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Abstract

The International Weed Genomics Consortium is a collaborative group of researchers focused on
devel oping genomic resources for the study of weedy plants. Weeds are attractive systems for
basic and applied research due to their impacts on agricultural systems and capacity to swiftly
adapt in response to anthropogenic selection pressures. Our goal isto use genomic information to
devel op sustainable and effective weed control methods and to provide insights about biotic and
abiotic stress tolerance to assist crop breeding. Here, we outline resources under devel opment by

the consortium and highlight areas of research that will be impacted by these enabling resources.

I ntroduction

Each year globally, agricultural producers and landscape managers spend billions of US
dollars[1, 2] and countless hours attempting to control weedy plants and reduce their adverse
effects. These management methods range from low-tech (e.g., pulling plants from the soil by

hand) to extremely high-tech (e.g., computer vision-controlled spraying of herbicides).
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Regardless of technology level, effective control methods serve as strong selection pressures on
weedy plants, and often result in rapid evolution of weed populations resistant to such methods
[3-7]. Thus, humans and weeds have been locked in an arms race, where humans develop new or
improved control methods and weeds adapt and evolve to circumvent such methods.

Applying genomics to weed science will enable the development of more sustainable and
effective control methods and offer a unique opportunity to study rapid adaptation and
evolutionary rescue of diverse weedy speciesin the face of widespread and powerful selective
pressures. Furthermore, lessons learned from these studies may also help to improve crop
breeding effortsin the face of our ever-changing climate. While other research fields have used
genetics and genomics to uncover the basis of many biological traits[8-11] and to understand
how ecological factors affect evolution [12, 13], the field of weed science has lagged behind in
the development of genomic tools essential for such studies[14]. As research in human and crop
genetics pushes into the era of pangenomics, (i.e., multiple chromosome scale genome
assemblies for asingle species[15, 16]) publicly available genomic information is still lacking or
severely limited for the majority of weed species. In fact, a recent review of current weed
genomes identified just 26 weed species with sequenced genomes[17] — many assembled to a
sub-chromosome level.

The International Weed Genomics Consortium (IWGC) is an open collaboration between
academic, government, and industry researchers focused on producing genomic tools for weedy
species from around the world. Through this collaboration, our initial aim isto provide
chromosome-level reference genome assemblies for at least 50 important weedy species from
across the globe. Each genome will include annotation of gene models and repetitive e ements

and will be free to the public with no intellectual property restrictions. Species were chosen
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based on member input, economic impact, and global prevalence (Figure 1). Additionally, future
funding of the IWGC will focus on supplementing these reference genomes with tools that
increase thelir utility.

The IWGC held itsfirst conference in Kansas City, Missouri, USA in September of 2021. At
this meeting, guest speakers highlighted successful examples of using genomicsto address
guestions in weed science [5, 18-20]. Training workshops taught commonly used bioinformatic
pipeines, and oral and poster sessions showcased current research activities in weed genomics.
At the conclusion of this meeting, attendees participated in a forward-looking discussion about
the future of genomicsin weed science and how the IWGC can help facilitate its successful
implementation. In this paper, we summarize the goals of the IWGC and how we plan to provide
support around the resources being devel oped to ensure they are widely accessible and utilized
by the research community. We go on to highlight areas of research where these tools can be
applied with hopes of attracting researchers from other fieldsto integrate weed science with the
many other research areas where genomic tools are being successfully utilized, enabling new

research towards adaptation, evolution, herbicide resistance, and genome biology.

Development of Weed Genomics Resour ces by the I\ WGC

Reference genomes and data analysistools

The first objective of the IWGC isto provide high quality genomic resources for
agriculturally important weeds. The IWGC therefore created two main resources for information
about, access to, or analysis of weed genomic data (Figure 1). The IWGC website [21]
communicates the status and results of genome sequencing projects, information on training and

funding opportunities, upcoming events, and news in weed genomics. It also contains details of
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all sequenced species including genome size, ploidy, chromosome number, herbicide resistance
status, and reference genome assembly statistics. The IWGC either compiles existing data on
genome size, ploidy, and chromosome number, or obtains the data using flow cytometry and
cytogenetics (Figure 1; Additional File 1). Through this website, users can create an account to
access our second main resource, an online genome database called WeedPedia. WeedPedia
hosts IWGC-generated and other relevant publicly accessible genomic data as well as a suite of
bioinformatic tools. Unlike what is available for other fields, weed science did not have a
centralized hub for genomics information, data, and analysis prior to the IWGC. Our intention in
creating WeedPedia is to encourage collaboration and equity of access to information across the
research community.

WeedPedia is a cloud-based omics database management platform built from the software
‘CropPedia’, and licensed from KeyGene (Wageningen, The Netherlands). The interface allows
users to access, visualize, and download genome assemblies along with structural and functional
annotation. The platform includes a genome browser, comparative map viewer, pangenome
tools, RNA-sequencing data visualization tools, genetic mapping and marker analysis tools, and
alignment capabilities that allow searches by keyword or sequence. Additionally, genes encoding
known target sites of herbicides have been specially annotated, allowing users to quickly identify
and compare these genes of interest. The platform is flexible, making it compatible with future
integration of other data types such as epigenetic or proteomic information. As an online
platform with a graphical user interface, WeedPedia provides user-friendly, intuitive tools that
encourage users to integrate genomicsinto their research. We aspire for WeedPediato mimic the
success of other public genomic databases such as NCBI, CoGe, Phytozome, InsectBase, and

Mycocosm to name a few. Additionally, all genome assemblies and annotations produced
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through the IWGC will be uploaded to NCBI GenBank upon release (Table 1). WeedPedia
currently hosts 36 reference genomes with additional genomes in the pipeline to reach a currently
planned total of 50 reference genomes (Table 1). These genomes include both de novo reference
genomes generated or in progress by the IWGC (31 species; Table 1), and publicly available
genome assemblies of 19 weedy or related species (Table 2). As of June 2023, WeedPedia has
over 250 registered users representing 27 countries spread across 6 continents.

The IWGC reference genomes are generated in partnership with the Corteva Agriscience
Genome Center of Excellence (Johnston, lowa) using a combination of single molecule long read
seguencing, optical genome maps, and chromosome conformation mapping. This strategy has
yielded highly contiguous, phased, chromosome-level assemblies for 20 weed species, with
additional assemblies currently in progress (Table 1). The IWGC assemblies have been
completed as single or haplotype-resolved double-haplotype pseudomolecules in inbreeding and
outbreeding species, respectively, with multiple genomes being near gapless. For example, the de
novo assemblies of the allohexaploids Conyza sumatrensis and Chenopodium album, have all
chromosomes captured in single scaffolds and most chromosomes being gapless from telomere
to telomere. Complementary full-length isoform (IsoSeq) sequencing of RNA collected from
diverse tissue types and devel opmental stages assists in the development of gene models during
annotation. Finally, the use of PacBio Revio has enabled the re-sequencing of 80 relevant
accessions, which isenabling initial pangenomic analysis for some of the IWGC-selected
Species.

As with accessibility of data, a core objective of the IWGC isto facilitate open accessto
sequenced germplasm for all featured species. Historically, the weed science community has

rarely shared or adopted standard germplasm (e.g., specific weed accessions). The IWGC has
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selected a specific accession of each species for reference genome assembly (typically
susceptible to herbicides). In collaboration with aparallel effort by the Herbicide Resistant Plants
committee of the Weed Science Society of America, seeds of the sequenced weed accessions
will be deposited in the United States Department of Agriculture Germplasm Resources
Information Network [22] for broad access by the scientific community. The IWGC ensures that
sequenced accessions are collected and documented to comply with the Nagoya Protocol on
access to genetic resources and the fair and equitable sharing of benefits arising from their
utilization under the Convention on Biological Diversity and related Access and Benefit Sharing
Legidlation [23]. As additional accessions of weed species are sequenced (e.g., pangenomes are
obtained) the IWGC will facilitate germplasm sharing protocols to support collaboration.
Further, to ssimplify the investigation of herbicide resistance, the IWGC will link WeedPedia
with the International Herbicide-Resistant Weed Database [24], an already widely known and

utilized database for weed scientists.

Training and collaboration in weed genomics

Beyond producing genomic tools and resources, a priority of the IWGC is to enable the
utilization of these resources across awide range of stakeholders. A holistic approach to training
isrequired for weed science generally [25], and we would argue even more so for weed
genomics. To accomplish our training goals, the IWGC is devel oping and delivering programs
aimed at the full range of IWGC stakeholders and covering a breadth of relevant topics. We have
taken care to ensure our approaches are diverse as to provide training to researchers with all

levels of existing experience and differing reasons for engaging with these tools. Throughout, the
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focusison ensuring that our training and outreach result in impacts that benefit a wide range of
stakeholders.

Although recently developed tools are incredibly enabling and have great potential to replace
antiquated methodology [26] and to solve pressing weed science problems [14], specialized
computational skills are required to fully explore and unlock meaning from these highly complex
datasets. Collaboration with, or training of, computational biologists equipped with these skills
and resources developed by the IWGC will enable weed scientists to expand research programs
and better understand the genetic underpinnings of weed evolution and herbicide resistance. To
fill existing skill gaps, the IWGC is developing summer bootcamps and online modules directed
specifically at weed scientists that will provide training on computational skills (Figure 1).
Because successful utilization of the IWGC resources requires more than general computational
skills, we have also created three additional targeted workshops that teach practical skills related
to genomics databases, molecular biology, and population genomics (available at [27]).

Engagement opportunities during undergraduate degrees has been shown to improve
academic outcomes [28, 29]. Therefore, the IWGC sponsors opportunities for undergraduates to
undertake 10-week Research Experiences for Undergraduates (REU). These REU include an
introduction to bioinformatics, a plant genomics research project that results in a presentation,
and access to career building opportunities in diverse workplace environments. To increase
equitable access to conferences and professional communities, we supported early career
researchers to attend the first two IWGC conferences in the USA as well as workshops and
bootcamps in Europe and South America. These hybrid or in-person travel grants are
intentionally designed to remove barriers and increase participation of individuals from

backgrounds and experiences currently underrepresented within weed/plant science or genomics
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[30]. Recipients of these travel awards gave presentations and gained the measurable benefits
that come from either virtual or in-person participation in conferences [31]. Moving forward,
weed scientists must amass skills associated with genomic analyses and collaborate with other

area experts to fully leverage resources devel oped by the IWGC.

Evolution of Weediness. Potential Resear ch Utilizing New Weed Genomics

Tools

Weeds can evolve from non-weed progenitors through wild colonization, crop de-
domestication, or crop-wild hybridization [32]. Because the time span in which weeds have
evolved is necessarily limited by the origins of agriculture, these non-weed relatives often still
exist and can be leveraged through population genomic and comparative genomic approaches to
identify the adaptive changes that have driven the evolution of weediness. The ability to rapidly
adapt, persist, and spread in agroecosystems are defining features of weedy plants, leading many
to advocate agricultural weeds as ideal candidates for studying rapid plant adaptation [33-36].
The insights gained from applying plant ecological approaches to the study of rapid weed
adaptation will move us towards the ultimate goals of mitigating such adaptation and increasing

the efficacy of crop breeding and biotechnology [14].

Biology and ecological genomics of weeds

The impressive community effort to create and maintain resources for Arabidopsis thaliana
ecological genomics provides a motivating example for the emerging study of weed genomics
[37-40]. Arabidopsis thaliana was the first flowering plant species to have its genome fully

sequenced [41] and rapidly became amodel organism for plant molecular biology. As weedy

10
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genomes become available, collection, maintenance, and resequencing of globally distributed
accessions of these species will help to replicate the success found in ecological studies of A.
thaliana [42-48]. Evaluation of these accessions for traits of interest to produce large phenomics
data sets (asin [49-53]) enables genome-wide association studies and population genomics
analyses aimed at dissecting the genetic basis of variation in such traits[54]. Increasingly, these
resources (e.g the 1001 genomes project [42]) have enabled A. thaliana to be utilized as a model
species to explore the eco-evolutionary basis of plant adaptation in a more realistic ecological
context. Weedy species should supplement lessons in eco-evolutionary genomics learned from
these experimentsin A. thaliana.

Untargeted genomic approaches for understanding the evolutionary trajectories of
populations and the genetic basis of traits as described above rely on the collection of genotypic
information from across the genome of many individuals. While whole-genome resequencing
accomplishes this requirement and requires no custom methodology, this approach provides
more information than is necessary and is prohibitively expensive in species with large genomes.
Development and optimization of genotype-by-sequencing methods for capturing reduced
representations of newly sequence genomes like those described by [55-57] will reduce the cost
and computational requirements of genetic mapping and population genetic experiments.
Additionally, the species sequenced by the IWGC do not currently have protocols for stable
transformation, akey development in the popularity of A. thaliana as amodel organism and a
requirement for many functional genomic approaches. Functional validation of genes/variants
believed to be responsible for traits of interest in weeds has thus far relied on transiently
mani pulating endogenous gene expression [58, 59] or ectopic expression of atransgenein a

model system [60-62]. While these methods have been successful, few weed species have well-

11
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studied viral vectors to adapt for use in virus induced gene silencing and spray induced gene
silencing is relatively ineffective without the use of nanocarriers [63], which require specialized
equipment and expertise. Furthermore, traits with complex genetic architecture divergent
between the researched and model species may not be amenable to functional genomic
approaches using transgenesis techniques in model systems. Developing protocols for reduced
representation sequencing, stable transformation, and gene editing/silencing in weeds will alow
for more thorough characterization of candidate genetic variants underlying traits of interest.

Beyond rapid adaptation, some weedy species offer an opportunity to better understand co-
evolution, like that between plants and pollinators and how their interaction leads to the spread of
weedy alleles (Additional File 2). A suite of plant-insect traits has co-evolved to maximize the
attraction of the insect pollinator community and the efficiency of pollen deposition between
flowers ensuring fruit and seed production in many weeds [64, 65]. Genetic mapping
experiments have identified genes and genetic variants responsible for many floral traits
affecting pollinator interaction including petal color [66-69], flower symmetry and size [70-72],
and production of volatile organic compounds [ 73-75] and nectar [ 76-78]. While these studies
reveal candidate genes for selection under co-evolution, herbicide resistance alleles may also
have pleotropic effects on the ecology of weeds [79], altering plant-pollinator interactions[80].
Discovery of genes and genetic variants involved in weed-pollinator interaction and their
molecular and environmental control may create opportunities for better management of weeds
with insect-mediated pollination. For example, if management can disrupt pollinator
attraction/interaction with these weeds, the efficiency of reproduction may be reduced.

A more complete understanding of weed ecological genomics will undoubtedly elucidate

many unresolved questions regarding the genetic basis of various aspects of weediness. For

12
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274  instance, when comparing populations of a species from agricultural and non-agricultural

275  environments, isthere evidence for contemporary evolution of weedy traits selected by

276  agricultural management or were ‘natural’ populations pre-adapted to agroecosystems? Where
277 thereisdifferentiation between weedy and natural populations, which traits are under selection
278  and what isthe genetic basis of variation in those traits? When comparing between weedy

279  populations, isthere evidence for parallel versus non-parallel evolution of weediness at the

280  phenotypic and genotypic levels? Such studies may uncover fundamental truths about weediness.
281  For example, isthere a common phenotypic and/or genotypic basis for aspects of weediness

282  amongst diverse weed species? As genomic tools developed by the IWGC enable researchersto
283  address these questions, knowledge gained will help predict the potential development of newly
284  important weed species in new environments and cropping systems.

285

286  Population and Comparative Genomics

287 A fundamental attribute of locally adaptive genetic variation isthat adaptive alleles are
288  overepresented in their home environment relative to el sewhere [81]. Thisis akey motivation of
289  genotype-by-environment association (GEA) and selective sweep scan approaches, which allow
290 researchersto resolve the molecular basis of multi-dimensional adaptation [82, 83]. GEA

291  approaches, in particular, have been widely used on landscape-wide resequencing collections to
292  quantify the genetic basis of climate adaptation (e.g., [40, 84, 85]), but have yet to be fully

293  exploited to diagnose the genetic basis of the various aspects of weediness [86]. Armed with data
294  on environmental dimensions of agricultural settings, such asfocal crop, soil quality, herbicide
295 use, and climate, GEA approaches can help disentangle how discrete farming practices have

296 influenced the evolution of weediness and resolve broader patterns of local adaptation across a

13
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weed’ s range. Although non-weedy relatives are not technically required for GEA analyses,
inclusion of environmental and genomic data from weed progenitors can further distinguish
genetic variants underpinning weed origins from those involved in local adaptation.

Even without environmental or phenotypic data, the application of selective sweep scan
approaches to comparisons of weed and non-weed relatives facilitates powerful inference of
weed adaptation on micro- or macro-evolutionary scales. Two recent within-species examples
include weedy rice, where population differentiation between weedy and domesticated
populations was used to identify the genetic basis of weedy de-domestication [87], and common
waterhemp, where consistent allelic differences among natural and agricultural collections
resolved a complex set of agriculturally adaptive alleles [88, 89]. A recent comparative
population genomic study of weedy barnyardgrass and crop millet species has demonstrated how
inter-specific investigations can resol ve the signatures of crop and weed evolution [90] (also see
[91] for anon-weed climate adaptation example). Multiple sequence alignments across numerous
species provide complementary insight into adaptive convergence over deeper timescales, even
with just one genomic sample per species (e.g., [92, 93]). Thus, the new IWGC weed genomes
combined with genomes available for closely related crops (outlined by [14, 94]) and an effort to
identify other non-weed wild relatives will be invaluable in characterizing the genetic

architecture of weed adaptation and evolution across diverse species.

Herbicide resistance
Herbicide resistance is among the numerous weedy traits that can evolve in plant populations
exposed to agricultural selection pressures. Over-reliance on herbicides to control weeds, along

with low diversity and lack of redundancy in weed management strategies, has resulted in
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globally widespread herbicide resistance [95]. To date, 268 herbicide-resistant weed species have
been reported worldwide, and at |east one resistance case exists for 21 of the 31 existing
herbicide sites of action [24] — significantly limiting chemical weed control options available to
agriculturalists. This limitation of control options is exacerbated by the recent lack of discovery
of herbicides with new sites of action [96].

Herbicide resistance may result from several different physiological mechanisms. Such
mechanisms have been classified into two main groups, target-site resistance (TSR) [4, 97] and
non-target-site resistance (NTSR) [4, 98]. The first group encompasses changes that reduce
binding affinity between a herbicide and its target [99]. These changes may provide resistance to
multiple herbicides that have a common biochemical target [100] and can be effectively
managed through mixture and/or rotation of herbicides targeting different sites of action [101].
The second group (NTSR), includes alterations in herbicide absorption, translocation,
sequestration, and/or metabolism that may lead to unpredictable pleotropic cross-resistance
profiles where structurally and functionally diverse herbicides are rendered ineffective by one or
more genetic variant(s) [60]. This mechanism of resistance threatens not only the efficacy of
existing herbicidal chemistries, but also ones yet to be discovered. While TSR iswell understood
because of the ease of identification and molecular characterization of target site variants, NTSR
mechanisms are significantly more challenging to research because they are often polygenic, and
the resistance causing element(s) are not well understood [102].

Improving the current understanding of metabolic NTSR mechanismsis not an easy task,
since genes of diverse biochemical functions are involved, many of which exist as extensive
gene families[100, 103]. Expression changes of NTSR genes have been implicated in several

resistance cases where the protein products of the genes are functionally equivalent across
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sensitive and resistant plants, but their relative abundance leads to resistance. Thus, regulatory
elements of NTSR genes have been scrutinized to understand their role in NTSR mechanisms
[104]. Smilarly, epigenetic modifications have been hypothesized to play arolein NTSR, with
much remaining to be explored [105-107]. Untargeted approaches such as genome-wide
association, selective sweep scans, linkage mapping, RNA-sequencing, and metabolomic
profiling have proven helpful to complement more specific biochemical- and chemo-
characterization studies towards the elucidation of NTSR mechanisms as well as their regulation
and evolution [60, 108-115]. Dueto their complexity and importance, the IWGC has begun
addressing this subject by manually curating the annotation of NTSR genes and developing a
standard nomenclature for the gene families often involved in NTSR. This standardization will
allow researchers to quickly identify true orthologous genes between weedy species, which isa
hurdle for current research of these complex and often vast gene families.

High-quality weed genome assemblies and gene model annotations have helped and will be
crucial for investigating the landscape of NTSR genesin weeds. They can also be used to predict
the protein structure for herbicide target site and metabolism genes to predict the efficacy and
selectivity of new candidate herbicidesin silico to increase herbicide discovery throughput.
Knowledge of the genetic basis of NTSR will aid the rational design of herbicides by 1)
screening new compounds in the presence of newly discovered NTSR proteins during early
research phases; 2) identifying conserved chemical structures that interact with these proteins,
and 3) optimizing herbicide molecular design to lower potential for resistance evolution and
increase potency/spectrum of control.

Moving forward, genomic resources will be increasingly needed and used not only for the

design of conventional small molecule herbicides, but also for next generation technologies for
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366  sustainable weed management. Proteolysis targeting chimeras (PROTACS) have the potential to
367 bind desired targets with great selectivity and degrade proteins by utilizing natural protein

368  ubiquitination and degradation pathways within plants [116]. The combination of nanoparticles
369  with oligonucleotides has recently shown potential to be used in spray applications towards gene
370 silencing in weeds, which paves the way for a new, innovative, and sustainable method for weed
371  management [117, 118]. Additionally, successin the field of pharmaceutical drug discovery in
372  thedevelopment of molecules modulating protein-protein interactions offers another potential
373  avenuetowards the development of herbicides with novel targets[119, 120]. High-quality

374  genomic references allow for the design of new weed management technologies like the ones
375 listed herethat are specific to — and effective across — weed species but have a null effect on non-
376 target organisms. Thetools being developed by the IWGC will have a crucial rolein enabling the
377  development of next generation weed management strategies that will reduce our reliance on the
378 few chemical control options currently available to agriculturalists.

379

380 Genome Biology

381 The genomes of weed species are as diverse as weed species themselves. Many weed species
382  belong to unique plant families with no phylogenetically close model or crop species relatives for
383  comparison. On all measurable metrics, weed genomes run the gamut. Some have smaller

384  genomes like Cyperus spp. (~0.26 Gb) while others are larger, such as Avena fatua (~11.1 Gb)
385 (Table 1). Some have high heterozygosity in terms of single nucleotide polymorphisms,

386 repetitive DNA, and structural variants, such as the Amaranthus spp., while others are primarily
387  sdf-pollinated and quite homozygous, such as Poa annua [121, 122]. Some are diploid such as

388 Conyza canadensis and Echinochloa haploclada while others are polyploid such as C.
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sumetrensis, E. crus-galli, and E. colona [90]. The availability of genomic resources in these
diverse, unexplored branches of the tree of life allows us to identify consistencies and anomalies
in the field of genome biology.

The weed genomes published so far have focused mainly on weeds of agronomic crops, and
studies have revolved around their ability to resist key herbicides. For example, genomic
resources were vital in the elucidation of herbicide resistance cases involving target site gene
copy number variants (CNVs). Gene CNVs of 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS) have been found to confer resistance to the herbicide glyphosate in diverse weed
species. To date, nine species have independently evolved EPSPS CNV s, and species achieve
increased EPSPS copy number via different mechanisms[123]. For instance, the EPSPSCNV in
Bassia scoparia is caused by tandem duplication, which is accredited to transposable element
insertions flanking EPSPS and subsequent unequal crossing over events[124, 125]. In Eleusine
indica, a EPSPS CNV was caused by translocation of the EPSPS locus into the subtelomere
followed by telomeric sequence exchange [126]. One of the most fascinating genome biology
discoveriesin weed science has been that of extra-chromosomal circular DNAS (eccDNAS) that
harbor the EPSPS gene in the weed species Amaranthus palmeri [127, 128]. In this case, the
eccDNAs autonomously replicate separately from the nuclear genome and do not reintegrate into
chromosomes, which has implications for inheritance, fitness, and genome structure [129]. These
discoveries would not have been possible without reference assemblies of weed genomes, next-
generation sequencing, and collaboration with expertsin plant genomics and bioinformatics.

Another question that is often explored with weedy genomes is the nature and composition of
gene families that are associated with NTSR. Gene families under consideration often include

cytochrome P450s (CY Ps), glutathione-S-transferases (GSTs), ABC transporters, etc. Some
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412  questions commonly considered with new weed genomes include: how many genes arein each
413  of these gene families, where are they located, and which weed accessions and species have an
414  over-abundance of them that might explain their ability to evolve resistance so rapidly [19, 90,
415 130, 131]? Weed genome resources are necessary to answer questions about gene family

416  expansion or contraction during the evolution of weediness, including the role of polyploidy in
417  NTSR gene family expansion as explored by [132].

418

419  Trandational Research and Communication with Weed Management Stakeholders

420 Whereas genomics of model plantsistypically aimed at addressing fundamental questionsin
421  plant biology, and genomics of crop species has the obvious goal of crop improvement, goals of
422  genomics of weedy plants also include the development of more effective and sustainable

423  dstrategies for their management. Weed genomics assists with these objectives by providing novel
424  molecular ecological and evolutionary insights from the context of intensive anthropogenic

425  management (whichislackingin mode plants), and offers knowledge and resources for trait
426  discovery for crop improvement, especially given that many wild crop relatives are al'so

427  important agronomic weeds (e.g. [133]). For instance, crop-wild relatives are valuable for

428  improving crop breeding for marginal environments[134]. Thus, weed genomics presents unique
429  opportunities and challenges relative to plant genomics more broadly. It should also be noted that
430  athough weed science at its coreisavery applied discipline, it draws broadly from many

431 scientific disciplines such as, plant physiology, chemistry, ecology, and evolutionary biology, to
432  nameafew. The successful integration of weed-management strategies, therefore, requires

433  extensive collaboration among individuals collectively possessing the necessary expertise [135].

434  Consequently, amajor objective of the IWGC is to ensure that basic findings arising from weed
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435  genomics are tranglated to advances in weed management and crop breeding by collaborating
436  broadly with breeders, applied weed scientists, outreach specialists, and practitioners.

437 To accomplish this objective, the IWGC must facilitate communication of weed genomics
438 findingsto relevant stakeholders (Figure 1). With the growing complexity of herbicide resistance
439  management, practitioners are beginning to recognize the importance of understanding resistance
440  mechanismsto inform appropriate management tactics [14]. Although weed science practitioners
441  do not need to understand the technical details of weed genomics, their appreciation of the power
442  of weed genomics - together with their unigue insights from field observations - will yield novel
443  opportunities for applications of weed genomics to weed management. In particular, combining
444  field management history with information on weed resistance mechanismsis expected to

445  provide novel insghtsinto evolutionary traectories[e.qg., 6, 136], which can be utilized for

446  disrupting evolutionary adaptation. It can be difficult to obtain field history information from
447  practitioners, but developing an understanding among them of the importance of such

448  information can beinvaluable. To address these aspects, the IWGC can provide funding, or at
449 least coordinate teams, to build extension/education programs focused on weed genomics.

450  Factsheets and easy-to-understand infographics can be developed and communicated to various
451  stakeholders through traditional and electronic media

452
453 Conclusions

454 Weeds are unique and fascinating plants, having significant impacts on agriculture and
455  ecosystems; and yet, aspects of their biology, ecology, and genetics remain poorly understood.
456  Weeds represent a unique area within plant biology, given their repeated rapid adaptation to

457  sudden and severe shiftsin the selective landscape of anthropogenic management practices. The
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production of a public genomics database with reference genomes for over 50 weed species
represents a substantial step forward towards research goals that improve our understanding of
the biology and evolution of weeds. Future work is needed to improve annotations, particularly
for complex gene familiesinvolved in herbicide detoxification, structural variants, and mobile
genetic elements, given the evidence to date of the generation of adaptive genetic variationin
weeds through structural variation. As reference genome assemblies become available; standard,
affordable methods for gathering genotype information will allow for the identification of
genetic variants underlying traits of interest. Further, development of methods for functional
gene validation and hypothesistesting is needed in weeds to validate the effect of genetic
variants detected through such experiments, including systems for transformation, gene editing,
and transient gene silencing and expression. Future research should focus on utilizing weed
genomes to investigate questions about the evolutionary biology, ecology, and genetics of weedy
traits and weed population dynamics. The IWGC plans to continue the public-private partnership
model to continue to host the WeedPedia database, integrate new datasets such as genome
resequencing and transcriptomes, conduct trainings, and serve as a research coordination
network to ensure that advances in weed science from around the world are shared across the
research community (Figure 1). Bridging basic plant genomics with translational applicationsin
weeds is needed to deliver on the potential of weed genomicsto improve weed management and

crop breeding.
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926
927 Table 1. Genome assemblies of 31 weed species completed or ongoing by the International
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Haplotypes Public Genome Size
Scientific name | Common name naplotyp Availability Ploidy X n -
in Assembly Date Estimate (Gbp)
1;
Amaranthus . Previous September N
hybridus smooth pigweed version 2003 diploid 16 | 16 0.509 [138]
[137]
Amaranthus Previous
. Palmer amaranth version June 2024 diploid 17 | 17 0.445[139]
palmeri
[137]
Amaranthus | oot pigweed Inprogress | diploid | 16 | 16 | 0.592[139]
retroflexus PIgw prog P '
2;
Amaranthus Previous November o
tuberculatus common waterhemp version 2003 diploid 16 | 16 0.694 [139]
[137]
Ambrosia diploid
artemisifolia common ragweed In progress [140, 141] 18 | 18 1.152 [142]
Ambrosia : December diploid
trifida giant ragweed 2023 [140] 12 | 12 1.872[143]
cgf;a P& oose silkybent 2 August 2023 | diploid | 7 | 7 4,622
hexaploid
Avena fatua wild oat 1 August 2023 | (Additional | 7 | 21 11.248
filel)
Chenopodium | common .
album lambsouarters 1 July 2023 hexaploid 9 27 1.59
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Cirsumarvense | Canadathistle In progress diploid 17 | 17 1.415
Convolvulus 1 . 4 pindweed Inprogress | diploid® | 12° | 12* | 0.652[142]
arvensis
Conyza
bonariensis . hexaploid
(Erigeron hairy fleabane In progress [144] 9 27 2.043 [145]
bonariensis)
Conyza
surr_latrenss Sumatran fleabane 1 May 2023 hexaploid 9 27 1.874
(Erigeron
sumatrensis)
Cyperus N
yellow nutsedge 2 July 2023 diploid 54 | 54 0.588 [146]
esculentus
Cyperus December _
rotundus purple nutsedge 2 2023 diploid 54 | 54 0.49 [146]
Digitaria September .
insularis sourgrass 1 2023 tetraploid 9 | 18 1.529
Digitaria . . Unknown, in
i Schaemum hairy crabgrass In progress | tetraploid 9 18 Drogress
Seecrop
Echinochloa junglerice (weedy genotype Inprogress | hexaploid 9 o7 1372 [146]
colona genotype) assembly by
[90]
. hexaploid*
gﬁgorb'a leafy spurge Inprogress | [basedon | 10" | 60° 2.3[149]
147, 148]
Euphorbia . : . diploid Unknown, in
heterophylla wild poinsettia July 2024 [150] 14 | 14 orogress
Leptochloa 2
eptoch Chinese sprangletop Seedso August 2023 diploid 10 | 10 0.454
chinensis
[1571]
2; diploid
Loliumrigidum | annual ryegrass See also August 2023 | (Additional | 7 7 241
[152] filel)
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Orobanche nodding broomrape Inprogress | diploid | 19 | 19 | 1.421[153]
cernua
Orobanche o
crenata crenate broomrape In progress diploid 19 | 19 2.787 [153]
%rr(])g?nche small broomrape In progress diploid 19 | 19 1.792 [153]
Parthenium . diploid Unknown, in
hysterophorus ragweed parthenium In progress [154] 17 | 17 DrOgress
: tetraploid
Phalarisminor | 't seed canary 1 August 2023 | (Additional | 7 | 14 5.851
grass )
file1)

Raphanus Previous

apnan wild radish versions In progress diploid 9 9 0.515 [155]
raphanistrum [155, 156]

tetraploid
Slsolatragus | Russian thistle 2 July 2023 | (Additional | 9 18 1.319
file1)

*Sorghum . September .
halepense johnsongrass 2 2003 tetraploid | 10 | 20 1.752
Verbascum . December N
blattaria moth mullein 1 2023 diploid 15 | 15 0.344 [157]

929

930 Table 1. Genome assemblies of 31 weed species completed or ongoing by the International

931

932

933

934

935

936

937

International Weed Genomics Consortium.
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having chromosome-length scaffolds (i.e., 1-3 scaffolds per chromosome) for the assembly,

indicated. + indicates that verification is currently in progress for cytogenetic information.

Table 2. Genomic information for 19 weed species produced without assistance by the

Weed Genomics Consortium. All completed genomes are platinum assembly quality, defined as

unless indicated by *. Genome size estimated from flow cytometry or published references as
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1n Genome Size | Genome Assembly
Scientific name Common name X n
Estimate (Gbp) Size (Gbp)
Alopecurus 3.4-3.56 [131,
blackgrass 7 7 3.56 [158]
myosuroides 158]
Bassia scoparia kochia 9 9 0.969 [159] 0.970[159]
Bromus tectorum cheatgrass 7 7 2.48 [86]
Chenopodium
formosanum
(domesticated Djulis 9 27 1.69 [160] 1.59[160]
genotype of C.
album)
Conyza
horseweed 9 9 0.425 [161] 0.426 [161]
canadensis
Echinochloa
colona (crop junglerice 9 27 1.18[90] 1.13[90]
genotype)
Echinochloa crus-
barnyardgrass 9 27 141162 1.34190]
galli
Echinochloa
oryzcola (syn. E. late watergrass 9 18 1.0[162] 0.95 [90]
phyllopogon)
Eleusineindica goosegrass 9 9 0.510[126]
| pomoea purpurea common 15 15 0.81[113] 0.60[113]
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morning-glory

perennial ryegrass

2.63 (Bushman

Lolium perenne 7 7 and Raobbins, pers.
comm.)
Oryza sativa f.
weedy rice 12 | 12 0.37[163]
spontanea
Poa annua annual bluegrass | 7 14 1.78 [122] 1.89[164]
early meadow-
Poa infirma 7 7 1.17[165] 1.13[165]
grass
Poa supina supinebluegrass | 7 7 0.66 [165] 0.64 [165]
Setaria viridis green foxtail 9 9 0.40 [166] 0.40 [166]
Sriga asatica red witchweed 12 | 12 0.6 [167] 0.47 [167]
Sriga
purplewitchweed | 10 | 20 1.48[168] 0.96 [168]
hermonthica
Thlaspi arvensis | field pennycress 7 7 0.5[169] 0.53[169]

Table 2. Genomic information for 19 weed species produced without assi stance by the

International Weed Genomics Consortium. Haploid (1n) genome size estimations are either

calculated through flow cytometry or k-mer estimation.

Figure 1. Process by which the International Weed Genomics Consortium operates.

Additional Files
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946  Additional File 1 (.docx). Methods and results for visualizing and counting the metaphase

947  chromosomes of (1A): diploid Lolium rigidum; (1B): hexaploid Avena fatua; (1C): diploid

948 Phalarisminor; and (1D): tetraploid Salsola tragus.

949

950 Additional File 2 (.docx). List of completed and in-progress genome assemblies of weed species

951  pollinated by insects.
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