB [39] to the vertebrate viruses included in 505 

GenBank. Here, the average of host likelihood score profiles of 17 earliest sequenced 506 

isolates was used as the representation of SARS-CoV-2. We calculated the Euclidean 507 

distance between the profile of SARS-CoV-2 and that of each non-human vertebrate 508 

virus (discovered before the outbreak of SARS-CoV-2). We regarded the vertebrate 509 

infected by a virus possessing profile close to that of SARS-CoV-2 was the probable 510 

host of SARS-CoV-2. 511 

Data filtering and trimming for SARS-CoV-2 genome sequences 512 

There were 102,804 SARS-CoV-2 genomes released on GISAID EpiCoV Database as 513 

of 15th September 2020. We downloaded all the sequences and filtered them with the 514 

quality standard given by the Chinese Academy of Sciences [32]. Because the UTRs 515 

were not taken as seriously as the protein-coding regions and the lengths of sequenced 516 

UTRs varied a lot in different SARS-CoV-2 genomes, we trimmed the 5′- and 3′- UTR 517 

according to the annotation of NC_045512 to get rid of noises. Thus, we finally got 518 

53,759 clean sequences. 519 
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Phylogenetic analysis and single nucleotide polymorphisms analysis 520 

In this study, we applied Clustal Omega software [40] (version 1.2.4) for multiple 521 

sequence alignment and RAxML software [41] (version 8.2.12) for phylogenetic tree 522 

building using maximum likelihood methods with 1000 bootstrap replicates. Snippy 523 

[42] (version 4.4.3) was utilized for variant calling, using NC_045512 as the reference 524 

genome. In this study, we filtered out the synonymous SNPs and regarded the variants 525 

with ≥  5% frequency as high-frequency ones. Commands of the three tools are 526 

included in Supplementary Information. 527 
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 652 

Figure legends 653 

Figure 1  DeepHoF outperforms BLAST and well learns the information of virus 654 

hosts 655 

A. Average ROC curves and AUC values of DeepHoF and BLAST. DeepHoF performs 656 

better than BLAST on average AUC of five host types. B. Comparison of host 657 

likelihood scores predicted by DeepHoF between human-infecting and non-human-658 

infecting coronaviruses on human. The former performed higher probabilities than the 659 

latter (two-sided unpaired Welch Two Sample t-test, t(43.843) = 8.265 and t(38.016) = 4.674, 660 
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p-values = 1.73210-10 and 3.65710-5. *** p-value < 0.0001, t-values and degrees of 661 

freedom were presented as t(df)). C. Phylogenetic analyses of whole genomes of 662 

coronaviruses. D. Phylogenetic analyses of S genes of coronaviruses. Maximum-663 

likelihood phylogenic trees were built by RAxML [41] with 1,000 bootstrap replicates 664 

and visualized with iTOL [43]. The whole genomes and the S genes of the human-665 

infecting coronaviruses could not be distinguished from the non-human-infecting ones. 666 

(Red: human-infecting coronaviruses; Blue: non-human-infecting coronaviruses). 667 

Figure 2  The workflow of application of DeepHoF on NC_045512 668 

In the application of DeepHoF on SARS-CoV-2 NC_045512, the whole genome of 669 

NC_045512 was the only input required by the pre-trained DeepHoF model and coded 670 

into BOH and COH matrix for BiPathCNN network. DeepHoF output the host 671 

likelihood scores of NC_045512 on five host types respectively and the corresponding 672 

significance. The hosts of NC_045512 were predicted to be non-human vertebrates and 673 

humans with p-values less than 0.05. Simultaneously, NC_045512 was characterized 674 

by its host likelihood score profile. Susceptible to viruses with similar profile, Mustela 675 

lutreola/ Neovison vison, Rhinolophus sinicus, Canis lupus familiaris, Hipposideros 676 

pomona and Feline were output as the probable hosts of NC_045512. BOH: base one-677 

hot matrix, COH:  codon one-hot matrix. 678 

Figure 3  Evaluation of host likelihood scores of SARS-CoV-2 679 

The contribution of each gene in the prediction and the visualization of host likelihood 680 

score profiles of SARS-CoV-2 isolates sampled in Netherlands. A. Host likelihood 681 

scores of 17 earliest detected SARS-CoV-2 isolates and other coronaviruses on humans 682 

and non-human vertebrates. SARS-CoV-2 showed high host likelihood scores on both 683 

humans and non-human vertebrates with p-values less than 0.05. In addition, SARS-684 

CoV-2 was predicted lower score than SARS-CoV and comparable score to MERS-685 

CoV on human. As for host likelihood scores on non-human vertebrates, SARS-CoV-686 

2, SARS-CoV and MERS-CoV were close to each other. Host likelihood scores have 687 

p-values less than 0.05 are marked ‘Y (yes)’. (Red: human-infecting coronaviruses; *: 688 

the 17 earliest collected SARS-CoV-2 isolates). B. Hierarchical clustering of early-689 
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stage SARS-CoV-2 and other coronaviruses using five-dimensional host likelihood 690 

score profiles given by DeepHoF. The profile of SARS-CoV-2 was close to that of 691 

SARS-CoV and MERS-CoV (Red: SARS-CoV-2; Blue: SARS-CoV; Yellow: MERS-692 

CoV). C. Contributions of the protein coding genes on determining the host likelihood 693 

scores of SARS-CoV-2, SARS-CoV and MERS-CoV on human. The structural genes, 694 

ORF1ab and group-specific genes contributed differently in the three coronaviruses 695 

(two-sided unpaired Welch Two Sample t-test, p-value < 0.05, see in Supplemental 696 

Figure S3). S, ORF7b and ORF1ab were the most pivotal in SARS-CoV-2. ORF7b, 697 

ORF9b and S were the most considerable in SARS-CoV. ORF8b, N and ORF3 698 

contributed the most in MERS-CoV (S: spike glycoprotein coding gene; M: 699 

membrane/matrix glycoprotein coding gene; N: nucleocapsid phosphoprotein coding 700 

gene; E: envelope coding gene). D. Principal component analysis (PCA) of host 701 

likelihood score profiles of SARS-CoV-2 detected on humans and minks in Netherlands. 702 

The host likelihood score profiles of mink-derived and human-derived SARS-CoV-2 703 

isolates in Netherlands are distributed in a consistent mode, containing a major cluster 704 

and divergence. The host likelihood score profiles of human-derived (left) and mink-705 

derived (right) SARS-CoV-2 isolates in Netherlands distributed in a consistent mode, 706 

both containing a major cluster (red) and divergence (blue). The major cluster and the 707 

divergence were divided by the pam function of R package cluster. 708 

Figure 4  Entirety and divergence in the host likelihood score profiles of 53,759 709 

SARS-CoV-2 isolates in the later world-wide pandemic 710 

A. PCA of host likelihood score profiles of 53,759 SARS-CoV-2 isolates and the 711 

distribution on each principal component. All the host s likelihood core profiles of 712 

53,759 SARS-CoV-2 isolates were clustered with 17 earliest sequenced isolates located 713 

in the center and the density curves displayed on each principal component were 714 

approximate normal distribution. B. Distributions of host likelihood score profiles of 715 

53,759 SARS-CoV-2 isolates collected before and after 15 April 2020. When the 716 

SARS-CoV-2 isolates were divided chronologically using 15 April 2020 as the split 717 

date, which divided the 53,759 isolates into two parts more evenly than other dates. The 718 
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host likelihood score profiles of SARS-CoV-2 before and after 15 April 2020 had 719 

divergent distributions on each principal component (two-sided two-sample 720 

Kolmogorov-Smirnov test, p-value = 0, nisolates = 26,167 before 15 April 2020 and 721 

27,592 after 15 April 2020. Blue, 26,167 isolates collected before 15 April 2020; Red, 722 

27,592 isolates collected after 15 April 2020; Grey, all the 53,759 isolates). C. GISAID 723 

clades represented in PCA of host likelihood score profiles of 53,759 SARS-CoV-2 724 

genomes. All the 53,759 samples representing 53,759 host likelihood score profiles 725 

were painted with six different colours corresponding to six different GISAID clades 726 

of SARS-CoV-2. SARS-CoV-2 isolates fell into several clear fusiform clusters with 727 

different colours according to their clades. D. Time series of the host likelihood scores 728 

on humans and non-human vertebrates for SARS-CoV-2 in the later world-wide 729 

pandemic. The host likelihood scores on humans and non-human vertebrates descend 730 

gradually with time (linear regression model analysis, R-squared = 6.806× 10-3 and 731 

1.431× 10 -2, t(53,757) = −19.22 and t(53,757) = −27.96, p-values = 5.543× 10-84 and 732 

3.292×10-272, slopes = −1.853×10-6 and −3.768×10-6). 733 

 734 

Tables 735 

Table 1  Performance metrics of DeepHoF and BLAST 736 

Methods Precision Accuracy TPR FPR AUC F1-score 

BLAST 0.699 0.892 0.888 0.107 0.833 0.896 

DeepHoF 0.968 0.964 0.865 0.008 0.987 0.963 

TPR: true-positive rate; FPR: false-positive rate; AUC: area under the curve 

 737 

Table 2  Host prediction results of SARS-CoV-2 738 

Prediction 
Evidence of infection with 

SARS-CoV-2 [5] 

Reported 

transmission 

to humans 
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Mustela lutreola 

/ Neovison vison 

- From 19 April to 1 October, 

2020, out of around 120 mink 

farms in Netherlands, 57 have 

been declared infected; 

- From 17 June to 1 October, 

2020, SARS-CoV-2 has been 

detected in 41 mink farms in 

Denmark; 

- On 16 July, 2020, 80% of the 

animal samples were tested 

positive in a Spanish farm; 

- Two cases 

that minks 

transmitted 

SARS-CoV-

2 to humans 

in Dutch 

farms were 

reported by 

Nature on 1 

June 2020 

[11].  

- On 17 August, 2020, confirmed 

cases were reported in minks at 

two farms in Utah, the United 

States; 

- On 9 October, 2020, 10,000 

minks were dead at the United 

States fur farms and believed 

infected by SARS-CoV-2. 

 

Rhinolophus 

sinicus / 

Hipposideridae 

- SARS-CoV-2 is 96% identical 

at the whole-genome level to a 

bat coronavirus. 

N.A. 

 

Canis lupus 

familiaris 

- Confirmed cases in dogs were 

reported in Hong Kong, New 

York, Georgia, Texas, South 

Carolina, etc. 

N.A. 

Felidae 
- Laboratory confirmed cases of 

cats; 
N.A. 
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- Four tigers and three lions at 

the same facility were all 

confirmed with SARS-CoV-2 in 

New York in April, 2020; 

- Confirmed cases in cats in New 

York, Minnesota, Illinois, 

California. 

Note: N.A. - not available yet. 

Hong Kong, Hong Kong Special Administrative Region of the People's Republic of 

China. 

Utah, New York, Georgia, Texas, South Carolina, Minnesota, Illinois, California 

are states of the United States. 

 739 

Supplementary material 740 

Supplementary material  Supplemental Figure S1-S6, Supplemental Table S1, 741 

S3 and S6 and Supplemental Methods 742 

Supplemental Figure S1  ROC curves and AUC values of DeepHoF and BLAST 743 

on five host types 744 

DeepHoF performs better than BLAST on AUC of each host type. 745 

Supplemental Figure S2  The untenable linear correlations between the lengths 746 

and the host likelihood scores for genes of SARS-CoV-2 747 

For the genes of SARS-CoV-2, there is no statistical significance in the linear 748 

correlations between the lengths and the host likelihood scores on plant (A), germ (B), 749 

invertebrate (C), vertebrate (D) and human (E).  750 

Supplemental Figure S3  Human host likelihood scores of 5 genes of SARS-751 

CoV-2, SARS-CoV and MERS-CoV 752 

Although all the three coronaviruses possess ORF1ab and four structural genes (S, M, 753 

N, E), these genes made different contributions on human host likelihood scores in 754 

these three viruses (two-sided unpaired Welch Two Sample t-test, p-value < 0.05). S 755 
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gene and M gene contributed more in SARS-CoV-2 and SARS-CoV, while N gene 756 

and E gene were more significant in MERS-CoV.  757 

Supplemental Figure S4  Visualization of the host likelihood score profiles of 758 

SARS-CoV-2 isolates from different GISAID clades and the manually mutated 759 

SARS-CoV-2 isolates on two-dimensional PCA 760 

SARS-CoV-2 isolates fall into several clear fusiform clusters with different colors 761 

according to their clades. Manually mutated with specific marker variants, the 17 762 

earliest sequenced isolates move to the corresponding fusiform cluster of the clade 763 

that is represented by the specific marker variants. 764 

Supplemental Figure S5  Six phases of an input sequence 765 

For coding the COH matrix of a given sequence, we represented it with the direct 766 

conjunction of its six phases, generated from its complementary strand and itself. 767 

Supplemental Figure S6  Structure of BiPathCNN in DeepHoF 768 

BOH matrix and COH matrix are input into two paths independently and transformed 769 

by the convolution and pooling layers at the beginning. A concatenation layer and a 770 

normalization layer combine the output of the two paths. Five sub-paths process the 771 

combined intermediate output individually. Each sub-path contains a full connection 772 

layer, a normalization layer and an output layer with sigmoid activation and binary 773 

cross-entropy loss function. The five sub-paths output the host likelihood scores on 774 

five host types respectively. 775 

Supplemental Table S1  Comparison of performance of DeepHoF and BLAST on 776 

each host type classification 777 

Supplemental Table S3  Top 20 hosts predicted by DeepHoF on SARS-CoV-2 778 

Supplemental Table S6  Subtypes in five host types 779 

Other supplementary material for this manuscript includes the following: 780 

Supplemental Table S2  Metadata and host likelihood scores of genes for SARS-781 

CoV, MERS-CoV and SARS-COV-2 isolates 782 

Supplemental Table S4  Contributions of 11 genes in the determination of hosts 783 

for SARS-CoV-2 784 
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Supplemental Table S5  Metadata, host likelihood score profiles, and high 785 

frequency SNPs on 53759 SARS-CoV-2 isolates 786 

Supplemental Table S7  Host information of the viral genomes in training and 787 

test sets of DeepHoF 788 

Supplemental Table S8  Acknowledge of sequence data of SARS-CoV-2 in 789 

GISAID 790 

 791 

Data statement  792 

Data utilized in the analysis of SARS-CoV-2, including the host likelihood score 793 

profiles and the metadata of 53,759 SARS-CoV-2 isolates, are available in the main text 794 

and Supplementary Information. The trimmed sequences of 53,759 isolates and the 795 

training and test sets of DeepHoF have been deposited on our lab homepage 796 

http://cqb.pku.edu.cn/ZhuLab/DeepHoF/. 797 

The open source code utilized in this study has been deposited on GitHub 798 

https://github.com/PKUbioinfo-ZhuLab/DeepHoF and our lab homepage 799 

http://cqb.pku.edu.cn/ZhuLab/DeepHoF/ 800 
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Coronavirus

Human coronavirus NL63 942.0 Y 219.0 Y
Night-heron coronavirus HKU19 432.0 Y 337.0 Y

Severe acute respiratory syndrome coronavirus 502.0 Y 236.0 Y
Wuhan/HBCDC-HB-01/2019* 681.0 Y 846.0 Y
Wuhan/HBCDC-HB-03/2019* 681.0 Y 946.0 Y

Wuhan/WIV05/2019* 681.0 Y 356.0 Y
Wuhan/HBCDC-HB-02/2019* 581.0 Y 946.0 Y

Wuhan/WIV06/2019* 581.0 Y 846.0 Y
Wuhan/WIV07/2019* 481.0 Y 356.0 Y
Wuhan/WIV02/2019* 181.0 Y 266.0 Y
Wuhan/WH01/2019* 181.0 Y 246.0 Y

Wuhan/IPBCAMS-WH-04/2019* 181.0 Y 156.0 Y
Wuhan/IVDC-HB-01/2019* 181.0 Y 156.0 Y

Wuhan/WIV04/2019* 181.0 Y 156.0 Y
Wuhan/IPBCAMS-WH-02/2019* 181.0 Y 256.0 Y

Wuhan/IVDC-HB-05/2019* 181.0 Y 256.0 Y
Wuhan/IPBCAMS-WH-03/2019* 081.0 Y 356.0 Y

Wuhan/Hu-1/2019* 081.0 Y 156.0 Y
Wuhan/IVDC-HB-GX02/2019* 081.0 Y 156.0 Y

Middle East respiratory syndrome coronavirus 081.0 Y 326.0 Y
Wuhan/IPBCAMS-WH-01/2019* 971.0 Y 156.0 Y

Betacoronavirus England 1 961.0 Y 906.0 Y
Bat coronavirus isolate PREDICT 761.0 Y 956.0 Y
Thrush coronavirus HKU12-600 761.0 Y 476.0 Y

Camel alphacoronavirus isolate camel 561.0 Y 938.0 Y
White-eye coronavirus HKU16 951.0 Y 886.0 Y
Bulbul coronavirus HKU11-934 751.0 Y 207.0 Y

Bat coronavirus BM48-31/BGR/2008 751.0 Y 457.0 Y
Human coronavirus 229E 151.0 Y 368.0 Y

Common-moorhen coronavirus HKU21 841.0 Y 446.0 Y
Wigeon coronavirus HKU20 541.0 Y 296.0 Y

Betacoronavirus Erinaceus VMC 141.0 Y 837.0 Y
Human coronavirus OC43 strain ATCC VR-759 831.0 Y 667.0 Y

Turkey coronavirus 731.0 Y 096.0 Y
Rousettus bat coronavirus HKU10 431.0 Y 898.0 Y

Bovine coronavirus 131.0 Y 337.0 Y
Rabbit coronavirus HKU14 031.0 Y 537.0 Y

Swine enteric coronavirus strain Italy 321.0 Y 857.0 Y
Rat coronavirus Parker, complete genome 321.0 Y 836.0 Y

Bat Hp-betacoronavirus/Zhejiang2013 121.0 Y 716.0 Y
Munia coronavirus HKU13-3514 711.0 Y 227.0 Y

Bat coronavirus HKU4-1 511.0 Y 596.0 Y
Mink coronavirus strain WD1127 411.0 Y 568.0 Y

Betacoronavirus HKU24 strain HKU24-R05005I 411.0 Y 885.0 Y
Ferret coronavirus isolate FRCoV-NL-2010 011.0 Y 168.0 Y

Magpie-robin coronavirus HKU18 301.0 Y 974.0 Y
Scotophilus bat coronavirus 512 201.0 Y 858.0 Y

Porcine coronavirus HKU15 strain HKU15-155 101.0 Y 326.0 Y
Bat coronavirus CDPHE15/USA/2006 001.0 Y 249.0 Y

Bat coronavirus HKU2 990.0 Y 068.0 Y
Rousettus bat coronavirus isolate GCCDC1 356 890.0 Y 508.0 Y
Lucheng Rn rat coronavirus isolate Lucheng-19 190.0 Y 236.0 Y

Sparrow coronavirus HKU17 090.0 Y 115.0 Y
Bat coronavirus 1A 680.0 Y 328.0 Y

Wencheng Sm shrew coronavirus isolate Xingguo-101 380.0 N 825.0 Y
Beluga Whale coronavirus SW1 180.0 N 874.0 Y

NL63-related bat coronavirus strain BtKYNL63-9a 770.0 N 038.0 Y
Bat coronavirus HKU9-1 270.0 N 507.0 Y
Bat coronavirus HKU5-1 960.0 N 653.0 Y

Human coronavirus HKU1 760.0 N 395.0 Y
Bat coronavirus HKU8 640.0 N 818.0 Y
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