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Abstract

Macromolecular structure determination by electron cryo-microscopy (cryo-EM)
is limited by the alignment of noisy images of individual particles. Because smaller
particles have weaker signals, alignment errors impose size limitations on its appli-
cability. Here, we explore how image alignment is improved by the application of
deep-learning to exploit prior knowledge about biological macromolecular struc-
tures that would otherwise be difficult to express mathematically. We train a
denoising convolutional neural network on pairs of half-set reconstructions from
the electron microscopy data bank (EMDB) and use this denoiser as an alterna-
tive to a commonly used smoothness prior. We demonstrate that this approach,
which we call Blush regularisation, yields better reconstructions than existing
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algorithms, in particular for data with low signal-to-noise ratios. The reconstruc-
tion of a protein-nucleic acid complex with a molecular weight of 40 kDa, which
was previously intractable, illustrates that regularisation through denoising will
expand the applicability of cryo-EM structure determination for a wide range of
biological macromolecules.

Keywords: Cryo-EM, Structural Biology, Machine Learning, Computer Vision,
Inverse Problems

Introduction

Despite rapid progress in the past decade [1], many biological macromolecules of inter-
est are still too small to allow reliable cryo-EM structure determination. To limit the
damage that electrons cause to the biological structures of interest, cryo-EM images
are taken under low-dose conditions, which leads to high levels of experimental noise.
The noise in the images impedes their alignment, resulting in an ill-posed optimisation
problem, where many (noisy or artifactual) reconstructions are equally likely given
the data. Nevertheless, the correct solution may still be identified through the incor-
poration of prior knowledge in the reconstruction process. Most cryo-EM structures
are calculated using explicit regularisation of a likelihood function in Fourier space,
which assumes cryo-EM reconstructions are smooth in real space [2–4].

Although we know a lot more about the structures of biological macromolecules
than that their density varies smoothly, it has been difficult to incorporate richer
sources of prior knowledge in the optimisation. Denoising convolutional neural net-
works provide a mechanism to incorporate complicated prior knowledge into an
iterative optimisation process [5]. By training a denoising network on simulated pairs
of noisy and ground-truth images, we previously provided a proof-of-principle that
prior knowledge about protein structures can be exploited to improve cryo-EM struc-
ture determination [6]. However, we also observed problems with overfitting and
the hallucination of protein-like features in the resulting reconstructions. Moreover,
because experimental cryo-EM structures often comprise regions of well-ordered pro-
teins and nucleic acid domains alongside less structured regions, including for example
membrane patches or flexible domains, it was not clear how one would generate
ground-truth pairs for experimental cryo-EM data.

Here, we demonstrate how denoising convolutional neural networks, trained and
deployed in an application-specific manner, can improve cryo-EM structure determi-
nation with experimental data. Similar to the noise2noise approach [7], we trained a
denoiser using pairs of noisy reconstructions that are generated as part of standard
procedures in cryo-EM structure determination [8]. This approach improves cryo-EM
structure determination of a wide variety of biological macromolecules and reduces
current size limitations of cryo-EM structure determination.
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Method

Rationale

The noise2noise framework [7] facilitates the training of a denoising convolutional
neural network in the absence of explicit access to ground-truth images. Instead, it
relies on pairs of noisy images to extract information about their shared signal. Here,
we present an application-specific approach that incorporates this aspect from the
noise2noise framework. We trained a denoiser on a set of 422 pairs of noisy half-
maps that we downloaded from the electron microscopy data bank (EMDB) [9]. Only
entries with reported resolutions higher than 4 Å that had both unfiltered half-maps
deposited where selected.

We tailored data augmentation and training of the denoiser to integrate with the
iterative expectation-maximisation algorithm for cryo-EM reconstruction. All pairs of
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where, e ∈ R
N is random coloured noise, Mi ∈ [0, 1]N is a smooth mask encapsulating

the molecules of interest, » represents voxel-wise multiplication, and h(.) is a low-pass
filter to 15 Å. HC,A[.] applies an anisotropic Gaussian filter with covariance matrix C,
an affine transform A that includes rotation and translation, a crop to a cube of 643

voxels, and a voxel-value standardisation. Data augmentation was achieved through
random assignments of C, C̄, A, e, and r.

By using a range of resolution cutoffs for C and C̄, the denoiser explicitly learns
to handle maps with varying resolutions. This is needed for its application inside the
iterative expectation-maximisation algorithm, which typically starts at relatively low
resolutions and gradually progresses to higher resolutions. Although using a lower
resolution cut-off for C than for C̄ could have produced a network that enhances the
resolution of the half-maps, similar to deblurring networks [10], we opted not to do so
in order to minimize the risk of hallucinating high-resolution features.

Using different degrees of anisotropy in C and C̄, the denoiser learns to deal with
the artifacts that arise from non-uniform orientational distributions, while random ori-
entations and affine transformations in A lead to invariance with respect to rotations,
translations, and intensity scale. By applying h(.) on ȳki , the denoiser learns to enforce
fewer features in the solvent region. By filling solvent regions with a 15 Å low-pass
filtered version of the map, as opposed to a straightforward voxel-wise multiplication
with the mask Mi, higher density values in regions with disordered molecules, such as
detergent micelles, are maintained.
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Training the denoiser

Our denoiser fθ consists of a U-net with approximately 13 million trainable parameters
θ (Figure 1). It is trained using residual learning [11] and with a dropout rate of 50%
[12]. Instance normalization [13] is used to handle small mini-batches B, with b = 8
samples from the training dataset, during training. We minimise the following loss:
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where, Rr[fθ, y] returns the output of the denoiser fθ after recursively calling it
r ∈ {0, . . . , 5} times with yki as the initial input. This enables the denoiser to recog-
nize and suppress artifacts brought about by its repeated usage, thereby limiting the
amplification of artifacts in the reconstruction that are introduced by the denoiser
during subsequent iterations of the expectation-maximisation algorithm [6].

Training for 950,000 steps took 6 days on a single Nvidia A100 GPU.

Iterative denoising with spectral trailing

Our pre-trained denoiser expresses prior knowledge about cryo-EM reconstructions.
Its iterative use within the expectation-maximisation algorithm that underlies cryo-
EM structure determination is called Blush regularisation. Blush regularisation has
been implemented in the open-source software RELION-5. It can be used for 3D
classification, multi-body refinement, and 3D auto-refinement jobs, including particles
with point-group or helical symmetry.

At every iteration, the denoiser is applied separately to each intermediate half-map
reconstruction, where it replaces the 3D Wiener filter that results from regularisation
in Fourier space [2, 3]. Although one effect of the denoiser is that it tends to dampen
Fourier components at higher spatial frequencies, the amount by which it does so is
not well defined. Therefore, we employ a heuristic, here referred to as spectral trailing,
to prevent overfitting in 3D auto-refinement and multi-body refinement. First, we
calculate the Fourier shell correlation (FSC) between two independently refined half-
maps before the application of the denoiser and determine the resolution ρ where the
solvent-corrected FSC drops below 0.143. We then apply the denoiser to both half-
maps and subsequently apply a low-pass filter at a resolution that is 2 Fourier shells
lower than ρ. If ρ exceeds the Nyquist frequency of the denoiser, here set to 3 Å, the
remaining Fourier shells at higher frequencies are populated with the reconstruction
from the standard regularisation in Fourier space. The resulting denoised, low-pass
filtered maps are then used as references for alignment in the next iteration. The
denoiser is not applied to the output of the final refinement step.

For 3D classification, where data is not separated into independent half-sets, the
filtered map from the regularised likelihood approach is used as input for the denoiser.
No additional low-pass filtering is applied. In this job type, the denoiser is also applied
in the last iteration.

4

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 24, 2023. ; https://doi.org/10.1101/2023.10.23.563586doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.23.563586
http://creativecommons.org/licenses/by/4.0/


Fig. 1: Schematic illustration of Blush and slices of example volumes. (a) Training
procedure, showing two passes for both half-maps and recycling (Rr) of the denoiser
output (in pink). (b) Iterative reconstruction with spectral trailing. Each half-map
is reconstructed separately. At each iteration, the Fourier Shell Correlation (FSC) is
used to estimate a cutoff frequency ρ, which is subsequently used to low-pass filter the
denoiser output. The final output does not pass through the denoiser but is subject
to a Wiener filter, similar to baseline reconstruction. (c) Denoiser U-net architecture,
consisting of five consecutive encoder blocks, a convolution block, followed by five
consecutive decoder blocks. (d-e) Slices through maps before (left) and after (right)
a single application of the denoiser to the final iteration of the reconstruction for
PfCRT (d) and the Spliceosome (e). (f-g) Showing slices through maps of baseline
reconstruction (left) and Blush regularisation (right) of the FIA (f) and a 40kDa
protein-nucleic acid complex (g). The scale bar indicates 30 Å in all slices.

Results

Blush improves reconstruction without overfitting

We first tested Blush regularisation on a cryo-EM data set (EMPIAR-10330) [14] of the
Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT) [15]. This data
set has been used as a standard to demonstrate the performance of several approaches
to reduce overfitting in cryo-EM refinement [16, 17]. Standard refinement using regu-
larized likelihood optimisation in RELION, which we refer to as the baseline, yields
an overall resolution of 3.8 Å for this data set.

Application of Blush regularisation (Figure 2) yielded an overall resolution estimate
of 3.4 Å. Spectral trailing was applied with a cut-off at 3.5 Å, beyond which no
information from the denoiser was used. Compared to the baseline reconstruction,
local resolution improved for most regions of the map, with a corresponding increase
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Fig. 2: Single-particle reconstruction of the PfCRT dataset. (a) Maps coloured by
local resolution, comparing baseline (left) and Blush (right). (b) Automated atomic
modeling by ModelAngelo for the baseline (left) and Blush (right) maps. Colored by
chain. (c) FSCs between the masked maps and deposited model (ID: 6UKJ). (d)
Solvent-corrected half-map FSCs. Both plots show FSCs for Blush (purple), Blush
without spectral trailing (pink) and baseline (black). Dashed (pink) line show solvent-
corrected half-map FSC for Blush without spectral trailing when applied to data with
phase randomisation beyond 4 Å resolution.

in visible side-chain densities. The improvement in resolution as measured by half-
map FSC was confirmed by FSCs between both maps and the atomic model that was
deposited for this dataset (PDB-ID 6UKJ). Throughout this paper, FSCs between the
map and atomic model are calculated using Servalcat [18]. In addition, we also assessed
the relative quality of both maps by application of our automated model-building
software ModelAngelo [19], which generated a model with 84% completeness in the
baseline map and 97% completeness in the Blush map. Model completeness is defined
as the percentage of residues that match the reference model with a Cα-distance of 3
Å or less.

To assess the potential for overfitting by the denoiser, we also performed a phase-
randomisation test [20]. We applied Blush regularisation without spectral trailing for
refinement of the PfCRT dataset with phase-randomisation beyond 4 Å. Even though
spectral trailing was not used, no overfitting was observed. Switching off spectral
trailing led to a marginal improvement in the quality of reconstruction, as quantified by
the FSC between the map and the atomic model (Fig 2d). These results indicate that
the denoiser can prevent overfitting for this dataset, even without spectral trailing. In
the general ase, we still recommend running Blush regularisation with spectral trailing
because the gains of switching it off are small and overfitting may be more prominent
for other datasets. Consequently, in the following sections, we only present results
obtained using spectral trailing.
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Blush expands the applicability of cryo-EM structure

determination

We subsequently assessed the broader applicability of Blush regularisation by applying
it to four different types of structures and refinement methods.

First, we tested Blush regularisation on a small membrane protein, Ste2, which is
a dimeric G-protein coupled receptor (GPCR) [21] (Figure 3, Extended Data Table 1).
The full-length monomeric Ste2 has a molecular weight of 47.85 kDa, which includes a
long disordered C-terminal tail that comprises 125 amino acids. The total mass of the
ordered dimeric Ste2 that contributes to alignment is roughly 67 kDa, most of which
lies embedded in a detergent micelle.

The data set was acquired on a similar complex to PDB entry 7QB9 reported
in [21], but with different biochemical conditions that impact the stability of the
structure. Alignment of images of Ste2 is difficult because not many protein features
extend from the smooth detergent micelle. Baseline reconstruction yielded a map with
an overall resolution of 3.8 Å, with limited densities for side chains. Application of
Blush regularisation led to a structure with an overall resolution of 3.4 Å. Spectral
trailing ensured that no information from the denoiser was inserted beyond 3.7 Å res-
olution. Compared to the baseline reconstruction, the density of the trans-membrane
helices is improved. Loops at the top and bottom of the structure are still relatively
poorly resolved, probably due to molecular flexibility. In agreement with the visibility
of improved side-chain densities and local resolution estimates, the completeness of
models built by ModelAngelo in these maps improved from 19% to 43%.

Fig. 3: Single-particle reconstruction of the Ste2 dataset. Reconstructions coloured by
local resolution, comparing baseline (a) and Blush (b). Automated atomic modeling
by ModelAngelo, using the baseline (c) and Blush (d) maps. (e) Solvent-corrected
half-map FSCs.

Second, we tested Blush regularisation in multi-body refinement [22]. Multi-body
refinement uses partial signal subtraction to align independently moving domains of
a larger complex. Reconstructions from subtracted images were not part of the train-
ing set of the denoiser. Moreover, signal subtraction reduces the amount of signal in
each image, placing stringent limitations on the minimal size of domains that can be
aligned in multi-body refinement. We applied Blush in multi-body refinement to a pub-
licly available data set (EMPIAR-10180) of the Saccharomyces cerevisiae pre-catalytic
spliceosomal B complex [23] (Figure 4). Using four bodies, for the core, the foot, the
helicase and the SF3b regions, Blush regularisation improved all domains compared
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Fig. 4: Multibody reconstruction of the spliceosome dataset. Combined maps of the
individual bodies, coloured by local resolution, comparing baseline (a) and Blush
(b). (c) FSCs between the masked maps of each body and the corresponding region
in the deposited model (ID: 5NRL). (d) Solvent-corrected half-map FSCs for the
individual bodies. In (c-d) dashed and solid lines correspond to baseline and Blush
maps, respectively. FSCs are shown for each body: core (grey), foot (black), helicase
(purple) and SF3b (red). (e) Completeness of atomic models built by ModelAngelo
for each body, using baseline (grey) and Blush (red) maps. (f) Gold-standard half-
map resolutions of each body for baseline (grey) and Blush (red) maps.

to baseline multi-body refinement, as measured by local resolution, half-map FSCs
and FSCs with the reference atomic model (PDB-ID 5NRL). The improvements in
resolution were largest in the helicase and SF3b regions, which are the most flexible
and thus the hardest to reconstruct. The improvements in resolution were reflected
by automated model building in ModelAngelo, which increased model completeness
of the entire complex from 32% to 48%. In particular, the model completeness for the
SF3b region was improved from 3% to 29%.

Third, we assessed the performance of Blush regularisation for a biological assem-
bly that differed from the types of structures the denoiser was trained on: the first
intermediate amyloid (FIA) that forms during the in vitro assembly of recombinant
tau (residues 297-391) [24]. This data set is also publicly available (EMPIAR-11720).
Unlike any of the structures in the training set, the FIA has helical symmetry. It is
an amyloid filament, with parallel β-strands repeating every 4.7 Å in the direction of
the helical axis. Besides deviating from the types of structures in the training set, the
FIA is also one of the smallest amyloid structures solved to date, with only 15 ordered
residues in each of two opposing β-sheets. Baseline helical refinement yielded a 5.0 Å
map, in which the density for β-strands along the helical axis was not separated, and
no atomic model could be built. Blush regularisation improved the resolution to 2.8
Å, and ModelAngelo built all 15 ordered residues in the resulting map.

Fourth, we applied Blush to a protein-nucleic acid complex with a combined molec-
ular weight of 40 kDa (Figure 6; Extended Data Table 1). Using multiple different
classification and refinement strategies in baseline RELION and CryoSPARC, we were
unable to obtain a reliable reconstruction (results not shown). Even though an initial
model generated using the standard VDAM algorithm in RELION [25] suffered from
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Fig. 5: Helical reconstruction of the FIA, coloured by local resolution, for the baseline
(a) and Blush (b)maps. (c) Automated atomic modeling by ModelAngelo, comprising
tau residues 302-316. (d) Solvent-corrected half-map FSCs of the reconstructed maps.

anisotropy, a first 3D classification with Blush regularisation resulted in one class with
recognizable protein features. Refinement of the corresponding class yielded a better
initial model for a second 3D classification, from which a single class was selected
for subsequent CTF refinement [26] and particle polishing [26]. A 3D classification
was performed without alignment, followed by a final 3D refinement. All 3D classifi-
cations with alignment and 3D refinements used Blush regularisation. The final map
achieved a resolution of 2.5 Å, with ModelAngelo successfully building 97% of the
protein sequence, and 33 out of 42 nucleotides.

Discussion

Our results demonstrate that denoising convolutional neural networks can be used as
a source of extended prior information in the reconstruction of experimental cryo-EM
images. A previous approach that used noise2noise, implemented in the M software
[27], exclusively trained a denoising network on half-maps from the dataset to which
it was also applied. As a result, unlike our approach, it did not express general prior
knowledge about cryo-EM reconstructions. When we tried to express prior knowledge
about protein structures by training a denoiser on pairs of noisy and ground-truth
maps that were calculated from atomic models, we observed problems with overfitting
and hallucinations [6]. Similar problems may also explain why the application of the
DeepEMhancer neural network [28] inside the iterative reconstruction algorithm of
RELION had to be restricted to only a few iterations at the end of refinement [29]. The
approach described in this paper reduces the risk of hallucinating protein-like features
in the reconstruction by using a neural network that is trained on experimental cryo-
EM half-maps only, i.e. without using atomic models or the geometrical restraints that
are used to describe them.

Instead of forcing the map to resemble densities derived from atomic models, our
denoiser is trained to introduce more subtle modifications to cryo-EM maps, such as
smoothing out density in solvent regions or within detergent micelles. The network
also removes artifacts that are commonly encountered in difficult cryo-EM refinements,
e.g. anisotropic densities that result from uneven angular distributions, or radially
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Fig. 6: Single-particle reconstruction of the protein-nucleic acid complex with a molec-
ular weight of 40 kDa. (a) Blush regularisation local resolution. (b) Automated atomic
model assignment with ModelAngelo. (c) Detailed view of an alpha-helical segment
in the reconstructed map and refined atomic model. (d) Solid line shows FSC to a
reference atomic model and the dashed line shows half-map FSC. Solvent-corrected
resolution is 2.8 Å using a spectral trailing cut-off at 3.0 Å. (e) Processing pipeline
from initial model to final reconstruction. Numbers indicate the number of particles
assigned to each map. Purple squares indicate reconstructions using Blush regulariza-
tion.

extending, streaky features that are often observed in overfitted maps (Figs 1f-g). Our
findings illustrate that, even though the effect of a single application of the denoiser
is relatively small, its cumulative impact over multiple iterations enhances the per-
formance of cryo-EM structure determination across a diverse range of test cases. As
machine-learning methods get better at extracting knowledge from large datasets, it
may be tempting to exploit more knowledge about the structures of biological macro-
molecules in the reconstruction process. However, doing so may ultimately also take
away one of the most powerful ways of assessing whether a reconstruction is correct:
the presence of expected features in the map. We thus anticipate that the cryo-EM
community will continue to explore the question of how much prior knowledge should
inform the reconstruction process and how much should be kept aside for validation.

Within the framework of Blush regularisation, the denoiser replaces the exponen-
tial prior that traditionally constrains the power of Fourier-space components in the
baseline algorithm. As a result, the FSC between independently refined subsets no
longer influences the weighting of Fourier components in intermediate reconstructions.
Instead, this FSC is used to determine a resolution cutoff ρ, beyond which the Fourier
components of the two denoised half-maps are set to zero. Because Fourier compo-
nents near the resolution estimate of the final map will not have been affected by
the denoiser, protein-like features at these frequencies cannot be the result of hallu-
cination or overfitting by the denoiser. Future investigations will explore alternative
approaches that do not rely on heuristics, like choosing a specific ρ, which arises from
the observation that the dampening effect of the network is not well defined in Fourier
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space. Future adaptation of the VDAM algorithm [25] will also allow the use of Blush
regularisation for initial model generation.

In all our tests, Blush regularisation outperformed or equaled the baseline imple-
mentation in RELION, with the differences being largest for cases where the baseline
approach tends to overfit the data. Consequently, Blush regularisation will be most
useful for refinements of data sets with low signal-to-noise ratios, like those of small
complexes or complexes embedded in thick ice layers, multi-body refinements involving
relatively small bodies, and refinements of maps exhibiting pronounced variations in
local resolution. For example, Blush regularisation allowed reconstruction of an amy-
loid with only 30 residues in its ordered core and a protein-nucleic acid complex with
a molecular weight of 40 kDa. Although nucleic acids result in higher signal-to-noise
ratios than proteins, 40 kDa approaches predictions of the minimum size protein that
is amenable to cryo-EM structure determination [30, 31]. These results illustrate that
the use of prior knowledge through denoising convolutional neural networks expands
the applicability of cryo-EM structure determination.
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Extended Data

Extended Data Table 1: Details on cryo-EM data collection and processing of the Ste2
and 40 kDa complex datasets.

Ste2 40 kDa complex

Data collection

Microscope Thermo Scientific Krios G3i Thermo Scientific Krios G3i
Camera Falcon 4i Gatan K3
Magnification 96,000x 165,000x
Voltage (kV) 300 300
Pixel size (Å) 0.824 0.531

Total electron exposure (e−/Å
2
) 56 72

Exposure rate (e-/pixel/sec) 7.9 15
Defocus range (µm) 0.8 - 2.4 0.8 - 1.5
Automation software EPU EPU
Energy filter slit width N/A 20 eV
Micrographs collected (no.) 13,254 11,232

3D reconstruction

Number of frames for motion correction 70 40
Total extracted particles (no.) 2,608,181 6,449,613
Final particle images (no.) 147,797 301,833
Symmetry imposed C2 C1
Resolution (FSC 0.143; unmasked/masked) 3.9 / 3.4 2.8 / 2.6

Sharpening B-factor (Å
2
) -160 -90
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