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Abstract

Background: We aim to study the source of circulating immune cells expressing a 50-gene
signature predictive of COVID-19 and IPF mortality.

Methods: Whole blood and Peripheral Blood Mononuclear cells (PBMC) were obtained from 231
subjects with COVID-19, post-COVID-19-ILD, IPF and controls. We measured the 50-gene signature
(nCounter, Nanostring), interleukin 6 (IL6), interferon y-induced protein (IP10), secreted phosphoprotein 1
(SPP1) and transforming growth factor beta (TGF-B) by Luminex. PCR was used to validate COVID-19
endotypes. For single-cell RNA sequencing (scRNA-seq) we used Chromium Controller (10X Genomics).
For analysis we used the Scoring Algorithm of Molecular Subphenotypes (SAMS), Cell Ranger, Seurat,
Propeller, Kaplan-Meier curves, CoxPH models, Two-way ANOVA, T-test, and Fisher’s exact.

Results: We identified three genomic risk profiles based on the 50-gene signature, and a subset
of seven genes, associated with low, intermediate, or high-risk of mortality in COVID-19 with significant
differences in IL6, IP10, SPP1 and TGFB-1. scRNA-seq identified Monocytic-Myeloid-Derived Suppressive
cells (M-MDSCs) expressing CD14+HLA DR'°*CD163+ and high levels of the 7-gene signature (7Gene-M-
MDSC) in COVID-19. These cells were not observed in post-COVID-19-ILD or IPF. The 43-gene signature
was mostly expressed in CD4 T and CD8 T cell subsets. Increased expression of the 43 gene signature
was seen in T cell subsets from survivors with post-COVID-19-ILD. The expression of these genes
remained low in IPF.

Conclusion: A 50-gene, high-risk profile in COVID-19 is characterized by a genomic imbalance in
monocyte and T-cell subsets that reverses in survivors with post-COVID-19 Interstitial Lung Disease
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66 Introduction
67
68 The emergence and spread of 2019 coronavirus disease ( COVID-19) led to an unparalleled, global
69  public health crisis [1]. Despite major advances in the prevention and treatment of COVID-19, infections
70  from emergent, severe respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and long COVID still
71 impose substantial burden on healthcare systems [2]. One of the most frequent manifestations of long
72 COVID is post-COVID-19- Interstitial Lung Disease (Post-COVID-19-ILD), which is observed in a proportion
73  of survivors from COVID-19 induced Acute Respiratory Distress Syndrome (ARDS) [3]. Recent evidence
74  has demonstrated similarities between COVID-19-induced ARDS, post-COVID-19-ILD and IPF [4, 5], for
75  example, both diseases are triggered by alveolar epithelial cell (AEC) injury, in COVID-19 the injury is viral
76 and in IPF is unknown. AEC injury leads to recruitment of monocyte-derived alveolar macrophages,
77  deregulated angiogenesis and vasculopathy, aberrant tissue remodeling and extracellular matrix deposition
78  [5-7].
79 At the genomic level we have previously identified [8] and validated [9] a 50-gene signature
80 predictive of IPF and COVID-19 survival [10] in circulating immune cells. In our previous work, we missed
81 on the identification of additional COVID-19 endotypes based on the 50-gene signature, we lacked
82  correlation with cytokine data, and we did not evaluate the clinical applicability of our genomic risk profiles
83 by a test that could be widely used in clinical practice. Finally, we did not perform in-depth
84  immunophenotyping in patients with COVID-19, post-COVID-19-ILD and IPF. In the present work, we
85  analyzed over 216 hospitalized patients with COVID-19 and identified the presence of three genomic risk
86  profiles based on the 50-gene signature (and a subset of these genes) associated with a low, intermediate,
87  or high-risk of mortality with significant differences in pro-inflammatory and pro-fibrotic cytokines.
88 We also used single-cell RNA sequencing to study genes with increased (seven genes) and
89 decreased expression (43 genes) in circulating immune cells associated with increased risk of mortality in
90 COVID-19 and discovered a novel subtype of Monocytic-Myeloid-Derived Suppressive (M-MDSC) cells
91  expressing CD14+*HLA-DR**CD163*MCEMP1+PLBD1+S100A12+TPST1+IL1R2+FLT3*HP* responsible for
92  the high-risk genomic profile. We denominated these cells as 7Gene-M-MDSC. These cells were not
93  observed in survivors with post-COVID-19-ILD and in IPF patients in our cohort. Our findings suggest that
94  a50-gene, high-risk profile may represent the imbalance between increased 7GeneM-MDSC and decrease
95 CD4 T and CD8 T subsets expressing the 43-gene signature in patients with increased risk of COVID-19
96  mortality. While increased expression of the 43-gene signature was seen in T cell subsets from survivors
97  with post-COVID-19-ILD, the expression of these genes remained low in IPF.
98 Methods
99

100  Human specimens and study design

101
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102 Whole blood and Peripheral Blood Mononuclear cells (PBMC) were obtained from 216 hospitalized
103  patients with COVID-19 from the University of South Florida (USF)/Tampa General Hospital (TGH). Cohorts
104  were split in three based on time of collection and experiments performed. For the 50-gene signature
105 analysis, whole blood samples were collected from 75 patients recruited between 07/2021 and 02/2022 at
106 USF/TGH within two days (£2) from hospital admission. For time course analyses, 23 and 14 blood samples
107  were collected at days six (+2.3) and 13 (+1.5), respectively, from hospital admission (Cohort one, Fig1A).
108  For the 7-gene signature analysis, PBMC were collected from 141 patients admitted to USF/TGH between
109  06/2020 to 10/2020 within 3.7 days from hospital admission (Cohort two, Fig1l). For single-cell RNA
110 sequencing, we included three hospitalized patients with COVID-19, five patients with post-COVID-19-ILD,
111  six patients with IPF and four controls (Cohort three, Fig2A). Post-COVID-19-ILD patients were enrolled
112  with an average of 7 months (£5) from COVID-19 diagnosis. These patients developed pulmonary sequalae
113  defined as clinical symptoms, abnormal radiographic findings of Interstitial Lung Disease and Diffusion of
114  the Lung for Carbon Monoxide (DLCO) less than 70. All studies were approved by Institutional Review
115 Boards (Pro00032158 and Study00085). Clinical data were recorded for each patient at the time of
116  admission and during time course studies.

117

118 nCounter analysis system (Nanostring) experiments

119

120 A custom code set including the 50-gene signature was generated using the nCounter analysis

121  system as previously described [9]. Briefly, 200 ng of total RNA was extracted using Pax gene blood miRNA
122 kit (Cat#763134, PreAnalytix, Qiagen). RNA quality control was confirmed by nanodrop and tape station
123 4150 (Agilent). Samples were run in batches of 12 samples. RCC raw files were generated by nCounter
124  system and analyzed by nSolver 4.0 software. Data were normalized to the geomean of seven
125 housekeeping genes (GUSB, GAPDH, TRAP1, FPGS, ACTB, DECR1, FARP1). Data was log transformed
126 and presented as Log2 and used to calculate the Scoring Algorithm for Molecular Subphenotypes (SAMS)
127 9, 10] to stratify risk profiles as previously described.

128

129 Luminex

130

131 We measured cytokine concentrations of 121 plasma samples from COVID-19 patients from Cohort

132 1 using a customized, Bioplex 200 compatible, human cytokine panel including, IL6, IP10, SPP1 and TGFpB-
133 1 (#FCSTM18-06, R&D Systems). The equipment was calibrated (Cat# 171203060, BIO-RAD) and
134  validated (Cat#171203001, BIO-RAD) prior utilization.

135

136 Tagman RT-qPCR

137
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138 141 blood samples were collected from hospitalized COVID-19 patients at USF/TGH from Cohort
139 2. To perform RT-gPCR experiments (Quantstudio6), we used gPCR kit, SuperScript IV VILO Mater Mix
140  (Cat#11756050), 10 TagMan probes, MCEMP1 (Cat #Hs00545333_g1), PLBD1 (Cat #Hs00227344_m1),
141  IL1R2 (Cat #Hs00174759_m1), HP (Cat #Hs00978377_m1), FLT3 (Cat#Hs00174690_m1), TPST1
142  (Cat#Hs01041471_m1), S100A12 (Cat #Hs00942835_g1), ACTB (Cat#Hs99999903_m1), B2M (Cat#
143 Hs00187842_m1) and RPS18 (Cat# Hs01375212_g1) (Thermofisher). Triplicated CTs values were geo-
144  normalized to reference genes. Data was represented as transcript unit (TU, 2/-10 (3CT)), SAMS was used

145  to identify genomic risk profiles based on the 7-gene signature.

146

147  Single-cell RNA sequencing (scRNA-seq) experiments

148

149 For scRNA-seq, we used cryopreserved PBMC from healthy controls and patients with COVID-19

150 (from Cohort 1), post-COVID-19-ILD and IPF as described above. IPF diagnosis was based on current
151  guidelines [11]. A single-cell suspension from PBMC from each patient was quantified and analyzed for
152  viability using the Cell counter 3 (Countess 3, Invitrogen) and then loaded onto the 10X Genomics
153  Chromium Single Cell Controller for isolation of single cells (10X Genomics). Briefly, 5000-6000 PBMC from
154  each of the samples were targeted for recovery. The single cells, reagents, and 10x Genomics gel beads
155 were encapsulated into individual nanoliter-sized Gel beads in Emulsion (GEMs) and then reverse
156  transcription (RT) of poly-adenylated mRNA was performed inside each droplet. Post GEM-RT Cleanup
157 and cDNA was amplified, purified, and cDNA libraries were then prepared in bulk reactions using the
158  Chromium Next GEM Single Cell 3' Kit v3.1 Library Prep Kit. From sequencing, approximately 35000 mean
159 reads per cell were generated on the lllumina NextSeq. FASTQ files were generated further demultiplexing,
160  barcode processing, alignment, and gene counting steps for analysis.

161

162  scRNA-seq analysis and quality control

163

164 scRNA-seq feature count matrices were constructed using Cell Ranger (v7.1.0), aligning reads to

165 the GRCh38 2020 reference genome. Subsequent quality control and data processing were performed with
166 the Seurat package (v4.3.0) [12]. Cells with less than 200 detected genes were discarded, as well as cells
167  with more than 15% mitochondrial genes. DropletUtils (v1.14.2) identified empty droplets [13], while
168  doublets were detected using Scrublet (v0.2.3-0) [14]. DecontX was used to detect ambient RNA
169  contamination [15]. We excluded identified empty droplets, doublets, and those with a contamination score
170  above 0.2, alongside cells with more than 9 UMIs mapping to the hemoglobin subunit beta (HBB) gene
171 (representing red blood cells) for further analysis. For cell type annotation, we used SCTransform for data
172 normalization and identification of variable features. This was followed by principal component analysis
173 (PCA) and batch effect correction using Harmony [16]. Graph-based clustering and UMAP embedding were
174 generated based on Harmony embeddings. Cell types were assigned to each cluster guided by canonical
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175  marker gene expression [17-19]. For cell type proportions analysis, we normalized the number of cells
176  within a given cell type by the total number of cells per subject. For Differentially Expressed Gene (DEG)
177  analysis, we used the Seurat software [20] (v4.3.0) “FindMarkers" function to identify differentially
178  expressed DEGs across disease groups. Differential abundance analysis was performed for each cell type
179  across different disease conditions, utilizing the 'propeller' method [21] as integrated within the 'speckle' R
180  package.

181
182  Statistics
183 The Kaplan—Meier method for survival and time of discharge analysis was used for the nCounter

184  data and RT-gPCR data (Cohorts 1 and 2) using MedCalc version (v12.104). Cumulative incidence curves
185  were analyzed among the three groups. Cox proportional-hazards models were used to estimate the hazard
186 ratio and 95% confidence interval. Two-way ANOVA followed by Tukey multiple comparisons test by
187  Graphpad prism software was used for the analysis of cytokines levels. T-test, Fisher’s exact test was used
188  to compare cell proportions and clinical data respectively across different disease groups. The Wilcoxon
189  rank test was used to compare DEG analysis within each group.

190

191 Results

192

193 A 50-Gene signature can be used to identify three molecular endotypes associated with differences
194  in COVID-19 survival and cytokine profiles.

195

196 SAMS identified three risk-profile groups of COVID-19 patients (low, intermediate, and high-risk)
197  based on the 50-gene signature in Cohort 1. A 0.91 up score and -3.42 down score were used to identify
198 the high-risk group. Intermediate and low-risk groups were then split based on a 0.15 up score and a -0.15
199 down score (Fig1A-B). These three risk-profile groups had significant differences in mortality (HR: 4.63,
200  95% Cl: 1.46 to 14.72, p=0.0094) and time to discharge (HR: 0.49, 95% CI: 0.34 to 0.72, p=0.0003) after
201  adjustment for Charlson Comorbidity Index (Fig1 C-D). Table 1 summarizes the clinical characteristics of
202  patients in this cohort.

203 We then investigated whether 50-gene risk profiles were associated with temporal changes in
204  proinflammatory and profibrotic cytokines including IL6, IP10, SPP1 and TGF-B at baseline and over time
205 in COVID-19. While we did not find significant difference in IL6, IP10, SPP1 levels between the three risk
206  groups at baseline (Fig1E-H), TGF-B levels were significantly increased in the high-risk group compared to
207  the low-risk group (15,193.17 = 8,214.71 vs 7,315.926 + 3,467.94pg/ml p<0.01). Our results also
208  demonstrated an increase of IL6, IP10 and SPP1 at day6 compared to baseline independent of the 50-
209  gene risk profile. 50-gene, high-risk profile patients displayed the highest levels of IL6 at day6 compared
210  tointermediate and low-risk patients, respectively (1,236 + 8.87 vs 980 + 34.69 vs 134+ 116 pg/ml, p<0.01)
211  (Fig1E). The same trend of cytokine levels was noted with IP10 at day6 compared to intermediate and low-
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212 risk group patients, respectively (2,323 + 699 vs 2,029 + 980 vs 625+ 470 pg/ml, p<0.01) (Fig1F) and similar
213 results were noted with SPP1 (Fig1G). Most of the studied cytokines trended down over time except for
214 SPP1 which increased at day 13 in patients with a 50-gene, high-risk profile (Fig1-G). In terms of TGF-,
215  we found the highest levels in day2 in the high-risk (1,5193 + 1,712 pg/ml) and intermediate-risk (1,5035 +
216 2222 pg/ml) groups compared to the low-risk group (7315+ 723 pg/ml, p<0.01) (Fig1H). We observed a
217  drastic decrease of circulating TGFB on day6 in the high-risk (threefold change) and intermediate-risk
218  (fivefold change) groups respectively compared to baseline. No significant changes in the levels of studied
219  cytokines were observed in the low-risk group over time (Fig1H).

220 Finally, we measured the expressions of MCEMP1, PLBD1, TPST1, S100A12, IL1R2, HP and
221  FLT3 by RT-gPCR in Cohort 2 patients (Fig1l) and calculated SAMS UP scores. The three risk groups
222 were split by the Up score based on tertiles and depicted on a heatmap (Fig1J). Our 7-gene RT-qPCR test
223  confirmed the presence of three endotypes of COVID-19 with significant differences in mortality (HR 2.3814
224 ,95% Cl: 1.3067 to 4.3401, p=0.0046) (Fig1K) and time to discharge alive (0.5954, 95%CI: 0.4715 to
225  0.7520, p<0.0001) (Fig1L) after adjustment for Charlson Comorbidity Index. Table 2 summarizes the
226  clinical characteristics of patients in this cohort. In summary, we demonstrated the presence of three
227 genomic risk profiles of COVID-19 patients with significant differences in survival and cytokine profiles by
228  two different methods and in two separate cohorts.

229

230 The 7-gene signature predictive of COVID-19 mortality can be identified in a novel subtype of
231  Monocytic-Myeloid Derived Suppressive Cells

232

233 To delineate the cellular source of the 7-gene signature that predicts COVID-19 mortality when
234 overexpressed (MCEMP1, PLBD1, S100A12, FLT3, TPST1, IL1R2 and HP), we performed scRNA-seq
235 from frozen PBMC of healthy controls, COVID-19, post-COVID-19-ILD and IPF patients (Fig2A, Table 3).
236  All immune cell clusters (Fig2B) were identified based on the expression levels of different markers by
237  reference to COVID-19 [22] and IPF atlas [23, 24]. In terms of cell frequencies, we noticed a significant
238  increase in CD14+*CD163+*HLA-DR"" monocytes, platelets and plasmablasts, and a decrease in naive
239  CDA4T, memory CD8T GZMB* and dendritic cells when comparing COVID-19 versus post-COVID-19-ILD.
240  Notably, we identified a significant increase in Hematopoietic and Progenitor Stem Cells (HSPC), dendritic
241 cells and plasmablasts when comparing post-COVID-19-ILD with IPF patients (Fig2C) (Table 4,
242  Supplementary file 1). Among the four conditions studied, the expression of the seven gene signature
243 was limited to circulating monocytes and platelets (to a lesser degree) compared to other immune cell
244 populations (Fig2D). All seven genes were highly expressed in all the COVID-19 patients and in one IPF
245 patient (Fig2E). Out of the seven genes, three genes (MCEMP1, PLBD1 and S100A12) were expressed in
246  monocytes in the four groups studied. In post-COVID-19-ILD samples, all seven genes had decreased
247 expression compared to COVID-19. (Fig2E, Supplementary file 2). To gain more insight on the expression

248  of the seven genes of interest in monocyte subtypes, we employed uniform manifold approximation and
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249  projection (UMAP) of these cells to connect them with integrated immune signatures in the subgroups
250 studied (Fig2F). Monocyte subpopulations were characterized by the expression of CD45, CD14, CD16,
251 HL-DRA, CD163, CD11b, CD11c, S100A12 and S100A8 (Fig2G). Out of the three classical monocyte
252  subpopulations identified: HLA-DR"CD163-, HLA-DR'**CD163- and HLA-DR**CD163+ (Fig2F), two were
253  classical monocytes HLA-DR¥ expressing CD33* and CD15- (FUT4) qualifying as Monocytic-Myeloid
254 Derived Suppressive Cells (M-MDSCs), one of them (HLA-DR"°*CD163+), expressed exclusively in COVID-
255 19 patients (Fig2F, Supplementary figure 2).

256 Cellular composition of the three monocyte subpopulations varied among controls, COVID-19, post-
257  COVID-19-ILD and IPF. CD14+*HLA-DR"**CD163+* M-MDSCs were exclusively expressed in COVID-19
258 (0.36) and absent in the three other groups (Fig2H). The COVID-19 group displayed low percentages of
259  HLA-DRMNCD163- (0.05) and HLA-DR*CD163- (0.05) cells compared to control group (0.10 and 0.10,
260 respectively). No significant difference was observed between these HLA-DRMCD163- and HLA-
261 DRewCD163 monocytes in post-COVID-19-ILD (0.13 and 0.14) and IPF (0.12 and 0.11) patients compared
262  to controls. An increase in HLA-DRMNCD163- monocytes was observed in post-COVID-19-ILD patients
263  compared to controls (0.13 vs 0.10) (Fig2H). Finally, we performed deep immune profiling and studied the
264 expression of the seven gene signature in the three classical monocytes subpopulations identified.
265 Increased expression of the seven genes was observed in CD14*HLA-DR*"CD163* cells compared to
266  CD14*HLA-DRNCD163- and CD14+*HLA-DR**CD163- cells (Fig2l). Taken together, our results suggests
267  that CD14+*HLA-DR*CD163+*M-MDSCs are the cellular source of a high-risk genomic profile characterized
268 by increased expression of MCEMP1, PLBD1, S100A12, FLT3, TPST1, IL1R2 and HP and associated with
269 increased risk of mortality in COVID-19 thus we denominated these cells as 7Gene-M-MDSCs.

270

271  The 43-gene signature originates from CD4 T, and CD8 T cell subsets and its expression increases
272  in post-COVID-19-ILD.

273

274 To determine the cellular source of the 43 genes with decreased expression in high-risk COVID-
275 19 patients, we analyzed our scRNA-seq dataset with integrated DEG analysis. To functionally map the
276  expression of the 43-genes on T cells across disease groups, we plot six clusters of T cells in a color-coded
277  manner, stratified by conditions. Most of the genes of the 43 gene signature are expressed in Tregs,
278 memory CD4 T, memory CD8 T GZMK*, naive CD4T, naive CD8 T, memory CD8 T GZMB+ (Fig3A).
279 Overall, we identified a low transcriptomic signal in lymphocytes in COVID-19 compared to the other
280  conditions studied (Fig3B) which is reflected by a significantly lower percentages of memory CD4 T, Naive
281  CD4 T, Naive CD8 T and Memory CD8 T GZMB-+ cells in COVID-19 compared to controls, IPF and post-
282  COVID-19-ILD (Fig3C). Notably, we did not identify significant changes in the composition of the T cell
283  compartment between post-COVID-19 and IPF.

284 When we looked at gene expression changes of genes of the 43-gene signature, we noticed that

285  survivors with post-COVID-19-ILD had overall increased expression of the 43 genes of interest, compared
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286  to COVID-19 and IPF patients. When compared to COVID-19, post-COVID-19-ILD patients had increased
287  expression of most of the genes of the 43-gene signature in naive CD4 T and memory CD4 T cells, Tregs,
288  memory CD8 T GZMB*, memory CD8 T GZMK* and naive CD8 T cells (Fig4A-F). To better represent the
289  overall changes in gene expression of the 43-gene signature, we calculated the median of the average
290 log2fold change values across the 43 genes, in each T cell subtype, in the four conditions studied (post
291  COVID-19-ILD versus COVID-19 and, IPF versus post COVID-19-ILD) (Table 5 and supplementary file
292 1). Positive values represent overall higher expression and negative values represent overall lower
293  expression of the 43-gene signature in the first group, respectively. When comparing post-COVID-19-ILD
294  with COVID-19 patients, we found a median of the average log2fold change values that ranged between
295 0.1 and 0.57 indicating that post-COVID-19-LD patients had overall increased expression of the 43 gene
296  signature in each T cell subtype. The most pronounced effect was seen with increased expression of these
297  genes in memory CD8 T GZMK- cells with a median of the average log2fold change values of 0.52. In this
298  subgroup of CD8 T cells, we found 26 DEG out of 43 genes between COVID-19-ILD versus COVID-19
299  (Bonferroni adjusted P<0.05). When comparing IPF with post-COVID-19-ILD patients, we found a median
300 of the average log2fold change values that ranged between -0.16 and -0.38 indicating that IPF patients had
301 overall decreased expression of the 43 gene signature in each T cell subtype. The most pronounced effect
302 was seen with decreased expression of these genes in naive and memory CD4 T cells (median of the
303 average log2fold change of -0.38 and -0.35, respectively). In naive CD4 T cells, we found 28 DEG out of
304 43 genes (Bonferroni adjusted P<0.05) and in memory CD4 T cells we found 34 DEG out of 43 genes
305  between IPF versus COVID-19 (Bonferroni adjusted P<0.05). In summary, our results demonstrate that
306  decreased expression of the 43-gene signature in COVID-19 and in IPF originates from CD4 T and CD8 T
307  cell subsets, a finding that reverses in post-COVID-19-ILD.

308

309 Discussion

310

311 In this study, we aimed to validate the performance of a 50-gene signature (and a subset of seven

312  of these genes) previously shown to predict IPF [8, 9] and COVID-19 mortality [10]. We also aimed to
313 identify the cellular source of these gene expression changes and to analyze the expression of these genes
314  at the single-cell level through the course of normal health, acute COVID-19 infection, post COVID-19
315 infection with pulmonary fibrosis and pulmonary fibrosis without infection. We have previously identified a
316 50-gene signature that was able to discriminate two groups of patients with COVID-19 with increased risk
317 of mortality and poor disease outcomes [10]. In the present study, we were able to discriminate three risk
318 profiles (low, intermediate, and high risk) based on the 50-gene signature with significant differences in
319 outcomes and cytokine profiles. To study the clinical applicability of a genomic test based on genes of the
320  50-gene signature, we designed a RT-gPCR panel including seven of these genes. Strikingly, we were
321 able to validate the existence of three risk profiles of COVID-19 patients with increased risk of mortality and

322 poor outcomes in a separate cohort when using the 7-gene RT-qPCR test. A 7-gene RT-gPCR test is a
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323 reliable, non-labor intense, fast and inexpensive way to predict mortality [25] [26]. Our study also focused
324 on identifying the cellular source of these gene expression changes using scRNA-seq. We found that
325  7Gene-M-MDSCs were present almost exclusively in COVID-19 patients with severe disease. When we
326  studied the expression of genes of the 43-gene signature at the single-cell level, we identified their
327  expression mostly in naive CD4 T and memory CD4 T cells, Tregs, memory CD8 T GZMB*, memory CD8
328 T GZMK+ and naive CD8 T cells. Interestingly, the expression of these genes was higher in survivors with
329  post-COVID-19-ILD, but they remained low in IPF which is a thought-provoking finding because most
330 patients with post-COVID-19-ILD have partial or complete resolution of their pulmonary fibrosis while most
331  patients with IPF have disease progression.

332 We have previously demonstrated the presence of a large subset of IPF patients with a high-risk
333  genomic profile based on the 52-gene signature and increased monocyte counts [27] both associated with
334  increased mortality [9] suggesting that 7Gene-M-MDSCs exists in IPF, but we may have missed their
335  detection in this study due to the limited number of IPF samples analyzed. Also, it is possible that patients
336  with post-COVID-ILD who do not recover, progress or have persistently long COVID symptoms, may also
337  have a high number of 7Gene-M-MDSCs, driving a state of persistent immune dysregulation. Several lines
338 of evidence have shown that COVID-19 is associated with dysregulated myeloid cell compartment [19, 28-
339  31]. Myeloid cells have been found highly and aberrantly activated in COVID-19 [28, 32], with dysfunctional
340 HLA-DR"°CD163" and HLA-DR°S100AM CD14+ monocytes being present in patients with severe disease
341  [33]. Lymphopenia has been an established negative prognostic marker in COVID-19 [34], while T cell
342  subpopulations of patients with COVID-19 have exhaustion features [35-37]; yet, this is still a matter of
343  debate [37, 38]. Importantly, single-cell bronchoalveolar lavage transcriptomic profiling comparing post-
344  COVID-19-ILD patients with inflammatory and “fibrotic-like” changes, showed more abundant expression
345 of CD4 central memory and CD8 effector memory T cells in the inflammatory arm, suggesting a faster
346 immune response recovery in patients with less pronounced radiographic abnormalities [39]. Our study
347  further expands on the major role of T cell recovery in post-COVID-19-ILD and T-cell exhaustion in IPF [40]
348  (Figure 5). Despite the reproducibility and relevance of our findings, we acknowledge the limitations of our
349  study. First, we did not investigate the underlying mechanisms that fuel this aberrant immune response and
350 whether immune dysregulation is a cause or effect of these diseases. Another limitation is that our controls
351  were relatively younger than the other conditions studied but this did not affect our analysis since we
352 focused on the comparisons between COVID-19, post-COVID19-ILD and IPF. Finally, we did not have data
353  regarding COVID-19 variants in these patients.

354 Collectively, a 50-gene low-risk genomic profile in the peripheral blood was consistently predictive
355  of COVID-19 survival. Comparison of this genomic profile through scRNA-seq in patients with COVID-19,
356  post-COVID-19-ILD and IPF suggests an initial aberrant immune response in COVID-19 that resolves over
357  time. This aberrant immune response is characterized by increased expression of 7Gene-M-MDSCs and
358  decreased expression of CD4 T and CD8 T cell subsets. Survivors with post-COVID-19-ILD present with
359 increased expression of T cell-related genes of the 43-gene signature compared to patients with COVID19
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360 and IPF. This highlights that increased 7Gene-M-MDSCs and decreased T-cell subpopulations may have
361  detrimental effects both in COVID-19 and IPF. Future studies looking at whether increased 7Gene-M-
362 MDSCs and decreased T-cell subpopulation expressing genes of the 43-gene signature can be observed
363 in patients with progressive forms of post-COVID-19-ILD and other forms of ILD are highly anticipated.
364
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391 Figure legends
392

393  Figure 1. A 50-gene signature can be used to identify three molecular endotypes associated with
394  differences in COVID-19 survival and cytokine profiles.

395  A. Study design of the 50-gene signature and cytokine analysis in COVID-19 patients (Cohort 1). B.
396 Heatmap of COVID-19 patients based on the 50-gene signature discriminates three risk groups (low,
397 intermediate, and high) based on SAMS. Every column represents a patient, and every row represents a
398 gene. Log-based two-color scale is adjacent to the heatmap. Red denotes increased expression and green
399 denotes decreased expression. Gene expression data is represented as Log2 normalized expression
400  values. C-D. Time to death and time to discharge by day 60 in hospitalized patients with COVID-19,
401  respectively. E-H. Plasma cytokine concentrations (IL6, IP-10, SPP1 and TGF) in low, intermediate, and
402  high-risk profile patients with COVID-19 at days 2, 6 and 13 post admission. The data is presented as an
403  average of triplicate values + SEM for each group. Two-way ANOVA test (GraphPad software) Tukey’s
404  multiple comparisons were used; * p<0.05. I. Study design of 7-gene signature analysis by RT-qPCR in
405 PBMCs from COVID-19 patients (Cohort 2). J. Heatmap of COVID-19 patients based on the 50-gene
406 signature discriminates three risk groups (low, intermediate, and high) based on SAMS Up scores. Heatmap
407 nomenclature is the same as in Figure 1A. K-L. Time to death and time to discharge by day 60 in
408  hospitalized patients with COVID-19 respectively in cohort two. The data is presented as an average of
409 triplicated TUs values + SEM for each group. * p<0.05

410

411  Figure 2. Increased expression of seven genes associated with increased risk of mortality in COVID-
412 19 can be identified in a novel subtype of Monocytic-Myeloid Derived Suppressive Cells.

413  A. Study design of scRNA-seq in cohort three. B. Uniform manifold approximation and projection (UMAP)
414  embedding plots of 92027 single-cells of the four studied conditions: controls, COVID-19, post-COVID-19-
415 ILD and IPF patients, showing the cellular landscape with cluster-colored annotations. C. Stacked bar graph
416  of cell count percentage of immune cells in each condition. D. Aggregated UMAPs of the four studied
417  conditions projecting the major expression of each gene of the 7-gene signature: MCEMP1, PLBD1,
418 S100A12, FLT3, TPST1, IL1R2, HP on immune cells (aqua blue color). E. Dot plot of seven increased
419  genes in high-risk patients across controls, COVID-19, post-COVID-19-ILD and IPF. F. UMAPs of 21189
420  cells from four controls patients, 12276 cells from three COVID-19, 24720 cells from five post-COVID-19
421  and 33842 from six IPF patients were analyzed and integrated in four separate UMAPs to represent three
422 monocyte subpopulations, grouped in a color-coded manner. G. Dot plots comparing expression of 15
423 selected marker genes for clustering classical monocytes populations (CD14+*CD167). Three
424  subpopulations of classical monocytes were identified based on the expression of HLA-DR and CD163
425 markers. Dot size is proportional to the percentage of cells expressing the gene in each subcluster. Color
426  intensity is proportional to the average scaled log2-normalized expression within the subcluster. H. Bar
427  graphs of cell percentages in the three classical monocyte subpopulations identified (CD14+*CD167) HLA-
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428 DRNMCD163-, HLA-DR"**CD163- and HLA-DR"°*CD163*, stratified by conditions. I. Violin plot of the seven
429 gene expressions on the three classical monocyte subgroups identified in panel H. Data are presented
430 scale/log normalized as average expression of all cells within a given group. The propeller method and T
431  test were used to compare cell frequencies in each group. * p < 0.05, ** p < 0.01, *** p< 0.001, and **** p
432 < 0.0001.

433

434  Figure 3. CD4 T and CD8 T cell subsets are the main source of the 43-gene signature.

435  A.Clustered dot plot of the 43 genes signature in all aggregated groups (controls, COVID-19, post-COVID-
436 19-ILD and IPF patients) in each identified cell cluster. B. Separate UMAPs representing T immune cells
437  subpopulations distributions in controls, COVID-19, post-COVID-19-ILD and IPF patients in a color-coded
438 manner. Data are presented scale/log normalized as average expression of all cells within a given group.
439  C. Bar graphs of T-cell subset percentages stratified per conditions. The propeller method and T test were
440  used to compare cell frequencies in each group. * p < 0.05, ** p < 0.01, *** p< 0.001, and **** p < 0.0001
441

442  Figure 4. Resurgence of the 43-gene signature in survivors with post-COVID-19-ILD.

443  A. Dot plot of genes of the 43 gene signature in Tregs, memory CD4 T cells, memory CD8 T GZMK*, naive
444  CD4 T, naive CD8 T and memory CD8 T GZMB+ cells, respectively. Dot size is proportional to the
445 percentage of cells expressing the gene in each subcluster. Color intensity is proportional to the average
446  scaled, log-normalized expression within the disease group. Data are represented as average of log2. Log-
447  based two-color scale is adjacent to the dot-plots.

448

449 Figure 5. Potential model of changes in circulating immune cells expressing genes of the 50-gene
450  signature in COVID-19, post-COVID-19-ILD and IPF. Our findings suggest that COVID-19 patients with
451 a 50-gene high-risk profile have an imbalance between high 7Gene-M-MDSCs and low CD4 and CD8 T
452 cell subsets that may be caused by the immunosuppressive effects that 7Gene-M-MDSCs exert in T cells.
453 In post-COVID-19 ILD, the 7Gene-M-MDSCs transition to CD14+*HLA-DR"e"CD163- and CD14+HLA-
454 DR°*CD163 leading to a recovery in the expression of genes of the 43-gene signature in CD4 and CD8 T
455  cell subsets. In IPF patients, repeated cycles of alveolar epithelial cell injury sustain the presence of the
456  subtypes of monocytes identified in our study, including 7Gene-M-MDSCs which leads to persistently low
457  expression of genes of the 43-gene signature in T cell subsets.

458
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465 Tables
- ; Gender -
Risk profile N Age Predominant CRP Ferritin
High-Risk 25 | 55.5+15.7 14 Males 12.0£8.6 1816.9+£1340.9
Intermediate-Risk | 26 | 51.6+15.8 15 Males 11.318.7 1902.8+2022.9
Low-Risk 17 | 57.3x18.4 9 Females 3.414 1 491.41521 .1
P value NA NS NA 0.006 0.03
466  Table 1. Demographics and clinical data of cohort 1.
467
; : Gender -
Risk profile N Age Predominant CRP Ferritin
High-Risk 47 | 60.06+£19.09 29 Males 15.04+65.60 2463.6+534.2

Intermediate-Risk | 47 | 59.23+12.51 27 Males 13.21+20.50 1788.8+3449.3

Low-Risk 47 |59.28+18.80 | 25 Females | 11.12+8.93 477.4+534.3

P value NA NS NA NS NS
468  Table 2. Demographics and clinical data of cohort 2.

469
Grou N Age Gender FVC% DLCO%

P 9 predominant pred pred
COVID-19 3 52.0+2.6 2 Males NA NA 472
Post-COVID-19-ILD 5 | 63.8+11.3 4 Males 66.0+6.0 43.3+1473
IPF 5 | 70464 4 Males 61.3+14.2 43.8+1dH4
475

Controls 42.042.2 2 Males/ NA NA

4 2 Females

476
P value NA 0.001 NA 0.55 0.91 477

478  Table 3. Demographics and clinical data of cohort 3.
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Cell Type Group 1 Group 2 Mean Mean Proportion | T p value
proportion proportion Ratio statistic

(Group 1) (Group 2)

CD14*CD163*HLA Covid19 Post-covid-19- 30.13% 0.01% 0.00 -11.36 0.0000
DR Monocytes ILD
Platelet Covid19 Post-covid-19- 15.01% 0.98% 0.07 -4.07 0.0003
ILD
Plasmablasts Covid19 Post-covid-19- 8.69% 1.54% 0.18 -2.84 0.0076
ILD
Naive CD4 T Covid19 Post-covid-19- 3.42% 12.79% 3.74 2.39 0.0227
ILD
Memory CD8 T | Covid19 Post-covid-19- 2.88% 11.45% 3.98 2.37 0.0238
GzZmB* ILD
cDC Covid19 Post-covid-19- 0.30% 1.03% 3.43 2.24 0.0319
ILD
HSPC Post-covid-19- IPF 0.14% 0.03% 5.15 3.62 0.0022
ILD
cDC Post-covid-19- IPF 1.03% 0.32% 3.20 2.90 0.0107
ILD
Plasmablasts Post-covid-19- IPF 1.54% 0.48% 3.22 2.50 0.0236
ILD
CD14*CD163*HLA- Control Covid19 0.02% 30.13% 1507.72 10.33 0.0000

DR Monocytes

Plasmablasts Control Covid19 0.44% 8.69% 19.72 4.98 0.0002
Platelet Control Covid19 1.07% 15.01% 14.01 3.99 0.0015
Naive CD4 T Control Covid19 24.29% 3.42% 0.14 -3.72 0.0025
Naive CD8 T Control Covid19 6.51% 1.37% 0.21 -2.86 0.0201
Memory CD4 T Control Covid19 17.37% 3.70% 0.21 -2.44 0.0394
Naive CD8 T Control IPF 6.51% 1.92% 3.39 2.98 0.0106
Naive CD4 T Control IPF 24.29% 11.71% 2.07 2.51 0.0259
B Lymph Control Post-covid-19- 3.84% 11.45% 2.98 2.86 0.0136
ILD
CD14*CD163 HLA- Control Post-covid-19- 0.44% 1.54% 3.50 2.52 0.0257

DR" Monocytes ILD
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CD14*CD163*HLA- | Covid19 IPF 30.13% 0.03% 1118.19 9.81 0.0000
DR Monocytes
Plasmablasts Covid19 IPF 8.69% 0.48% 18.10 5.10 0.0001
Platelet Covid19 IPF 15.01% 2.75% 5.46 2.75 0.0152
Memory CD4 T Covid19 IPF 3.70% 13.44% 0.28 -2.76 0.0155
Naive CD4 T Covid19 IPF 3.42% 11.71% 0.29 257 0.0215
Naive CD8 T Covid19 IPF 1.37% 1.92% 0.71 2.34 0.0347
479 Table 4. Cell frequencies among studied groups and abundance analysis. Only cell frequencies with
480 P<0.05 are shown.
Post COVID19-ILD Vs COVID19 IPF Vs post COVID-19-ILD
Median of
#43 #43 Genes Median of #43 #43 Genes
average
Genes with p average log2- Genes with p
Cell types log2fold
with adjusted fold change in with adjusted
change in 43
P<0.05 <0.05** 43 genes P<0.05 <0.05
genes*
Naive CD4 T 0.27 35 20 -0.38 37 28
Memory CD4 T 0.10 26 15 -0.35 41 34
Treg 0.21 19 5 -0.24 29 10
Memory CD8 T GZMB+ 0.13 25 15 -0.16 37 26
Memory CD8 T GZMK+ 0.57 35 26 -0.29 37 26
Naive CD8T 0.18 26 7 -0.19 28 13
481
482  Table 5. Summary statistics of DEG in scRNA-seq between post COVID-19-ILD versus COVID19 and
483 IPF versus post COVID-19-ILD. * Average log2 fold change. Positive values indicate that the gene is more
484 highly expressed in the cell cluster. The median of average log2 fold change was calculated using the
485 average log2-fold change values of the 43 genes in each comparison.
486  ** Bonferroni corrected P value

487
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489 Identity

490 Supplementary figure 1: All immune cell clusters were identified based on the expression levels of
491  different markers by reference to COVID-19 and IPF cell atlas. The Y axis represents markers and x axis
492 represents the identified cells. Dot size is proportional to the percentage of cells expressing the gene in
493 each subcluster. Color intensity is proportional to the average scaled log2-normalized expression within the
494  cell subcluster.
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CD33 FUT4

20

Expression Level
Expression Level

Supplementary figure 2: monocytes HLA-DR"* expressing CD33+ and CD15- (FUT4) qualifying as
Monocytic-Myeloid Derived Suppressive Cells (M-MDSCs), one of them (HLA-DR'**CD163+), is expressed

exclusively in COVID-19 patients.
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