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19 Abstract

20  The SARS-CoV-2 pandemic has raised the concern for identifying hosts of the virus
21  since the early-stage outbreak. To address this problem, we proposed a deep learning
22 method, DeepHoF, based on extracting the viral genomic features automatically, to
23 predict host likelihood scores on five host types, including plant, germ, invertebrate,
24 non-human vertebrate and human, for novel viruses. DeepHoF made up for the lack of
25  an accurate tool applicable to any novel virus and overcame the limitation of the
26 sequence similarity-based methods, reaching a satisfactory AUC of 0.987 on the five-
27  classification. Additionally, to fill the gap in the efficient inference of host species for

28  SARS-CoV-2 using existed tools, we conducted a deep analysis on the host likelihood
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29  profile calculated by DeepHoF. Using the isolates sequenced in the earliest stage of
30 COVID-19, we inferred minks, bats, dogs and cats were potential hosts of SARS-CoV-
31 2, while minks might be one of the most noteworthy hosts. Several genes of SARS-
32  CoV-2 demonstrated their significance in determining the host range. Furthermore, the
33  large-scale genome analysis, based on DeepHoF’s computation for the later world-wide
34  pandemic in 2020, disclosed the uniformity of host range among SARS-CoV-2 samples
35  and the strong association of SARS-CoV-2 between humans and minks.

36 KEYWORDS: Host prediction; Deep learning, Mink; SARS-CoV-2; Early stage of
37  pandemic

38
39 Introduction

40 The global COVID-19 pandemic caused by severe acute respiratory syndrome
41  coronavirus 2 (SARS-CoV-2) has raised the long-lasting quest for hosts of the virus
42  since the pandemic outbreak, meanwhile the majority view is that the virus probably
43  originated from bats [1]. So far there have been many discussions for the potential hosts
44 despite an initial pointer to Manis javanica (pangolins) [2, 3], most of the suppositions
45  were based on the increasing cases of animal infection, such as dogs, cats, tigers, lions,
46  and minks [4, 5], efc. Several studies performed experiments to investigate the
47  susceptibility of a limited number of model animals [6-8]. At the same time, some
48  studies attempted to reveal the range of hosts based on analysis of molecular sequence
49  or structural information [9, 10]. For instance, Damas et al, [10] conducted a
50 computational analysis based on host receptor similarity using the angiotensin-
51  converting enzyme 2 (ACE2) protein and evaluated the infection risks for a broad range
52  of animals. As the pandemic spreads, minks, which were even not referred to as high
53 infection animal in above peer-review articles, have been frequently reported massively
54  infected with COVID-19 over the world [5], and were the only known animal reported
55  to transmit SARS-CoV-2 to humans [11, 12]. It is worth mentioning that, in January,
56 2020, we have reported in the form of a preprint archive with predicting minks as a
57  potential host based on the six earliest sequenced SARS-CoV-2 isolates [13]. However,
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58 the later complication of pandemic prompts peoples again to have a full review of the
59  issue of host determination for SARS-CoV-2. This raises a new challenge, which is how
60 to implement and improve the capability of computational methods to predict the hosts
61  of anovel virus like SARS-CoV-2, especially when we have relatively small amounts
62  of samples of sequencing viral data at the early stage of the pandemic outbreak. It is
63  certainly constructive for similar pandemic caused by novel viruses in the future.

64 Generally, the host range of viruses is dependent on molecular interactions between
65  viruses and host cells including receptor recognition, adaptions to the host cellular
66  machinery and evading innate immune recognition [14]. Of these, receptor recognition
67 that facilitates the attachment of viruses to the host cells is the most primary step. Thus,
68  the glycoproteins that viruses use to recognize the host receptor as well as the whole
69  genome sequences are widely used in identifying the potential hosts of viruses [1]. To
70  detect the potential host and pathogenicity of novel viruses, the conventional
71  computational methods are almost based on similarity of either virus genome
72 composition or host receptor. Limitations of the both strategies lie in that they assume
73 phylogeny may reflect host association. However, this assumption is untenable from
74 the perspective of epidemiology and evolution. On the one hand, viruses occasionally
75  shift between distantly related host species. On the other hand, owing to the long-term
76  adaptation to the hosts, the viral genomic characteristics acquired from hosts can be
77  quite incompatible with the virus phylogenetic groups [15]. The specificity of
78  recognition between viruses and host species also involves structural information in
79  some key domains of both viral proteins and host receptor proteins, such as the receptor-
80  binding domain, that sequence similarity is insufficient to explain. For example, the
81  civet-specific K479 and S487 residues of SARS-CoV spike glycoprotein can efficiently
82  bind to civet ACE2 but have much less affinity to human ACE2 [16, 17]. This is also
83  the reason that the similarity-based method of host ACE2 proteins sequences fails to
84  predict minks as host of high and very high risk for SARS-CoV-2 infection [10].

85 Until now, several published tools aimed to identify the hosts of viruses exceeded

86  the limitation of sequence-similarity-based strategies by machine learning methods
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87  with viral sequences or their genomic traits related to virus-host interactions, such as
88  ViralHostPredictor [15], HostPhinder [18], WIsH [19], Host Taxon Predictor [20], and
89  VIDHOP [21]. While these tools performed well under some conditions, they are
90 actually not considered feasible to be applied to a novel virus without the knowledge
91  of host range, like SARS-CoV-2. HostPhinder and WIsH predict hosts for only
92  bacteriophages and they are inappropriate for non-phage viruses. Host Taxon Predictor
93 focuses on distinguish bacteriophages and eukaryotic viruses. ViralHostPredictor
94  predicts hosts and the existence and identity of arthropod vectors for human-infecting
95  RNA viruses by Gradient boosting machines with the features of selected evolutionary
96  genomic traits and phylogenetic information. It also illustrated the better ability of
97  machine learning methods to predict virus hosts compared to the way of sequence
98  similarity comparison. However, ViralHostPredictor cannot determine whether human
99 is the host of a novel virus. With the utilization of evolutionary signatures,
100  ViralHostPredictor lacks power to predict incidental hosts which do not maintain long-
101 term circulation of new viruses. Moreover, the predictive abilities of the methods above
102  rely on the handcrafted features like codon pair scores, k-mer frequencies and amino
103  acid biases, which might neglect other important information encoded in the virus
104  genomes. VIDHOP, a deep-learning-based tool, is designed to predict potential hosts of
105  viruses, but its application was limited into three viral species: influenza A, rabies
106  lyssavirus and rotavirus A.
107 To address the challenge of predicting probable hosts of a novel virus like SARS-
108  CoV-2, we proposed the host prediction algorithm DeepHoF (Deep learning-based
109  Host Finder) in the current study. Developed based on BiPath Convolutional Neural
110  Network (BiPathCNN), DeepHoF automatically extracts the genomic features from the
111  input viral sequences. The model finally outputs five host likelihood scores and their p-
112 values on five host types, including plant, germ, invertebrate, non-human vertebrate
113 (refers to other vertebrates except humans) and human, where all the living organism
114  hosts are covered. DeepHoF was designed as a five-class classifier containing five

115 independent nodes in the output layer with sigmoid activation and binary cross-entropy
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116  loss function for each node, corresponding to five independent binary classifications on
117  the five host types individually. DeepHoF made up for the lack of efficient method
118  applicable for any novel virus and significantly outperformed the Basic Local
119  Alignment Search Tool (BLAST)-based strategy with the evidently high AUC of 0.987
120  on the classification of five host types. In January 2020, we have reported the host
121  prediction for six earliest sequenced SARS-CoV-2 isolates employing our algorithm
122 [13]. In this study, we furthered the work using the 17 earliest sampled SARS-CoV-2
123  isolates, which provides essential information in the early epidemic of the virus.
124  DeepHoF evaluated the host likelihood scores on humans and non-human vertebrates
125  for the earliest samples and characterized the isolates with their host likelihood score
126  profiles. As there existed a blank in the inference of host species for SARS-CoV-2 using
127  the tools which were state of the art, we conducted a deep analysis on the host likelihood
128  score profile predicted by DeepHoF to find the detailed hosts, including both reservoirs
129  and susceptible hosts which are not discriminated in this study. We inferred minks, bats,
130  dogs and cats were the probable hosts, while minks maybe one of the most noteworthy
131  hosts. The inference was supported by the infection facts or animal experiments in the
132  later pandemic. Based on our model, several genes of SARS-CoV-2 were further
133  investigated and demonstrated their significance in determining the host likelihood
134  scores on human or the host range for SARS-CoV-2, respectively. With a large-scale
135  genome analysis based on DeepHoF’s computation for the later world-wide pandemic,
136  the uniformity of host inference among a large number of SARS-CoV-2 samples was
137  verified, and the association of SARS-CoV-2 between humans and minks was disclosed.
138  Supported by the satisfactory performance on five host type classification and the
139  successful application in SARS-CoV-2, DeepHoF has the capability to provide reliable
140  host information of novel virus, and is expected to narrow the time lag between novel
141  virus discovery and prevention at the early-stage of epidemic prevention.

142
143  Results

144  Performance of the DeepHoF algorithm
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145  The DeepHoF algorithm is designed as a five-class classifier using the deep learning
146 method of BiPathCNN (see Methods). Herein five likelihood scores on five host types,
147  including plants, germs, invertebrates, non-human vertebrates, and humans, are
148  calculated by DeepHoF. The host likelihood score profile consisting of five predicted
149  scores, is then analysed in depth to find the specific hosts of a novel virus such as SARS-
150  CoV-2 in this study. As mentioned above, the existed bioinformatics tools [15, 18-21]
151  were not designed to perform the prediction of the host likelihood scores on the five
152  host types for any given virus, and thus cannot be compared with DeepHoF directly.
153  And therefore, we compared the performance of DeepHoF model with BLAST (details
154  of finding host using BLAST are described in Supplementary Methods), adopting six
155  classification metrics: true-positive rate (TPR), false-positive rate (FPR), area under the
156  curve (AUC), precision, accuracy and F1-score. To assess the performance of predicting
157  novel viruses, we used training and test datasets divided in chronological order [22]
158  (Methods). There is no overlap of virus species in training and test sets. With an evident
159  higher AUC 0f 0.987, DeepHoF can significantly outperform BLAST (with the average
160 AUC 0f0.833) as shown in Figure 1A and Table 1 (a detailed comparison on each host
161  type is illustrated in Supplemental Figure S1 and Table S1).

162 In addition, we compared the utility of DeepHoF and a phylogenetic tree to
163  discriminate the human-infecting and non-human-infecting coronaviruses using their
164  whole genome sequences. As shown in Figure 1B (the left), DeepHoF could identify
165  evidently higher probabilities of human-infecting coronaviruses to infect humans (two-
166  sided unpaired Welch Two Sample t-test, p-value = 1.732x107'%). However, the
167  phylogenetic analysis result was not satisfactory owing to the weak homology among
168  the human-infecting coronaviruses, which were scattered around the phylogenetic tree
169  of coronaviruses (Figure 1C). The comparison was similar for the inferences using their
170  spike glycoprotein coding genes (S genes) as shown in Figure 1B (the right), and D
171  (two-sided unpaired Welch Two Sample t-test, p-value=3.657x107). This result is

172  nontrivial because S genes are essential in coronavirus-host interaction [23]. Clearly,
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173 DeepHoF can overcome the limitation of sequence similarity-based method and shows
174  superior predictive ability especially for novel viruses.

175  Host prediction of SARS-CoV-2

176  The accurate prediction of hosts of earliest detected isolates can undoubtedly assist the
177  public health system to take more appropriate preventive measures at the early stage of
178  the pandemic outbreak. In view of this, we focused on the prediction with SARS-CoV-
179 2 isolates sequenced in the earliest stage of COVID-19 detection, which is closer to the
180  mostrecent common ancestor of SARS-CoV-2. Previous to this paper, we have reported
181  the prediction for the six earliest sequenced SARS-CoV-2 isolates using our algorithm
182  on 21 January, 2020 [13]. In this study, we further strengthened the prediction of hosts
183  of SARS-CoV-2 with all 17 earliest detected isolates (including the six earliest ones)
184  sequenced in December, 2019. Herein we take NC 045512 (complete genome of
185  SARS-CoV-2 isolate, Wuhan-Hu-1, collected on 31 December 2019 in Wuhan, China,
186  and used as the representative genome of SARS-CoV-2 in most studies) as an example
187  to illustrate the workflow of DeepHoF on SARS-CoV-2 isolates (Figure 2).

188 For all the 17 SARS-CoV-2 isolates listed in Figure 3A, the host likelihood scores
189  on non-human vertebrates and humans were assigned p-values less than 0.05 (0.002
190  and 0.027 respectively), illustrating a high possibility of non-human vertebrates and
191  humans (Methods) to be the hosts of SARS-CoV-2. Besides, compared to other
192  coronaviruses released on RefSeq [24], the high similarity of human and non-human
193  vertebrate host likelihood scores among SARS-CoV-2, SARS-CoV and MERS-CoV
194  (Figure 3B), would raise an alarm when the infection capabilities of SARS-CoV-2 was
195  uncertain in the early stage of pandemic.

196 To describe the contribution of each gene in the determination of the host likelihood
197  scores of SARS-CoV-2 isolates (use NC 045512 as a representation), we used each
198  gene sequence of SARS-CoV-2 as the input of DeepHoF and predicted the host
199  likelihood scores for each gene. We found that the S gene, ORF1ab and ORF7b indeed
200  acquired high likelihood scores on human host type and thus playing important roles in

201  determining human as the host (Figure 3C). The fact that several domains on S gene
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202  and ORF1lab are essential for the coronavirus-host fusion process, host survival or viral
203  replication [25-27] suggests the rationality of our findings. It is noteworthy that the
204  linear correlation between the lengths and the host likelithood scores for genes is not
205  tenable (Supplemental Figure S2). This shows that the importance of ORF1ab is not
206  due to the remarkable length of the gene. Additionally, our prediction proposes the
207  necessity of further experimental research on the function of ORF7b in SARS-CoV-2.
208  Furthermore, we explored how each gene functioning on coronavirus life circle [25-28]
209  contributed to the human host likelihood scores of SARS-CoV-2, SAR-CoV and
210  MERS-CoV using the earliest sequenced samples, including 12 SARS-CoV isolates, 9
211  MERS-CoV isolates and 17 SARS-CoV-2 isolates released in NCBI in 2003, 2012 and
212 2019, respectively (Supplemental Table S2). The contributions of these genes were
213  represented by their host likelihood scores on human. We found that ORFlab was
214  relatively important in the prediction for all these viruses, which was possibly due to its
215  functions in viral replication and host survival [27]. The structural genes (S, M, N, and
216 E genes) in these three viruses contributed differently on the human host type,
217  illustrating these genes functioned inconsistently in these viruses. Specifically, S gene,
218  participating in virus-host fusion process, contributed more in SARS-CoV-2 and SARS-
219  CoV, while N gene, eliciting the strong specific antibody responses, played the most
220  important role in MERS-CoV. Two equivalent genes, ORF9b, attaching membrane in
221  virion assembly of SARS-CoV, and ORF8b, related to or immune evasion of MERS-
222  CoV, made high contributions on human host likelihood scores for the two viruses.
223 Moreover, two group-specific genes, ORF7b with unclear function in SARS-CoV, and
224  ORF3 associated with virial replication and pathogenesis in MERS-CoV contributed
225  significantly in the two viruses (Figure 3C, Supplemental Figure S3). These
226  discrepancies might indicate the different significance of these genes among the three
227  coronaviruses in the interaction with human and give hints to the target of drug design.
228  Itis disappointed that host determination for SARS-CoV-2 is extremely difficult due to
229  the limited knowledge of the virus world. Therefore, the sequences and host

230 information of viruses contained in the public database should be valued and fully
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231  utilized. To fill the gap in the efficient inference of host species for SARS-CoV-2 using
232  the tools which were state of the art, we deeply analyzed the host likelihood profiles of
233  viruses output by DeepHoF to seek specific vertebrate hosts of the early-stage SARS-
234  CoV-2 isolates. In this study, we proposed that viruses with the same host species
235  possessed the host likelihood score profiles close in the five-dimensional space. Based
236  on this assumption, we compared the host likelihood score profile of SARS-CoV-2 with
237  those of the non-human vertebrate viruses released in GenBank [29] before the
238  pandemic outbreak of SARS-CoV-2 (Methods). We found that minks (Mustela
239  lutreola/Neovison vison) were the most probable host, followed by Chinese rufous
240  horseshoe bats (Rhinolophus sinicus), dogs (Canis lupus familiaris), Pomona roundleaf
241  bats (Hipposideros Pomona) and cat family (Felidae) (Table 2, Supplemental Table S3).
242  In contrast, minks, Chinese rufous horseshoe bats, dogs and cat family were
243  respectively classified into very low, low or medium groups by Damas et al., [10], who
244 divided 410 vertebrate species into five categories from very high to very low
245  depending on the susceptibility to SARS-CoV-2 based on the analysis of sequence
246  similarity of ACE2 and protein structure of ACE2/SARS-CoV-2 S-binding interface
247  from the vertebrates. In the later world-wide pandemic, it should be pointed out that all
248  the probable hosts we predicted were proved by animal experiments or the infection
249  events [5], which illustrated the usefulness of such analysis for the host inference of
250  SARS-CoV-2. Remarkably, SARS-CoV-2 has been reported largely to infect farmed
251  minks in Netherlands, Denmark, Spain, the United States, Sweden, Italy, Greece,
252  France, Lithuania, Canada, and Poland from April to Febrary, 2021. As of Febrary, 2021,
253  SARS-CoV-2 had been reported to sweep 69 and 207 mink farms in Netherlands and
254  Denmark, respectively, which accelerated the cull of minks and killed the fur industry
255  in the two countries. On 9 October, 2020, at least 10,000 minks were reported dead at
256  Utah and Wisconsin mink farms in the USA, and they were believed infected by SARS-
257  CoV-2 [5] (Table 2).

258 When evaluating the contributions of 11 genes of SARS-CoV-2 in determining

259  mink as the most probable host, we found ORFlab and ORFS8 contributed the most
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260  (Supplemental Table S4), which suggesting that genes show different contributions
261  when determining different hosts. The rationality of this result is supported by the roles
262  of ORFlab in viral replication and host survival [27], and the roles of ORF8 related to
263  immune evasion [30]. However, the interaction between the two genes and the mink
264  cell should merit the further attention and investigation.

265 Additionally, novel coronaviruses, which possess high sequence similarity with
266  SARS-CoV-2, were found on pangolin [2, 3] in China. Even though these pangolin-
267  associated coronaviruses were assigned similar host likelihood score profiles with
268  early-stage SARS-CoV-2 isolates, our analysis demonstrated that the similarity of
269  profiles between SARS-CoV-2 and pangolin-associated coronaviruses was lower than
270  those between SARS-CoV-2 and certain viruses of mink and Chinese rufous horseshoe
271  bat.

272  Association of SARS-CoV-2 between humans and minks

273 InApril 2020, farmed minks in Netherlands were noticed to be infected by SARS-Co V-
274 2 because of the abnormal mortality [4]. Even though all the mink farms in Netherlands
275  have been screened mandatorily since 28 May 2020, the transmission of coronavirus
276  among the mink population did not seem to cease. Thus, a million farmed minks were
277  culled in Netherlands, and followed by a plan to cull 2.5 million farmed minks in
278  Denmark.

279 Characterizing SARS-CoV-2 by their host likelihood score profiles, we found the
280  1isolates detected on humans and minks in Netherlands distributed in a consistent mode,
281  where both groups were divided into a major cluster and a divergence (Figure 3D, 1,746
282  SARS-CoV-2 samples collected from humans in Netherlands as of September 15 and
283 153 SARS-CoV-2 samples collected from farmed minks in Netherlands as of October
284 15 were used respectively, Methods). For SARS-CoV-2, as the host likelihood score on
285  susceptible hosts such as human and mink can also indicate the likelihood to infect
286  these animals, the mode of host likelihood score profile can reflect its property of viral

287 infection. Consequently, the consistency mentioned above hinted the close infection-

10
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288  related behaviors of SARS-CoV-2 on humans and minks in Netherlands and thus
289  illustrated the association of SARS-CoV-2 isolates collected from the two populations.
290  Furthermore, nine of 14 high-frequency variants in human-derived SARS-CoV-2
291  genomes sequenced in Netherlands were absent in the genomes detected in other
292  countries. Herein we used NC 045512 as the reference for variant calling, regarded the
293  variants with >5% frequency as high-frequency ones and filtered out the synonymous
294  single nucleotide polymorphisms (SNPs) (Supplemental Table S5). Among these
295  unique high-frequency variants in Dutch human-derived SARS-CoV-2, two were found
296  in Dutch mink-derived SARS-CoV-2, thus proved the circulation of SARS-CoV-2
297  between humans and minks in Netherlands. It was remarkable that our findings could
298  be supported by the conclusions from a research team in Netherland, who utilized more
299  detailed information about patients and related mink farms [12]. In the 2020 world-
300 wide pandemic, minks are the only animal that has been reported to transmit SARS-
301  CoV-2to humans [11, 12]. We further compared the high-frequency variants of SARS-
302  CoV-2isolates in humans and minks in Netherlands. Except for four common variants,
303  SARS-CoV-2 isolates derived from minks still had 23 unique high-frequency variants
304 and six were found on S protein that is related to virus-host fusion process. This result
305 indicated that the virus might have gained higher diversity after the intra-species
306 circulation among mink herd and inter-species circulation between minks and human.
307  As the mink infections are expanding worldwide, the association and circulation of
308  SARS-CoV-2 between humans and minks in Netherlands notifies us of the importance
309 to take precautions of the bidirectional transmission in other regions.

310  Retrospective analysis of the world-wide pandemic

311  To verify the stability and uniformity of the host inference among SARS-CoV-2
312  samples, retrospective analysis of more isolates in the lasting pandemic was required.
313  As the surge in variants of SARS-CoV-2 complicated the host prediction of the novel
314  virus, we utilized 102,804 SARS-CoV-2 genomes released on GISAID EpiCoV
315  Database (https://www.gisaid.org/) [31] as of 15 September 2020, before the rapid

316  accumulation of mutations in SARS-CoV-2. We picked out 53,759 genomes which met
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317  the quality standard given by Chinese Academy of Sciences [32] and trimmed their
318  varied-length 5'- and 3’-untranslated regions (UTR) based on the annotation of
319  NC 045512 (Methods). We calculated the host likelihood score profiles of the 53,759
320  isolates (Supplemental Table S5) and conducted principal component analysis (PCA)
321  on the profiles. As shown in Figure 4A, we found a clear cluster of all SARS-CoV-2
322  1isolates with 17 earliest ones locating in the center. The kernel density estimation curves
323  displayed on the first two principal components were approximately normally
324  distributed. As the profiles of the 53,759 isolates are under the normal distribution
325 mentioned above, the host range of SARS-CoV-2 isolates keep consistent throughout
326  the pandemic and it is therefore reasonable that the validity of the host inference using
327  the earliest 17 isolates would be efficient in the later pandemic.

328 However, when the SARS-CoV-2 isolates were divided chronologically using 15
329  April 2020 as the split date, which divided 53,759 isolates into two parts more evenly
330 than other dates, we found that the two subsets have divergent distributions in each of
331  the two dimensions of PCA (two-sided two-sample Kolmogorov-Smirnov test, p-value
332 =0, nisolates = 26,167 before 15 April 2020 and 27,592 after 15 April 2020) (Figure 4B).
333  The approximately normal distribution of SARS-CoV-2 genomes and their time-
334  dependent feature indicate the overall consistency and a certain extent of divergence in
335  the host likelihood score profiles of SARS-CoV-2 isolates.

336 To explain the divergence among host likelihood score profiles, we identified all
337  variants in 53,759 genomes (Supplemental Table S5). The 13 high-frequency variants
338  were located on S gene, N gene, ORF1ab, ORF8 and ORF3a, some of which are related
339  to virus-host fusion process [22, 33]. Furthermore, we annotated our PCA result with
340  the GISAID nomenclature system [31] which divides all SARS-CoV-2 genomes into
341  six major clades based on marker variants that appeared over time. Most of the marker
342  variants were recognized as high-frequency variants in the variant calling. As we can
343  see in Figure 4C, SARS-CoV-2 isolates fell into several clear fusiform clusters
344  according to their clades. This indicated that those marker variants might explain the

345  divergence among host likelihood score profiles. When we manually mutated the 17
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346  earliest sequenced genomes with those marker variants, we found the variants marking
347  each clade drove the earliest sequenced SARS-CoV-2 to the corresponding cluster of
348  the clade (Supplemental Figure S4), which verified our previous speculation and
349  demonstrated the efficacy of DeepHoF to identify the important variants emerging in
350 the virus’s evolution. However, as the consistency of the distribution of host likelihood
351  score profiles were not disturbed, it hinted that these mutations did not change the host
352  range of SARS-CoV-2.

353 Furthermore, to explore the trend of host likelihood of the SARS-CoV-2 over time,
354  we finally examined the relationships between sampling time and the host likelihood
355  scores on non-human vertebrates and humans (Figure 4D). We found that both scores
356  gradually descended. As the host likelihood scores on susceptible hosts also indicate
357 the likelihood to be infected by SARS-CoV-2 from a computational point of view, the
358  trends might indicate the gradually descending infectiousness to human and other
359  vertebrates from the outbreak to 15 September 2020. Those trends may not be so
360  pronounced, but they should arouse our attention.

361

362 Discussion

363  In summary, we proposed a deep learning method, DeepHoF, based on extracting the
364  viral genomic features, to calculate the host likelihood scores on five host types.
365  DeepHoF made up for the vacancy of a universal tool feasible to any novel virus. For
366  the identification of five host types, our model can significantly outperform BLAST
367 and well discriminate the human-infecting and non-human-infecting viruses like
368  coronaviruses. Overcoming the limitation of sequence similarity-based methods to
369  disclose the host information of novel viruses, DeepHoF demonstrated the practicality
370  to SARS-CoV-2 in the 2020 pandemic. Using 17 SARS-CoV-2 isolates sequenced in
371  the earliest stage of COVID-19 detection, DeepHoF evaluated the host likelithood
372  scores on humans and non-human vertebrates for SARS-CoV-2. Filling the gap in
373  predicting the host species for any novel virus that remained unsolved using the tools
374  which were state of the art, we further analyzed the host likelihood score profile to

13


https://doi.org/10.1101/2021.03.21.436312
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436312; this version posted March 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

375  further infer the specific hosts of SARS-CoV-2. The hosts determined by DeepHoF can
376  be either reservoirs or susceptible middle hosts, which are not discriminated in this
377  study. We found minks, bats, dogs and cats could be potential hosts of SARS-CoV-2,
378  while minks might be one of the most noteworthy animal hosts. Due to mutations, the
379  host likelihood score profiles of the isolates in the long period of the later pandemic had
380  slightly varied, but followed normal distribution where those of the early 17 isolates
381 locate in the center. As a consequence, the host range inferred with the profiles of the
382  isolates during the pandemic was consistent with the inference using the early samples.
383  Additionally, based on the model, we further found three genes (S gene, ORF7b and
384  ORFlab) and two genes (ORF1ab and ORF8) were significant in determining the host
385 likelihood score on human and the host range for SARS-CoV-2, respectively. The genes
386 involving virus-host fusion process (S gene), viral replication (ORFlab) and host
387  survival (ORF1ab) played a significant role in determining human as the host, while
388  the genes related to viral replication (ORF1ab), host survival (ORF1ab) and immune
389  evasion (ORF8) were significant to determine the host range for SARS-CoV-2. For the
390 prevention and control of a novel epidemic disease such as COVID-19, the prediction
391 of probable hosts is essential at the early stage of the epidemic outbreak. In view of this,
392  our study is expected to play a potentially effective role in support of those efforts.

393 Furthermore, according to the analysis results of host likelihood score profiles of
394  humans and minks in Netherlands, we found a strong association of SARS-CoV-2
395 isolates collected from the two populations and disclosed the contribution of mink on
396  higher divergence in SARS-CoV-2. The phenomenon coincided with the analysis result
397  ofvariant calling and could be explained by characteristics of minks in virus circulation.
398  As reported by previous studies about avian-derived influenza A virus, minks serve as
399  asignificant node in the viral transmission network, connecting animals from different
400  families and acting as domesticators for viral adaptation to mammals [34]. As the only
401  one animal that has been reported to transmit SARS-CoV-2 to humans, the role of minks
402  in the evolution of SARS-CoV-2 should be studied in depth. Therefore, with a large-

403  scale genome analysis based on DeepHoF’s computation for the later world-wide
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404  pandemic, it should not be slighted for the relationship of SARS-CoV-2 between
405  humans and minks.

406 Although we have applied DeepHoF to SARS-CoV-2 in the current study, the
407  application of DeepHoF is not limited to this virus. DeepHoF is also feasible to
408  determine the host ranges for many other novel viruses, such as the small circular rep-
409  encoding ssDNA viruses newly discovered on wild animals and domestic animals or in
410  the environment. However, limitations of DeepHoF lie in that it does not consider the
411 host sequence information, which can be improved in the future. DeepHoF also does
412  not discriminate between reservoir hosts, vector hosts and other susceptible hosts.
413  Meanwhile, the present study is expected to be further confirmed with both the ongoing
414  events of pandemic and additional experimental findings, and the interpretation of our
415 analysis should be still kept a certain caution.

416 Represented by SARS-CoV-2, more complex and larger numbers of viral genome
417  data will be produced in similar epidemics in the future. In addition, the metagenome
418  and the metavirome can also be used in the prevention and control of the epidemic. The
419  United States Agency for International Development launched the Global Virus
420  Program in 2018 to reduce possible epidemiological threats by studying metaviromic
421  samples from more than 35 countries around the world [35]. It is estimated that there
422  are about 1.67 million novel viruses in mammals, birds and other important hosts of
423  zoonotic viruses. Among them, 631,000-827,000 have the potential to cause zoonotic
424 diseases [35]. However, only 263 viruses from 25 virus families have been confirmed
425  to infect humans [36]. Newly emerged infectious viruses keep threatening our health
426  and well-being. Under the circumstances, using computational methods to discover
427  pathogenetic viruses and acquire knowledge, including the host range, about novel
428  viruses can provide timely response in the prevention of epidemics and pandemics. In
429  the future, the detection of novel viruses will rely more heavily on high-throughput
430  sequencing technologies such as metagenomics and metaviromics. Thus, more robust
431  tools designed for metagenomes and metaviromes are required.

432
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433  Materials and Methods

434  Datasets construction for training and test

435  We downloaded 63,049 whole viral genomes from GenBank by 9 July, 2019, and
436  tagged them with five host labels (plant, germ, invertebrate, non-human vertebrate and
437  human), which were integrated from the host metadata provided by GenBank
438  (Supplemental Table S6). The five host types covered all the living organism hosts. For
439  viruses infecting multiple host types, multiple labels were given. Following the data
440  collection procedure, short fragments were generated randomly from those tagged
441  whole genomes because of the computational cost in long sequence processing. The
442  training set was constructed with short fragments from 55,283 genomes released before
443 1 January, 2018, and the test set was constructed with the rest (the Accession list and
444  the host information of the genomes used for training and test are in Supplemental Table
445  S7). There is non-overlap of virus species in the training and test sets.

446  Mathematical representation of viral whole genomes

447  Due to the long-term adaptation to natural reservoirs, viruses share some evolutionary
448  signatures in nucleotide sequences, such as codon pair, dinucleotide, codon, and amino
449  acid biases, with their natural reservoirs [15]. Besides, viral proteins, especially the
450  receptors that are effectively attached to the host cell membrane, are crucial factors for
451  viruses to invade and infect the host cells [37]. In brief, the genome compositions of
452  viruses can inform host-virus correlation.

453 Herein, we represent a given viral sequence with a base one-hot matrix (BOH) and
454  a codon one-hot matrix (COH), digitizing the genetic information of the virus on
455  nucleotide and codon level respectively. To start with, bases and codons are encoded
456  with one-hot format to work with deep learning algorithms. In the coding of BOH, each
457  consecutive base of a query sequence linked by its complementary strand is encoded
458 by one-hot. For COH, we do not extract ORFs since coding sequences make up most
459  of the viral genome. Instead, we directly concatenate the six phases of the input
460  sequence (Supplemental Figure S5), and then each consecutive codon of the joined
461  sequences is encoded by one-hot. Consequently, for an input sequence of length L, it
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462  will be transformed to a BOH matrix, with the size of 2L.x4, and a COH matrix, with
463  the size of 2L.x64.

464  BiPathCNN Model descriptions

465  Inbuilding the framework of DeepHoF, we firstly utilize a BiPathCNN [38], containing
466  two CNN paths, digging information from the BOH matrix and COH matrix
467  respectively. The information is naturally corresponding to the viral genomic features
468  for the viruses which infect the same kind of hosts. After independent convolution and
469  pooling operations at the beginning, the two paths are combined by a concatenation
470 layer. Following a normalization layer, five prediction scores will be provided by five
471  sub-paths, containing five independent nodes, corresponding to five independent binary
472  classifications on plant, germ, invertebrate, non-human vertebrate and human
473  individually, in the output layer with sigmoid activation and binary cross-entropy loss
474  function for each node. The architecture of DeepHoF is shown in Supplemental Figure
475  S6 and the details of each layer in BiPathCNN are described in Supplementary
476  Information.

477  Implementation of DeepHoF

478  In the practical application, viral nucleotide sequence is the only input required by
479  DeepHoF. For a viral whole genome sequence (or a partial genome sequence), a cut
480  window moves along the long sequence without overlapping to separate it into suitable
481  fragments for the pre-trained BiPathCNN model. DeepHoF firstly predicts the host
482  infection scores for each fragment. Then it calculates the final score by weighting and
483  summing the predicted scores of each fragment. For example, a 2,000 bp query
484  sequence is separated into three consecutive fragments, corresponding to the first 800
485  bp, the middle 800 bp and the last 400 bp of the query sequence. Then DeepHoF
486  predicts the three fragments independently and calculates the weighted average of the
487  three predicted score vectors with the weights of 800/2,000, 800/2,000, and 400/2,000
488  respectively. For each input sequence, DeepHoF outputs five scores on five host types,
489  respectively. Besides, DeepHoF provides the p-values of each score, statistically

490  measuring of how distinct the scores are compared with those of non-infectious viruses
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491  [22]. For example, if an input virus has a score of 0.4 on human, we compare 0.4 with
492  the scores of non-human viruses in our dataset and provide the p-value as a judgment
493  basis. If the p-value is less than 0.05, we conclude that human is the probable host of
494  the input virus with a significantly higher score on human host type than non-human
495  viruses.

496 As the host likelihood score profile of a virus, consisting of the five predicted scores
497  given by DeepHoF, can be regarded as a host-related feature vector extracted by
498  DeepHoF, we utilize it to characterize the virus. It is logistical to regard the viruses with
499  the same host species possess the similar host likelihood score profiles. Based on this
500 assumption, the potential host species of a virus can be inferred by the analysis of the
501  profiles. To quantitatively compare host likelihood score profiles between viruses, we
502 calculated the Euclidean distance between the profiles. In the case of SARS-CoV-2, we
503  searched the detailed vertebrate host of the earliest detected isolates, which are closer
504  to the most recent common ancestor of SARS-CoV-2. To start with, we added the host
505 annotations provided by Virus-Host DB [39] to the vertebrate viruses included in
506  GenBank. Here, the average of host likelihood score profiles of 17 earliest sequenced
507 isolates was used as the representation of SARS-CoV-2. We calculated the Euclidean
508 distance between the profile of SARS-CoV-2 and that of each non-human vertebrate
509  virus (discovered before the outbreak of SARS-CoV-2). We regarded the vertebrate
510 infected by a virus possessing profile close to that of SARS-CoV-2 was the probable
511  host of SARS-CoV-2.

512  Data filtering and trimming for SARS-CoV-2 genome sequences

513  There were 102,804 SARS-CoV-2 genomes released on GISAID EpiCoV Database as
514  of 15th September 2020. We downloaded all the sequences and filtered them with the
515  quality standard given by the Chinese Academy of Sciences [32]. Because the UTRs
516  were not taken as seriously as the protein-coding regions and the lengths of sequenced
517  UTRs varied a lot in different SARS-CoV-2 genomes, we trimmed the 5'- and 3'- UTR
518 according to the annotation of NC 045512 to get rid of noises. Thus, we finally got

519 53,759 clean sequences.
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520  Phylogenetic analysis and single nucleotide polymorphisms analysis

521  In this study, we applied Clustal Omega software [40] (version 1.2.4) for multiple
522  sequence alignment and RAXML software [41] (version 8.2.12) for phylogenetic tree
523  building using maximum likelihood methods with 1000 bootstrap replicates. Snippy
524  [42] (version 4.4.3) was utilized for variant calling, using NC 045512 as the reference
525  genome. In this study, we filtered out the synonymous SNPs and regarded the variants
526  with > 5% frequency as high-frequency ones. Commands of the three tools are
527  included in Supplementary Information.
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652
653  Figure legends

654  Figure1l DeepHoF outperforms BLAST and well learns the information of virus
655  hosts

656  A.Average ROC curves and AUC values of DeepHoF and BLAST. DeepHoF performs
657  better than BLAST on average AUC of five host types. B. Comparison of host
658  likelihood scores predicted by DeepHoF between human-infecting and non-human-
659 infecting coronaviruses on human. The former performed higher probabilities than the
660 latter (two-sided unpaired Welch Two Sample #-test, 7(43.843) = 8.265 and #38.016)= 4.674,
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661  p-values=1.732x10"'%and 3.657x107. *** p-value < 0.0001, z-values and degrees of
662 freedom were presented as #adn). C. Phylogenetic analyses of whole genomes of
663  coronaviruses. D. Phylogenetic analyses of S genes of coronaviruses. Maximum-
664  likelihood phylogenic trees were built by RAXML [41] with 1,000 bootstrap replicates
665 and visualized with iTOL [43]. The whole genomes and the S genes of the human-
666  infecting coronaviruses could not be distinguished from the non-human-infecting ones.
667  (Red: human-infecting coronaviruses; Blue: non-human-infecting coronaviruses).

668  Figure2 The workflow of application of DeepHoF on NC 045512

669 In the application of DeepHoF on SARS-CoV-2 NC 045512, the whole genome of
670  NC 045512 was the only input required by the pre-trained DeepHoF model and coded
671 into BOH and COH matrix for BiPathCNN network. DeepHoF output the host
672  likelihood scores of NC 045512 on five host types respectively and the corresponding
673  significance. The hosts of NC 045512 were predicted to be non-human vertebrates and
674  humans with p-values less than 0.05. Simultaneously, NC 045512 was characterized
675 by its host likelihood score profile. Susceptible to viruses with similar profile, Mustela
676  lutreola/ Neovison vison, Rhinolophus sinicus, Canis lupus familiaris, Hipposideros
677  pomona and Feline were output as the probable hosts of NC _045512. BOH: base one-
678  hot matrix, COH: codon one-hot matrix.

679  Figure3 Evaluation of host likelihood scores of SARS-CoV-2

680  The contribution of each gene in the prediction and the visualization of host likelihood
681  score profiles of SARS-CoV-2 isolates sampled in Netherlands. A. Host likelithood
682  scores of 17 earliest detected SARS-CoV-2 isolates and other coronaviruses on humans
683  and non-human vertebrates. SARS-CoV-2 showed high host likelihood scores on both
684  humans and non-human vertebrates with p-values less than 0.05. In addition, SARS-
685  CoV-2 was predicted lower score than SARS-CoV and comparable score to MERS-
686  CoV on human. As for host likelihood scores on non-human vertebrates, SARS-CoV-
687 2, SARS-CoV and MERS-CoV were close to each other. Host likelihood scores have
688  p-values less than 0.05 are marked ‘Y (yes)’. (Red: human-infecting coronaviruses; *:

689  the 17 earliest collected SARS-CoV-2 isolates). B. Hierarchical clustering of early-
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690 stage SARS-CoV-2 and other coronaviruses using five-dimensional host likelihood
691  score profiles given by DeepHoF. The profile of SARS-CoV-2 was close to that of
692 SARS-CoV and MERS-CoV (Red: SARS-CoV-2; Blue: SARS-CoV; Yellow: MERS-
693  CoV). C. Contributions of the protein coding genes on determining the host likelihood
694  scores of SARS-CoV-2, SARS-CoV and MERS-CoV on human. The structural genes,
695 ORFlab and group-specific genes contributed differently in the three coronaviruses
696  (two-sided unpaired Welch Two Sample t-test, p-value < 0.05, see in Supplemental
697  Figure S3). S, ORF7b and ORF1lab were the most pivotal in SARS-CoV-2. ORF7b,
698 ORF9b and S were the most considerable in SARS-CoV. ORF8b, N and ORF3
699  contributed the most in MERS-CoV (S: spike glycoprotein coding gene; M:
700 membrane/matrix glycoprotein coding gene; N: nucleocapsid phosphoprotein coding
701  gene; E: envelope coding gene). D. Principal component analysis (PCA) of host
702 likelihood score profiles of SARS-CoV-2 detected on humans and minks in Netherlands.
703  The host likelihood score profiles of mink-derived and human-derived SARS-CoV-2
704  1isolates in Netherlands are distributed in a consistent mode, containing a major cluster
705 and divergence. The host likelihood score profiles of human-derived (left) and mink-
706  derived (right) SARS-CoV-2 isolates in Netherlands distributed in a consistent mode,
707  both containing a major cluster (red) and divergence (blue). The major cluster and the
708  divergence were divided by the pam function of R package cluster.

709  Figure 4 Entirety and divergence in the host likelihood score profiles of 53,759
710  SARS-CoV-2 isolates in the later world-wide pandemic

711  A. PCA of host likelihood score profiles of 53,759 SARS-CoV-2 isolates and the
712 distribution on each principal component. All the host s likelihood core profiles of
713 53,759 SARS-CoV-2 isolates were clustered with 17 earliest sequenced isolates located
714  in the center and the density curves displayed on each principal component were
715  approximate normal distribution. B. Distributions of host likelihood score profiles of
716 53,759 SARS-CoV-2 isolates collected before and after 15 April 2020. When the
717  SARS-CoV-2 isolates were divided chronologically using 15 April 2020 as the split

718  date, which divided the 53,759 isolates into two parts more evenly than other dates. The
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719  host likelihood score profiles of SARS-CoV-2 before and after 15 April 2020 had
720  divergent distributions on each principal component (two-sided two-sample
721  Kolmogorov-Smirnov test, p-value = 0, nisolates = 26,167 before 15 April 2020 and
722 27,592 after 15 April 2020. Blue, 26,167 isolates collected before 15 April 2020; Red,
723 27,592 isolates collected after 15 April 2020; Grey, all the 53,759 isolates). C. GISAID
724 clades represented in PCA of host likelihood score profiles of 53,759 SARS-CoV-2
725  genomes. All the 53,759 samples representing 53,759 host likelihood score profiles
726 were painted with six different colours corresponding to six different GISAID clades
727  of SARS-CoV-2. SARS-CoV-2 isolates fell into several clear fusiform clusters with
728  different colours according to their clades. D. Time series of the host likelihood scores
729  on humans and non-human vertebrates for SARS-CoV-2 in the later world-wide
730  pandemic. The host likelihood scores on humans and non-human vertebrates descend
731  gradually with time (linear regression model analysis, R-squared = 6.806x 10 and
732 1.431%x 1072, #53.757y = —19.22 and #53.757) = —27.96, p-values = 5.543 x 10-%* and
733 3.292%10%72, slopes = —1.853x 10 and —3.768x10°).

734

735  Tables

736  Table1 Performance metrics of DeepHoF and BLAST

Methods Precision Accuracy TPR FPR AUC F1-score

BLAST 0.699 0.892 0.888 0.107 0.833 0.896
DeepHoF 0.968 0.964 0.865 0.008 0.987 0.963

TPR: true-positive rate; FPR: false-positive rate; AUC: area under the curve

737

738  Table 2 Host prediction results of SARS-CoV-2

Reported
Evidence of infection with
Prediction transmission
SARS-CoV-2 [5]
to humans
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- From 19 April to 1 October,

2020, out of around 120 mink

farms in Netherlands, 57 have

been declared infected,;

- From 17 June to 1 October, - Two cases
2020, SARS-CoV-2 has been that minks
detected in 41 mink farms in transmitted
Denmark; SARS-CoV-
- On 16 July, 2020, 80% of the 2 to humans

Mustela lutreola ) )
animal samples were tested in Dutch
_ / Neovison vison

positive in a Spanish farm; farms were

- On 17 August, 2020, confirmed reported by
cases were reported in minksat ~ Nature on 1
two farms in Utah, the United June 2020
States; [11].

- On 9 October, 2020, 10,000

minks were dead at the United

States fur farms and believed

infected by SARS-CoV-2.

Rhinolophus - SARS-CoV-2 is 96% identical
sinicus / at the whole-genome level to a N.A.

Hipposideridae  bat coronavirus.

- Confirmed cases in dogs were

Canis lupus reported in Hong Kong, New
familiaris York, Georgia, Texas, South NA
Carolina, etc.
- Laboratory confirmed cases of
Felidae N.A.

cats;

27


https://doi.org/10.1101/2021.03.21.436312
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436312; this version posted March 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

755

made available under aCC-BY-NC-ND 4.0 International license.

- Four tigers and three lions at

b y o the same facility were all
confirmed with SARS-CoV-2 in
New York in April, 2020;
- Confirmed cases in cats in New
York, Minnesota, Illinois,

California.

Note: N.A. - not available yet.

Hong Kong, Hong Kong Special Administrative Region of the People's Republic of
China.

Utah, New York, Georgia, Texas, South Carolina, Minnesota, Illinois, California

are states of the United States.

Supplementary material

Supplementary material Supplemental Figure S1-S6, Supplemental Table S1,
S3 and S6 and Supplemental Methods

Supplemental Figure S1 ROC curves and AUC values of DeepHoF and BLAST
on five host types

DeepHoF performs better than BLAST on AUC of each host type.

Supplemental Figure S2 The untenable linear correlations between the lengths
and the host likelihood scores for genes of SARS-CoV-2

For the genes of SARS-CoV-2, there is no statistical significance in the linear
correlations between the lengths and the host likelihood scores on plant (A), germ (B),
invertebrate (C), vertebrate (D) and human (E).

Supplemental Figure S3 Human host likelihood scores of 5 genes of SARS-
CoV-2, SARS-CoV and MERS-CoV

Although all the three coronaviruses possess ORF1ab and four structural genes (S, M,
N, E), these genes made different contributions on human host likelihood scores in

these three viruses (two-sided unpaired Welch Two Sample ¢-test, p-value < 0.05). S
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756  gene and M gene contributed more in SARS-CoV-2 and SARS-CoV, while N gene
757  and E gene were more significant in MERS-CoV.

758  Supplemental Figure S4 Visualization of the host likelihood score profiles of
759  SARS-CoV-2 isolates from different GISAID clades and the manually mutated
760  SARS-CoV-2 isolates on two-dimensional PCA

761  SARS-CoV-2 isolates fall into several clear fusiform clusters with different colors
762  according to their clades. Manually mutated with specific marker variants, the 17

763  earliest sequenced isolates move to the corresponding fusiform cluster of the clade
764  that is represented by the specific marker variants.

765  Supplemental Figure S5 Six phases of an input sequence

766  For coding the COH matrix of a given sequence, we represented it with the direct

767  conjunction of its six phases, generated from its complementary strand and itself.

768  Supplemental Figure S6 Structure of BiPathCNN in DeepHoF

769  BOH matrix and COH matrix are input into two paths independently and transformed
770 by the convolution and pooling layers at the beginning. A concatenation layer and a
771  normalization layer combine the output of the two paths. Five sub-paths process the
772  combined intermediate output individually. Each sub-path contains a full connection
773  layer, a normalization layer and an output layer with sigmoid activation and binary
774 cross-entropy loss function. The five sub-paths output the host likelihood scores on
775  five host types respectively.

776 Supplemental Table S1 Comparison of performance of DeepHoF and BLAST on
777  each host type classification

778  Supplemental Table S3 Top 20 hosts predicted by DeepHoF on SARS-CoV-2
779  Supplemental Table S6 Subtypes in five host types

780  Other supplementary material for this manuscript includes the following:

781  Supplemental Table S2 Metadata and host likelihood scores of genes for SARS-
782  CoV, MERS-CoV and SARS-COV-2 isolates

783  Supplemental Table S4 Contributions of 11 genes in the determination of hosts
784  for SARS-CoV-2
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785  Supplemental Table SS Metadata, host likelihood score profiles, and high

786  frequency SNPs on 53759 SARS-CoV-2 isolates

787  Supplemental Table S7 Host information of the viral genomes in training and
788  test sets of DeepHoF

789  Supplemental Table S8 Acknowledge of sequence data of SARS-CoV-2 in

790 GISAID

791
792  Data statement

793  Data utilized in the analysis of SARS-CoV-2, including the host likelihood score
794  profiles and the metadata of 53,759 SARS-CoV-2 isolates, are available in the main text
795  and Supplementary Information. The trimmed sequences of 53,759 isolates and the

796  training and test sets of DeepHoF have been deposited on our lab homepage

797  http://cgb.pku.edu.cn/ZhulLab/DeepHoF/.

798 The open source code utilized in this study has been deposited on GitHub
799  https://github.com/PKUbioinfo-ZhuLab/DeepHoF  and our lab  homepage

800  http://cgb.pku.edu.cn/ZhulLab/DeepHoF/
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