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Abstract 

Synchronizing the timing of reproduction with the environment is crucial in the wild. 

Among the multiple mechanisms annual plants evolved to sense their environment, 

the requirement of cold-mediated vernalization is a major process that prevents 

individuals from flowering during winter. In many annual plants including crops, both 

a long and short vernalization requirement can be observed within species, resulting 

in so-called early-(spring) and late (winter)-flowering genotypes. Here, using the grass 

model Brachypodium distachyon, we explored the link between vernalization 

requirement, flowering time, environmental variation, and diversity at flowering genes 

by combining measurements under greenhouse and outdoor conditions. These 

experiments confirmed that B. distachyon natural accessions display large differences 

regarding vernalization requirements and ultimately flowering time. We underline 

significant, albeit quantitative effects of current environmental conditions on flowering 

time. Population genomics in 332 natural accessions revealed that eight well-

characterized flowering-time genes contribute significantly to flowering time variation 

and display signs of polygenic selection. Flowering-time genes, however, do not 

colocalize with GWAs peaks obtained with outdoor measurements, indicating that 

flowering-time genes may not largely contribute to flowering time variation in the wild. 

Altogether, our study fosters our understanding of the polygenic architecture of 

flowering time in a natural grass system and opens new avenues of research to 

investigate the gene-by-environment interaction at play for this trait. 

Key words: Flowering time, adaptation, vernalization, B. distachyon, grasses, polygenic 

selection.  
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Introduction 

The induction of reproduction is a critical fitness-related trait in the wild (Gaudinier 

and Blackman 2020), as a failure to produce offspring during a favorable growing 

season may lead to the extinction of the individual9s genotype. In many annual plant 

species adapted to temperate climates, plantlets establish themselves in the fall and 

overwinter before flowering and producing seeds in more favorable spring conditions 

(Chouard 1960; Blackman 2017). Vernalization, the prolonged exposure to cold 

necessary to render plants competent to flower (Chouard 1960), is hence a key 

component of plant reproduction as it prevents individuals from flowering prior to 

winter. The adaptive potential and the genetic architecture of flowering time has been 

studied in an unrivaled manner in Arabidopsis thaliana (for review Andrés and 

Coupland 2012; Blümel et al. 2015; Takou et al. 2019) due to the broad geographical 

distribution of the species and large genomic resources developed by the community 

(but see Hall et al. 2006; Monnahan and Kelly 2017; Yan et al. 2021 for works on other 

Brassicaceae and Mimulus guttatus). Vernalization is yet controlled by different genes 

in different plant groups and likely evolved independently multiple times during 

flowering plant diversification (Ream et al. 2012; Bouché et al., 2017; Raissig and 

Woods 2022). Moreover, specific crop flowering-time genes (e.g. ID1 in maize) are for 

instance lacking homologs in A. thaliana (Blümel et al. 2015). As a wild monocot, 

the model for the temperate grasses Brachypodium distachyon constitute a prime 

system to study the evolution of flowering-time genes. In this context, we made use 

of the diversity panel developed for this species (Gordon et al. 2017; Gordon et al. 

2020; Skalska et al. 2020; Stritt et al. 2022, Minadakis et al. 2023) to expand our 

knowledge on the adaptive potential and polygenic architecture of flowering time in 

grasses. 

Initially established as a model for bioenergy crops (International Brachypodium 

Initiative 2010), the grass species B. distachyon has more recently become a prime 

model for developmental biology (Woods et al. 2017a; Woods et al. 2019; Nunes et al. 

2020; Hasterok et al. 2022; Raissig and Woods 2022; Zhang et al. 2022; Slawinska et al. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.07.11.548268doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548268
http://creativecommons.org/licenses/by/4.0/


3 

 

2023), evolutionary genomics (Eichten et al. 2016; Gordon, Contreras-moreira, et al. 

2017; Bourgeois et al. 2018; Stritt et al. 2018; Gordon et al. 2020; Stritt et al. 2020) and 

molecular ecology (Del'Acqua et al. 2014; Wilson et al. 2019; Skalska et al. 2020; Stritt 

et al. 2022; Minadakis et al. 2023). In addition to a near base-perfect reference genome 

(International Brachypodium Initiative 2010), a diversity panel composed of 332 

accessions spanning from Spain to Iraq has been sequenced (Gordon et al. 2017; 

Gordon et al. 2020; Skalska et al. 2020; Stritt et al. 2022, Minadakis et al. 2023), opening 

new avenues of research in this system (Minadakis et al. 2023). We previously showed 

that B. distachyon accessions cluster into three main genetic lineages (A, B and C), 

which further divide into five main genetic clades: the ancestral C clade in Italy and 

Balkans, the B_West clade in Spain and France, the B_East clade spanning from Turkey 

to Caucasus and Iraq, the A_Italia clade in Italy as well as the A_East clade in Turkey 

and Greece (Stritt et al. 2022, Minadakis et al. 2023). These natural accessions are found 

in diverse habitats (Bourgeois et al. 2018; Minadakis et al. 2023) making B. distachyon 

an ideal model to investigate how genetic and environmental factors interact to shape 

traits. 

B. distachyon accessions display large phenotypic variation with regard to flowering 

time (e.g. Ream et al. 2014; Gordon et al. 2017; Woods et al., 2019; Sharma et al. 2017), 

with some accessions requiring little to no vernalization to flower rapidly (early 

flowering accessions) in certain photoperiods, while other accessions require a few 

weeks to several months of vernalization in order to flower (late flowering accessions) 

(Ream et al., 2014; Gordon et al., 2017; Woods et al., 2019). These flowering differences 

have been described as potentially adaptive and responsible for population 

distribution according to climate variation (Gordon et al. 2017; Woods et al. 2019; 

Skalska et al. 2020). However, the extent to which variation in vernalization requirement 

and ultimately flowering time correlates with local environmental conditions has yet 

to be formally tested in this species. For instance, whether late-flowering genotypes, 

which require long vernalization treatments, have been selected to complete their life 

cycle at a slower rate to overcome harsher or longer winter, as observed in Swedish 
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populations of A. thaliana (Ågren et al. 2017), remains an open question. Hence, we 

combined flowering-time measurements under greenhouse and outdoor conditions 

and asked i) Does flowering time correlate with environmental variables and show 

signs of local adaptation? ii) What is the respective contribution of flowering time 

genes to flowering time variation? iii) Are known flowering-time genes contributing to 

flowering time variation in the wild? 

 

Results 

Flowering time measurements under greenhouse conditions 

We selected 61 accessions (Figure 1A) from the B. distachyon diversity panel 

(Minadakis et al. 2023) for our flowering time experiment. Those accessions were 

chosen to represent all five genetic clades and occur, when possible, along latitudinal 

gradients. Briefly, we submitted plants to five vernalization treatments (2, 4, 6, 8 or 10 

weeks at 4°C) with three replicates each and measured how long plants took to flower 

after the return to warm conditions (Figure S1, Table S1 for the raw data). For five out 

of the 61 accessions (Veg12 from A_East; Ren4, Lb1, Lb23 and Cm7 from A_Italia), none 

of the replicates flowered by the end of the experiment (Figure 1A, Figure S1) despite 

normal growth. All subsequent analyses were hence performed on the 56 accessions 

for which flowering time data were collected. We aggregated the results per accession 

and vernalization treatment (see methods) to estimate the fastest time a given 

accession took to flower from i) the day plants were moved to the vernalization 

chamber (time to flower including vernalization time) and ii) the day after the return 

to warm conditions (time to flower after vernalization, Figure S1). Both variables were 

highly correlated (R2 = 0.92, P-value < 2.2e-16). As more representative of the life cycle 

of plants, we nonetheless used for rest of the study time to flower including 

vernalization as the measure of flowering time. 

We observed a strong partitioning of the phenotypes per genetic clades. Accessions 

from the C, B_East and B_West clades flowered significantly earlier than accessions 
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from the A_East and A_Italia clades, while no significant differences were observed 

within the A and B lineages (Figure 1B; Table S2 for P-values). This reflects that 

accessions from the A lineage display overall a significantly longer life cycle (late-

flowering genotypes) than the ones from the B and C lineages (early-flowering 

genotypes) due to longer vernalization time requirements as well as longer time to 

flower after the return to warm conditions (Figure S1).  

 
Association between flowering time and bioclimatic variables. 

To test whether flowering time correlates with environmental variation, we extracted 

the 19 classical worldclim bioclimatic variables (Bio1 to Bio19) as well as solar radiation 

in spring, global aridity index in spring and altitude for each locality and performed a 

PCA with the resulting 22 variables. The first two axes of the PCA explained together 

about 58% of the variation among our samples, indicating that our set of selected 

accessions occur in different environmental conditions.  

Fig. 1: Geographical origins of the samples and flowering time variation (greenhouse experiment) A) Map 

displaying the location of a given accession as well as their genetic clade of origin (C in yellow, A_East in 

magenta; A_Italy in turquoise; B_East in green and B_West in dark blue). Accessions that did not flower by 

the end of the experiment are depicted in black B) Schematic phylogeny and distribution of flowering 

time-, precipitation of driest quarter- (bio17) and solar radiation in spring per cluster C) Association 

between flowering time and Precipitation of driest quarter (bio17) and, D) Association between flowering 

time and solar radiation in spring. For panels C and D, individual replicates are plotted. 
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We ran linear mixed effect models (LMM) where flowering time was entered as the 

response variable, the 22 environmental variables mentioned above as well as the first 

two PCA axes entered separately as fixed factors and the clade of origin as random 

factors to account for population structure. We found that environmental variables 

linked to warm months were all significantly associated with flowering time variation 

while environmental variables linked to cold month showed no association (Table 1).   

Fixed, random and residual effects indicate the part of the variance explained by these factors. 

Precipitation in the driest quarter (Bio17) or solar radiation in spring explained the 

largest part of the variance within clades, and accessions from more arid environments 

tend to flower faster (Table 1, Figure 1C and D). Kendall rank correlation between 

flowering time and Bio17 or solar radiation in spring show significant (P-value 

Table 1: Output of the LMM between flowering time and environmental variables 

Bioclim Pval Fixed_effect Random_effect residuals Name_bioclim 

bio17 0.0002 0.117 0.829 0.055 Precipitation of Driest Quarter 

srad spring  0.0005 0.117 0.826 0.057 srad spring (mean) 

PC1 + PC2 0.004 0.088 0.856 0.056 PC1 + PC2 

bio18 0.0007 0.081 0.864 0.055 Precipitation of Warmest Quarter 

bio12 0.001 0.079 0.864 0.057 Annual Precipitation 

bio14 0.001 0.081 0.861 0.057 Precipitation of Driest Month 

aridity spring  0.0017 0.095 0.846 0.059 aridity spring mean) 

bio13 0.002 0.066 0.879 0.055 Precipitation of Wettest Month 

bio16 0.006 0.057 0.888 0.056 Precipitation of Wettest Quarter 

bio7 0.01 0.096 0.849 0.055 Temperature Annual Range (BIO5-BIO6) 

bio5 0.04 0.042 0.902 0.055 Max Temperature of Warmest Month 

bio2 0.04 0.06 0.886 0.055 Mean Diurnal Range 

bio9 0.07 0.023 0.925 0.052 Mean Temperature of Driest Quarter 

bio8 0.13 0.019 0.928 0.052 Mean Temperature of Wettest Quarter 

bio19 0.13 0.017 0.928 0.054 Precipitation of Coldest Quarter 

elevation 0.14 0.016 0.93 0.054 elevation 

bio10 0.17 0.016 0.93 0.054 Mean Temperature of Warmest Quarter 

bio1 0.19 0.013 0.934 0.053 Annual Mean Temperature 

bio4 0.19 0.029 0.917 0.054 Temperature Seasonality 

bio15 0.31 0.011 0.935 0.053 Precipitation Seasonality 

bio11 0.67 0.002 0.946 0.052 Mean Temperature of Coldest Quarter 

bio6 0.68 0.001 0.946 0.053 Min Temperature of Coldest Month 

bio3 1.00 0 0.948 0.052 Isothermality 
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= 5.804e-10 and 2.391e-08) but only partial correlations (r = 0.34 and -0.31 

respectively), implying that while bioclimatic variables like Bio17 and solar radiation 

(srad) in spring are driving within clade flowering time variation (Figure 1C and D), they 

only partly explain the early/late-flowering partitioning of the phenotypes we observe 

among genetic lineages (Figure 1B). This is in line with the fact that even when 

significant, environmental variables explain a relatively small part of the variance in 

flowering time (maximum 11.7% for Bio17 and srad in spring) compared to the clade 

of origin (Table 1).  

However, the B. distachyon genetic clades are occurring in different ecological 

niches (Minadakis et al. 2023). Hence, by correcting for population structure, we may 

also correct for the confounding effect of the environment. We indeed found 

significant and larger effects of the environment on flowering time when not 

accounting for population structure and running classical linear model analyses (max 

R2 = 0.22, Table S3). Regardless of the correction method, these results indicate that 

flowering time, when measured under greenhouse conditions, is significantly but only 

partially shaped by the current environmental conditions we tested in B. distachyon.  

 

Contribution of flowering time genes to flowering time variation 

The large proportion of the variance explained by the genetic clade (Table 1) indicates 

that genetic factors might be playing a larger role in flowering time variation than the 

environment. The genetic basis of flowering time has been extensively characterized 

at the molecular level in B. distachyon (e.g. Raissig and Woods, 2022; Woods et al., 

2023). Due to our relatively small sample size (56 accessions with phenotypes), we 

opted for a targeted approach rather than a classical GWAs and selected 22 flowering-

time genes (Table S4) molecularly characterized and described as impacting flowering 

time in our study system (Higgins et al. 2010; Wu et al. 2013; Woods et al. 2014; Sharma 
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et al. 2017; Woods et al. 2017a,b; Lomax et al. 2018; Qin et al. 2019; Woods et al. 2019; 

Cao et al. 2020; Kennedy and Geuten 2020; Woods et al. 2020).  

Using the SNP calling performed by Minadakis et al. (2023), we extracted 695 SNPs 

across these 22 flowering-time genes and 56 accessions. We then ran LMM where 

flowering time was used as the response variable, SNPs at flowering-time genes as 

fixed factors and the genetic clade of origin as random factors. We found SNPs 

significantly associated with flowering-time for ten (hereafter AFT-genes) out of the 22 

flowering-time genes (Table S5). Due to strong linkage disequilibrium (LD) over short 

distances (Figure S2), many SNPs gave precisely the same signal of association with 

flowering time within a given gene (Table S5). For each AFT-gene, we thus only kept 

one SNP with the largest effect on flowering time as a focal SNP for further analyses. 

The resulting ten SNPs individually explained as much as 47% of the phenotypic 

variation (Table 2, Figure 2A) while their additive effect explained 58% of the variance 

(Table 2). VRN1, FTL10, POLD3, and, FTL1 showed the strongest association with 

flowering time. We did not detect epistatic effects most likely because genes 

explaining a large part of the variance in flowering time are almost fixed within genetic 

clades and therefore display identical or near identical allele frequencies.  

Table 2: Output of the linear mixed model analyses between flowering time and SNP 

at AFT genes 

CHR BP Pval Fixed effect Random effect residual effect gene 

Bd1 5'866'489 0.0004 0.47 0.465 0.066 VRN1 

Bd2 17'324'316 0.0006 0.463 0.476 0.061 FTL10 

Bd2 4'928'157 0.0006 0.463 0.476 0.061 POLD3 

Bd2 5'415'945 0.0006 0.438 0.498 0.064 FTL1 

Bd1 41'631'615 0.001 0.367 0.565 0.067 CO1 

Bd1 5'923'377 0.02 0.342 0.605 0.053 PHYC 

Bd3 8'185'926 0.001 0.218 0.713 0.069 VRN2 

Bd3 55'978'083 0.04 0.094 0.837 0.069 CO2 

Bd2 39'854'115 0.01 0.075 0.876 0.049 RVR1 

Bd2 12'881'238 0.04 0.037 0.911 0.052 ELF3 

Additive model <0.001 0.58 0.353 0.053 All 

For each gene, we only display the SNP with the strongest association with flowering time. Fixed, Random and 

residual effect indicate the part of the variance explained by these factors. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.07.11.548268doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548268
http://creativecommons.org/licenses/by/4.0/


9 

 

Differentiation of flowering time genes  

The fact that the AFT-genes gave identical (e.g. FTL10 and POLD3) or very similar 

signals with regard to their association with flowering time (Table 2) suggests, as 

displayed in Figure 2A, that SNPs at AFT-genes harbor similar allele frequencies. This 

could result from two processes. On the one hand, B. distachyon populations 

underwent bottlenecks during the last glaciation (Minadakis et al. 2023), which may 

have led to reduced genetic diversity and highly differentiated alleles among genetic 

lineages/clades genome-wide. On the other hand, AFT-genes might have been co-

selected (polygenic selection) and remain at similar allele frequencies (Zan and 

Carlborg 2019; Gupta et al. 2023).  

Fig. 2: Association between the ten AFT-genes and flowering time. A) For each gene, the boxplots contrast the 

effect of the reference (Bd21) and alternative alleles on flowering time. The color code is the same as in Figures 

1 B) Single SNP FST computed for the 56 accessions of the A and B lineages. C) Single SNP FST computed for the 

332 accessions of the A and B lineages. For the B and C panels, orange dots display FST for SNPs significantly 

associated with flowering time variation. Boxes display genome-wide distribution. The dashed line indicates the 

95 percentiles. D) Distribution of FST calculated between the A and B lineage with real and forward-simulated 

data under a neutral scenario 
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To assess the extent to which our SNPs of interest are more differentiated compared 

to genome-wide levels, we computed single SNP FST. To limit the number of 

comparison and considering the partitioning of the reference and alternative alleles 

among accessions in the ten AFT-genes (Figure 2A), we only computed FST between 

accession of the A and B lineages. We found that the large majority of SNPs 

significantly associated with flowering time are above the 3rd quartile of the genome-

wide distribution (Figure 2B). Significantly associated SNPs in VERNALIZATION 1 

(VRN1), FTL10, POLD3, FTL1, CONSTANS (CO1), and PHYTOCHROME C (PHYC) belong 

to the top 5% outliers. Hence, with the exception of SNPs in REPRESSOR OF 

VERNALIZATION1 (RVR1) and EARLY FLOWERING 3 (ELF3), which only contribute 

marginally to flowering time variation (Table 2), SNPs significantly associated with 

flowering time tend to be more differentiated than the rest of the genome.  

To gain power for our analyses, we further made use of the B. distachyon diversity 

panel composed of 332 natural accessions (Minadakis et al. 2023, Figure 3A) and found 

very similar levels of allele differentiation at AFT-genes (Figure 2C). These results are 

in line with a forward simulation we performed under a neutral scenario using the 

demographic estimates computed by Minadakis et al. (2023). The FST distribution 

calculated between the simulated A and B lineages, as the distribution obtained with 

the real data, is indeed largely shifted towards low values. These latter results 

demonstrate that bottlenecks did not lead to elevated genetic differentiation at the 

genome-wide level (Figure 2D). 

 

Long-range linkage disequilibrium among flowering genes 

The similar allele frequencies described above also indicate that AFT-genes are in 

strong linkage disequilibrium despite the large physical distances that separate them. 

LD computed among pairs of focal SNPs at AFT-genes in the 56 selected accessions 

as well as in the entire diversity panel show a similar pattern (Figure 3B): with the 

exception of pairs of AFT-genes involving ELF3 and RVR1, we found that AFT-genes 
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located on the same chromosome are in much higher LD than expected considering 

the 95% confidence interval (CI) of the genome-wide LD-decay (Figure 3C).  

Strikingly, we also found very high LD between AFT-genes located on different 

chromosomes both in the selected accessions and entire diversity panel (Figure 3B). 

Located on chromosome 1, VRN1 for instance, is in strong LD with five other genes 

located on chromosome 2 (POLD3, LD = 0.84; FTL1, LD = 0.76; FTL10, LD = 0.83) and 

chromosome 3 (VRN2, LD = 0.65; CO2, LD = 0.55). To test to what extent this long-

range LD deviates from genome-wide patterns, we computed LD for a subset of 

100,000 random pairs of genic loci located on different chromosomes across the 

genome. This allowed us to estimate the distribution and CI of inter-chromosomal LD 

between two loci as well as the average inter-chromosomal LD among five and six loci 

(Figure 3D). For each combination, the inter-chromosomal LD we observed between 

pairs of focal AFT-genes (two loci) or between five (for AFT-genes located on 

Fig. 3: Linkage disequilibrium (LD) in the flowering time pathway. A) Map displaying the locality of the 332 

sequenced accessions composing the diversity panel B) LD among the 10 AFT-genes associated with flowering 

time C) LD decay computed over the entire diversity panel. The orange and grey lines display the 95% CI of the 

LD decay calculated with or without filtering for a minimum allele frequency (maf) respectively. Dots display LD 

between pairs of flowering-time genes located on the same chromosome D) Distribution of LD between loci 

located on different chromosomes. The violin plots display the means of LD calculated between two, five or six 

loci. Numbers in square brackets indicate the confidence interval around the mean 
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chromosomes 1 and 2) and six AFT-genes (for AFT-genes located on chromosome 3) 

was largely outside the CI calculated with random genic loci (Figure 3D).  

Note that only two flowering-time genes but non AFT-genes, FUL2 and PPD1, show 

putative footprint of insertion polymorphisms in the diversity panel (Table S4). 

Furthermore, in a selfing species like B. distachyon, heterozygous SNPs are hallmarks 

of gene duplication (Stritt et al. 2022; Jaegle et al. 2023). Using a vcf file not filtered for 

heterozygous SNPs, we found that only 0.6% of the SNPs located in flowering-time 

genes are heterozygous across the 332 accessions. These results imply that flowering-

time genes and specifically AFT-genes are occurring in single copy and that structural 

rearrangements or duplications did not alter their position in non-reference genomes. 

Taken together, these results indicate that the long-range LD among AFT-genes as 

well as their differentiation levels deviate from genome-wide patterns and are difficult 

to explain by the demographic history of the population alone. We hence conclude 

that VRN1, PHYC, CO1, POLD3, FTL1, FTL10, VRN2, and CO2 are co-evolving and 

undergo polygenic selection. 

 

Genome-wide scans of positive selection  

To properly test for positive selection while accounting for the structure and 

demographic history of our populations, we computed XTX statistics, a measure 

comparable to single SNP FST that accounts for the neutral covariance structure across 

populations. In brief, we computed XTX with our actual SNP dataset over the entire 

diversity panel using the five genetic clades as focal populations. We then simulated a 

pseudo-observed dataset (POD) of 100,000 SNPs under the demographic model 

inferred from the covariance matrix of the actual SNP dataset. XTX statistics were then 

computed for the POD to determine the probability of neutrality for each SNP. The 

threshold of significance was thus set to 11.2, a value slightly lower than the 1% outlier 

threshold (13.6). With the exception of ELF3, all AFT-genes display SNPs more 

differentiated than expected under a neutral scenario (Figure 4A) suggesting that AFT-

genes have evolved under positive selection. We also tested for extended haplotypes 
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and footprint of selective sweeps with the integrated Haplotype Score (iHS). However, 

apart from CO2 in the A lineage, none of the AFT genes are located in regions 

displaying significantly longer haplotypes (Figure S3). 

We ran SnpEff to test which SNPs in flowering-time genes are more likely to have a 

functional impact. Only two SNPs in CO2 were categorized as variants with high impact 

while the large majority of SNPs in other AFT genes were categorized as variants with 

moderate and low effect (Figure S4), rendering the identification of the potential 

targets of selection challenging for most of our genes of interest.  

In order to characterize which environmental factors might have shaped diversity at 

AFT-genes, we eventually made use of genotype-environment association (GEA) 

analyses performed by Minadakis et al. (2023) with bioclimatic variables associated to 

precipitation levels, temperature or elevation. We found that only one of the 22 

flowering-time genes (Bradi2g59119, ODDSOC2-like) showed an overlap with the 

gene sets significantly associated with current bioclimatic variables (Figure 4B).  

Here again, the GEAs performed by Minadakis et al. corrected for population 

structure and can hence result in false negative since the genetic clades occupy 

different ecological niches. We indeed found significant associations between SNPs at 

AFT-genes (with the exception of PHYC) and bioclimatic variables such as Bio14 

Fig. 4: Positive selection at AFT-genes and association with bioclimatic variables A) XTX analyses performed in 

the entire diversity panel using the five genetic clades as focal populations. The boxplots display genome-wide 

XTX levels. The orange dots display XTX values for any SNP located in a given AFT-gene. The dash-line indicate 

the threshold of significance inferred from the POD. B) Upset plot displaying the overlap between gene sets 

identified with the GEAs performed by Minadakis et al. (2023) for 23 bioclimatic variables and flowering-time 

genes. 
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(Precipitation of driest quarter) and aridity levels in spring, when not accounting for 

population structure (Kendall correlation; Figure S5A), indicating that the confounding 

effect of population structure and adaptation at a regional scale may mask the 

significant effect of the environment on AFT-genes diversity.  

 

Potential adaptation to past climatic conditions 

We estimated the age of AFT alleles and found that those arose relatively recently 

between 9,000 to 38,000 years ago (Table S6) as most alleles in our system (Minadakis 

et al. 2023). We speculated that variation in flowering time could also reflect adaptation 

to recent past conditions, potentially to the last glacial maximum (LGM) 22,000 years 

ago. We therefore tested whether the delay in flowering time we observed in 

accessions from the A_East and A_Italia clades could result from an adaptation to past 

colder climates. To do so, we used the niche suitability projections under LGM 

conditions computed by Minadakis et al (2023). We selected a set of 200 random 

points per clade in highly suitable habitats and extracted the 19 LGM bioclimatic 

variables for the corresponding sites. The PCA performed with these 19 LGM 

bioclimatic variables do not allow us to separate the five genetic clades. Altogether, 

accessions from the A_East and A_Italia clades neither occurred in colder nor in wetter 

environments than the B_East, B_West and C accessions (Figure S6) which suggests 

that the extended vernalization requirement and delay in flowering we observed for 

the A_East and A_Italia accessions were not selected during LGM.  

 

Genome-wide association for flowering time variation measured in outdoor conditions 

Greenhouse conditions are far from any natural optimum and may obscure association 

with relevant environmental cues, while taking an environment closer to the natural 

conditions encountered by of one or several clade acts as a useful pivot to contrast 

clades. Hence, we eventually made use of flowering time data we collected for a subset 

of 131 accessions (Stritt et al. 2022) in Zürich, Switzerland, to assess flowering time 
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variation in semi-natural conditions. While B. distachyon do not occur at such latitudes 

(Minadakis et al. 2023), a PCA performed with the 22 bioclimatic variables (see above) 

on our 332 natural accessions and including a site in Zurich shows that the 

environmental conditions in Zürich are not different from the ones encountered by 

ABR9 for instance (Figure 5A). While other biotic (vegetation type and density) and 

abiotic (soil characteristic) factors are certainly preventing the species from occurring 

in northern latitude, Zürich harbours climatic conditions similar to ones encountered 

by the species at the northern margin of its natural distribution, making it a valid 

experimental site to study flowering time in B. distachyon. 

In brief, we planted seeds for 131 accessions (Figure 5B) outdoors in November 

2017, in the Botanical Garden of Zurich, Switzerland, with six replicates per accession 

and recorded flowering time in spring. All plants flowered within 20 days in April 

(Figure 5C). Flowering time for plants from the B_East and C clades were not 

significantly different (Kruskal-Wallis test, P-value = 0.96) but those accessions 

Fig. 5: Genome-wide association analysis with flowering time (outdoor experiment). A) PCA performed with 

19 classical wordlclim variables combined to solar radiation in spring, global aridity in spring and altitude for the 

332 accessions of the diversity panel and a locality in Zurich B) Geographical origin of the 131 accessions used 

for the experiment C) Flowering time per cluster (displaying replicates) D) Manhattan plot displaying the 

association between SNPs and flowering time. The red and dark dots display SNPs located into AFT- or other 

flowering-time genes respectively. The dashed line corresponds to FDR threshold of significance E) XTX values 

for the top GWAs SNP on chromosome 2 (Bd2).  
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flowered significantly faster than accessions from the other clades (Kruskal-Wallis test, 

all P-values < 0.01). Plants from the A_Italia and B_West flowered significantly later 

than plants from the other clades (Kruskal-Wallis test, all P-values < 0.02) but were not 

significantly different from each other (P-value = 0.06).  As such, the data collected 

outdoor contrasts with the ones collected in the greenhouse. As for the experiment in 

the greenhouse, linear-mixed model analyses showed that Bio17 (Precipitation of 

driest quarter) is the bioclimatic variable explaining the largest part of flowering time 

variation. In this case, however, it explains as much as 21% of the variance, and hence 

substantially more than with the data collected under greenhouse conditions (Table 

3). These results are in line with those obtained with a simple linear model, where Bio17 

explains more than 44% of the variance (Table S7).  

Table 3: Output of the LMM analyses between flowering time and environmental variables 

(outdoor conditions ) 

Bioclim Pval Fixed effect Random effect residuals Name_bioclim  

bio17 <0.00001 0.21 0.191 0.599 Precipitation of Driest Quarter  

bio12 <0.00001 0.147 0.297 0.556 Annual Precipitation  

bio18 <0.00001 0.115 0.272 0.613 Precipitation of Warmest Quarter  

bio13 <0.00001 0.097 0.379 0.524 Precipitation of Wettest Month  

bio14 <0.00001 0.094 0.292 0.614 Precipitation of Driest Month  

bio16 <0.00001 0.089 0.382 0.529 Precipitation of Wettest Quarter  

bio3 <0.00001 0.081 0.409 0.51 Isothermality  

bio19 <0.00001 0.059 0.437 0.504 Precipitation of Coldest Quarter  

srad spring  0.00012 0.058 0.369 0.573 srad spring mean  

bio8 <0.00001 0.045 0.521 0.435 Mean Temperature of Wettest Quarter  

bio4 0.00021 0.036 0.51 0.454 Temperature Seasonality  

aridity spring  1.00E-05 0.034 0.402 0.564 aridity spring mean  

bio1 <0.00001 0.025 0.436 0.54 Annual Mean Temperature  

bio11 <0.00001 0.022 0.469 0.509 Mean Temperature of Coldest Quarter  

bio2 0.008 0.017 0.472 0.511 Mean Diurnal Range  

bio6 0.0001 0.016 0.476 0.508 Min Temperature of Coldest Month  

bio10 0.005 0.01 0.44 0.55 Mean Temperature of Warmest Quarter  

bio5 0.01 0.009 0.441 0.55 Max Temperature of Warmest Month  

bio7 0.45 0.002 0.468 0.53 Temperature Annual Range  

bio15 0.9 0 0.462 0.538 Precipitation Seasonality  

bio9 0.9 0 0.456 0.544 Mean Temperature of Driest Quarter  

       

Fixed, Random and residual effect indicate the part of the variance explained by these factors. 
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A genome-wide association analysis (GWAs) performed with GEMMA (Zhou and 

Stephens 2012) on the 131 accessions identified one significant peak which does not 

overlap with any of the 22 flowering-time genes we studied above (Figure 5D).  We 

also made use of the GEAs performed by Minadakis et al. (2023) and found that the 

gene underlying the peak (Bradi2g11490, a carbohydrate-binding-like gene) does not 

overlap with the gene sets significantly associated with current bioclimatic variables. 

Yet, similarly to what we found for the AFT-genes, we found significant associations 

(Figure S5B) between SNPs at the GWAs peak and bioclimatic variables, especially with 

Bio14 (Precipitation_of_Driest_Month), when not taking into account population 

structure. Consistent with selection by the environment, the top GWAs SNP constitutes 

also an XTX outlier (Figure 5E).  

 
 

Discussion 

Flowering time and adaptation to local climate 

Flowering time has been shown to play an important role in local adaptation across 

many plant systems including crops (Izawa 2007; Anderson et al. 2012; Anderson, et 

al. 2013; Ågren et al. 2017; Navarro et al. 2017; Wadgymar et al. 2017; Takou et al. 2019; 

Qian et al. 2020; Yan et al. 2021). Here, we show a significant association between 

flowering time and bioclimatic variables, especially precipitation levels in warm months 

(e.g. Bio17), both under greenhouse and outdoor conditions. The part of the variance 

explained by bioclimatic variables was yet much higher with the outdoor (21%) than 

with the greenhouse experiment (11.7%). Yet, because the five B. distachyon genetic 

clades occupy different ecological niches, accounting for population structure might 

also lead to an underestimation of the environmental effect. In fact, the part of the 

variance in flowering time explained by the environment is much larger when not 

accounting for population structure (22% and 40% respectively). While estimating the 

effect of the environment remains a challenge in such structured populations, these 

results show that flowering time variation is a locally adapted trait in our system as 
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well. Interestingly, precipitation levels and hence water limitation seem especially 

important for flowering time as already shown for broader fitness effects in our species 

(Des Marais et al. 2017). 

The greenhouse experiment further confirms that B. distachyon natural accessions 

vary greatly regarding their vernalization requirement and ultimately flowering time 

and can be broadly grouped into early- and late-flowering genotypes (Figure S1 and 

Figure 1B, but see Ream et al., 2014; Gordon, et al. 2017 for a finer classification 

scheme). Despite within clade variation regarding flowering time (Figure 1B), 

accessions from the A lineage (A_East and A_Italia) display a large delay in flowering 

compared to accessions from the B (B_East and B_West) and C lineage, which typically 

result from longer vernalization requirements. This pattern has been suggested to be 

a sign of adaptation at a regional scale in Turkey (Skalska et al. 2020) and could be 

interpreted as a footprint of diversifying selection at the genetic clade level. Based on 

this hypothesis, accessions from the A_East and A_Italia clades may display a delay in 

flowering as globally adapted to colder and less arid environmental conditions, as 

shown for instance in A. thaliana (Ågren and Schemske 2012). Yet, our results do not 

fully support this scenario, as we found a large discrepancy between the partitioning 

of the phenotypes and the bioclimatic variables associated with flowering time within 

the genetic clades (Figure 1B, C, D). Our niche modelling projections for the last glacial 

maximum (Minadakis et al. 2023), do not further support an adaptation to the last 

glacial maximum conditions (Figure S6). As such, the partitioning of the early vs. late 

flowering accessions remains difficult to explain with an <adaptive= scenario. In 

summary, we conclude that local environmental conditions are partly driving flowering 

time variation within genetic clades but not the early- and late-flowering partitioning 

of the phenotypes we observed among clades in the greenhouse. 

As already shown by Stritt et al. (2022) with a smaller subset of accessions, variation 

in flowering time is largely attenuated in outdoor conditions and although significant 

differences are observed among genetic clades, all plants flowered within 20 days 
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when grown outdoors in Zürich (Figure 5C). This suggests that vernalization is only one 

important known environmental cue that shapes a given accessions flowering 

behavior. However, in the wild many other additional environmental cues, some of 

which are not currently well understood in B. distachyon, may also play an important 

role in impacting the flowering behavior of a given accession. Hence, such 

experiments, largely performed in B. distachyon (Ream et al. 2014; Gordon, et al. 2017; 

Sharma, et al. 2017) may only weakly capture how accessions behave in the wild and 

most likely reflect factors necessary for the plant to acquire the competence to flower 

rather than <true= flowering time in the wild. 

 

Flowering-time genes and flowering time variation 

Flowering-time genes have been extensively characterized at the molecular level in 

B. distachyon (Ream et al. 2012; Ruelens et al. 2013; Ream et al. 2014; Woods et al. 

2014; Woods et al. 2017a,b; Lomax et al. 2018; Cao et al. 2020; Kennedy and Geuten 

2020; Woods et al. 2020; Bouché et al. 2022; Raissig and Woods 2022). Here we 

selected 22 flowering-time genes known to play a major role in vernalization- (e.g., 

VRN1, RVR1) or photoperiod-sensing (e.g. PPD1, PHYC, ELF3, VRN2) to characterize the 

magnitude of their allelic effects on flowering time. We found VRN1, FTL10, POLD3, 

FTL1, CO1, PHYC, VRN2, CO2, RVR1, and ELF3 (AFT-genes) to be significantly 

associated with flowering time measured in the greenhouse, many of which underlie 

significant QTL peaks in biparental populations or significant SNPs in genes from 

previous flowering GWAS (Bettgenhaeuser et al. 2017; Woods et al. 2017a; Wilson et 

al. 2019). SNPs in VRN1, FTL10, POLD3, and FTL1 explained individually more than 40% 

of the variance in flowering time while RVR1, PPD1 and ELF3 were only marginally 

associated with phenotypic variation. The additive model explained altogether 58% of 

the variance, demonstrating that genetic factors play a larger role in shaping flowering 

time under greenhouse conditions than the climate at the locality of origin. 

      The current molecular model of flowering in B. distachyon involves all of the AFT9s 

found in this study. Briefly, prior to vernalization expression of a long day photoperiod 
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repressor, VRN2 prevents flowering by repressing the expression of the long day 

mobile floral signal FTL1 from being expressed (Woods et al. 2017a). After 

vernalization, the basal repressive signal from VRN2 is overcome by the strong 

flowering inductive signal provided by VRN1, which is induced during vernalization 

(Raissig and Woods 2022). VRN1 remains repressed prior to vernalization due in part 

by RVR1, which is important in establishing a vernalization requirement in 

B. distachyon by repressing VRN1 prior to cold (Woods et al. 2017b). EZL1 and POLD3 

are also involved in the repression of VRN1 but also impact the expression of many 

other floral homeotic genes and genes with diverse functions (Lomax et al. 2018; 

Woods et al. 2020). In addition to a vernalization requirement that must be met by 

cold exposure in B. distachyon the exposure of plants to a prolonged period in short 

days can also provide competence to flower referred to as short day vernalization, 

which requires the expression of FTL9 (a close paralog to FTL10) first in SD to allow 

flowering in long days (Woods et al. 2019). Ultimately, long days are essential for the 

expression of FTL1 and thus flowering in B. distachyon (Wu et al. 2013; Ream et al. 

2014). PHYC is essential for long day photoperiodic flowering and is required for the 

long day activation of a number of genes in the photoperiod pathway including PPD1, 

CO1, and CO2 that in turn are important in the activation of FTL1  (Woods et al. 2014; 

Qin et al. 2019). The translation of the light signal perceived by PHYC into a flowering 

response is mediated by ELF3, which itself directly regulates the expression of PPD1 in 

LD (Bouché et al. 2022; Alvarez et al. 2023; Woods et al. 2023). Taken together, several 

of the genes shown to play an important role in flowering via molecular, biochemical, 

and genetic methods also clearly contribute to flowering variation in diverse 

B. distachyon accessions.  

 However, it is interesting that genes like ELF3 and PPD1 play a minor (3.7%) or 

are not associated at all in shaping the flowering time diversity of B. distachyon 

whereas variation in these two genes is important in wheat and barley (Turner et al., 

2005; Wilhelm et al., 2009; Bendix et al., 2015). This may reflect the different 

evolutionary histories of a wild grass, such as B. distachyon versus domesticated crops. 
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Moreover, the polyploid nature of crops like wheat have frequently found that 

variation in flowering often involves either copy number variation of specific genes or 

dominant mutations in cis-regulatory regions that increase gene expression and were 

selected unknowingly by breeders (e.g. (Wilhelm et al. 2009; Würschum et al. 2015). 

Interestingly, while pold3 and elf3 loss of function mutants flower faster than the 

wildtype (Woods et al. 2020; Bouché et al. 2022), their contribution to flowering time 

variation (46% and 3.7% respectively) differ drastically. This discrepancy might be due 

to the fact that mutants used to characterize gene functions usually harbor mutations 

with deleterious or large effect size (loss of function). In contrast, our natural flowering-

time gene variants are mostly predicted as having low to moderate impacts. 

In fact, none of the AFT-genes co-localize with the GWAs candidate identified with 

the outdoor experiment (Figure 5D), questioning the role of flowering time genes on 

the fine-tuning of flowering time in the wild. While we should extent our common 

garden experiment to a larger number of sites, our results are in line with a previous 

studies in A. thaliana which, by using natural accessions and RILs, found that flowering 

time variation scored in the field experiment poorly correlated with the flowering time 

variation obtained under greenhouse conditions (Weinig et al. 2002; Malmberg et al. 

2005; Brachi et al. 2010; Wilczek et al. 2010). As a consequence, a limited overlap is 

observed between the genomic regions detected in field experiments and those 

detected under greenhouse conditions (Brachi et al. 2010). Flowering time has a 

complex polygenic architecture (Buckler 2009; Brachi et al. 2010; Navarro et al. 2017; 

Zan and Carlborg 2019; Gaudinier and Blackman 2020) and the use of EMS-induced 

mutants suggested that many additional genes might play a role in shaping this trait 

in B. distachyon (Raissig and Woods 2022), some of which are not described or only 

play a minor role in flowering time in other plant models (Woods et al. 2020). In 

addition, alleles may affect phenotypes only in specific populations (Zan and Carlborg 

2019; Yan et al. 2021; Gloss et al. 2022) or seasons (Weinig et al. 2002; Gould and 

Stinchcombe 2017). Taking into account the polygenic architecture, gene-by-

environment association and phenotypic plasticity (Gaudinier and Blackman 2020; Yan 
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et al. 2021) will therefore be essential to better capture the adaptive potential of 

flowering time and flowering-time genes in natural populations of B.  distachyon. 

Although flowering-time genes are undoubtedly essential in the perception of 

environmental cues and overwintering (for review Raissig and Woods 2022), our results 

show that the effect of their variants in the wild are more difficult to predict and remain 

to be carefully quantified.  

 

Flowering-time genes and polygenic selection 

The greenhouse experiment further highlighted a striking pattern of long-range 

linkage disequilibrium (LD), both intra- and inter-chromosomal, among eight AFT-

genes associated with flowering time variation under greenhouse conditions (Figure 

3). Polygenic selection is expected to result in LD between regions under selection 

(Yeaman et al. 2016; Yeaman et al. 2018; Gupta et al. 2023) but only few cases have 

been reported so far in plants and animals (Hohenlohe et al. 2012; Yeaman et al. 2016; 

Park 2019; Gupta et al. 2023). In A. thaliana, Zan and Carlborg (2019) also identified 

long-range LD among four clusters of flowering-time genes.  

Disentangling the effect of population structure and demographic effects from 

polygenic selection can be challenging and there needs to be caution interpreting 

these patterns (Zan and Carlborg 2019; Gupta et al. 2023). The long-range LD we 

observed among our eight AFT-genes is associated with high genetic differentiation 

between the A and B lineages (Figure 2A, B, C) and could result from the recent 

bottlenecks experienced by B. distachyon in the recent past (Stritt et al. 2018; 

Minadakis et al. 2023). Three lines of evidence rule out this demographic scenario. First, 

FST analyses performed with our real- as well as forward-simulated data show that the 

population size reduction experienced by B. distachyon did not lead to genome-wide 

highly differentiated alleles and AFT-gene variants constitute clear FST outliers. 

Second, we also demonstrated that the levels of long-range LD (intra- and inter-

chromosomal) we observed among these eight AFT-genes (Figure 3) are not observed 

among random genic loci in the genome. Eventually, AFT-genes do not display signs 
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of duplication or insertion polymorphisms which imply that structural rearrangements 

did not bring AFT-genes physically together in non-reference accessions. We therefore 

believe that we present clear evidence for polygenic selection on key genes involved 

in the flowering pathway.  

Expression analyses further support the functional connection among these loci in 

B. distachyon and grasses in general. For example, VRN1 and FTL1 are expressed in a 

positive feedback loop, which overcomes the flowering repression of VRN2 (Ream et 

al. 2014; Woods et al. 2016; Woods et al. 2017b). Additionally, there is an intricate 

connection between many of these flowering genes both transcriptionally and at the 

protein level. For example, among the pairwise interactions tested between PHYC, 

PHYB, ELF3, PPD1, VRN2, CO1, and CO2 more than 80% showed positive interactions 

in yeast two hybrid assays some of which have been verified in planta (Shaw et al. 2020; 

Alvarez et al. 2023).  Thus, many of these genes can interact at multiple levels.  

The XTX analysis we performed with the five genetic clades as focal populations 

shows that AFT-genes harbor SNPs above the threshold of significance, POLD3 and 

CO1 presenting more extreme outliers. This footprint of positive selection (Gautier 

2015) is yet not accompanied by extended haplotypes around our candidate genes 

(except for CO2) which implies that the initial selective sweeps may have eroded with 

time and that selection did not occur in a recent past. AFT-genes and flowering-time 

genes are yet not colocalizing with regions we previously identified with GEA analyses 

(Figure 4B). Thus, although we find evidence of positive selection at single AFT-genes 

in additional of signs of polygenic selection, the selective constraint at play remains 

yet to be identified. We eventually found evidence for positive selection but no 

association with GEA regions for the newly identified GWAs candidate (Figure 5E).  

It is yet essential to keep in mind that GEA performed in species with strong 

population structure can lead to high rate of false negatives as they typically include 

structure correction (Booker et al. 2023; Lottheros 2023). We did find significant 

associations between bioclimatic variables and SNPs at AFT-genes and GWAs peak 
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when not correcting for population structure (Figure S5). The fact AFT-genes display 

signs of positive selection argue in favor of an effect of the environment in shaping 

their diversity but also prove that disentangling the confounding effects of population 

structure and local adaptation remain challenging. Common garden experiments will 

thus be key to test the effect of genotype-by-environment interactions in our system. 

 

Conclusion and perspectives 

Our results suggest that i) flowering time is a locally adapted trait in B. distachyon but 

ii) only part of the variation in flowering time can be explained by the environment and 

iii) eight key flowering-time genes are co-evolving but their effect in the wild remain 

to be clarified. In the face of global warming, plant phenology has recently advanced 

significantly  (e.g. Anderson et al. 2012) therefore, investigating the polygenetic 

architecture of flowering time remains therefore a timely question. Polygenic selection, 

epistatic and pleiotropic effects might limit the evolution of traits (Yan et al. 2021; 

Yeaman 2022) and future experiments in B. distachyon should focus on disentangling 

these effects. Mimicking the combination of the various clues that trigger flowering is 

yet impractical under greenhouse conditions and common garden experiments will 

thus be essential to place flowering time in a natural context in this system. We, 

however, know relatively little about the basic ecology of B. distachyon. When are 

plants emerging in the wild? How plastic is flowering time and phenotypes in general? 

What is the contribution of seed banks to the effective population size and hence 

selection strength? constitute fundamental questions to address in the future to more 

broadly characterize the process of local adaptation in this species.  
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Materials and Methods 

Biological materials and genomic resources  

The Brachypodium distachyon diversity panel is composed of 332 natural accessions 

for which whole-genome sequencing data are publicly available (Gordon, Contreras-

moreira, et al. 2017; Gordon et al. 2020; Skalska et al. 2020; Stritt et al. 2022). For the 

flowering time experiment, we selected a subset of 61 accessions representing all five 

genetic clades as described by Stritt et al. 2022 and occurring along latitudinal 

gradiants. Maps were drawn QGIS (version 3.16). 

We also made use of the raw vcf produced by Minadakis et al. (2023) for the entire 

diversity panel. We used vcftools (Danecek et al. 2011) to apply the following filtering 

criteria: --max-alleles 2 --max-missing-count 200 --minQ 20. We further filtered 

heterozygous SNPs as those have been shown to result from duplicated sequenced 

and be mostly artifactual in selfing species (Stritt et al. 2022). All the analyses were 

performed on version3 of the B. distachyon genome (https://phytozome-

next.jgi.doe.gov). 

 

Flowering time measurement 

We performed an experiment in controled conditions from October 2021 until May 

2022 in order to test the flowering phenology of the five genetic clades of 

Brachypodium distachyon. Twelve accessions per genetic clade were selected, in 

addition to the reference accession Bd21. All accessions were treated with five 

vernalization periods spanning from 2 to 10 weeks, with three replicates per treatment 

and per accession. Seeds were stratified for at least two weeks before the experiment, 

and then sowed in pots that were placed in greenhouse conditions (16 h day at 20°C 

and 8 h dark at 18°C with a light intensity of 200 µMol/m2/s ). We distributed the 

replicates randomly across trays to minimize bias due to position effects. Three weeks 

after germination the plants were transfered to a cooling chamber (constant 

temperature at 4°C, 8h light 80 µMol/m2/s, and 16 h dark) for 2, 4, 6, 8, and 10 weeks. 

At the end of the vernalization treatment, plants were moved back to the greenhouse. 
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Flowering time was measured as the number of days after return to greenhouse to 

the first day of spike emergence which is consistent with stage 50 of the Zadoks scale 

that was used in (Ream et al. 2014). Measurements were taken every two days until the 

end of the experiment in May. During the experiments, trays were permuted on the 

table to further limit position effects. We calculated the mean of flowering time per 

vernalization treatment and accession to estimate flowering from i) the day plants were 

move to the vernalization chamber or ii) the day after the return to warm conditions. 

This allowed us to estimate the fastest time for an accession to flower. Results were 

plotted in R version 4.0.2 (R Core Team, 2018) with the package ggplot2 (Wickham 

2016). 

 

Extraction of current and past bioclimatic variables 

Raster maps for current monthly solar radiation and altitude were retrieved from 

worldclim (https://www.worldclim.org). In addition, raster maps for monthly Global 

Aridity Index (GAI) were obtained from https://cgiarcsi.community/data/global-

aridity-and-pet-database/. Bioclimatic variables were then extracted using the R 

packages raster (v.3.5-2, Hijmans & van Etten, 2012) and rgdal (v.1.5-27, Keitt et al., 

2010) for each of the 332 accessions. For solar radiation and GAI, data were also 

average over spring months (April to June).  

For paleo-bioclimatic variables, we used the niche suitability projections for the last 

glacial maximum (LGM) computed by Minadakis et al (2022). For each genetic clade, 

we extracted the coordinates of a set of 200 random points per clade in highly suitable 

habitats (>0.85) with the raster package function rasterToPoints. We retrieved raster 

maps for LGM from https://www.worldclim.org/data/v1.4/paleo1.4.html and extracted 

the 19 paleo-bioclimatic variables for the corresponding sites as described above.  

 
Linear Mixed model analyses 

Association between flowering time and bioclimatic variables were tested with linear 

mixed model analyses (LMM) using the R package lme4 (Bates et al. 2015). We subset 
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the 19 classical bioclimatic variables as well as altitude, aridity and solar radiation in 

spring for the 56 accessions for which flowering time was measured. We performed a 

principal component analysis (PCA) with the R base function prcomp using the 

resulting 22 variables. We then ran LMM where flowering time was entered as the 

response variable, the 22 environmental variables mentioned above as well as the first 

2 PCA axes entered separately as fixed factors and the clade of origin as a random 

factor. Accessions were nested within genetic clades. 

We also tested the association between flowering time and SNPs in flowering genes 

(FT genes) using LMM. To do so, we first extracted and converted the SNPs located in 

flowering-time genes as a dataframe with vcftools -- bed --extract-FORMAT-info GT, 

where the bed file contained the position of FT-genes. We then ran LMM where 

flowering time (fastest time per accession) was entered as the response variable, the 

SNPs at FT genes entered separately as fixed factors and the clade of origin as random 

factors. Accessions were nested with genetic clades. FT-gene IDs and position in the 

genome can be found in tables S4. Epistatic effects were tested with Plink 1.9 (Purcell 

et al. 2007). Note that because many accessions from the A_East, A_Italia and C clades 

did not flower without at least six weeks of vernalization (Figure S1), we did not 

compute a full model including the vernalization treatment as a random factor due to 

missing data. 

For all LMM analyses, the part of the variance explained by the fixed- (marginal R2) 

and random effects were computed following Nakagawa and Schielzeth (2013). All the 

plots were produced with the R package ggplot2 (Wickham 2016). Classical linear 

models and correlation (Kendall) were ran in R basics.   

 

FST calculation 

Single SNP FST between accessions of the A and B lineages were calculated with 

vcftools (Danecek et al. 2011). To account for shifts in the observed FST values caused 

by the population structure of B. distachyon, the expected FST distribution under 
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neutral evolution was also estimated using forward simulations run in SLiM version 3.4 

(Haller and Messer 2019). The population structure, effective population sizes and time 

of divergences between lineages of B. distachyon during its evolution were modeled 

in SLiM based on the results of Minadakis et al. (2023). No migration between the 

different populations in the simulations was allowed, as a lack of interbreeding 

between the distinct B. distachyon clades was reported (Stritt et al. 2022). The 

simulation, was run 100 times and single SNP FST were calculated for each simulation 

to generate the expected FST distribution under neutrality.  

 

Linkage disequilibrium analyses 

To plot linkage disequilibrium (LD) decay, we first thinned the vcf with vcftools --thin 

20000 to keep one SNP every 20 kilobases (kb). Intrachromosomal LD (r2) was 

calculated with vcftools --geno-r2. We repeated this step by further filtering the vcf for 

a minimum allele frequency of 0.05 with vcftools -- maf 0.05.  For both outputs, we 

visualized LD decay by plotting r2 and its 95 CI as a function of the physical distance 

between SNPs with the R package ggplot2. LD between focal SNPs in flowering-time 

genes was calculated separately with vcftools 3geno-r2 and added to the LD decay 

plot for comparison. LD plots for focal SNPs were produced with the R package gaston 

(Pedry and Dandine-Roulland 2020). 

Inter-chromosomal LD (r2) was calculated with vcftools --interchrom-geno-r2 for a 

subset of 100,000 loci selected randomly in the genome. We then re-sampled 50,000 

times five and six loci and calculated the mean LD each time. This allowed us to further 

calculate the CI around the mean and compare our real data to this distribution.  

 

Scans of selection 

The XTX analysis was performed with BayPass v2.3 using the five genetic clades or three 

genetic lineages as populations (Gautier 2015). We generated the input file by using 

vcftools --count to calculate the allele frequency of each SNP present in our vcf (no 

filtering on minor minimum allele frequency). We then ran Baypass on our actual 
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dataset with the following parameters: -pilotlength 500 -npilot 15 -burnin 2500 -

nthreads 6. To calibrate the XTX and define a threshold of significance for differentiated 

SNPs, we then used the simulate.baypass function from baypass_utils (Gautier et al. 

2015) to generate a pseudo-observed dataset (POD) of 100,000 loci based on the co-

variance matrix computed with our real dataset. We then ran Baypass on the POD with 

the parameters described above. We used the 0.99 quantile of the XTX calculated for 

the POD as a threshold of significance for the real dataset. Integrated Haplotype Scores 

(IHS) were also computed for accessions of the A and B lineages separately with the R 

package Rehh 3.1 (Gautier et al. 2017) 

 

Functional effect and age estimates of variants 

The functional effect of variants was annotated using SnpEff version 5.0e (Cingolani et 

al. 2012) using default parameters and the provided database for Brachypodium 

distachyon.  

The age of each single SNP was computed with GEVA (Albers and McVean 2020) to 

estimate the average SNP age for each annotated gene (https://phytozome-

next.jgi.doe.gov) in the derived A and B genetic lineages as well as in the five genetic 

clades. All private SNPs to the combined A and B lineages were polarized using the 

ancestral C lineage using custom R scripts. GEVA was run on the five main scaffolds 

(corresponding to the five chromosomes) using the genetic map produced by (Huo et 

al. 2011) and the polarized SNP dataset. 

 

Genome-wide association analysis 

We further used the flowering time measurements performed outdoor in Zurich in 

2017 (Stritt et al. 2022). We extracted the 19 classical bioclimatic variables as well as 

altitude, aridity and solar radiation for the 332 accessions as well as a site in Zurich (lat 

= 43.73693085, lon = 3.69295907) and performed a principal component analysis 

(PCA) as described above. Linear-mixed model analyses were performed as described 

above for the greenhouse experiment. 
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To identify loci associated with flowering time variation, we performed a genome-

wide association analysis with GEMMA (Zhou and Stephens 2012). Due to population 

structure, we corrected the analysis by a centered relatedness matrix, first produced 

with the option -gk 1. Association tests were performed using the option -maf 0.05 to 

exclude SNPs with minor allele frequency with values less than 0.05. Regions were 

considered significantly associated if displaying at least four markers above FDR 

threshold in 8Kb windows (overlap of 4Kb). Upset plots were drawn with the R package 

UpSetR (Gehlenborg 2019). 

 

Overlaps with Environmental association analyses 

We made use of the environmental association analyses performed by Minadakis et al. 

(2023) to assess whether flowering-time genes and the candidate gene identified by 

the GWAs were associated with current environmental variables. Upset plots were 

drawn in R with the R package UpSetR (Gehlenborg 2019). 

 

Gene duplication 

We checked for potential gene duplication with detettore 

(https://github.com/cstritt/detettore), a program developed to study structural 

variation based on short-read sequences (Stritt 2021). We also calculated the 

proportion of heterozygous sites over the 22 flowering-time genes and 332 accessions, 

using the raw vcf produced by Minadakis et al. (2023) not filtered for heterozygous 

SNPs but with the following criteria: --max-alleles 2 --max-missing-count 200 --minQ 

20. 
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Supplementary Materials 

The supplementary materials consist in six figures and seven tables. 

Table S1: Raw results of the flowering time experiment. 

Table S2: Differences in flowering time among the five genetic clades. 

Table S3: Output of the linear model analyses between flowering time under 
greenhouse conditions and environmental variables. 

Table S4: Flowering time gene position and ID. 

Table S5: output of the LMM between flowering time and SNP at FT genes for 
significantly associated SNPs. 

Table S6: Flowering-time gene age estimates. 

Table S7: Output of the linear model analyses between flowering time under oputdoor 
conditions and environmental variables. 
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