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ABSTRACT

Our minds and brains are highly unique. Despite the long-recognized importance of the
environment in shaping individual differences in cognitive neurodevelopment, only with the
combination of deep phenotyping approaches and the availability of large-scale datasets have we
been able to more comprehensively characterize the many inter-connected features of an
individual’s environment and experience (“‘exposome”). Moreover, despite clear evidence that
brain organization is highly individualized, most neuroimaging studies still rely on group atlases
to define functional networks, smearing away inter-individual variation in the spatial layout of
functional networks across the cortex (“functional topography”). Here, we leverage the largest
longitudinal study of brain and behavior development in the United States to investigate how an
individual’s exposome may contribute to functional brain network organization leading to
differences in cognitive functioning. To do so, we apply three previously-validated data driven
computational models to characterize an individual’s multidimensional exposome, define
individual-specific maps of functional brain networks, and measure cognitive functioning across
broad domains. In pre-registered analyses replicated across matched discovery (n=5,139, 48.5%
female) and replication (n=5,137, 47.1% female) samples, we find that a child’s exposome is
associated with multiple domains of cognitive functioning both at baseline assessment and two
years later — over and above associations with baseline cognition. Cross-validated ridge
regression models reveal that the exposome is reflected in children’s unique patterns of
functional topography. Finally, we uncover both shared and unique contributions of the
exposome and functional topography to cognitive abilities, finding that models trained on a
single variable capturing a child’s exposome can more accurately and parsimoniously predict
future cognitive performance than models trained on a wealth of personalized neuroimaging
data. This study advances our understanding of how childhood environments contribute to

unique patterns of functional brain organization and variability in cognitive abilities.
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INTRODUCTION

Our minds and brains are highly unique, shaped not just by our genetics (“genome”) but also by
our complex network of environmental exposures (“exposome”). In line with this idea is the
observation that individual differences in cognition tend to increase throughout development
(Kidd et al., 2018) as environmental exposures and individual experiences continually mold the
brain’s functional organization. It is imperative that we characterize how individual differences
in cognition emerge during childhood, not only as a window into understanding what makes us
who we are as unique individuals, but also because individual differences in cognitive
functioning are associated with critical socio-economic (Cortés Pascual et al., 2019; Moffitt et
al., 2011), physical health (Batty et al., 2007; Calvin et al., 2011; Gow et al., 2011; Hart et al.,
2004; Wraw et al., 2015), and mental health (Barzilay et al., 2019; Klassen et al., 2004; Shamosh
et al.,, 2008; Shanmugan et al., 2016) outcomes across the lifespan. Understanding cognitive
neurodevelopment at the level of the individual therefore requires a characterization of how the
unique features of each child’s environment may be reflected in the unique features of each

child’s individual brain.

Many aspects of a child’s environment and experiences have been linked with cognitive
functioning in previous work. The Adolescent Brain Cognitive Development (ABCD) Study
(Volkow et al., 2018) (n=11,878) is an ongoing large-scale longitudinal study of development
with deep phenotyping of multidimensional environmental features and cognitive abilities in
children from twenty-two sites across the United States. In the ABCD Study, environmental
features that have been shown to be associated with cognitive functioning include family
dynamics (Gong et al., 2021; Thompson et al., 2022; Zhang et al., 2020), experiences at school
(Meredith et al., 2022; Rakesh et al., 2021) and online (Kirlic et al., 2021; Paulus et al., 2019;
Sauce et al., 2022), socio-economic status (Botdorf et al., 2022; Dennis et al., 2022), physical
activity (Ronan et al., 2020; Walsh et al., 2018), prenatal substance use (Cioffredi et al., 2022)
and stress (Demidenko et al., 2021). The diverse features of a child’s environment that may
independently and interactively influence cognitive neurodevelopment pose a challenge for
studies aiming to characterize these important relationships by necessitating both large sample
sizes and deep phenotyping. Despite the long-recognized importance of the environment in

shaping cognitive development, only recently have we been able to leverage data-driven
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approaches in deeply phenotyped datasets of this size to capture the multitude of inter-connected

features that make up an individual’s environment and experience.

The concept of the “exposome” has been introduced as a way of capturing the totality of
environmental exposures and experiences throughout an individual’s lifespan (Rappaport, 2011;
Wild, 2005). While the first exposome studies primarily focused on associations with physical
health (e.g., cancer risk) in adults (Rappaport, 2011; Wild, 2005), more recent work has
increased focus on mental health outcomes (Guloksuz et al., 2018) including recent studies
turning this focus to children. Factor analytic approaches have made it possible to quantify both a
child’s general exposome as well as identify sub-factors capturing specific aspects of a child’s
perinatal, familial, social, and physical environments (Moore et al., 2022), all of which can have
substantial effects on mental functioning. This approach has revealed that a child’s exposome is

associated with psychopathology (Barzilay et al., 2022; Moore et al., 2022; Pries et al., 2022).

In a similar vein, an increase in large-scale deeply phenotyped neuroimaging datasets have made
it possible to define robust multidimensional features of an individual’s functional brain
organization at scale. Numerous studies have highlighted the striking inter-individual
heterogeneity in the size, shape and spatial arrangement of functional brain regions across the
cortex (Laumann et al., 2015; Gordon et al., 2017; Glasser et al., 2016; Kong et al., 2019; Li et
al., 2017; Bijsterbosch et al., 2019). Despite this well-documented heterogeneity, the majority of
human neuroimaging studies still rely on standardized network atlases of functional networks
(Power et al., 2011; Yeo et al., 2011) that are spatially warped to individual brains, smearing
away the rich complexity of individual differences. Cognitive functions in particular are
supported by spatially-distributed, large-scale association networks (Dosenbach et al., 2007;
Owen et al., 2005; Corbetta & Shulman, 2002) that tend to have the highest inter-individual
heterogeneity among the many functional networks of the human connectome in both adults
(Gordon et al., 2017; Gratton et al. 2018) and kids (Cui et al., 2020), exacerbating this problem
for studies of cognitive development. To overcome this challenge, precision functional mapping
techniques have been developed as an alternative to group-level atlases, deriving
individually-defined networks that capture each brain’s unique pattern of functional topography.

Such personalized functional networks (PFNs) have been found to be highly stable within
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individuals and to predict an individual’s spatial pattern of activation on fMRI tasks (Gordon et

al., 2017; Glasser et al., 2016; Tavor et al., 2016).

Here, we investigate the role of children’s complex, interconnected environments and
experiences in shaping unique patterns of functional brain network topography and cognitive
development. To  characterize  reproducible  cross-sectional  and  longitudinal
environment-brain-behavior associations, we leverage ABCD Study® data to conduct our
pre-registered analyses (Keller and Barzilay, 2023). We use three previously validated
data-driven approaches to reduce dimensionality across rich multivariate data types: 1) we define
both general and specific exposome factors using longitudinal exploratory bifactor analysis
(Moore et al., 2022); 2) we define personalized functional networks (PFNs) using non-negative
matrix factorization (Cui et al., 2020; Keller et al., 2022b; Lee and Seung, 1999; Li et al., 2017);
and 3) we define cognitive factors using Bayesian principal components analysis from a previous
study in this dataset (Thompson et al., 2019). Using linear mixed effects models and
cross-validated ridge regressions, we relate individual differences in the exposome to PFN
topography and individual differences in cognitive functioning across domains. Given the critical
importance of using large samples to identify reproducible brain-behavior associations (Marek,
Tervo-Clemmens et al., 2022), we replicate our analyses across matched discovery (n=5,139,
48.5% female) and replication (n=5,137, 47.1% female) samples (Feczko et al., 2021; Cordova et
al., 2021). Our results show that a child’s exposome is associated with multiple domains of
cognitive functioning and predicts cognitive abilities two years later over and above the effect of
baseline cognition. Additionally, we find that the exposome is reflected in children’s unique
patterns of functional network topography, and we uncover both shared and unique contributions
of the exposome and brain organization in shaping cognitive abilities. Together, these findings
provide a characterization of multivariate associations among environment, brain and cognition,
highlighting the critical role that childhood environments play in shaping unique patterns of

functional brain organization and diverse cognitive abilities.
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RESULTS

A general measure of the exposome is associated with individual differences in cognition
across multiple tasks

We first aimed to characterize associations between a child’s complex, multidimensional
environment (“exposome”) and their cognitive abilities. To do so, we derived a measurement of
each child’s exposome using multilevel (clustered) exploratory factor analysis with a bifactor
rotation (Jennrich and Bentler, 2011), with the same goal as that outlined in Moore et al. (2022).
Given that we aimed to investigate both cross-sectional and longitudinal associations among the
exposome, functional brain network topography and cognition, we derived exposome scores
using data from multiple timepoints, accounting for clustering by family, stratification by site,
and model constraints ensuring measurement invariance across time. Specifically, the model was
constrained to have the same configuration, loadings, and intercepts (with unconstrained factor
means) across time points. If this constraint were unrealistic—i.e. if the exposome models
differed across time points—this would be reflected in the model fit indices, providing an
embedded check on the assumption of measurement invariance across time (age). We used a
bifactor approach (Reise, 2012; Reise et al., 2010) because, based on prior work (Moore et al.,
2022), we anticipated that a general exposome factor would capture variance across dimensions
of a child’s complex environment (e.g., neighborhood, school, etc.; Figure 1a). In addition to a
general exposome factor score for each participant, the bifactor model provided six sub-factors
capturing specific dimensions of a child’s environment: School, Family Values, Family Turmoil,
Dense Urban Poverty, Extracurriculars and Screen Time. These sub-factors are necessarily
orthogonal to one another as well as orthogonal to the general exposome factor (Supplementary
Figure 1). As depicted in Supplementary Table 1, the variables loading most strongly on the
general exposome factor were those capturing dimensions of socio-economic status (e.g.,
household income, parental education and marital status, children’s involvement in
extracurricular sports/activities, neighborhood safety, crowding and crime), with positive
associations between general exposome scores and socio-economic status (Supplementary

Figure 2).
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Figure 1. Summary of Methodological Approach. a We aimed to define broad factors describing a
child’s environment, cognition, and brain network organization by reducing high-dimensional data with
three unsupervised machine-learning methods. To identify general and specific factors of each child’s
complex multidimensional environment, we began with a set of 354 variables capturing a variety of
features and applied longitudinal exploratory bifactor analysis with a goal analogous to our previous work
(Moore et al., 2022). To capture three broad domains of cognition across nine well-validated cognitive
tasks, we used the results of a Bayesian probabilistic principal components analysis from a previous study
in this dataset (Thompson et al., 2019). To map the spatial topography of personalized functional
networks (PFNs) within each child’s brain, we assessed seventeen PFNs identified by
spatially-regularized non-negative matrix factorization of each child’s functional connectome as derived
in our prior work (Keller et al., 2022; Cui et al., 2020; Li et al., 2017). b To investigate whether children’s
general exposome is encoded in their multivariate patterns of PFN topography, we trained ridge
regression models using two-fold cross-validation across our matched discovery and replication samples.
This involved first training a model in the discovery dataset and testing its out-of-sample performance in
the replication dataset, and then reversing the order (training in the replication dataset and testing in the
discovery dataset) in order to assess model performance on held-out data across the entire sample. All
ridge regression models accounted for covariates for age, biological sex, scanning site, and head motion,
and the ridge parameter was tuned using nested cross-validation during the training phase to avoid
overfitting. To ensure that model performance was not influenced by the choice of split, we also
performed repeated random cross-validation using multiple random splits and found comparable results. ¢
To investigate associations among the exposome, PFN topography, and cognition, we trained three
models using the same procedure as above: Model 1 (“Exposome”) used only a participant’s general
exposome score; Model 2 (“PFN Topography”), reported in our prior work (Keller et al., 2022b), used
each participant’s multivariate pattern of personalized functional network topography; and Model 3
(“Exposome + PFN Topography”) used a combination of the features in the first and second model types,
hypothesized to perform best by capitalizing on both shared and unique variance across features. By
evaluating model performance and comparing performance among the three model types, we were able to
determine the relative contributions of a child’s exposome and functional brain network organization to
cognitive functioning.
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To investigate associations between exposome factor scores and cognition at baseline (9-10 years
old) and two-year follow-up (11-12 years old), we estimated cross-sectional and longitudinal
linear mixed effects models. All models accounted for family structure and ABCD Study site as
random effects as well as age and biological sex as fixed effects. Given that the general
exposome factor and six exposome sub-factors are necessarily orthogonal (Supplementary
Figure 1), we included all seven factors together in our models without violating assumptions of
collinearity. Across demographically-matched discovery (n=5,139, 48.5% female) and
replication (n=5,137, 47.1% female) samples (Supplementary Table 2), the general exposome
factor was significantly associated with cognition on all five cognitive tasks at baseline (Figure
2). These associations remained significant with the inclusion of all six exposome sub-factor
scores in addition to age, sex, site, and family covariates and survived Bonferroni correction for
multiple comparisons (discovery: [1s=0.12-0.50, all p,,<.001; replication: [1s=0.15-0.48, all
Dron<-001; Supplementary Table 3). Notably, these associations also remained significant in
longitudinal models predicting cognition two years later while accounting for baseline cognition,
which is known to be a strong predictor of future cognitive performance (discovery:
1s=0.08-0.24, all p,,,<.001; replication: []s=0.11-0.22, all p,,,<.001; Table 1). These
longitudinal results demonstrate that the general exposome factor measured at ages 9-10 could
predict cognitive performance two years later when children were 11-12 years old. Sensitivity
analyses revealed that these results were also significant over and above the effects of commonly
utilized measures of socio-economic status (household income and parental education) as well as
over and above the effects of psychiatric medication use (ADHD medications, antipsychotics and
antidepressants) (Supplementary Tables 4 and 5). Stratified analyses by racial identification
and biological sex revealed consistent positive associations between the general exposome factor
and cognitive functioning for nearly all cognitive tasks in all groups, with only a small subset of

these associations not passing correction for multiple comparisons (Supplementary Table 6).
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Figure 2. A general measure of exposome is significantly associated with cognition across cognitive
tasks. We characterized a child’s unique, complex and multidimensional exposome using a general
exposome factor (“Exp-Factor”) derived from longitudinal bifactor analysis. The general exposome factor
is significantly associated with cognitive performance across all five tasks assessed across both the
discovery (a-e) and replication (f-j) samples. One outlier was excluded from Panel A for visualization
purposes (Picture Vocabulary score less than -4) but this participant was retained for all statistical
analyses.
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Picture Vocabulary Flanker Picture Sequence Memory Pattern Comparison Reading Recognition

Predictors B ;,t,do, t Phons B Esrt,do, t Phons B ;,t,do, t Phons B ;,t,do, t Phons B ;,t,do, t Phons
Discovery Sample

Intercept 0.09 003 277 0.063 0.08 004 -2.08 0418 011 004 272 0.072 005 004 135 1.00 2007 003 2,00 0501

Age 003 001 256 0.116 002 002 089 1.00 001 002 064 1.00 009 002 530 139x10¢ 001 001 081 1.00

Sex 002 003 093 1.00 003 003 094 1.00 004 003 128 1.00 012 003  -3.57 0.004 001 003 023 1.00

Exp-Factor 024 002 1476  196x10% 017 002 856 2.07x10% 020 002 1025 3.68x10% 008 002 415  3.69x104 013 002 813  7.14x107S

School 20.03 001  -1.82 0.750 0.03 002 -148 1.00 001 002 044 1.00 003 002 147 1.00 000 001 037 1.00

Family Values 004 001 291 0.040 0.02 002 -088 1.00 002 002 085 1.00 001 002 047 1.00 003 001 244 0.164

Family Turmoil 20.00 001  -0.06 1.00 001 002 -0.75 1.00 007 002 376 0.002 001 002 039 1.00 001 001  -0.65 1.00

Dense Urban Poverty 20.00 001  -0.05 1.00 004 002 230 0.240 002 002 -l144 1.00 004 002 231 0233 001 001 044 1.00

Extracurriculars 001 002 041 1.00 0.00 002 -0.19 1.00 003 002 126 1.00 002 002 -0.68 1.00 004 002 213 0367

Screen Time 0.03 002  -148 1.00 0.09 003 -332 0.010 2001 003 423 2.60x104 002 003 -0.62 1.00 2000 002 022 1.00

TO Picture Vocabulary 059 002 3829  1.86x10%%¢

TO Flanker 039 002 2176 597x10%

TO Picture Sequence Memory 042 002 2549 884x10"%

TO Pattern Comparison 045 002 2527  7.72x10°26

TO Reading Recognition 072 001 5043 0.00
Replication Sample

Intercept 2007 003 215 0345 0.08 004 202 0473 005 004  -1.26 1.00 002 004 064 1.00 2005 003  -1.57 1.00
Age 0.03 001 265 0.090 002 002 122 1.00 003 002 200 0.506 012 002 738  235x10'* 001 001 086 1.00

Sex 001 003 027 1.00 006 004 173 0.929 008 003 248 0.145 0.4 003 417 342x104 003 002 -1.06 1.00

Exp-Factor 022 002 1383  476x10* 017 002 847 448x10* 0.7 002 891  101x1077 005 002 791  412x10M 011 002 704  259x 107

School 2003 001  -1.91 0.613 0.00 002 -0.14 1.00 000 002 0.9 1.00 002 002 103 1.00 2003 001 231 0231
Family Values -0.03  0.01 -1.91 0.612 0.00 0.02 0.17 1.00 -0.02 0.02 -0.82 1.00 0.03 0.02 1.44 1.00 -0.00 0.01 -0.10 1.00
Family Turmoil 001 001 044 1.00 001 002 027 1.00 001 002 054 1.00 003 002 170 0.991 2002 001  -1.84 0.726
Dense Urban Poverty 2001 001  -0.80 1.00 000 002 026 1.00 003 002  -176 0.862 000 002 008 1.00 001 001 085 1.00

Extracurriculars 002 002  -1.22 1.00 0.03 002 -1.22 1.00 001 002 030 1.00 002 002 -1.07 1.00 001 002 068 1.00

Screen Time 004 002  -1.69 1.00 0.05 003 -1.72 0.936 008 003 277 0.062 004 003  -1.56 1.00 001 002 052 1.00
TO Picture Vocabulary 062 002 4L10  9.30x10%7

TO Flanker 0.40 0.02 2145 231x 10

TO Picture Sequence Memory 043 002 2481 L14x10"2

TO Pattern Comparison 044 002 2604 118x10%32

TO Reading Recognition 075 001 5470 0.00

Table 1. The general exposome factor at ages 9-10 is significantly associated with cognition at ages
11-12 over and above baseline cognitive performance. Across all five cognitive tasks and across both
the discovery and replication sub-samples, the general exposome factor (“Exp-Factor”) is positively
associated with cognition. These effects held with the inclusion of baseline (T0) cognitive performance.
Note that random effects for site and family are also included as covariates in these models.
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Exposome scores are reflected in the multivariate pattern of personalized functional brain

network topography in youth.

Having demonstrated that exposome scores are strongly associated with cognitive functioning in
youth, we next sought to understand the extent to which a child’s general exposome contributes
to their individual functional brain network organization. To capture the profound
inter-individual heterogeneity in the spatial topography of functional brain networks in children,
we defined a unique map of functional brain networks for each child using non-negative matrix
factorization as previously reported (Figure 1a; Cui et al., 2020; Keller et al., 2022b).
Personalized functional network (PFN) topography was defined as each individual’s multivariate
pattern of vertex-wise loadings for each of 17 PFNs. To investigate associations between these
high-dimensional multivariate patterns of PFN topography and each child’s general exposome
factor, we trained ridge regression models using two-fold cross-validation across our matched
discovery and replication samples (Figure 1b) and only report results from testing our models on
unseen data. Here, the ridge parameter (L2-norm) was tuned by nested cross-validation to avoid
overfitting and then applied to weight PFN loadings by the strength of their associations with the
outcome variable, reducing model complexity. All ridge regression models accounted for
covariates for age, biological sex, scanning site, and head motion (mean framewise

displacement).

PFN topography was associated with the general exposome factor in unseen data, with
significant correlations between a child’s observed general exposome factor score and the
general exposome factor score estimated by the ridge regression models (Figure 3a, discovery: r
= 0.440, p<0.001, 95% CI: [0.41, 0.47]; replication: » = 0.462, p<0.001, 95% CI: [0.44, 0.49]).
Repeated random cross-validation confirmed that our results were not driven by the choice of
split across matched discovery and replication samples (Figure 3b; mean » = 0.45, p<.001). To
further confirm that our results were not driven by leakage across samples, we repeated this same
model training and testing procedure using exposome scores that were generated independently
in the discovery and replication samples rather than from the full sample of participants, and
found nearly identical results (Supplementary Figure 3, discovery: » = 0.440, p<0.001, 95% CI:
[0.41, 0.47]; replication: » = 0.460, p<0.001, 95% CI: [0.43, 0.49]). Independent ridge regression
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models trained on the functional topography of each of the 17 PFNs separately highlight the
distribution of prediction accuracies (correlations between true general exposome factor and
model-generated general exposome factor) across networks: association networks (e.g.,
fronto-parietal networks) and attention networks (e.g., dorsal and ventral attention networks)
yielded higher accuracy while sensorimotor networks (e.g., somatomotor networks) yielded
lower accuracy (Figure 3c,d). Together, these findings reveal a clear association between a

child’s exposome score and their unique multivariate pattern of PFN topography.
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Figure 3. Exposome scores are reflected in the multivariate pattern of personalized functional brain
network topography. Prediction accuracy is defined as the correlation between observed general
exposome factor (calculated based on the child's individual environment from various measurements in
the ABCD Study®) and the general exposome factor score that was derived from ridge regression models
trained on PFN functional topography. a Association between observed and predicted general exposome
factor scores using two-fold cross-validation (2F-CV) with nested cross-validation for parameter tuning
across both the discovery (black scatterplot) and replication (gray scatterplot) samples. Inset histograms
represent null distributions of prediction accuracies with permuted data. b Repeated random 2F-CV (100
runs) provided evidence of stable prediction accuracy across splits of the data, which was far better than a
null distribution with permuted data (inset). ¢ Independent network models reveal that association
networks such as the fronto-parietal and ventral attention networks yielded the most accurate predictions
of the general exposome factor. Note that all p-values associated with prediction accuracies are significant
after Bonferonni correction for multiple comparisons. Numerical assignments for each PFN are consistent
with previous work (Cui et al., 2020; Keller et al., 2022). d Prediction accuracy averaged across discovery
and replication samples depicted for seventeen cross-validated models trained on each PFN
independently. Abbreviations: Exp-Factor: general exposome factor; CV: cross-validation; FP:
fronto-parietal; VA: ventral attention; DA: dorsal attention; DM: default mode; AU: auditory; SM:
somatomotor; VS: visual.

13


https://doi.org/10.1101/2023.08.25.554893
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.25.554893; this version posted August 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Exposome scores and personalized functional brain network topography are associated
with cognition

To compare multivariate associations among exposome scores, personalized functional brain
network topography and cognitive functioning, we trained three types of linear ridge regression
models to predict three domains of cognition (General Cognition, Executive Function, and
Learning/Memory). The first model type (“Exp-Factor”) used only a participant’s general
exposome score, while the second model type (“PFN Topography”), reported in our prior work
(Keller et al., 2022b), used each participant’s multivariate pattern of personalized functional
network topography. The third model type (“Exp-Factor + PFN Topography”) used a
combination of the features in the first and second model types, hypothesized to perform best by
capitalizing on both shared and unique variance across features. By evaluating model
performance and comparing performance among the three model types, we were able to
determine the relative contributions of a child’s experiences/environment and their complex,
individualized pattern of functional brain network organization to cognitive functioning. Note
that the model training procedure with ridge regression remained the same even for the
single-variable model to allow the slope of the association between the general exposome factor
and cognition to vary with the value of the ridge constraint during nested cross-validation for
parameter tuning. All three models performed well, yielding highly significant correlations
between a child’s true cognitive performance scores and the model-generated cognitive
performance scores (Table 2), with the highest accuracy for predictions of General Cognition

and lower accuracy for the Learning/Memory and Executive Function domains.

We then compared performance across models using the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC). These indices were selected to account for the substantial
differences in the number of features used to train each type of model, balancing the tradeoff
between model accuracy and model complexity. These model comparisons reveal that the
general exposome factor model is the most parsimonious (lowest AIC and BIC), reflecting its
high accuracy and low complexity. While the full Exposome + PFN Topography model yields a
small increase in accuracy, this benefit is outweighed by the substantial increase in model
complexity from a single feature to thousands of features. These results suggest that a single

environmental variable capturing a child’s multidimensional exposome could tell us just as much
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(or more) about a child’s cognitive abilities as do a wealth of robust, personalized neuroimaging

variables capturing each child’s personalized functional brain network organization.

To determine which model type could best predict future cognitive performance, we trained ridge
regression models on baseline (9-10 years old) general exposome factor and PFN topography to
predict cognition assessed two years later (11-12 years old). All models were trained in the same
manner as described above, with the exception that baseline cognitive performance scores for
each task were included as covariates. Again, we found that the general exposome factor models
were the most parsimonious across all five cognitive tasks (Supplementary Table 7). This
finding further highlights the importance of a child’s multidimensional environment, not just for

understanding current cognitive abilities but also for predicting future cognitive abilities.

Discovery Replication
Prediction Accuracy r P AIC BIC P J2 AIC BIC
General Cognition
Exp-Factor 042  2.65x 10 .248.8198 -8.0250 0.46 1.17 x 10717 -454.2790 -7.8809
PFN Topography 041 3.05x 10 2.0198x 10° 8.2493 x 10°¢ 0.45 3.85x 1017 2.0196x 10°  8.2267 x 10°

Exp-Factor + PFN Topography 0.44 244x10'% 2.0196x 10° 8.2491 x 10° 0.48 330x 101 2.0195x10° 82270 x 10°
Executive Function

Exp-Factor 0.11 8.86x 107! 1217.1946 -8.8570 0.14 7.30x 1016 1035.4933 -8.7450

PFEN Topography 0.17 1.37x102 2.0210x 105 8.2493 x 10¢ 0.16 548x 1022 2.0209x 10® 8.2267 x 10°

Exp-Factor + PFN Topography 0.17  4.41x 102* 2.0210x 10° 8.2491 x 10° 0.17 8.54x 102  2.0209x10° 8.2270x 10°

Learning/Memory
Exp-Factor 0.25 1.35x 10 470.3910 -8.4332 0.27 6.20 x 1057 386.2874 -8.3685
PFN Topography 027 2.06x 10°"  2,0204x 10° 8.2493 x 10° 0.27 291x 107 2.0204 x 10  8.2267 x 10°

Exp-Factor + PFN Topography 0.28  3.49x 10 2.0203x 10° 8.2491 x 10° 0.28 492x10%  2.0203x10° 8.2270x 10°

Table 2. Comparison of models relating exposome and PFN topography to cognitive functioning
across domains. To compare multivariate associations among exposome scores, personalized functional
brain network topography and cognitive functioning, we trained linear ridge regression models to predict
three domains of cognition (General Cognition, Executive Function, and Learning/Memory). The first
model type (“Exp-Factor”) used only a participant’s general exposome score, while the second model type
(“PFN Topography”), reported in our prior work (Keller et al., 2022b), used each participant’s
multivariate pattern of personalized functional network topography. The third model type (“Exp-Factor +
PFN Topography”) used a combination of the features in the first and second model types. Correlations
between true cognitive performance and model-generated cognitive performance () were significant for
all model types and highest for the predictions of General Cognition. Model comparison using the Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC), indices that account for
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differences in the number of features across models, reveals that the Exp-Factor model is the most
parsimonious.

Furthermore, the modest boost in model performance for the full Exp-Factor + PFN topography
model compared with the PFN topography and Exp-Factor models indicates that there is a
substantial amount of shared variance between the general exposome factor and PFN topography
(in line with our finding that the general exposome factor is reflected in PFN topography), but
there is also some unique variance explained from each feature type (see Supplementary Figure
4 for a comparison of prediction accuracy maps across models). To further disentangle the shared
and unique variance among the exposome, functional brain network organization and cognition,
we trained an additional model associating the multivariate pattern of PFN topography with
general cognition after regressing out the shared variance between general cognition and the
general exposome factor. This model achieved moderate accuracy (discovery: r = 0.240,
p<0.001, replication: » = 0.233, p<0.001), suggesting that some features of the multivariate
pattern of PFN topography are uniquely associated with cognition, some features are uniquely

associated with the general exposome factor, and some variance is shared between both.

DISCUSSION

Neurodevelopment does not take place in a vacuum, but enmeshed in a complex, multifaceted
web of environmental exposures and experiences that continually shape us over time.
Understanding how individual differences in cognition emerge during childhood therefore
requires the characterization of both an individual’s unique environment and their unique
patterns of functional brain network organization. To characterize reproducible cross-sectional
and longitudinal environment-brain-behavior associations, we conducted preregistered analyses
using data from the ABCD Study® across two large-scale matched samples of youth. Using three
previously validated dimensionality reduction approaches, we comprehensively measured and
characterized the many inter-connected features of an individual’s exposome, mapped
individual-specific patterns of functional brain organization, and trained cross-validated models

to predict cognitive performance from held-out data. Our results highlight the substantial
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contribution of a child’s exposome to both functional brain network organization and cognitive
development. In particular, we found that inter-individual differences in the exposome help to
explain individual differences in cognition in children and predict cognitive abilities two years
later over and above cognition at baseline. Associations between exposome scores and cognition
remained significant over and above associations with socio-economic status and psychiatric
medication use, and were highly consistent across sub-samples stratified by biological sex or
racial identification. Moreover, we found that the exposome is reflected in children's unique
patterns of functional network topography, shedding light on both shared and unique
contributions of the exposome and brain organization in shaping cognitive development.
Together, these results bolster our understanding of how a child’s multidimensional environment

may shape their unique patterns of brain network organization and cognitive functioning.

Understanding how individual differences in cognitive functioning emerge during childhood is a
critical prerequisite for efforts that seek to promote healthy neurocognitive development.
Individual differences in cognition that are observed during childhood are associated with
academic performance (Cortés et al., 2019) and quality of life in youth (Klassen et al., 2004), as
well as social, physical and mental health outcomes in adulthood (Agha et al., 2019; Richards et
al., 2004; Moffitt et al., 2011). Moreover, cognitive deficits during childhood and adolescence
are associated with heightened risk for psychopathology (Shanmugan et al., 2016), risk-taking
behaviors (Shamosh et al., 2008), cardiovascular disease (Gow et al., 2011; Hart et al., 2004;
Wraw et al., 2015) and all-cause mortality (Batty et al., 2007; Calvin et al., 2011). Our work
provides the first longitudinal characterization of the relationships among a child’s exposome,
personalized functional brain network topography and cognition in a large-scale dataset of youth.
This work therefore lays the groundwork for future studies to causally test environmental

interventions aimed at promoting healthy cognition and neurodevelopment in youth.

Ever since the “exposome” framework was put forward as a way to measure an individual’s
multidimensional environment and experiences (Rappaport, 2011; Wild, 2005), numerous studies
have uncovered associations between the exposome and a variety of outcomes, particularly
physical health outcomes in adults (Vermeulen et al., 2020). The present study builds on recent

work which has expanded this focus to include mental health outcomes in children (Barzilay et
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al., 2022; Moore et al., 2022; Pries et al., 2022). We have recently described in a cross sectional
analysis that a single measure capturing the exposome explains ~40% of variance in overall
psychopathology at early adolescence (Moore et al., 2022). In the present study, we extend this
work to investigate the longitudinal associations between the exposome and cognitive
functioning in youth and demonstrate that the exposome also explains substantially more
variance in cognition than measures derived from functional neuroimaging. When we compared
predictive models trained on just a single variable (capturing a child’s general exposome) with
models trained on a wealth of robust, personalized neuroimaging variables (the full pattern of an
individual’s personalized functional brain network topography across seventeen large-scale
networks and nearly sixty thousand vertices), we found that the single-variable exposome models
yielded predictions that were just as accurate or even better than the brain network models.
Given that cognitive impairments are among the most prevalent and least well understood
symptoms of transdiagnostic psychiatric illness (Cisler and Koster, 2010; Cotrena et al., 2016;
Gotlib and Joormann, 2010; Keller et al., 2022a, 2019; Russman Block et al., 2020), our results
represent an important complement to existing findings relating children’s exposome to

psychopathology.

Our observation that the exposome is reflected in patterns of functional brain network
topography supports the idea that a child’s environment leaves a mark on their
neurodevelopment. A plethora of prior work has characterized in detail how specific types of
experiences or attributes of the environment may affect brain network structure and function
(Miguel et al., 2019). Many of these studies have focused on the effects of adverse childhood
experiences such as childhood maltreatment (Teicher et al., 2016) or socio-economic status
(Leijser et al., 2018). While our study does not uncover causal associations between specific
attributes of the environment and specific attributes of functional brain network organization, our
observation that a general exposome factor was strongly and reproducibly associated with
general cognitive functioning lends credence to the approach of quantifying multiple
environmental features at once to capture potentially important additive or interactive effects.
Furthermore, our findings provide validation for functional network topography as a potentially
useful biomarker of environmental impacts on neurodevelopment. Future studies with wider

longitudinal timepoints may further characterize the full extent and duration to which the mark of
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the exposome remains imprinted on functional network topography, as well as further delineating
the impact that specific exposome sub-factors may have in shaping particular domains of

cognition.

Moreover, burgeoning work in the field has highlighted the importance of the environment in
shaping the pace of brain development (Tooley et al., 2021), with observations of heterochronous
windows of developmental plasticity across different parts of the brain (Sydnor et al., 2022).
Adolescence appears to be a particularly crucial sensitive period for the development of
higher-order cortices (Larsen and Luna, 2018; Sisk and Gee, 2022), including prominently the
functional brain networks that support cognition. Our observation that multivariate patterns of
functional topography in association and attention networks specifically were most strongly
related to exposome scores provides further evidence that these networks are in a sensitive period
during this time: a period in which they are highly plastic, and therefore strongly influenced by
the environment. Indeed, these potential sensitive windows for higher-order cognitive
development may occur opportunistically during a period of life when it is most crucial to learn
to adapt to the environment. For example, as attention networks continue to become refined
throughout childhood and adolescence, varying types of environmental adversity may shape the
development of these networks to optimize their function for allocating attention adaptively (e.g.,
heightening broad awareness to increase fast orientation to potential threats versus honing sharp
focus amid distractions). Further understanding the precise spatial and temporal windows for
sensitive periods across the brain and the influence of specific types of adversity may help future

work to target interventions for maximal impact on healthy cognitive development.

An ongoing challenge in the field has been to strike an effective balance between specificity,
accuracy, and personalization on the one hand and reproducibility, parsimony, and
generalizability on the other hand. While approaches favoring specificity allow us to deeply
characterize associations between the environment and neurodevelopment with increased
granularity and accuracy at the level of the individual, approaches favoring reproducibility allow
our findings to be more readily understandable and generalizable to the wider population. In the
field of statistical learning, this conundrum is referred to as a tradeoff between model flexibility

and model interpretability (James et al., 2023), with more complex models yielding a more
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accurate fit to training data at the risk of overfitting and not generalizing to new samples. In
practice, this tradeoff plays out in our choice of study design: following the reproducibility crisis
in psychology and neuroscience (loannidis, 2005), the field has shifted its preference toward
large-scale studies that confer generalizability, sacrificing some degree of granularity as not all
measures (e.g. of environment or cognition) can be included in all large-scale studies. In the
present study, we have attempted to balance this tradeoff in several ways. First, we used as much
detail as possible to comprehensively measure each child’s exposome across diverse
environmental features, took a personalized neuroscience approach to define functional brain
network organization at the level of the individual, and assessed multiple domains of cognitive
functioning. Second, to counterbalance this level of detail, we used dimensionality reduction
approaches for all three measurement modalities to derive more broad, generalizable descriptors
of environment, brain and behavior. Third, we maximized our chances of reproducibility by
pre-registering our analyses and hypotheses, using a rigorous cross-validation procedure to train
and test our models, and choosing model-selection statistics (AIC and BIC) that balance the
tradeoff between model flexibility and interpretability. This approach may be applied in future
studies, including future longitudinal data releases from the ABCD Study®.

Limitations and Future Directions

While the present study took a rigorous approach to understanding associations among
exposome, functional brain organization and cognition, our results should be considered in light
of several limitations. First, it is challenging to comprehensively capture every possible aspect of
a child’s complex, multidimensional environment and experiences. Our approach to defining the
exposome longitudinally made use of data that were collected as part of the ABCD Study® and
which were available at multiple time points. Although this meant we could make use of a large
number of variables capturing a variety of features of each child’s environment, not all aspects of
a child’s environment were captured and some aspects of the environment may have been better
assessed than others. In particular, it is important to note that the variables available for our study
across longitudinal timepoints did not address overt or covert racial discrimination, which have
known effects on child and adolescent development (Trent et al., 2019). Future studies may
therefore investigate a wider array of assessments to more fully capture each child’s complex,

multidimensional environment. Second, as the ABCD Study® is observational, we cannot infer
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causality from exposome to brain/cognition. Nonetheless, the longitudinal design and the fact
that the exposome at ages 9-10 contributes to cognition two years later supports the notion of
directionality from exposome to cognition. Future work may also leverage methods for causal
inference to address the question of causality (Shi and Norgeot, 2022; Wold, 1956), which is
critical to inform preventive interventions on modifiable environmental exposures that can help

promote healthy neurocognitive development

Conclusion

Our results highlight the critical contributions of a child’s environment to functional brain
network organization and cognitive development. By reproducibly characterizing the link
between early childhood environments, personalized functional brain network organization, and
individual differences in cognition in youth, this study advances our understanding of how our
unique environments shape our individual minds and brains. This study also provides a
framework by which to identify replicable environment-brain-behavior associations using a
personalized neuroscience approach, laying a strong foundation for future studies to further
investigate environmental influences on individual-specific trajectories of neurocognitive

development.

MATERIALS AND METHODS

Participants

Data were drawn from the Adolescent Brain Cognitive Development™ (ABCD) study (Volkow et
al., 2018) baseline sample from the ABCD BIDS Community Collection (ABCC, ABCD-3165)
(Feczko et al., 2021), which included n=11,878 children aged 9-10 years old and their
parents/guardians collected across 21 sites. Inclusion criteria for this study included being within
the desired age range (9-10 years old), English language proficiency in the children, and having
the ability to provide informed consent (parent) and assent (child). Exclusion criteria included
the presence of severe sensory, intellectual, medical or neurological issues that would have

impacted the child’s ability to comply with the study protocol, as well as MRI scanner
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contraindications. We additionally excluded participants with incomplete data or excessive head

motion, as described below.

To test the generalizability of our results, we repeated each of our analyses in both a discovery
sample (n=5,139) and a separate replication sample (#n=>5,137) that were matched across multiple
socio-demographic variables including age, sex, site, ethnicity, parent education, combined
family income, and others (Cordova et al., 2021; Feczko et al., 2021). Socio-demographic
characteristics of participants in the discovery and replication samples may be found in
Supplementary Table 2. We observed no significant differences between participants in the

discovery and replication samples across any socio-demographic variables.

Cognitive Assessment

Participants completed a battery of cognitive assessments, including seven tasks from the NIH
Toolbox (Picture Vocabulary, Flanker Test, List Sort Working Memory Task, Dimensional
Change Card Sort Task, Pattern Comparison Processing Speed Task, Picture Sequence Memory
Task, and the Oral Reading Test) (Weintraub et al., 2013) as well as two additional tasks (the
Little Man Task and the Rey Auditory Verbal Learning Task) (Luciana et al., 2018). To reduce
the dimensionality of these measures and focus our analyses on cognitive domains that explained
the majority of behavioral variance in these tasks, we used scores in three previously-established
cognitive domains derived from a prior study in this same dataset (Thompson et al., 2019): 1)
general cognition, 2) executive function, and 3) learning/memory. In this study, a three-factor
Bayesian Probabilistic Principal Components Analysis (BPPCA) model was applied to the
aforementioned battery of nine cognitive tasks. Scores generated by varimax rotated loadings for
this three-factor model for general cognition (highest loadings: Oral Reading Test, Picture
Vocabulary, and Little Man Task), executive function (highest loadings: Pattern Comparison
Processing Speed Task, Flanker Test, and Dimensional Change Card Sort Task), and
learning/memory (highest loadings: Picture Sequence Memory Task, Rey Auditory and Verbal
Learning Task, and List Sort Working Memory Task) were downloaded directly from the ABCD
Data Exploration and Analysis Portal (DEAP). Given that not all of these nine cognitive tasks

were collected at all longitudinal timepoints, it was not possible to use the same factor scores for
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our longitudinal (year two) analyses. Therefore, for all longitudinal linear mixed effects analyses,
we instead used scores on five individual cognitive tasks that were assessed at both baseline and
two-year time points: Picture Vocabulary, Flanker, Picture Sequence Memory, Pattern

Comparison and Reading Recognition.

Definition of Exposome Factors

Our aim was to define both general and specific exposome factors capturing a child’s unique,
complex, multidimensional experiences and environment. To do so, we applied the same
approach as in our previous cross-sectional work (Moore et al., 2022) to data collected across
multiple longitudinal time points. We began with a large number of variables (354) assessing
various aspects of a child’s environment and experiences. These variables were in multiple
formats (continuous, ordinal, and nominal), different lengths (scales used in the ABCD Study®
ranged from 2 to 59 items in length), and multiple sources (youth-report, parent-report,
geo-coded data, etc.). The first step was to determine whether each scale should be reduced to
data-driven summary scores rather than using individual items. This was determined largely by
the relative lengths of the scales, where the goal was to avoid having longer scales (those with
more items) or variable sets (e.g. 91 geographic variables) “dominate” the exposome factors in
the final analysis (see below). Scales were also reduced to a summary score if their inter-item
correlations were high and therefore likely to form a single cluster in the final analysis; for

example, the three-item neighborhood safety scale was reduced to a single score for this reason.

Ultimately, twelve scales were reduced in this data-driven manner: youth-report School Risk and
Protective Factors Survey (four sub-scores), youth-report Family Environment Scale (two
sub-scores), parent-report Family Environment Scale (two sub-scores), youth-report Parent
Monitoring Survey (one sub-score), parent-report Neighborhood Safety/Crime Survey (one
sub-score), parent-report Community Risk and Protective Factors (one sub-score), parent-report
Mexican-American Cultural Values Scale (four sub-scores), parent-report Parental Rules on
Substance Use (one sub-score), parent-report Sports and Activities Involvement Questionnaire
(three sub-scores), Traumatic Brain Injury sum scores (one sub-score), youth-report Youth

Substance Use Attitudes Questionnaire (one sub-score), and youth-reported hours of screen time
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on various devices (one sub-score). Additionally, the address-/geocode-based measures of the
neighborhood and state environment were reduced to eight sub-scores. The above
“pre-reduction” steps were conducted using exploratory factor analysis (EFA), where the number
of factors to extract was determined by a combination of interpretability and subjective
evaluation of the scree plot. Supplementary Table 8 shows the sub-scales resulting from the
above analyses, along with the items composing them. Note that there are 30 sub-scales, while
only 29 were used; sub-scale “dry heat” was dropped from analyses because of difficulty in
interpretation. Temperature was nonetheless accounted for by the
“traditional south and midwest” sub-score, which included a count of the number of “extreme
heat days” experienced in a given year. Analyses in this “pre-reduction” step were conducted
using the psych package (Revelle, 2019) in R. Note that, in addition to the 29 sub-scales created
in this step, the final analysis (below) included parent education, household income, and a binary

variable indicating whether the child’s parents were married, for a total of 32 variables.

For the final analysis of 32 variables we used an exploratory structural equation model (ESEM)
(Asparouhov and Muthén, 2009) using bifactor rotation (BI-CF-QUARTIMAX) accounting for
clustering by families, stratified by site, and constraining factor loadings to be equal across time
points (ensuring longitudinal measurement invariance). The number of factors to extract was
determined by a combination of interpretability and model fit, where fit was assessed using the
comparative fit index (CFI; >0.90 acceptable), root mean-square error of approximation
(RSMEA; <0.08 acceptable), and standardized root mean-square residual (SRMR; <0.08
acceptable) (Hu and Bentler, 1999). Analyses were conducted using Mplus version 8.4 (Muthén
and Muthén, 2017).

Supplementary Table 1 shows the results of the ESEM with one general factor and six
orthogonal sub-factors using 32 exposome variables. Fit of the model is acceptable, with CFI =
0.94, RMSEA = 0.026 + 0.001, and SRMR = 0.032. The general factor reflects the overall
exposome (somewhat analogous to a first principal component), with the strongest indicators
relating to socioeconomic status (household income = 0.780; neighborhood poverty = -0.695;
parent education = 0.680) and weakest indicator related to neighborhood characteristics

associated with retirement (-0.009). The first specific factor comprises school involvement,

24


https://www.zotero.org/google-docs/?NRbQp1
https://www.zotero.org/google-docs/?YwmOIW
https://www.zotero.org/google-docs/?3MKx9H
https://www.zotero.org/google-docs/?NCocSb
https://www.zotero.org/google-docs/?NCocSb
https://doi.org/10.1101/2023.08.25.554893
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.25.554893; this version posted August 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

enjoyment, and performance, as well as some weaker influences of parental monitoring and
youth-reported family turmoil. The second specific factor comprises all sub-scales of the
Mexican American Cultural Values Scale (MACVS), which captures many aspects of family
values, centrality, and culture. The third specific factor relates to family turmoil from the
points-of-view of both the parents and youth, as well as a weak relation to substance abuse risk
in that area. The fourth specific factor captures several aspects of the youth’s neighborhood,
especially poverty, density, safety, and pollution. The fifth specific factor comprises
extracurricular activities and traumatic brain injuries (TBIs) (possibly related). Finally, the sixth

specific factor relates to screen time and (weakly) to peer deviance.

In addition to the model fit indices described above, bifactor models have specific reliability
indices useful for evaluating the relative strengths of the factors, appropriateness and reliability
of scores, etc. (Rodriguez et al., 2016). These indices are shown in Supplementary Table 9.
Thorough discussion of these bifactor-specific metrics is beyond the present scope, but the most
important for the present purposes is factor determinacy (Grice, 2001). Determinacy is an
indication of how representative factor scores are of the factors from which they were derived.
For example, note that the inter-factor correlations in Supplementary Figure 1 are not exactly 0
despite the factors being modeled as orthogonal; this is due to slight indeterminacy of the factors,
and is always seen when scores are calculated from factors. The key value for our present
purposes is the Factor Determinacy for the general exposome factor in Supplementary Table 9,
which is 0.89. This value is beyond the conventionally used minimum of 0.80 recommended for
score determinacy, suggesting the general factor score used in the present study is sufficiently

determined.

Image Processing

Imaging acquisition for the ABCD Study® has been described elsewhere (Casey et al., 2018). As
previously described (Feczko et al., 2021), the ABCD-BIDS Community Collection (ABCC;
Collection 3165) from which we drew our data was processed according to the ABCD-BIDS

pipeline. This pipeline includes distortion correction and alignment, denoising with Advanced
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Normalization Tools (ANTS®*), FreeSurfer® segmentation, surface registration, and volume
registration using FSL FLIRT rigid-body transformation.””®' Processing was done according to
the DCAN BOLD Processing (DBP) pipeline which included the following steps: 1) de-meaning
and de-trending of all fMRI data with respect to time; 2) denoising using a general linear model
with regressors for signal and movement; 3) bandpass filtering between 0.008 and 0.09 Hz using
a 2nd order Butterworth filter; 4) applying the DBP respiratory motion filter (18.582 to 25.726
breaths per minute), and 5) applying DBP motion censoring (frames exceeding an FD threshold
of 0.2mm or failing to pass outlier detection at +/- 3 standard deviations were discarded).
Following preprocessing, we concatenated the time series data for both resting-state scans and
three task-based scans (Monetary Incentive Delay Task, Stop-Signal Task, and Emotional
N-Back Task) as in prior work (Cui et al., 2020) to maximize the available data for our analyses.
Participants with fewer than 600 remaining TRs after motion censoring or who failed to pass

ABCD quality control for their T1 or resting-state fMRI scan were excluded.
Regularized Non-Negative Matrix Factorization

As previously described (Cui et al., 2020; Keller et al., 2022b; Li et al., 2017), we used
non-negative matrix factorization (NMF) (Lee and Seung, 1999) to derive individualized
functional networks. NMF identifies networks by positively weighting connectivity patterns that
covary, leading to a highly specific and reproducible parts-based representation (Lee and Seung,
1999). Our approach was enhanced by a group consensus regularization term derived from
previous work in an independent dataset (Cui et al., 2020) that preserves the inter-individual
correspondence, as well as a data locality regularization term that makes the decomposition
robust to imaging noise, improves spatial smoothness, and enhances functional coherence of the
subject-specific functional networks (see Li et al. (2017) for details of the method; see also:
https://github.com/hmlicas/Collaborative Brain Decomposition). As NMF requires nonnegative
input, we re-scaled the data by shifting time courses of each vertex linearly to ensure all values
were positive.”” As in prior work, to avoid features in greater numeric ranges dominating those in
smaller numeric range, we further normalized the time course by its maximum value so that all
the time points have values in the range of [0, 1]. For this study, we used identical parameter

settings as in prior validation studies (Cui et al., 2020; Keller et al., 2022b; Li et al., 2017).
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Defining individualized networks

To facilitate group-level interpretations of individually-defined PFNs, we used a group consensus
atlas from a previously published study in an independent dataset (Cui et al., 2020) as an
initialization for individualized network definition. In this way, we also ensured spatial
correspondence across all subjects. Details regarding the derivation of this group consensus atlas
can be found in previous work (Cui et al.,, 2020). Briefly, group-level decomposition was
performed multiple times on a subset of randomly selected subjects and the resulting
decomposition results were fused to obtain one robust initialization that is highly reproducible.
Next, inter-network similarity was calculated and normalized-cuts (Cai et al., 2011) based
spectral clustering method was applied to group the PFNs into 17 clusters. For each cluster, the
PFN with the highest overall similarity with all other PFNs within the same cluster was selected
as the most representative. The resulting group-level network loading matrix /" was transformed
from fsaverage5 space to fsir space using Connectome Workbench (Marcus et al., 2011), and
thus the resultant matrix had 17 rows and 59,412 columns. Each row of this matrix represents a

functional network, while each column represents the loadings of a given cortical vertex.

Using the previously-derived group consensus atlas (Cui et al., 2020) as a prior to ensure
inter-individual correspondence, we derived each individual’s specific network atlas using NMF
based on the acquired group networks (17 x 59,412 loading matrix) as initialization and each
individual’s specific fMRI times series. See Li et al. (2017) for optimization details. This
procedure yielded a loading matrix V (17 x 59,412 matrix) for each participant, where each row
is a PFN, each column is a vertex, and the value quantifies the extent each vertex belongs to each
network. This probabilistic (soft) definition can be converted into discrete (hard) network
definitions for display and comparison with other methods (Kong et al., 2019; Wang et al., 2015;
Yeo et al., 2011) by labeling each vertex according to its highest loading. Split-half reliability of
the PFN loadings was found to be high in prior work (Keller et al., 2022b), indicating excellent

reliability of this measure.

Linear Mixed-Effects Models
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We used linear mixed effects models (implemented with the “lme4” package in R) to assess
associations between exposome factors and cognitive performance while accounting for both
fixed and random predictors. All linear mixed effects models included fixed effects parameters
for age, biological sex, site, as well as a random intercept for family (accounting for siblings).
Sensitivity analyses were conducted to test whether results held with the additional inclusion of
covariates for commonly-used measures of socio-economic status (household income and
parental education) or psychiatric medication use (ADHD medications, Antidepressants, or
Antipsychotics). We note that medication use was assessed using the PhenX instrument and
coded as in our previous work (Shoval et al., 2021). Additionally, we conducted stratified
analyses to ensure that our results held across categorical definitions of biological sex and

self-reported racial identification.

Ridge Regression Models

To uncover associations between the full multivariate pattern of PFN functional topography and
each participant’s general exposome factor score, we trained linear ridge regression models using
nested two-fold cross validation as in our previous work (Keller et al., 2022; Cui et al., 2020). In
line with the recommendation that predictive models of brain-behavior associations be trained on
multivariate patterns rather than univariate measures (Rosenberg and Finn, 2022), these
predictive models were trained on concatenated network loading matrices across the 17 PFNs.
Independent network models were also trained on loadings from specific networks. All models
included covariates for age, sex, site, and motion (mean FD) that were regressed out separately in
the training and testing sets prior to training the ridge regression models. These ridge regression
models were trained and tested in our matched discovery and replication samples (Cordova et al.,
2021; Feczko et al., 2021) using nested two-fold cross-validation (2F-CV), with outer 2F-CV
estimating the generalizability of the model and the inner 2F-CV determining the optimal tuning
parameter (A) for the ridge regression. For the inner 2F-CV, one subset was selected to train the
model under a given A value in the range [1, 10, 100, 500, 1000, 5000, 10000, 15000, 20000]
(Keller et al., 2022), and the remaining subset was used to test the model. This procedure was
repeated 2 times such that each subset was used once as the testing dataset, resulting in two inner
2F-CV loops in total. For each A value, the correlation » between the observed and predicted

outcome as well as the mean absolute error (MAE) were calculated for each inner 2F-CV loop,
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and then averaged across the two inner loops. The sum of the mean correlation  and reciprocal
of the mean MAE was defined as the inner prediction accuracy, and the A with the highest inner

prediction accuracy was chosen as the optimal A (Keller et al., 2022; Cui et al., 2020).

To ensure that our matched discovery and replication sample selection procedure did not bias our
results, we performed repeated random cross-validation over 100 iterations, each time randomly
splitting the sample and repeating the nested 2F-CV procedure to generate a distribution of
prediction accuracies for each model. Furthermore, we used permutation testing to generate null
distributions for both the primary models and the repeated random cross-validation models by
randomly shuffling the outcome variable. To ensure that our results were not overfit as a result of
leakage across samples by the general exposome factor outcome variables derived in the whole
sample, we also trained ridge regression models with the general exposome factor derived by
two independent longitudinal bifactor analyses in the discovery and replication samples
separately. Repeating our main analyses with these new predictive models, we find nearly

identical results as shown in Supplementary Figure 3.

To investigate associations among the exposome, PFN topography, and cognition, we trained
three additional ridge regression models using the same procedure as above: Model 1
(“Exp-Factor”) used only a participant’s general exposome score; Model 2 (“PFN Topography™),
reported in our prior work (Keller et al., 2022b), used each participant’s multivariate pattern of
personalized functional network topography; and Model 3 (“Exp-Factor + PFN Topography”)
used a combination of the features in the first and second model types, hypothesized to perform
best by capitalizing on both shared and unique variance across features. By evaluating model
performance and comparing performance among the three model types, we were able to
determine the relative contributions of a child’s exposome and functional brain network
organization to cognitive functioning. Note that the model training procedure with ridge
regression remained the same even for the single-variable model to allow the slope of the
association between the general exposome factor and cognition to vary with the value of the
ridge constraint during nested cross-validation for parameter tuning. This procedure was again
repeated for our longitudinal prediction analysis by training these same models to predict
cognitive performance on five tasks (Picture Vocabulary, Flanker, Picture Sequence Memory,

Pattern Comparison and Reading Recognition) measured two years later when children were
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11-12 years old. These models included additional covariates for baseline cognitive performance
on each task. In all cases, models were compared by assessing the Akaike Information Criterion
(AIC) (Akaike, 1998) and Bayesian Information Criterion (BIC) (Schwarz, 1978), which (unlike
other measures like R?) take into account the number of features that the model is trained on,

penalizing more complex models.
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