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Abstract

Backgrounds

Sevoflurane is a most frequently used volatile anesthetics, but its molecular mechanisms of
action remain unclear. We hypothesized that specific genes play regulatory roles in brain
exposed to sevoflurane. Thus, we aimed to evaluate the effects of sevoflurane inhalation
and identify potential regulatory genes by RNA-seq analysis.

Methods

Eight-week old mice were exposed to sevoflurane. RNA from medial prefrontal cortex, stria-
tum, hypothalamus, and hippocampus were analysed using RNA-seq. Differently expressed
genes were extracted and their gene ontology terms were analysed using Metascape.
These our anesthetized mouse data and the transcriptome array data of the cerebral cortex
of sleeping mice were compared. Finally, the activities of transcription factors were evalu-
ated using a weighted parametric gene set analysis (WPGSA). JASPAR was used to confirm
the existence of binding motifs in the upstream sequences of the differently expressed
genes.

Results

The gene ontology term enrichment analysis result suggests that sevoflurane inhalation
upregulated angiogenesis and downregulated neural differentiation in each region of brain.
The comparison with the brains of sleeping mice showed that the gene expression changes
were specific to anesthetized mice. Focusing on individual genes, sevoflurane induced Kif4
upregulation in all sampled parts of brain. WPGSA supported the function of KLF4 as a tran-
scription factor, and KLF4-binding motifs were present in many regulatory regions of the dif-
ferentially expressed genes.
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Conclusions

Klf4 was upregulated by sevoflurane inhalation in the mouse brain. The roles of KLF4 might
be key to elucidating the mechanisms of sevoflurane induced functional modification in the
brain.

Introduction

Sevoflurane is the most frequently used volatile anesthetic in general anesthesia. Some reports
discussed the perioperative adverse effects of sevoflurane, such as emergence agitation, postop-
erative delirium, and cognitive disorders, although whether anesthetics themselves cause peri-
operative adverse effects is still controversial [1-3]. Several membrane receptors such as the y-
aminobutyric acid type A receptor, nicotinic AchR, hyperpolarization-activated cyclic nucleo-
tide-gated channels have been reported to be potential targets of sevoflurane [4-9]. However,
receptor-based molecular mechanisms have not sufficiently explained these phenomena. Fur-
thermore, although some reports have evaluated the effects of sevoflurane using transcriptome
analysis, these studies focused only on limited parts of the brain. Hayase et al. reported that the
increase in dopamine activity in the hippocampus due to inhalation of sevoflurane might be
related to postoperative nausea, and Mori et al. reported circadian gene variations in the supra-
chiasmatic nucleus after sevoflurane inhalation [10, 11]. However, we thought that by compar-
ing many regions at once and extracting genes that might play common role in all regions, we
could focus on genes that are important with regard to the whole brain.

In this study, medial prefrontal cortex (MPFC), hippocampus, striatum, and hypothalamus
were chosen as targets of the analysis, as these parts were frequently used for evaluating the
effects of volatile anesthetics [12-15]. Differently expressed genes (DEGs) and enriched gene
groups were compared between the four parts of the brain and we applied the same analysis to
the transcriptome array data of sleeping mice to identify specific gene expression changes in
brains exposed to sevoflurane. Finally, we evaluated the effects of the transcription factors on
their target genes using wPGSA and confirmed the existence of consensus-binding motifs in
the upstream sequences of DEGs. Herein, we report sevoflurane-induced gene expression
change patterns in the mouse brain and that KLF4 emerged as a specific transcription factor
that potentially promoted angiogenesis and induced the appearance of undifferentiated neural
cells.

Materials and methods
Approval for the animal experiments

All the animal experiments in this study were conducted in accordance with the Guidelines for
Proper Conduct of Animal Experiments (Science Council of Japan) and approved by the Cen-
ter for Experimental Animals of Tokyo Medical and Dental University. (Approval No.A2017-
131A)

Experimental conditions and preparation of brain samples

Eight-week old mice (C57BL/6]) were purchased from Sankyo Labo (Tokyo, Japan) and Ori-
ental Yeast (Tokyo, Japan). Six mice were assigned into two groups, the control (n = 3) and
sevoflurane inhalation groups (n = 3). For the sevoflurane group, the mice were putin a

box with 2.5% sevoflurane / 40% oxygen for 3 hours. The body temperature was measured and
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sustained within the range of +0.5°C by using a body warming machine. For the control
group, the mice were put in a box with normal air and stayed in the box without food or water
for 3 hours. After the treatments, all the mice were immediately killed through cervical disloca-
tion, and their whole brains were removed. The brain samples were cut into 2 mm slices, and
the medial prefrontal cortex, striatum, hippocampus, and hypothalamus were punched out,
referring to the methods of Ishikawa et al [16].

RNA extraction from brain tissue sections and RNAseq analysis

RNA was extracted from brain tissue sections by using TRIZOL (ThermoFisher, Waltham,
MA, USA) and 500ng total RNA was used for the subsequent preparation. RNA-seq libraries
were prepared with a rRNA-depletion kit (E6310, New England Biolabs Japan, Tokyo, Japan)
and a directional library synthesis kit (E6310, New England Biolabs Japan). The RNA libraries
were sequenced using NextSeq500 High-output kit v2 for 2 x 36 base reads.

Mapping FASTQ data and calculating gene expressions

The adapters in the FASTQ files were trimmed using the TrimGalore software (https://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/). The FASTQ files were mapped to
mouse genomes (mm10) by using the STAR software [17] (https://github.com/alexdobin/
STAR), and the amount of each transcript was calculated with the RSEM software [18]
(https://github.com/deweylab/RSEM).

Extracting DEGs on iDEP.91

The counted data were transformed with EdgeR (log, [counts per million (CPM) + 4]), and
principal components analysis (PCA) plots were depicted. DEGs were extracted using
DESeq2. All these steps were performed with iDEP.91 [19] (http://bioinformatics.sdstate.edu/
idep/). Venn-diagrams were used to depict the upregulated and downregulated DEGs.

Sequencing data

The raw sequencing data were submitted to the DNA Data Bank Japan (DDBJ: http://www.
ddbj.nig.ac.jp) under accession No. DRA010292.

Gene ontology term enrich analysis using Metascape

The extracted DEGs were analysed with Metascape [20] (http://metascape.org/gp/index.
html#/main/stepl). A gene ontology (GO) term enrichment analysis was performed, and a
Circos plot was drawn.

Extraction of DEGs from sleeping mice

The transcriptome array data of the unbound fractions of immunoprecipitation for the cere-
bral cortices of waking or sleeping mice (GSE69079) were used in the analysis [21]. The
expression data were normalized, and DEGs were selected using DESeq2 in iDEP. 91. Venn-
diagrams were used to depict the DEGs of the MPFECs of anesthetized mice and cerebral corti-
ces of the sleeping mice.
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Weighted Parametric Gene Set Analysis (WPGSA) of DEGs in the brains of
mice that inhaled sevoflurane

For the fold changes data, the expression changes of the target genes of each transcription fac-
tor were calculated and its activity (T-score) was estimated using a weighted parametric gene
set analysis (WPGSA [22]: http://wpgsa.org/). Expressed transcription factors in the brain were
extracted from the analysed data. The transcription factors with T-scores of > 2.0 and false dis-
covery rates (FDRs) of < 0.1 were regarded as active transcription factors, while those with T-
scores of < - 2.0 and FDR of < 0.1 were regarded as suppressive transcription factors. More-
over, the transcription factors included in the DEGs were extracted from active and suppres-
sive transcription factors and, regarded as responsible for anesthetic effects.

Histological and immunohistochemical analysis

Mouse brain was fixed in 4% paraformaldehyde overnight at 4°C, and embedded in paraffin.
Sections of 4um in thickness were stained. Immunohistochemical staining was performed
using a Vectastain ABC-AP Rabbit IgG Kit (AK-5001, VECTOR LABORATORIES, INC,, CA,
USA) and Vector Red (SK-5100, VECTOR LABORATORIES, INC.) according to the manu-
facturer’s instructions. Anti-KLF4 antibody (1/100 dilution) (NBP2-24749, Novus Biologicals,
CO, USA) was used as the primary antibodies.

Western blotting analysis for brains exposed to sevoflurane

Proteins were collected from hippocampus with lysis buffer (10 mM Tris-HCI, 2%SDS) with
protease inhibitor (WAKO, Osaka, Japan). 50ug (for KLF4) or 20ug (for ACTB) of proteins
were separated by SDS-PAGE followed by semi-dry transfer to a PVDF membrane. Mem-
branes were blocked for 1h with Blocking-One (Nacalai Tesque, Kyoto, Japan), reacted with
primary antibody for KLF4 (4038S, CST, MA, USA) or ACTB (010-27841, WAKO) at 4°C
overnight, rinsed and reacted with ECL mouse IgG HRP-conjugated whole antibody (GE
Healthcare, IL, USA) or rabbit IgG HRP-conjugated whole antibody (GE Healthcare). The
blot was developed using the ECL Select Western Blotting Detection Reagent (GE Healthcare).

Detection of the consensus-binding motifs of Kif4 in the upstream
sequences of DEGs

The consensus-binding motifs of KLF4 were referred from JASPAR (http://jaspar.genereg.net/
). The 1000-bp upstream sequences of the DEGs annotated with the GO terms “angiogenesis”
and “head development” were analysed using JASPAR and the existence of KLF4 binding
motifs was confirmed. We regarded the motifs with scores of > 8 as candidate binding motifs
for KLF4.

Statistical analyses

In extracting DEGs from RNA-seq data and differently activating transcription factors from
the wPGSA analysed data, we considered FDRs of < 0.1 as statistically significant.

Results

Genome-wide transcriptome analysis for the brains of mice that inhaled
sevoflurane

To investigate the sevoflurane-induced gene expression changes in the brain, three 8 week old
male mice that inhaled sevoflurane for 3 hours or the control mice were killed, and their brains
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were removed. The brain tissue samples were cut into 2 mm slices, and four parts of the brain
(hippocampus, hypothalamus, medial prefrontal cortex and striatum) were punched out for
RNA extraction. We performed a genome-wide transcriptional analysis with next generation
sequencing, and confirmed the proper RNA extraction from each brain area by the PCA plot
(Fig 1A, S1A and S1B Fig). DEGs were extracted on the basis of the criteria of FDR < 0.1 (S1
Table). Among the upregulated DEGs, 100, 109, 33, and 314 were expressed in the striatum,
MPEC, hypothalamus and hippocampus, respectively. Among the downregulated DEGs, 93,
121, 18, and 502 were expressed in the striatum, MPFC, hypothalamus, hippocampus, respec-
tively (Fig 1B-1E, S2 Table). The highest number of DEGs was found in the hippocampus; and
the lowest number in the hypothalamus. These results suggest that the gene expression in the
hippocampus was the most-influenced and that in the hypothalamus was the least-influenced
by sevoflurane inhalation.

(B)~(E) FASTQ files were mapped using STAR, differently expressed genes (DEGs) were
extracted using iDEP.91 and MA-plots were drawn for the striatum (B), medial prefrontal cor-
tex (C), hypothalamus (D), and hippocampus (E).

To compare the upregulated DEGs in the different parts of the brain, a Venn-diagram was
drawn (Fig 2A). Thirteen common upregulated genes found in all sampled parts of the brain
are shown in Fig 2B. Sevoflurane inhalation upregulated transcription factors such as Kif4 in
all sampled parts (Fig 2B). The expression level of Kif4 was >2.5 times higher than that in the
control mice. Furthermore, to investigate the differences of upregulated DEGs between the dif-
ferent parts of the brain, a GO term enrichment analysis was performed using Metascape [20].
The Circos plot drawn using Metascape showed similarities in the upregulation patterns of the
gene expressions in the four parts of the brain (Fig 2C). As shown in the heatmap, sevoflurane
inhalation caused the upregulation of genes annotated as “angiogenesis” and “response to
wounding” in all parts (Fig 2D). The transcription factors KLF4 and KLF2, as well as EDNI,
CCN1, and ADAMTS], were annotated to the GO terms “angiogenesis” and “response to
wounding” (S3 Table).

Next, downregulated DEGs were compared between the four parts of the brain, and a
Venn-diagram was drawn (Fig 3A). The common downregulated DEGs among each part of
brain was only the Banp gene (Fig 3B). Furthermore, to compare the downregulated DEGs
between the four parts of the brain, a GO term enrichment analysis was performed with
Metascape. As shown in the Circos plot, enriched GO terms were similar among the different
parts of the brain (Fig 3C). Moreover, the heatmap showed that sevoflurane inhalation down-
regulated the genes annotated as “head development” in all sampled parts of brain, and those
annotated as “axon development” or “synapse organization” in several parts (Fig 3D and S4
Table).

For identifying specific gene expression changes induced by sevoflurane inhalation, a com-
parison was made with the transcriptome array data of the cerebral cortices of sleeping mice as
the resembling state [21]. We chose the data of MPFCs exposed to sevoflurane as an equivalent
part to the cerebral cortices of the sleeping mice. We extracted DEGs using the same method
in our experiments. Regarding the comparison between the gene expression changes in the
cerebral cortices of the sleeping mice and those of the waking mice, the sleeping mice had 477
upregulated DEGs and 3572 downregulated DEGs (S5 and S6 Tables). As shown in the Venn
diagrams, there were 5 common upregulated DEGs and 45 common downregulated DEGs
were found between the sevoflurane-anesthetized and sleeping mice (S2A and S2B Fig, S7
Table). Moreover, by comparing genes upregulated and downregulated in all parts of the brain
exposed to sevoflurane, we found that all the genes except Ednl were completely expressed dif-
ferently (S2C and S2D Fig).
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Fig 1. RNA-seq analysis for brains exposed to sevoflurane. (A)The workflow of the RNA-seq analysis for the anesthetized mice. After anesthetizing
with 2.5% of sevoflurane and 40% oxygen for 3 hours, the brains were removed and sliced into 2 mm pieces. The striatum, medial prefrontal cortex
(MPEC), hypothalamus and hippocampus were punched out. RNA was extracted from the punched out samples and RNA-seq was performed using

https://doi.org/10.1371/journal.pone.0236771.9001

Identification of KLF4 as a candidate of key transcriptional regulator in
brain exposed to sevoflurane

As represented by KLF4, sevoflurane induced changes in the expressions of many transcrip-
tion factors from the analysis of DEGs. Therefore, we hypothesized that sevoflurane changed
the activities of specific transcription factors in each part of the brain. To verify this hypothesis,
we utilized the wPGSA method [22], with which evaluated the expression changes of the target
genes for each transcription factor by using T-scores. A positive T-score means that the tran-
scription factor functions as an activator, while a negative T score means that it functions as a
repressor. We regarded transcription factors with both | T-score| > 2.0 and FDR < 0.1 as func-
tional transcription factors. With the wPGSA method, 34, 3, 3, and 1 transcription factors in
the MPFC, striatum, hypothalamus, and hippocampus were estimated as activators, respec-
tively. Ninety-three, 188, 113, and 168 transcription factors in the MPFC, striatum, hypothala-
mus, and hippocampus were estimated as repressors, respectively (Fig 4A, 4C, 4E and 4G; S8
Table). Moreover, we identified activators and repressors included in the DEGs, inferring that
they particularly functioned owing to the induction by sevoflurane. In the MPEC, the target
genes of KIf4, Kif2, and Per2 were upregulated, while those of Atf4 and Tafl were downregu-
lated (Fig 4B). Likewise, in the striatum, the target genes of 5 transcription factors were down-
regulated, and in the hypothalamus, the target genes of KLF4 were downregulated (Fig 4D and
4F). Finally, in the hippocampus, the target genes of 14 transcription factors were downregu-
lated (Fig 4H). These results indicate that KLF4 plays some important roles in gene expression
in brains exposed to sevoflurane. To validate the upregulation of KLF4, we performed immu-
nohistochemical analysis for the cerebral cortex and hippocampus. As a result, we observed
that the expression of KLF4 was strongly upregulated in the nucleus of cells in the cerebral cor-
tex of mice exposed to sevoflurane. On the other hand, nucleus in neural cells of hippocampus
in both control mice and mice exposed to sevoflurane showed high expression of KLF4, and
no significant changes were observed in immunohistochemical analysis (S3A Fig). Based on
these results, we performed western blotting analysis to validate the upregulation of KLF4 in
the hippocampus, showing a certain upregulation of KLF4 (S3B Fig).

Even Klf4 was upregulated in all four parts of the brain, it worked as an activator in the
MPFC, and as a repressor in the other three parts of brain. KLF4 was reported to function as
both as an activator and a repressor, and this result might reflect the different transcriptional
roles of KLF4 between each part of brain [23]. Moreover, the expression of the same KIf family
gene, KIf2, was also upregulated in the MPFC and functioned as an activator, while KIf5 and its
target genes were downregulated in the striatum and hippocampus. These results indicate the
possibility of cooperative functions between the same Kif family genes.

Finally, we confirmed the existence of consensus sequences of KLF4 in the DEGs of impor-
tant functions. The consensus-binding motif sequence of murine KLF4 was GGG(T/C)G(G/
T)GGC according to JASPAR (http://jaspar.genereg.net/). On JASPAR, we searched the candi-
date binding sites of KLF4 in 1000bp upstream sequences for upregulated DEGs annotated
GO of “angiogenesis”, and downregulated DEGs annotated GO of “head development”. As
shown in the pie charts, 82.7% of the GOs of the upregulated DEGs annotated as “angiogene-
sis”, and 82.5% of the GOs of the downregulated DEGs annotated as “head development” had
consensus-binding motifs in their 1000-bp upstream sequences (Fig 5A and 5B, S9 Table).
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https://doi.org/10.1371/journal.pone.0236771.g002

Discussion

These results indicate that KLF4 has the potential to regulate the transcription of genes related
to angiogenesis and neural development, which might contribute to vascular neogenesis and
the appearance of undifferentiated neural cells (Fig 5C).

In this study, our group performed a genome-wide transcriptional analysis for the brains of
mice that inhaled sevoflurane. Results of our analyses suggest that sevoflurane induced both
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the upregulated DEGs. The purple line links the same gene that are shared by multiple gene lists. The blue lines link the different genes where they fall into the same
ontology term. (D) Heatmap for gene ontology terms analysis of the upregulated DEGs.

https://doi.org/10.1371/journal.pone.0236771.9003

angiogenesis and the appearance of undifferentiated neural cells in all sampled parts of brain.
These changes in gene expression were not observed in the brains of sleeping mice, and
seemed specific to brains exposed to sevoflurane. The transcription factor KIf4 was commonly
upregulated in all sampled brain, and the results of the wPGSA and motif analysis suggest that
KLF4 is a key transcriptional regulator of the angiogenesis and appearance of undifferentiated
neural cells.

KLF4 is known as an essential regulator of the initialization of iPS cells, or so-called “Yama-
naka factor” [24]. Moreover, the redundant and cooperative functions between KLF2 and
KLF5 were reported to be important for sustaining the undifferentiated state of ES cells
[25]. Thus, KLF2, KLF4, and KLF5 are known to be fundamental factors for sustaining undif-
ferentiated states. Considering the upregulation of Nestin, which is a specific marker of
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Fig 4. Estimation and comparison of the relative activities of the transcriptional factors. (A)-(H) Weighted parametric gene set
analysis (WPGSA) of the fold changes in each part of the brain. Transcription factors (TFs) with T-scores of > 2.0 or < -2.0 were
identified and the distributions of the T-scores of the medial prefrontal cortex (MPEC) (A), striatum (C), hypothalamus (E), and
hippocampus (G) were drawn. Furthermore, the transcription factors included in differently expressed genes (DEGs) were identified and
the tables of the T-scores and expression fold changes for MPFC (B), striatum (D), hypothalamus (F), and hippocampus (H) were made.

https://doi.org/10.1371/journal.pone.0236771.9004

undifferentiated neural cells, and the decreasing expression of genes associated with neural dif-
ferentiation, sevoflurane inhalation seemed to cause the appearance of undifferentiated neural
cells by the Kif family genes.

In the previous report, sevoflurane administration decreased the cerebral blood flow in a
statistical parametric mapping analysis [26]. Other reports also indicated that sevoflurane
inhalation caused permeability of the brain-blood barrier induced the plasma influx into the
brain parenchyma, possibly causing postoperative delirium and cognitive decline [27]. Our
results that show the upregulation of genes encoding angiogenesis and the appearance of
undifferentiated cells were potentially related with these functional changes in the brain caused
by sevoflurane. In this context, KLF4 seemed to be the key regulator of these genes, and precise
analyses of the roles of KLF4 might be key to unveiling the mechanism of the sevoflurane anes-
thesia-induced postoperative functional modification of the brain.

Detailed analysis between anesthesia and sleep is difficult because of the different experi-
mental conditions, but at least in this comparison, gene expression changes in the brain
exposed to sevoflurane showed a pattern that was very different from that of sleep. Especially
KLF4 seemed to function specifically by sevoflurane inhalation. The roles of KLF4 seemed to
differ among the parts of the brain in our wPGSA. KLF4 has multiple functions, including as
activators and repressors, and work context- dependently [23, 28, 29]. Furthermore, our analy-
sis revealed that KLF4 had potentials to upregulate genes related to angiogenesis and downre-
gulate neural differentiation. The variable activity of KLF4 might reflect the differences of
these activities between the parts of the brain. For a precise understanding of the specific roles
of KLF4 induced by sevoflurane, chromatin immunoprecipitation analysis of KLF4 and his-
tone markers, such as H3K9me3 and H3K27Ac in each part of brain are needed. Furthermore,
experimental methods that combine single-cell RNA-seq and location information such as
Slide-seq may provide more useful information [30]. Nevertheless, our analysis results indi-
cated the importance of KLF4 as a candidate regulator of the effects caused by sevoflurane
inhalation.

Our report, which focuses on the changes of transcription factors, provides original and
novel approaches for analysing the effects of anesthetics in brain. This is the first report to eval-
uate the effects of sevoflurane inhalation, focusing on the activities of transcription factors. As
a limitation of this study, only three of samples were used. However, we concluded that
increasing replicates did not significantly change the results because of the high reproducibility
between triplicates, supported by the PCA plot (S1B Fig). Furthermore, we could not exclude
the possibility of the effect of the hypoxic condition caused by the respiratory depression
induced by sevoflurane [31]. However, our experimental condition (2.5% sevoflurane in 40%
oxygen for 3 hours) is common setting in experiments for studies on the effects of sevoflurane
on the brain. None of the genes related to hypoxic reaction, including Hifla and Arnt, were
detected in our analyses of gene expression changes, supporting the exclusion of the possibility
of hypoxia in our experimental conditions (S1 Table). Conversely, oxygen saturation might
have been higher in the anesthetized group than in the control group, which was allowed to
spend time in room air, and since we did not measure oxygen saturation, it is possible that sub-
tle differences in oxygen saturation existed and that this might have affected the results. Oxy-
gen saturation assessment in mice may provide more reliable results. Nevertheless, our
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Fig 5. Comparison of the activities of the transcription factors between the brains of the anesthetized and sleeping mice. (A) Pie chart of the existence of KLF4-
binding motifs in the 1000-bp upstream sequences of the genes annotated to the GO term “angiogenesis”. (B) Pie chart of the existence of KLF4-binding motifs in the
1000-bp upstream sequences of the genes annotated to the GO term “head development”. (C) Estimated mechanism of the effects of sevoflurane on the brain.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0236771 December 15, 2020 12/16


https://doi.org/10.1371/journal.pone.0236771.g005
https://doi.org/10.1371/journal.pone.0236771

PLOS ONE

Effects of sevoflurane on brain

strategy should include better choices for obtaining the whole image of brain activities under
anesthetized condition.

In conclusion, the results of our genome-wide transcriptional analysis of the brains of mice
that inhaled sevoflurane suggest the upregulation of angiogenesis and appearance of undiffer-
entiated neural cells. Moreover, we identified KLF4 as a potential regulator of the effects
induced by sevoflurane inhalation.

Supporting information

S1 Fig. RNA-seq analysis for anesthetized brain. (A)The distribution of log, ((count per mil-
lion) +4) after normalization. (B)PCA-plot for RNA-seq data.
(TIF)

$2 Fig. Comparison of Differently Expressed Genes (DEGs) between the brains of the anes-
thetized and sleeping mice. (A, B) DEGs were extracted from the transcriptome array data of
the cortical cortices of the sleeping mice. The DEGs in the medial prefrontal cortex of the mice
that inhaled sevoflurane and those in the cortical cortices of the sleeping mice were compared.
The Venn-diagrams for the upregulated (A) and downregulated DEGs (B) are shown. (C)
Table of the expression fold change (log2) of the genes commonly upregulated in the four
parts of the brain of the mice that inhaled sevoflurane. (D) Table of expression fold changes
(log2) of the genes commonly downregulated in the four parts of brain of the mice that inhaled
sevoflurane.

(TIF)

S3 Fig. Immunohistochemistry and western blotting for hippocampus of brains exposed to
sevoflurane. Representative image of immunohistochemical analysis of KLF4 for cerebral cor-
tex and hippocampus of mice exposed to sevoflurane. Western blotting for hippocampus of
brains exposed to sevoflurane.

(TTF)

S1 Table. Gene expression data for all the genes in all parts of the brain of mice that
inhaled sevoflurane. Log, (read counts per million +4) of all the genes of all parts of the brain
from the RN Aseq analysis data by iDEP91 are shown.

(XLSX)

$2 Table. Gene lists of differently expressed genes in each part of the brain. The gene
names and expression fold change data (sevoflurane group vs control group) of the hippocam-
pus, hypothalamus, striatum, and medial prefrontal cortex are shown.

(XLSX)

$3 Table. Lists of genes and gene ontology terms of upregulated differently expressed
genes. Metascape analysis was performed for upregulated differently expressed genes. The
gene ontology (GO) terms, their p values and genes annotated to each GO terms are shown in
the table.

(XLSX)

S4 Table. Genes and gene ontology term lists of downregulated differently expressed
genes. A Metascape analysis was performed for downregulated differently expressed genes.
The gene ontology (GO) terms, their p values and genes annotated to each GO terms are
shown.

(XLSX)
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S5 Table. Expression and fold change data for each gene from the transcriptome array
data of the cortical cortices of sleeping mice. The gene names, transcriptome array data and
expression fold change data (sleeping group vs control group) from GSE69079 are shown.
(XLSX)

S6 Table. Lists of the differently expressed genes in the cerebral cortices of sleeping mice.
The gene names and each expression fold change data (sleeping group vs control group) for
the upregulated and downregulated genes are shown.

(XLSX)

S7 Table. Comparison of the gene expression fold changes of the common differently
expressed genes between mice that inhaled sevoflurane and sleeping mice. The gene names
and each expression fold change data for the common upregulated and downregulated genes
(sevoflurane group vs control group and sleeping group vs control group) are shown.

(XLSX)

S8 Table. Lists of the transcription factors and their T-scores from the wPGSA for each
part of brain. The activities of the transcription factors (TFs) in the medial prefrontal cortex,
striatum, hypothalamus, and hippocampus were calculated using the wPGSA analysis. The T-
scores of the transcription factors are shown.

(XLSX)

S9 Table. List of the predicted binding motifs of KIf4 in the upstream sequences of the dif-
ferently expressed genes. The predicted binding motifs of KLF4 for the 1000-bp upstream
sequences of the differently expressed genes were identified using JASPAR.

(XLSX)
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