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Abstract   37 

 38 

Background: We aim to study the source of circulating immune cells expressing a 50-gene 39 

signature predictive of COVID-19 and IPF mortality. 40 

Methods: Whole blood and Peripheral Blood Mononuclear cells (PBMC) were obtained from 231 41 

subjects with COVID-19, post-COVID-19-ILD, IPF and controls. We measured the 50-gene signature 42 

(nCounter, Nanostring), interleukin 6 (IL6), interferon ´-induced protein (IP10), secreted phosphoprotein 1 43 

(SPP1) and transforming growth factor beta (TGF-³) by Luminex. PCR was used to validate COVID-19 44 

endotypes. For single-cell RNA sequencing (scRNA-seq) we used Chromium Controller (10X Genomics). 45 

For analysis we used the Scoring Algorithm of Molecular Subphenotypes (SAMS), Cell Ranger, Seurat, 46 

Propeller, Kaplan-Meier curves, CoxPH models, Two-way ANOVA, T-test, and Fisher9s exact.  47 

Results: We identified three genomic risk profiles based on the 50-gene signature, and a subset 48 

of seven genes, associated with low, intermediate, or high-risk of mortality in COVID-19 with significant 49 

differences in IL6, IP10, SPP1 and TGF³-1. scRNA-seq identified Monocytic-Myeloid-Derived Suppressive 50 

cells (M-MDSCs) expressing CD14+HLA DRlowCD163+ and high levels of the 7-gene signature (7Gene-M-51 

MDSC) in COVID-19. These cells were not observed in post-COVID-19-ILD or IPF. The 43-gene signature 52 

was mostly expressed in CD4 T and CD8 T cell subsets. Increased expression of the 43 gene signature 53 

was seen in T cell subsets from survivors with post-COVID-19-ILD. The expression of these genes 54 

remained low in IPF. 55 

Conclusion: A 50-gene, high-risk profile in COVID-19 is characterized by a genomic imbalance in 56 

monocyte and T-cell subsets that reverses in survivors with post-COVID-19 Interstitial Lung Disease 57 

 58 
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Introduction 66 

 67 

The emergence and spread of 2019 coronavirus disease ( COVID-19) led to an unparalleled, global 68 

public health crisis [1]. Despite major advances in the prevention and treatment of COVID-19, infections 69 

from emergent, severe respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and long COVID still 70 

impose substantial burden on healthcare systems [2]. One of the most frequent manifestations of long 71 

COVID is post-COVID-19- Interstitial Lung Disease (Post-COVID-19-ILD), which is observed in a proportion 72 

of survivors from COVID-19 induced Acute Respiratory Distress Syndrome (ARDS) [3]. Recent evidence 73 

has demonstrated  similarities between COVID-19-induced ARDS, post-COVID-19-ILD and IPF [4, 5], for 74 

example, both diseases are triggered by alveolar epithelial cell (AEC) injury, in COVID-19 the injury is viral 75 

and in IPF is unknown. AEC injury leads to recruitment of monocyte-derived alveolar macrophages, 76 

deregulated angiogenesis and vasculopathy, aberrant tissue remodeling and extracellular matrix deposition 77 

[5-7].  78 

At the genomic level we have previously identified [8] and validated [9] a 50-gene signature 79 

predictive of IPF and COVID-19 survival [10] in circulating immune cells. In our previous work, we missed 80 

on the identification of additional COVID-19 endotypes based on the 50-gene signature, we lacked 81 

correlation with cytokine data, and we did not evaluate the clinical applicability of our genomic risk profiles 82 

by a test that could be widely used in clinical practice. Finally, we did not perform in-depth 83 

immunophenotyping in patients with COVID-19, post-COVID-19-ILD and IPF. In the present work, we 84 

analyzed over 216 hospitalized patients with COVID-19 and identified the presence of three genomic risk 85 

profiles based on the 50-gene signature (and a subset of these genes) associated with a low, intermediate, 86 

or high-risk of mortality with significant differences in pro-inflammatory and pro-fibrotic cytokines.  87 

We also used single-cell RNA sequencing to study genes with increased (seven genes) and 88 

decreased expression (43 genes) in circulating immune cells associated with increased risk of mortality in 89 

COVID-19 and discovered a novel subtype of Monocytic-Myeloid-Derived Suppressive (M-MDSC) cells 90 

expressing CD14+HLA-DRlowCD163+MCEMP1+PLBD1+S100A12+TPST1+IL1R2+FLT3+HP+ responsible for 91 

the high-risk genomic profile. We denominated these cells as 7Gene-M-MDSC. These cells were not 92 

observed in survivors with post-COVID-19-ILD and in IPF patients in our cohort. Our findings suggest that 93 

a 50-gene, high-risk profile may represent the imbalance between increased 7GeneM-MDSC and decrease 94 

CD4 T and CD8 T subsets expressing the 43-gene signature in patients with increased risk of COVID-19 95 

mortality. While increased expression of the 43-gene signature was seen in T cell subsets from survivors 96 

with post-COVID-19-ILD, the expression of these genes remained low in IPF.  97 

Methods 98 

 99 

Human specimens and study design 100 

 101 
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Whole blood and Peripheral Blood Mononuclear cells (PBMC) were obtained from 216 hospitalized 102 

patients with COVID-19 from the University of South Florida (USF)/Tampa General Hospital (TGH). Cohorts 103 

were split in three based on time of collection and experiments performed. For the 50-gene signature 104 

analysis, whole blood samples were collected from 75 patients recruited between 07/2021 and 02/2022 at 105 

USF/TGH within two days (±2) from hospital admission. For time course analyses, 23 and 14 blood samples 106 

were collected at days six (±2.3) and 13 (±1.5), respectively, from hospital admission (Cohort one, Fig1A). 107 

For the 7-gene signature analysis, PBMC were collected from 141 patients admitted to USF/TGH between 108 

06/2020 to 10/2020 within 3.7 days from hospital admission (Cohort two, Fig1I). For single-cell RNA 109 

sequencing, we included three hospitalized patients with COVID-19, five patients with post-COVID-19-ILD, 110 

six patients with IPF and four controls (Cohort three, Fig2A).  Post-COVID-19-ILD patients were enrolled 111 

with an average of 7 months (±5) from COVID-19 diagnosis. These patients developed pulmonary sequalae 112 

defined as clinical symptoms, abnormal radiographic findings of Interstitial Lung Disease and Diffusion of 113 

the Lung for Carbon Monoxide (DLCO) less than 70. All studies were approved by Institutional Review 114 

Boards (Pro00032158 and Study00085). Clinical data were recorded for each patient at the time of 115 

admission and during time course studies. 116 

 117 

nCounter analysis system (Nanostring) experiments 118 

 119 

A custom code set including the 50-gene signature was generated using the nCounter analysis 120 

system as previously described [9]. Briefly, 200 ng of total RNA was extracted using Pax gene blood miRNA 121 

kit (Cat#763134, PreAnalytix, Qiagen). RNA quality control was confirmed by nanodrop and tape station 122 

4150 (Agilent). Samples were run in batches of 12 samples. RCC raw files were generated by nCounter 123 

system and analyzed by nSolver 4.0 software. Data were normalized to the geomean of seven 124 

housekeeping genes (GUSB, GAPDH, TRAP1, FPGS, ACTB, DECR1, FARP1). Data was log transformed 125 

and presented as Log2 and used to calculate the Scoring Algorithm for Molecular Subphenotypes (SAMS) 126 

[9, 10] to stratify risk profiles as previously described. 127 

 128 

Luminex  129 

 130 

We measured cytokine concentrations of 121 plasma samples from COVID-19 patients from Cohort 131 

1 using a customized, Bioplex 200 compatible, human cytokine panel including, IL6, IP10, SPP1 and TGF³-132 

1 (#FCSTM18-06, R&D Systems). The equipment was calibrated (Cat# 171203060, BIO-RAD) and 133 

validated (Cat#171203001, BIO-RAD) prior utilization.  134 

 135 

Taqman RT-qPCR  136 

 137 
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141 blood samples were collected from hospitalized COVID-19 patients at USF/TGH from Cohort 138 

2. To perform RT-qPCR experiments (Quantstudio6), we used qPCR kit, SuperScript IV VILO Mater Mix 139 

(Cat#11756050), 10 TaqMan probes, MCEMP1 (Cat #Hs00545333_g1), PLBD1 (Cat #Hs00227344_m1), 140 

IL1R2 (Cat #Hs00174759_m1), HP (Cat #Hs00978377_m1), FLT3 (Cat#Hs00174690_m1), TPST1 141 

(Cat#Hs01041471_m1), S100A12 (Cat #Hs00942835_g1), ACTB (Cat#Hs99999903_m1), B2M (Cat# 142 

Hs00187842_m1) and RPS18 (Cat# Hs01375212_g1) (Thermofisher). Triplicated CTs values were geo-143 

normalized to reference genes. Data was represented as transcript unit (TU, 2^-10 (∆CT)). SAMS was used 144 

to identify genomic risk profiles based on the 7-gene signature.  145 

 146 

Single-cell RNA sequencing (scRNA-seq) experiments  147 

 148 

For scRNA-seq, we used cryopreserved PBMC from healthy controls and patients with COVID-19 149 

(from Cohort 1), post-COVID-19-ILD and IPF as described above. IPF diagnosis was based on current 150 

guidelines [11]. A single-cell suspension from PBMC from each patient was quantified and analyzed for 151 

viability using the Cell counter 3 (Countess 3, Invitrogen) and then loaded onto the 10X Genomics 152 

Chromium Single Cell Controller for isolation of single cells (10X Genomics). Briefly, 5000-6000 PBMC from 153 

each of the samples were targeted for recovery. The single cells, reagents, and 10x Genomics gel beads 154 

were encapsulated into individual nanoliter-sized Gel beads in Emulsion (GEMs) and then reverse 155 

transcription (RT) of poly-adenylated mRNA was performed inside each droplet. Post GEM-RT Cleanup 156 

and cDNA was amplified, purified, and cDNA libraries were then prepared in bulk reactions using the 157 

Chromium Next GEM Single Cell 3ʹ Kit v3.1 Library Prep Kit. From sequencing, approximately 35000 mean 158 

reads per cell were generated on the Illumina NextSeq. FASTQ files were generated further demultiplexing, 159 

barcode processing, alignment, and gene counting steps for analysis.  160 

 161 

scRNA-seq analysis and quality control  162 

 163 

scRNA-seq feature count matrices were constructed using Cell Ranger (v7.1.0), aligning reads to 164 

the GRCh38 2020 reference genome. Subsequent quality control and data processing were performed with 165 

the Seurat package (v4.3.0) [12]. Cells with less than 200 detected genes were discarded, as well as cells 166 

with more than 15% mitochondrial genes. DropletUtils (v1.14.2) identified empty droplets [13], while 167 

doublets were detected using Scrublet (v0.2.3-0) [14]. DecontX was used to detect ambient RNA 168 

contamination [15]. We excluded identified empty droplets, doublets, and those with a contamination score 169 

above 0.2, alongside cells with more than 9 UMIs mapping to the hemoglobin subunit beta (HBB) gene 170 

(representing red blood cells) for further analysis. For cell type annotation, we used SCTransform for data 171 

normalization and identification of variable features. This was followed by principal component analysis 172 

(PCA) and batch effect correction using Harmony [16]. Graph-based clustering and UMAP embedding were 173 

generated based on Harmony embeddings. Cell types were assigned to each cluster guided by canonical 174 
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marker gene expression [17-19]. For cell type proportions analysis, we normalized the number of cells 175 

within a given cell type by the total number of cells per subject. For Differentially Expressed Gene (DEG) 176 

analysis, we used the Seurat software [20] (v4.3.0) “FindMarkers" function to identify differentially 177 

expressed DEGs across disease groups. Differential abundance analysis was performed for each cell type 178 

across different disease conditions, utilizing the 'propeller' method [21] as integrated within the 'speckle' R 179 

package. 180 

 181 

Statistics  182 

The Kaplan–Meier method for survival and time of discharge analysis was used for the nCounter 183 

data and RT-qPCR data (Cohorts 1 and 2) using MedCalc version (v12.104). Cumulative incidence curves 184 

were analyzed among the three groups. Cox proportional-hazards models were used to estimate the hazard 185 

ratio and 95% confidence interval. Two-way ANOVA followed by Tukey multiple comparisons test by 186 

Graphpad prism software was used for the analysis of cytokines levels. T-test, Fisher9s exact test was used 187 

to compare cell proportions and clinical data respectively across different disease groups. The Wilcoxon 188 

rank test was used to compare DEG analysis within each group. 189 

 190 

Results  191 

 192 

A 50-Gene signature can be used to identify three molecular endotypes associated with differences 193 

in COVID-19 survival and cytokine profiles.  194 

 195 

SAMS identified three risk-profile groups of COVID-19 patients (low, intermediate, and high-risk) 196 

based on the 50-gene signature in Cohort 1. A 0.91 up score and -3.42 down score were used to identify 197 

the high-risk group.  Intermediate and low-risk groups were then split based on a 0.15 up score and a -0.15 198 

down score (Fig1A-B). These three risk-profile groups had significant differences in mortality (HR: 4.63, 199 

95% CI: 1.46 to 14.72, p=0.0094) and time to discharge (HR: 0.49, 95% CI: 0.34 to 0.72, p=0.0003) after 200 

adjustment for Charlson Comorbidity Index (Fig1 C-D). Table 1 summarizes the clinical characteristics of 201 

patients in this cohort. 202 

We then investigated whether 50-gene risk profiles were associated with temporal changes in 203 

proinflammatory and profibrotic cytokines including IL6, IP10, SPP1 and TGF-³ at baseline and over time 204 

in COVID-19. While we did not find significant difference in IL6, IP10, SPP1 levels between the three risk 205 

groups at baseline (Fig1E-H), TGF-³ levels were significantly increased in the high-risk group compared to 206 

the low-risk group (15,193.17 ± 8,214.71 vs 7,315.926 ± 3,467.94pg/ml p<0.01). Our results also 207 

demonstrated an increase of IL6, IP10 and SPP1 at day6 compared to baseline independent of the 50-208 

gene risk profile.  50-gene, high-risk profile patients displayed the highest levels of IL6 at day6 compared 209 

to intermediate and low-risk patients, respectively (1,236 ± 8.87 vs 980 ± 34.69 vs 134± 116 pg/ml, p<0.01) 210 

(Fig1E). The same trend of cytokine levels was noted with IP10 at day6 compared to intermediate and low-211 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2023. ; https://doi.org/10.1101/2023.10.22.563156doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.22.563156
http://creativecommons.org/licenses/by-nd/4.0/


   

 

   

 

risk group patients, respectively (2,323 ± 699 vs 2,029 ± 980 vs 625± 470 pg/ml, p<0.01) (Fig1F) and similar 212 

results were noted with SPP1 (Fig1G). Most of the studied cytokines trended down over time except for 213 

SPP1 which increased at day 13 in patients with a 50-gene, high-risk profile (Fig1-G). In terms of TGF-³, 214 

we found the highest levels in day2 in the high-risk (1,5193 ± 1,712 pg/ml) and intermediate-risk (1,5035 ± 215 

2222 pg/ml) groups compared to the low-risk group (7315± 723 pg/ml, p<0.01) (Fig1H). We observed a 216 

drastic decrease of circulating TGF³ on day6 in the high-risk (threefold change) and intermediate-risk 217 

(fivefold change) groups respectively compared to baseline. No significant changes in the levels of studied 218 

cytokines were observed in the low-risk group over time (Fig1H).  219 

Finally, we measured the expressions of MCEMP1, PLBD1, TPST1, S100A12, IL1R2, HP and 220 

FLT3 by RT-qPCR in Cohort 2 patients (Fig1I) and calculated SAMS UP scores. The three risk groups 221 

were split by the Up score based on tertiles and depicted on a heatmap (Fig1J). Our 7-gene RT-qPCR test 222 

confirmed the presence of three endotypes of COVID-19 with significant differences in mortality (HR 2.3814 223 

,95% CI: 1.3067 to 4.3401, p=0.0046) (Fig1K) and time to discharge alive (0.5954, 95%CI: 0.4715 to 224 

0.7520, p<0.0001) (Fig1L) after adjustment for Charlson Comorbidity Index. Table 2 summarizes the 225 

clinical characteristics of patients in this cohort. In summary, we demonstrated the presence of three 226 

genomic risk profiles of COVID-19 patients with significant differences in survival and cytokine profiles by 227 

two different methods and in two separate cohorts. 228 

 229 

The 7-gene signature predictive of COVID-19 mortality can be identified in a novel subtype of 230 

Monocytic-Myeloid Derived Suppressive Cells  231 

 232 

To delineate the cellular source of the 7-gene signature that predicts COVID-19 mortality when 233 

overexpressed (MCEMP1, PLBD1, S100A12, FLT3, TPST1, IL1R2 and HP), we performed scRNA-seq 234 

from frozen PBMC of healthy controls, COVID-19, post-COVID-19-ILD and IPF patients (Fig2A, Table 3).  235 

All immune cell clusters (Fig2B) were identified based on the expression levels of different markers by 236 

reference to COVID-19 [22] and IPF atlas [23, 24]. In terms of cell frequencies, we noticed a significant 237 

increase in CD14+CD163+HLA-DRlow monocytes, platelets and plasmablasts, and a decrease in naive 238 

CD4T, memory CD8T GZMB+ and dendritic cells when comparing COVID-19 versus post-COVID-19-ILD. 239 

Notably, we identified a significant increase in Hematopoietic and Progenitor Stem Cells (HSPC), dendritic 240 

cells and plasmablasts when comparing post-COVID-19-ILD with IPF patients (Fig2C) (Table 4, 241 

Supplementary file 1). Among the four conditions studied, the expression of the seven gene signature 242 

was limited to circulating monocytes and platelets (to a lesser degree) compared to other immune cell 243 

populations (Fig2D). All seven genes were highly expressed in all the COVID-19 patients and in one IPF 244 

patient (Fig2E). Out of the seven genes, three genes (MCEMP1, PLBD1 and S100A12) were expressed in 245 

monocytes in the four groups studied. In post-COVID-19-ILD samples, all seven genes had decreased 246 

expression compared to COVID-19. (Fig2E, Supplementary file 2). To gain more insight on the expression 247 

of the seven genes of interest in monocyte subtypes, we employed uniform manifold approximation and 248 
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projection (UMAP) of these cells to connect them with integrated immune signatures in the subgroups 249 

studied (Fig2F). Monocyte subpopulations were characterized by the expression of CD45, CD14, CD16, 250 

HL-DRA, CD163, CD11b, CD11c, S100A12 and S100A8 (Fig2G). Out of the three classical monocyte 251 

subpopulations identified: HLA-DRhiCD163-, HLA-DRlowCD163- and HLA-DRlowCD163+ (Fig2F), two were 252 

classical monocytes HLA-DRlow expressing CD33+ and CD15- (FUT4) qualifying as Monocytic-Myeloid 253 

Derived Suppressive Cells (M-MDSCs), one of them (HLA-DRlowCD163+), expressed exclusively in COVID-254 

19 patients (Fig2F, Supplementary figure 2).  255 

Cellular composition of the three monocyte subpopulations varied among controls, COVID-19, post-256 

COVID-19-ILD and IPF. CD14+HLA-DRlowCD163+ M-MDSCs were exclusively expressed in COVID-19 257 

(0.36) and absent in the three other groups (Fig2H). The COVID-19 group displayed low percentages of 258 

HLA-DRhiCD163- (0.05) and HLA-DRlowCD163- (0.05) cells compared to control group (0.10 and 0.10, 259 

respectively). No significant difference was observed between these HLA-DRhiCD163- and HLA-260 

DRlowCD163- monocytes in post-COVID-19-ILD (0.13 and 0.14) and IPF (0.12 and 0.11) patients compared 261 

to controls. An increase in HLA-DRhiCD163- monocytes was observed in post-COVID-19-ILD patients 262 

compared to controls (0.13 vs 0.10) (Fig2H). Finally, we performed deep immune profiling and studied the 263 

expression of the seven gene signature in the three classical monocytes subpopulations identified. 264 

Increased expression of the seven genes was observed in CD14+HLA-DRlowCD163+ cells compared to 265 

CD14+HLA-DRhiCD163- and CD14+HLA-DRlowCD163- cells (Fig2I). Taken together, our results suggests 266 

that CD14+HLA-DRlowCD163+ M-MDSCs are the cellular source of a high-risk genomic profile characterized 267 

by increased expression of MCEMP1, PLBD1, S100A12, FLT3, TPST1, IL1R2 and HP and associated with 268 

increased risk of mortality in COVID-19 thus we denominated these cells as 7Gene-M-MDSCs. 269 

 270 

The 43-gene signature originates from CD4 T, and CD8 T cell subsets and its expression increases 271 

in post-COVID-19-ILD. 272 

 273 

To determine the cellular source of the 43 genes with decreased expression in high-risk COVID-274 

19 patients, we analyzed our scRNA-seq dataset with integrated DEG analysis. To functionally map the 275 

expression of the 43-genes on T cells across disease groups, we plot six clusters of T cells in a color-coded 276 

manner, stratified by conditions. Most of the genes of the 43 gene signature are expressed in Tregs, 277 

memory CD4 T, memory CD8 T GZMK+, naive CD4T, naive CD8 T, memory CD8 T GZMB+ (Fig3A). 278 

Overall, we identified a low transcriptomic signal in lymphocytes in COVID-19 compared to the other 279 

conditions studied (Fig3B) which is reflected by a significantly lower percentages of memory CD4 T, Naive 280 

CD4 T, Naive CD8 T and Memory CD8 T GZMB+ cells in COVID-19 compared to controls, IPF and post-281 

COVID-19-ILD (Fig3C). Notably, we did not identify significant changes in the composition of the T cell 282 

compartment between post-COVID-19 and IPF.   283 

When we looked at gene expression changes of genes of the 43-gene signature, we noticed that 284 

survivors with post-COVID-19-ILD had overall increased expression of the 43 genes of interest, compared 285 
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to COVID-19 and IPF patients. When compared to COVID-19, post-COVID-19-ILD patients had increased 286 

expression of most of the genes of the 43-gene signature in naive CD4 T and memory CD4 T cells, Tregs, 287 

memory CD8 T GZMB+, memory CD8 T GZMK+ and naive CD8 T cells (Fig4A-F). To better represent the 288 

overall changes in gene expression of the 43-gene signature, we calculated the median of the average 289 

log2fold change values across the 43 genes, in each T cell subtype, in the four conditions studied (post 290 

COVID-19-ILD versus COVID-19 and, IPF versus post COVID-19-ILD) (Table 5 and supplementary file 291 

1).  Positive values represent overall higher expression and negative values represent overall lower 292 

expression of the 43-gene signature in the first group, respectively. When comparing post-COVID-19-ILD 293 

with COVID-19 patients, we found a median of the average log2fold change values that ranged between 294 

0.1 and 0.57 indicating that post-COVID-19-LD patients had overall increased expression of the 43 gene 295 

signature in each T cell subtype. The most pronounced effect was seen with increased expression of these 296 

genes in memory CD8 T GZMK+ cells with a median of the average log2fold change values of 0.52. In this 297 

subgroup of CD8 T cells, we found 26 DEG out of 43 genes between COVID-19-ILD versus COVID-19 298 

(Bonferroni adjusted P<0.05). When comparing IPF with post-COVID-19-ILD patients, we found a median 299 

of the average log2fold change values that ranged between -0.16 and -0.38 indicating that IPF patients had 300 

overall decreased expression of the 43 gene signature in each T cell subtype. The most pronounced effect 301 

was seen with decreased expression of these genes in naive and memory CD4 T cells (median of the 302 

average log2fold change of -0.38 and -0.35, respectively). In naive CD4 T cells, we found 28 DEG out of 303 

43 genes (Bonferroni adjusted P<0.05) and in memory CD4 T cells we found 34 DEG out of 43 genes 304 

between IPF versus COVID-19 (Bonferroni adjusted P<0.05). In summary, our results demonstrate that 305 

decreased expression of the 43-gene signature in COVID-19 and in IPF originates from CD4 T and CD8 T 306 

cell subsets, a finding that reverses in post-COVID-19-ILD. 307 

 308 

Discussion  309 

 310 

In this study, we aimed to validate the performance of a 50-gene signature (and a subset of seven 311 

of these genes) previously shown to predict IPF [8, 9] and COVID-19 mortality [10]. We also aimed to 312 

identify the cellular source of these gene expression changes and to analyze the expression of these genes 313 

at the single-cell level through the course of normal health, acute COVID-19 infection, post COVID-19 314 

infection with pulmonary fibrosis and pulmonary fibrosis without infection. We have previously identified a 315 

50-gene signature that was able to discriminate two groups of patients with COVID-19 with increased risk 316 

of mortality and poor disease outcomes [10]. In the present study, we were able to discriminate three risk 317 

profiles (low, intermediate, and high risk) based on the 50-gene signature with significant differences in 318 

outcomes and cytokine profiles. To study the clinical applicability of a genomic test based on genes of the 319 

50-gene signature, we designed a RT-qPCR panel including seven of these genes.  Strikingly, we were 320 

able to validate the existence of three risk profiles of COVID-19 patients with increased risk of mortality and 321 

poor outcomes in a separate cohort when using the 7-gene RT-qPCR test. A 7-gene RT-qPCR test is a 322 
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reliable, non-labor intense, fast and inexpensive way to predict mortality [25] [26]. Our study also focused 323 

on identifying the cellular source of these gene expression changes using scRNA-seq. We found that 324 

7Gene-M-MDSCs were present almost exclusively in COVID-19 patients with severe disease. When we 325 

studied the expression of genes of the 43-gene signature at the single-cell level, we identified their 326 

expression mostly in naive CD4 T and memory CD4 T cells, Tregs, memory CD8 T GZMB+, memory CD8 327 

T GZMK+ and naive CD8 T cells. Interestingly, the expression of these genes was higher in survivors with 328 

post-COVID-19-ILD, but they remained low in IPF which is a thought-provoking finding because most 329 

patients with post-COVID-19-ILD have partial or complete resolution of their pulmonary fibrosis while most 330 

patients with IPF have disease progression.  331 

We have previously demonstrated the presence of a large subset of IPF patients with a high-risk 332 

genomic profile based on the 52-gene signature and increased monocyte counts [27] both associated with 333 

increased mortality [9] suggesting that 7Gene-M-MDSCs exists in IPF, but we may have missed their 334 

detection in this study due to the limited number of IPF samples analyzed. Also, it is possible that patients 335 

with post-COVID-ILD who do not recover, progress or have persistently long COVID symptoms, may also 336 

have a high number of 7Gene-M-MDSCs, driving a state of persistent immune dysregulation. Several lines 337 

of evidence have shown that COVID-19 is associated with dysregulated myeloid cell compartment [19, 28-338 

31]. Myeloid cells have been found highly and aberrantly activated in COVID-19 [28, 32], with dysfunctional 339 

HLA-DRloCD163hi and HLA-DRloS100Ahi CD14+ monocytes being present in patients with severe disease 340 

[33]. Lymphopenia has been an established negative prognostic marker in COVID-19 [34], while T cell 341 

subpopulations of patients with COVID-19 have exhaustion features [35-37]; yet, this is still a matter of 342 

debate [37, 38]. Importantly, single-cell bronchoalveolar lavage transcriptomic profiling comparing post-343 

COVID-19-ILD patients with inflammatory and 89fibrotic-like99 changes, showed more abundant expression 344 

of CD4 central memory and CD8 effector memory T cells in the inflammatory arm, suggesting a faster 345 

immune response recovery in patients with less pronounced radiographic abnormalities [39]. Our study 346 

further expands on the major role of T cell recovery in post-COVID-19-ILD and T-cell exhaustion in IPF [40] 347 

(Figure 5). Despite the reproducibility and relevance of our findings, we acknowledge the limitations of our 348 

study. First, we did not investigate the underlying mechanisms that fuel this aberrant immune response and 349 

whether immune dysregulation is a cause or effect of these diseases. Another limitation is that our controls 350 

were relatively younger than the other conditions studied but this did not affect our analysis since we 351 

focused on the comparisons between COVID-19, post-COVID19-ILD and IPF. Finally, we did not have data 352 

regarding COVID-19 variants in these patients.  353 

Collectively, a 50-gene low-risk genomic profile in the peripheral blood was consistently predictive 354 

of COVID-19 survival. Comparison of this genomic profile through scRNA-seq in patients with COVID-19, 355 

post-COVID-19-ILD and IPF suggests an initial aberrant immune response in COVID-19 that resolves over 356 

time. This aberrant immune response is characterized by increased expression of 7Gene-M-MDSCs and 357 

decreased expression of CD4 T and CD8 T cell subsets. Survivors with post-COVID-19-ILD present with 358 

increased expression of T cell-related genes of the 43-gene signature compared to patients with COVID19 359 
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and IPF. This highlights that increased 7Gene-M-MDSCs and decreased T-cell subpopulations may have 360 

detrimental effects both in COVID-19 and IPF. Future studies looking at whether increased 7Gene-M-361 

MDSCs and decreased T-cell subpopulation expressing genes of the 43-gene signature can be observed 362 

in patients with progressive forms of post-COVID-19-ILD and other forms of ILD are highly anticipated.  363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

Figures 373 
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Figure 1 375 
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Figure 2 377 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2023. ; https://doi.org/10.1101/2023.10.22.563156doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.22.563156
http://creativecommons.org/licenses/by-nd/4.0/


   

 

   

 

 378 

Figure 3 379 
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Figure 4  381 

 382 
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Figure 5 384 
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Figure legends 391 

 392 

Figure 1. A 50-gene signature can be used to identify three molecular endotypes associated with 393 

differences in COVID-19 survival and cytokine profiles. 394 

A. Study design of the 50-gene signature and cytokine analysis in COVID-19 patients (Cohort 1). B. 395 

Heatmap of COVID-19 patients based on the 50-gene signature discriminates three risk groups (low, 396 

intermediate, and high) based on SAMS. Every column represents a patient, and every row represents a 397 

gene. Log-based two-color scale is adjacent to the heatmap. Red denotes increased expression and green 398 

denotes decreased expression. Gene expression data is represented as Log2 normalized expression 399 

values. C-D. Time to death and time to discharge by day 60 in hospitalized patients with COVID-19, 400 

respectively.  E-H. Plasma cytokine concentrations (IL6, IP-10, SPP1 and TGF³) in low, intermediate, and 401 

high-risk profile patients with COVID-19 at days 2, 6 and 13 post admission.  The data is presented as an 402 

average of triplicate values ± SEM for each group. Two-way ANOVA test (GraphPad software) Tukey9s 403 

multiple comparisons were used; * p<0.05. I. Study design of 7-gene signature analysis by RT-qPCR in 404 

PBMCs from COVID-19 patients (Cohort 2). J. Heatmap of COVID-19 patients based on the 50-gene 405 

signature discriminates three risk groups (low, intermediate, and high) based on SAMS Up scores. Heatmap 406 

nomenclature is the same as in Figure 1A. K-L. Time to death and time to discharge by day 60 in 407 

hospitalized patients with COVID-19 respectively in cohort two. The data is presented as an average of 408 

triplicated TUs values ± SEM for each group. * p<0.05 409 

 410 

Figure 2. Increased expression of seven genes associated with increased risk of mortality in COVID-411 

19 can be identified in a novel subtype of Monocytic-Myeloid Derived Suppressive Cells. 412 

A. Study design of scRNA-seq in cohort three. B. Uniform manifold approximation and projection (UMAP) 413 

embedding plots of 92027 single-cells of the four studied conditions: controls, COVID-19, post-COVID-19-414 

ILD and IPF patients, showing the cellular landscape with cluster-colored annotations. C. Stacked bar graph 415 

of cell count percentage of immune cells in each condition. D. Aggregated UMAPs of the four studied 416 

conditions projecting the major expression of each gene of the 7-gene signature: MCEMP1, PLBD1, 417 

S100A12, FLT3, TPST1, IL1R2, HP on immune cells (aqua blue color). E. Dot plot of seven increased 418 

genes in high-risk patients across controls, COVID-19, post-COVID-19-ILD and IPF. F. UMAPs of 21189 419 

cells from four controls patients, 12276 cells from three COVID-19, 24720 cells from five post-COVID-19 420 

and 33842 from six IPF patients were analyzed and integrated in four separate UMAPs to represent three 421 

monocyte subpopulations, grouped in a color-coded manner. G. Dot plots comparing expression of 15 422 

selected marker genes for clustering classical monocytes populations (CD14+CD16-). Three 423 

subpopulations of classical monocytes were identified based on the expression of HLA-DR and CD163 424 

markers. Dot size is proportional to the percentage of cells expressing the gene in each subcluster. Color 425 

intensity is proportional to the average scaled log2-normalized expression within the subcluster. H.  Bar 426 

graphs of cell percentages in the three classical monocyte subpopulations identified (CD14+CD16-) HLA-427 
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DRhiCD163-, HLA-DRlowCD163- and HLA-DRlowCD163+, stratified by conditions. I. Violin plot of the seven 428 

gene expressions on the three classical monocyte subgroups identified in panel H. Data are presented 429 

scale/log normalized as average expression of all cells within a given group. The propeller method and T 430 

test were used to compare cell frequencies in each group. * p < 0.05, ** p < 0.01, *** p< 0.001, and **** p 431 

< 0.0001. 432 

 433 

Figure 3. CD4 T and CD8 T cell subsets are the main source of the 43-gene signature.  434 

A. Clustered dot plot of the 43 genes signature in all aggregated groups (controls, COVID-19, post-COVID-435 

19-ILD and IPF patients) in each identified cell cluster. B. Separate UMAPs representing T immune cells 436 

subpopulations distributions in controls, COVID-19, post-COVID-19-ILD and IPF patients in a color-coded 437 

manner. Data are presented scale/log normalized as average expression of all cells within a given group. 438 

C. Bar graphs of T-cell subset percentages stratified per conditions. The propeller method and T test were 439 

used to compare cell frequencies in each group. * p < 0.05, ** p < 0.01, *** p< 0.001, and **** p < 0.0001 440 

 441 

Figure 4. Resurgence of the 43-gene signature in survivors with post-COVID-19-ILD. 442 

A. Dot plot of genes of the 43 gene signature in Tregs, memory CD4 T cells, memory CD8 T GZMK+, naive 443 

CD4 T, naive CD8 T and memory CD8 T GZMB+ cells, respectively. Dot size is proportional to the 444 

percentage of cells expressing the gene in each subcluster. Color intensity is proportional to the average 445 

scaled, log-normalized expression within the disease group. Data are represented as average of log2. Log-446 

based two-color scale is adjacent to the dot-plots. 447 

 448 

Figure 5. Potential model of changes in circulating immune cells expressing genes of the 50-gene 449 

signature in COVID-19, post-COVID-19-ILD and IPF. Our findings suggest that COVID-19 patients with 450 

a 50-gene high-risk profile have an imbalance between high 7Gene-M-MDSCs and low CD4 and CD8 T 451 

cell subsets that may be caused by the immunosuppressive effects that 7Gene-M-MDSCs exert in T cells. 452 

In post-COVID-19 ILD, the 7Gene-M-MDSCs transition to CD14+HLA-DRhighCD163- and CD14+HLA-453 

DRlowCD163- leading to a recovery in the expression of genes of the 43-gene signature in CD4 and CD8 T 454 

cell subsets. In IPF patients, repeated cycles of alveolar epithelial cell injury sustain the presence of the 455 

subtypes of monocytes identified in our study, including 7Gene-M-MDSCs which leads to persistently low 456 

expression of genes of the 43-gene signature in T cell subsets.  457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 
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Tables 465 

Risk profile N Age 
Gender 

Predominant 
CRP Ferritin 

High-Risk 25 55.5±15.7 14 Males 12.0±8.6 1816.9±1340.9 

Intermediate-Risk 26 51.6±15.8 15 Males 11.3±8.7 1902.8±2022.9 

Low-Risk 17 57.3±18.4 9 Females 3.4±4.1 491.4±521.1 

P value NA NS NA 0.006 0.03 

Table 1. Demographics and clinical data of cohort 1.  466 

 467 

Risk profile N Age 
Gender 

Predominant 
CRP Ferritin 

High-Risk 47 60.06±19.09 29 Males 15.04±65.60 2463.6±534.2 

Intermediate-Risk 47 59.23±12.51 27 Males 13.21±20.50 1788.8±3449.3 

Low-Risk 47 59.28±18.80 25 Females 11.12±8.93 477.4±534.3 

P value ΝΑ NS NA NS NS 

Table 2. Demographics and clinical data of cohort 2. 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

Table 3. Demographics and clinical data of cohort 3. 478 

Group N Age 
Gender 

predominant 
FVC% 
pred 

DLCO% 
pred 

 
COVID-19 

 
3 

52.0±2.6 2 Males NA NA 

Post-COVID-19-ILD 5 63.8±11.3 4 Males 66.0±6.0 43.3±1.9 

IPF  
6 

70±6.4 4 Males 61.3±14.2 43.8±10.1 

Controls  
4 

42.0±2.2 
2 Males/ 

2 Females 
NA NA 

P value NA 0.001 NA 0.55 0.91 
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Cell Type Group 1 Group 2 Mean 

proportion 

(Group 1) 

Mean 

proportion 

(Group 2) 

Proportion 

Ratio 

T 

statistic 

p value 

CD14+CD163+HLA-

DRlow Monocytes 

Covid19 Post-covid-19-

ILD 

30.13% 0.01% 0.00 -11.36 0.0000 

Platelet Covid19 Post-covid-19-

ILD 

15.01% 0.98% 0.07 -4.07 0.0003 

Plasmablasts  Covid19 Post-covid-19-

ILD 

8.69% 1.54% 0.18 -2.84 0.0076 

Naive CD4 T Covid19 Post-covid-19-

ILD 

3.42% 12.79% 3.74 2.39 0.0227 

Memory CD8 T 

GZMB+ 

Covid19 Post-covid-19-

ILD 

2.88% 11.45% 3.98 2.37 0.0238 

cDC Covid19 Post-covid-19-

ILD 

0.30% 1.03% 3.43 2.24 0.0319 

HSPC Post-covid-19-

ILD 

IPF 0.14% 0.03% 5.15 3.62 0.0022 

cDC Post-covid-19-

ILD 

IPF 1.03% 0.32% 3.20 2.90 0.0107 

Plasmablasts  Post-covid-19-

ILD 

IPF 1.54% 0.48% 3.22 2.50 0.0236 

CD14+CD163+HLA-

DRlow Monocytes 

Control Covid19 0.02% 30.13% 1507.72 10.33 0.0000 

Plasmablasts  Control Covid19 0.44% 8.69% 19.72 4.98 0.0002 

Platelet Control Covid19 1.07% 15.01% 14.01 3.99 0.0015 

Naive CD4 T Control Covid19 24.29% 3.42% 0.14 -3.72 0.0025 

Naive CD8 T Control Covid19 6.51% 1.37% 0.21 -2.86 0.0201 

Memory CD4 T Control Covid19 17.37% 3.70% 0.21 -2.44 0.0394 

Naive CD8 T Control IPF 6.51% 1.92% 3.39 2.98 0.0106 

Naive CD4 T Control IPF 24.29% 11.71% 2.07 2.51 0.0259 

B Lymph Control Post-covid-19-

ILD 

3.84% 11.45% 2.98 2.86 0.0136 

CD14+CD163-HLA-

DRhi Monocytes 

Control Post-covid-19-

ILD 

0.44% 1.54% 3.50 2.52 0.0257 
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CD14+CD163+HLA-

DRlow Monocytes 

Covid19 IPF 30.13% 0.03% 1118.19 9.81 0.0000 

Plasmablasts  Covid19 IPF 8.69% 0.48% 18.10 5.10 0.0001 

Platelet Covid19 IPF 15.01% 2.75% 5.46 2.75 0.0152 

Memory CD4 T Covid19 IPF 3.70% 13.44% 0.28 -2.76 0.0155 

Naive CD4 T Covid19 IPF 3.42% 11.71% 0.29 -2.57 0.0215 

Naive CD8 T Covid19 IPF 1.37% 1.92% 0.71 -2.34 0.0347 

Table 4. Cell frequencies among studied groups and abundance analysis. Only cell frequencies with 479 

P<0.05 are shown.  480 

 481 

Table 5.  Summary statistics of DEG in scRNA-seq between post COVID-19-ILD versus COVID19 and 482 

IPF versus post COVID-19-ILD. * Average log2 fold change. Positive values indicate that the gene is more 483 

highly expressed in the cell cluster. The median of average log2 fold change was calculated using the 484 

average log2-fold change values of the 43 genes in each comparison. 485 

** Bonferroni corrected P value  486 

 487 

 

Post COVID19-ILD Vs COVID19 IPF Vs post COVID-19-ILD 

Cell types 

 

Median of 

average 

log2fold 

change in 43 

genes* 

#43 

Genes 

with 

P<0.05 

#43 Genes 

with p 

adjusted 

<0.05** 

Median of 

average log2-

fold change in 

43 genes 

#43 

Genes 

with 

P<0.05 

#43 Genes 

with p 

adjusted 

<0.05 

Naive CD4 T  0.27 35 20 -0.38 37 28 

Memory CD4 T  0.10 26 15 -0.35 41 34 

Treg  0.21 19 5 -0.24 29 10 

Memory CD8 T GZMB+ 0.13 25 15 -0.16 37 26 

Memory CD8 T GZMK+ 0.57 35 26 -0.29 37 26 

Naïve CD8T 0.18 26 7 -0.19 28 13 
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Supplementary figures 488 

 489 

Supplementary figure 1: All immune cell clusters were identified based on the expression levels of 490 

different markers by reference to COVID-19 and IPF cell atlas. The Y axis represents markers and x axis 491 

represents the identified cells. Dot size is proportional to the percentage of cells expressing the gene in 492 

each subcluster. Color intensity is proportional to the average scaled log2-normalized expression within the 493 

cell subcluster. 494 

 495 

 496 
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 497 

Supplementary figure 2: monocytes HLA-DRlow expressing CD33+ and CD15- (FUT4) qualifying as 498 

Monocytic-Myeloid Derived Suppressive Cells (M-MDSCs), one of them (HLA-DRlowCD163+), is expressed 499 

exclusively in COVID-19 patients. 500 

 501 

 502 
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